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Abstract

We prove Seymour’s self-minor conjecture for infinite trees.

1. Introduction

P. D. Seymour conjectured that every infinite graph is a proper minor of itself.
This was disproven for uncountable graphs by B. Oporowski [1] but is still open for
countable graphs. We prove the conjecture for trees of any cardinality. Our proof is
based only on Kruskal’s theorem that the finite rooted trees are well-quasi-ordered [2].

2. Terms and Definitions

We use the terms and notation from [3]. In particular, H is a minor of G, denoted
by H 4 G, if there is a subset X ✓ V (G) and a surjective map � : X ! V (H)
such that for every vertex v 2 V (H) its branch set ��1(v) is connected in G and for
every edge vw 2 E(H) there is a ��1(v)–��1(w) edge in G. Such a map � is called
a subcontraction from G to H . A subcontraction from G to H is proper if it is not an
isomorphism between G and H . For graphs G and H the graph H is a proper minor
of G if there is a proper subcontraction from G to H . Let (T, r) and (T 0, r0) be rooted
trees. A map is a subcontraction from (T, r) to (T 0, r0) if it is a subcontraction from T
to T 0 which maps r to r0. If there is such a subcontraction, we call (T 0, r0) a minor of
(T, r).

Let (T, r) be a rooted tree. The tree-order of (T, r) is an order r on the vertex
set of T such that v1 r v2 if and only if v1 lies on the (unique) r–v2 path in T . Let x
be a vertex of a rooted tree (T, r) the vertex set bxc := {v 2 V (T ) | x r v} is the
up-closure of x in (T, r).

A labelling of A is a map � from A to another set B. Then A is labelled by B and
for a 2 A its image �(a) is the label of a.

3. Countable trees

In this section we give a proof of the self-minor conjecture for countable trees. The
argument starts with trees that consist essentially of a ray. This will clear the way for
treating arbitrary countable trees afterwards.

As finite rooted trees are well-quasi ordered, by Kruskals’s Theorem [2], the next
lemma immediately implies the self-minor conjecture for a ray that has only finite trees
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attached to its vertices. Let (N, 0) be the natural ray on N with vertex set N, root 0,
and edges {i, i + 1} for i 2 N. The natural order of N and the tree-ordering agree on
N = V (N).

Lemma 1. Let Q be well-quasi-ordered by Q and (N, 0) the natural ray. For every
labelling � : V (N) ! Q, there is a proper subcontraction � from (N, 0) to (N, 0) such
that for every vertex n 2 V (N) there is an m 2 ��1(n) such that �(n) Q �(m).

Proof. For every i 2 N let Fi := {j 2 N|i  j, �(i) Q �(j)} be the successor set
of i. Thus a successor set of i contains the vertices that are at least i such that their
label is at least the label of i. In a later subcontraction these are precisely the vertex-
sets that need to have a representative in the ith branch set. Coined this term we have
two different cases:

1. The successor set is finite only for a finite number of vertices.
2. There is an infinite sequence of finite successor sets.

For both cases there is a short proof of the lemma. In fact, the first case yields to a
construction of a proper subcontraction, while the latter one is contradictory.
Case 1. There is only a finite number of vertices i 2 V (N) such that Fi is finite,

thus there is a largest one k say. Thus for any j > k the set Fj is infinite.
We will define a subcontraction form (N, 0) to (N, 0). On the first k vertices this

will be the identity. Then we map k + 1 to k and this will force the map to be proper.
The images of later vertices are defined recursively. We make use of the fact the the Fn

are infinite for n > k so that we can map the vertices to larger images again and again.
We recursively define the function µ as follows: Let µ(0) = 0 and let µ : V (N) !

V (N) be defined for i < n. Then there are four cases with different rules for defining
µ(n),

µ(n) :=

8>>><
>>>:

n if n  k

k if n = k + 1
µ(n� 1) if n > k + 1 and n /2 Fµ(n�1)+1

µ(n� 1) + 1 if n > k + 1 and n 2 Fµ(n�1)+1

This definition makes sure that the map is proper, the inverse images are connected
and the ith interval which is µ�1(i) contains a vertex from Fµ(i). It is surjective as
Fµ(n�1)+1 is infinite for every n > k.

Thus µ is a proper subcontraction from (N, 0) to (N, 0) and every branch set con-
tains a vertex with at least one suitable label.
Case 2. As there are infinitely many finite successor sets there is a strictly increas-

ing sequence (ni)i2N say, inN such that (Fni)i2N is a disjoint family of finite successor
sets. As the labels of (ni)i2N are well-quasi-ordered there are positive integers j and
j0 with nj < nj0 and �(nj) Q �(nj0). Thus nj0 2 Fnj and Fnj \ Fnj0 is not empty
containing at least nj0 . A contradiction.

Let us prove the self-minor conjecture for countable trees using Lemma 1 for trees
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without T2-minor1. For rayless and such trees containing a T2-minor we will provide
a self contained construction of a suitable subcontraction.

Lemma 2. Every countable rooted tree has a proper subcontraction onto itself.

Proof. Let (T, r) be a countable rooted tree, then there are three cases:

1. T does not contain a ray.
2. T contains a ray but no T2 as a minor.
3. T contains a T2 as a minor.

Case 1. Let there be no ray in T . Let x have infinite degree and let it be maximal
in the tree order r with that property. Such a vertex exists as we required T to be
rayless and connected. In T � x there is one component for every neighbor of x. As
x has infinite degree there are infinitely many components. At most one component
is not contained in the up-closure of x. Every component in that up-closure is finite,
thus there are infinitely many finite components above x. By adding x with its incident
edge every such component induces a finite rooted tree with root x. Kruskal proved
that finite rooted trees are well-quasi-ordered by the minor relation [2]. Thus there is an
increasing sequence (T1, x) 4 (T2, x) 4 . . . say, of these rooted trees above x. We can
delete T1�x and map (Ti+1, x) to (Ti, x)with subcontractions. These subcontractions
are extendable by the identity outside of

S
Ti. We then have a subcontraction from

(T, r) to (T, r) which is proper as T1 � x contains at least one vertex.
Case 2. Let there be a ray but no T2 minor in T . Then the following algorithm to

find a T2 minor in T fails at some point.

1. Let (T 0, r) be the trivial tree on one vertex, in this case the root.
2. Mark the maximal vertices in (T 0, r).
3. Choose for every marked vertex x two incomparable vertices a, b say, in its up-
closure such that there is a ray in the up-closure of a and one in the up-closure
of b.

4. Add the x–a path and the x–b path to (T 0, r) for all the maximal vertices.
5. Repeat step 2. to 5.

The only step the above algorithm may fail is the third one. Thus there is a maximal
vertex in (T 0, r) at some point so that there are no two incomparable vertices with rays
in their up-closure above it. Thus there is an x 2 V (T ) such that (T [bxc], x) contains
only one ray that starts in x. Let R be this ray. (T [bxc], x) essentially consists of
one ray, i. e. in every vertex of R only a finite rooted tree—disjoint to R except in its
root—is attached.

We may indeed assume these trees to be finite as we can use that infinite rayless
rooted trees have a proper subcontraction onto themselves. Let us regard the attached
trees as the labels of the vertices they are attached to. We may apply Lemma 1 since
finite rooted trees are well-quasi-ordered [2]. Thus there is a proper subcontraction

1The T2 is the binary tree, i. e. the infinite tree with one vertex of degree 2, which is its root in the rooted
version, and all other vertices having degree 3.
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from (R, x) to (R, x) with respect to this particular labelling and the minor relation
on finite rooted trees. Such a proper subcontraction induces one from (T [bxc], x) to
(T [bxc], x). This subcontraction is extendable by the identity to the rest of (T, r).
Case 3. T contains a T2-minor. A T2 contains a T@0 as a minor. This can be seen

by coloring the edges of the T2 such that every vertex has one white and one black
edge to its above neighbors and contracting all white edges. Thus there is a proper
subcontraction � say, from T to T@0 . As T is connected we may demand that r is
mapped to a vertex of T@0 by �. The rooted tree (T@0 , �(r)) contains every countable
rooted tree even as a proper subgraph.

4. Arbitrary cardinalities

In this section we prove the self-minor conjecture for trees of arbitrary cardinality.
This result does not extend to graphs in general as B. Oporowski gives a counterex-
ample in [1]. This part of the problem looked straight forward first but the singular
cardinalities of cofinality ! demanded some effort from us.

Definition 3. Let (T, r) be a rooted tree. Let Ai be the set of vertices with distance i
from the root and ↵i := |Ai| for all i 2 N. The family (↵i)i2N is called the cardinal
family of (T, r).

Lemma 4. For every infinite rooted tree there is a proper subcontraction onto itself.

Proof. Let (T 0, r) be a counterexample of smallest possible cardinality  say. By
Lemma 2 we know that  > @0. Let (T, r) be the maximal subtree in (T 0, r) such that
every vertex has a ray in its up-closure. Let X be the set of vertices in V (T 0) \ V (T )
that are adjacent to T . Every vertex in X has a finite up-closure, as there is a maximal
vertex of infinite degree otherwise and we may construct a proper subcontraction just
as in the countable rayless case. Additionally there is no vertex in T that is adjacent to
infinitely many vertices of X for the same reason. Thus there are only finitely many
vertices that are deleted from T 0 for every vertex that remains in T , this means that
there are  vertices left in T .

Let (↵i)i2N be the cardinal family of (T, r). It holds that  =
S1

i=0 ↵i as T is
connected. Now there are two cases: In the first case, for every vertex x 2 V (T ) the
cardinal family of (T [bxc], x) contains  as a member. In the second case there is a
vertex z 2 V (T ) such that (T [bzc], z) has a cardinal family (�i)i2N with �i <  for
all i 2 N.
Case 1. For every x 2 V (T ) there is a distance class in (T [bxc], x) with  vertices,

thus there is a vertex with degree  above every vertex. This information enables
us to construct a subdivided T: We start at the root r and choose a vertex above
the root with degree . In the next step we add a path from every maximal vertex
in the already chosen subtree to a vertex with degree  above it. After ! steps we
constructed a subdivided T with an attached path to the root. By contracting this path
and suppressing all the vertices of degree 2 we obtain a T as a minor of T 0.
Case 2. Let z 2 V (T ) be a vertex without  in its cardinal family. We may assume

|bzc| =  by induction as a proper subcontraction of (T [bzc], z) would be extendable
to the whole tree. There is no largest member � say, of the cardinal family (�i)i2N of
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(T [bzc], z) as this would satisfy  =
S1

i=0 �i 
S1

i=0 � = @0 � = �. This holds for
every vertex above z, too. Thus for a vertex y 2 bzc the rooted tree (T [byc], y) with
cardinal family (↵i)i2N satisfies that for every i there is a j > i such that ↵j > ↵i.
In other words we will find ever larger cardinals in every such cardinal family. This
implies that there is a vertex of degree at least �i above x for every i 2 N and x 2 bzc.

We will choose a set of rays in (T [bzc], z) which we will contract afterwards and
therewith construct a T. The idea is basically the same as in the situation where we
constructed a T@0 as a minor in a T2. The collecting of rays works as follows: Let
R0 = ; and let Ri be defined for all i < j. Let Xj ✓ V (T ) be the set of vertices
that are disjoint to the elements of Ri with minimal distance to the root. Choose a ray
Rx for every x 2 Xj such that V (Rx) ✓ bxc such that Rx has  neighbors. Such a
ray exists as every vertex has a vertex of degree �i for every i 2 N in its up-closure.
Let Rj := Rj�1 [ {Rx|x 2 Xj}. As the up-closures of vertices that have the same
distance from the root are disjoint the simultaneous chosen rays are mutually disjoint.
Let R :=

S
i2N Ri. We now contract all rays in R. The resulting graph is a T as

every ray has the initial vertices of  distinct rays that belong toR in its neigborhood.
In both cases we ended up with a T which contains every tree of cardinality  as

a proper minor. Since the T is regular and we made sure that the root of (T 0, r) is
contained in some branch set there is a proper subcontraction as requested.

This completes the proof of the self-minor conjecture for trees by choosing an
arbitrary root:

Theorem 5. Every infinite tree is a proper minor of itself.
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