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EXTREMAL RESULTS FOR RANDOM DISCRETE

STRUCTURES

MATHIAS SCHACHT

Abstract. We study thresholds for extremal properties of random discrete

structures. We determine the threshold for Szemerédi’s theorem on arithmetic
progressions in random subsets of the integers and its multidimensional ex-

tensions and we determine the threshold for Turán-type problems for random

graphs and hypergraphs. In particular, we verify a conjecture of Kohayakawa,
 Luczak, and Rödl for Turán-type problems in random graphs. Similar results

were obtained by Conlon and Gowers.

1. Introduction

Extremal problems are widely studied in discrete mathematics. Given a finite
set Γ and a family F of subsets of Γ an extremal result asserts that any sufficiently
large (or dense) subset G ⊆ Γ must contain an element from F . Often all elements

of F have the same size, i.e., F ⊆
(

Γ
k

)
for some integer k, where

(
Γ
k

)
denotes the

family of all k-element subsets of Γ.
For example, if Γn = [n] = {1, . . . , n} and Fn consists of all k-element sub-

sets of [n] which form an arithmetic progression, then Szemerédi’s celebrated theo-
rem [40] asserts that every subset Y ⊆ [n] with |Y | = Ω(n) contains an arithmetic
progression of length k.

A well known result from graph theory, which fits this framework, is Turán’s
theorem [41] and its generalization due to Erdős and Stone [12] (see also [10]).
Here Γn = E(Kn) is the edge set of the complete graph with n vertices and Fn
consists of the edge sets of copies of some fixed graph F (say with k edges) in Kn.
Here the Erdős-Stone theorem implies that every subgraph H ⊆ Kn which contains
at least (

1 +
1

χ(F )− 1
+ o(1)

)(
n

2

)
edges must contain a copy of F , where χ(F ) denotes the chromatic number of F
(see, e.g., [2, 3, 5, 7]).

We are interested in “random versions” of such extremal results. We study the
binomial model of random substructures. For a finite set Γn and a probability
p ∈ [0, 1] we denote by Γn,p the random subset where every x ∈ Γn is included in
Γn,p independently with probability p. In other words, Γn,p is the finite probability
space on the power set of Γn in which every elementary event {G} for G ⊆ Γn
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occurs with probability

P (G = Γn,p) = p|G|(1− p)|Γn|−|G| .

For example, if Γn is the edge set of the complete graph on n vertices, then Γn,p
denotes the usual binomial random graph G(n, p) (see, e.g., [4, 25]).

The deterministic extremal results mentioned earlier can be viewed as statements
which hold with probability 1 for p = 1 and it is natural to investigate the asymp-
totic of the smallest probabilities for which those results hold. In the context of
Szemerédi’s theorem for every k ≥ 3 and ε > 0 we are interested in the smallest se-
quence p = (pn)n∈N of probabilities such that the binomial random subset [n]pn has
asymptotically almost surely (a.a.s., i.e. with probability tending to 1 as n → ∞)
the following property: Every subset Y ⊆ [n]pn with |Y | ≥ ε|[n]pn | contains an
arithmetic progression of length k. Similarly, in the context of the Erdős-Stone
theorem, for every graph F and ε > 0 we are interested in the asymptotic of the
smallest sequence p = (pn)n∈N such that the random graph G(n, pn) a.a.s. satisfies:
every H ⊆ G(n, p) with

e(H) ≥
(

1− 1

χ(F )− 1
+ ε

)
e(G(n, pn)) ,

contains a copy of F .
We determine the asymptotic growth of the smallest such sequence p of proba-

bilities for those and some related extremal properties including multidimensional
versions of Szemerédi’s theorem (Theorem 2.3), solutions of density regular sys-
tems of equations (Theorem 2.4), an extremal version for solutions of the Schur
equation (Theorem 2.5), and extremal problems for hypergraphs (Theorem 2.7). In
other words, we determine the threshold for those properties. Similar results were
obtained by Conlon and Gowers [6].

The new results will follow from a general result (see Theorem 3.3), which allows
us to transfer certain extremal results from the classical deterministic setting to the
probabilistic setting. In Section 4 we deduce the results stated in the next section
from Theorem 3.3.

2. New results

2.1. Szemerédi’s theorem and its multidimensional extension. We study
extremal properties of random subsets of the first n positive integers. One of the
best known extremal-type results for the integers is Szemerédi’s theorem. In 1975
Szemerédi solved a longstanding conjecture of Erdős and Turán [13] by showing
that every subset of the integers of upper positive density contains a arithmetic
progression of any finite length. For a set X ⊆ [n] we write

X →ε [k] (1)

for the statement that every subsets Y ⊆ X with |Y | ≥ ε|X| contains an arithmetic
progression of length k. With this notation at hand, we can state (the finite version
of) Szemerédi’s theorem as follows: for every integer k ≥ 3 and ε > 0 there exists
n0 such that for every n ≥ n0 we have [n]→ε [k].

For fixed k ≥ 3 and ε > 0 we are interested in the asymptotic behavior of
the threshold sequence of probabilities p = (pn) such that there exist constants
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0 < c < C for which

lim
n→∞

P ([n]qn →ε [k]) =

{
0, if qn ≤ cpn for all n ∈ N,
1, if qn ≥ Cpn for all n ∈ N.

(2)

Remark 2.1. We note that the family {X ⊆ [n] : X →ε [k]} is not closed under
supersets. In other words, the property is “X →ε [k]” is not a monotone property.
However, similar arguments as presented in [25, Proposition 8.6] show that the
property “X →ε [k]” and the other properties considered in this section have a
threshold as displayed in 2.

It is easy to see that if the expected number of arithmetic progressions of length k
in [n]qn is asymptotically smaller than the expected number of elements in [n]qn ,
then there exists a subset of size (1 − o(1))|[n]qn |, which contains no arithmetic
progressions of length k at all. In other word, if

qknn
2 � qnn ⇔ qn � n−1/(k−1) (3)

then P ([n]qn →ε [k])→ 0 for every ε < 1. Consequently, n−1/(k−1) is a lower bound
on the threshold for Szemerédi’s theorem for arithmetic progressions of length k.
For k = 3 Kohayakawa,  Luczak, and Rödl [28] established a matching upper bound.
Our first result generalizes this for arbitrary k ≥ 3.

Theorem 2.2. For every integer k ≥ 3 and every ε ∈ (0, 1) there exit constants
C > c > 0 such that for any sequence of probabilities q = (qn)n∈N we have

lim
n→∞

P ([n]qn →ε [k]) =

{
0, if qn ≤ cn−1/(k−1) for all n ∈ N,
1, if qn ≥ Cn−1/(k−1) for all n ∈ N.

We remark that the 0-statement in Theorem 2.2 (and, similarly, the 0-statements
of the other results of this section) follows from standard probabilistic arguments.
The 1-statement of Theorem 2.2 follows from our main result, Theorem 3.3.

A multidimensional version of Szeméredi’s theorem was obtained by Furstenberg
and Katznelson [18]. Those authors showed that for every integer `, every finite
subset F ⊂ N` and every ε > 0 there exists some integer n0 such that for n ≥ n0

every Y ⊆ [n]` with |Y | ≥ εn` contains a homothetic copy of F , i.e., there exist
some y0 ∈ N` and λ 6= 0 such that y0 + λF = {y0 + λf : f ∈ F} ⊆ Y . Clearly, the
case ` = 1 and F = [k] resembles Szemerédi’s theorem. Generalizing the notation
introduced in (1), for sets X, F ⊆ N` and ε > 0 we write X →ε F , if every subset
Y ⊆ X with |Y | ≥ ε|X| contains a homothetic copy of F .

A simple heuristic, similar to the one in the context of Szeméredi’s theorem,
suggests that n−1/(|F |−1) is a lower bound on the threshold for the Furstenberg-
Katznelson theorem for a configuration F ⊆ N` in the binomial random subset [n]`p
where elements of [n]` are included with probability p. Our next result shows that,
in fact, this gives the correct asymptotic for the threshold.

Theorem 2.3. For every integer ` ≥ 1, every configuration F ⊆ N` with |F | ≥ 3,
and every ε ∈ (0, 1) there exit constants C > c > 0 such that for any sequence of
probabilities q = (qn)n∈N we have

lim
n→∞

P
(
[n]`qn →ε F

)
=

{
0, if qn ≤ cn−1/(|F |−1) for all n ∈ N,
1, if qn ≥ Cn−1/(|F |−1) for all n ∈ N.
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2.2. Density regular matrices. Another extension of Szemerédi’s theorem leads
to the notion of density regular matrices. Arithmetic progressions of length k can be
viewed as the set of distinct-valued solutions of the following homogeneous system
of k − 2 linear equations

x1 − 2x2 + x3 = 0 ,
x2 − 2x3 + x4 = 0 ,
...

...
...

...
xk−2 − 2xk−1 + xk = 0 .

More generally, for an `× k integer matrix A let S(A) ⊆ Rk be the set of solutions
of the homogeneous system of linear equations given by A. Let S0(A) ⊆ S(A) be
those solutions (x1, . . . , xk) with all xi being distinct. We say A is irredundant if
S0(A) 6= ∅. Moreover, an irredundant ` × k integer matrix A is density regular, if
for every ε > 0 there exists an n0 such that for all n ≥ n0 and every Y ⊆ [n] with
|Y | ≥ εn we have Y k ∩ S0(A) 6= ∅. Szemerédi’s theorem, for example, implies that
the following (k − 2)× k matrix

1 −2 1 0 0 · · · 0 0 0
0 1 −2 1 0 · · · 0 0 0

. . .

0 0 0 0 0 · · · 1 −2 1

 (4)

is density regular for any k ≥ 3.
Density regular matrices are a subclass of so-called partition regular matrices.

This class was studied and characterized by Rado [34] and, for example, it follows
from this characterization that k ≥ ` + 2 (see [22] for details). In [14] Frankl,
Graham, and Rödl characterized irredundant, density regular matrices, being those
partition regular matrices A for which (1, 1, . . . , 1) ∈ S(A).

Similar as in the context of Theorem 2.2 and Theorem 2.3 the following notation
will be useful. For an irredundant, density regular, ` × k integer matrix A, ε > 0,
and X ⊆ [n] we write X →ε A if for every Y ⊆ X with |Y | ≥ ε|X| we have
Y k ∩ S0(A) 6= ∅. The following parameter in connection with Ramsey properties
of random subsets of the integers with respect to irredundant, partition regular
matrices was introduced by Rödl and Ruciński [36].

Let A be an ` × k integer matrix and let the columns be indexed by [k]. For a
partition W ∪̇W ⊆ [k] of the columns of A, we denote by AW the matrix obtained

from A by restricting to the columns indexed by W . Let rank(AW ) be the rank

of AW , where rank(AW ) = 0 for W = ∅. We set

m(A) = max
W ∪̇W=[k]
|W |≥2

|W | − 1

|W | − 1 + rank(AW )− rank(A)
. (5)

It was shown in [36, Proposition 2.2 (ii )] that for irredundant, partition regular
matrices A the denominator of (5) is always at least 1. For example, for A given
in (4) we have m(A) = k − 1.

It follows from the 0-statement of Theorem 1.1 in [36] that for any irredundant,
density regular, `× k integer matrix A of rank ` and every 1/2 > ε > 0 there exist
a c > 0 such that for every sequence of probabilities q = (qn) with qn ≤ cn−1/m(A)
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we have
lim
n→∞

P ([n]qn →ε A) = 0 . (6)

We deduce a corresponding upper bound from Theorem 3.3 and obtain the following
result.

Theorem 2.4. For every irredundant, density regular, `× k integer matrix A with
rank `, and every ε ∈ (0, 1/2) there exit constants C > c > 0 such that for any
sequence of probabilities q = (qn)n∈N we have

lim
n→∞

P ([n]qn →ε A) =

{
0, if qn ≤ cn−1/m(A) for all n ∈ N,
1, if qn ≥ Cn−1/m(A) for all n ∈ N.

Note that we restrict ε < 1/2 here. With this restriction the 0-statement will
follow from a result of Rödl and Ruciński from [36]. The proof of the 1-statement
presented in Section 4.2 actually works for all ε ∈ (0, 1).

2.3. An extremal problem related to Schur’s equation. In 1916 Schur [38]
showed that every partition of the positive integers into finitely many classes con-
tains a class which contains a solution of the single, homogeneous equation x1 +
x2 − x3 = 0. Clearly, the corresponding matrix

(
1 1 −1

)
is not density regular,

since the set of all odd integers contains no solution. However, it is not hard to
show that that every subset Y ⊆ [n] with |Y | ≥ (1/2 + o(1))n contains such a
solution. Similarly, as above for ε > 0 and X ⊆ [n] we write

X →1/2+ε

(
1 1 −1

)
if every subset Y ⊆ X with |Y | ≥ (1/2 + ε)|X| contains a distinct-valued solution,
i.e., Y k ∩ S0

((
1 1 −1

))
6= ∅.

We are interested in the threshold for the extremal problem of Schur’s equation,
i.e., for the property X →1/2+ε

(
1 1 −1

)
. In this context the simple heuristic

based on the expected number of solutions of the Schur equation in random subsets
of the integers suggests that n−1/2 is the threshold for this property. Moreover, for
Schur’s theorem in random subsets of the integers the threshold turned out to be
n−1/2 as shown in [21, 16]. We show that the threshold of the extremal version of
Schur’s equation is the same.

Theorem 2.5. For every ε ∈ (0, 1/2) there exit constants C > c > 0 such that for
any sequence of probabilities q = (qn)n∈N we have

lim
n→∞

P
(
[n]qn →1/2+ε

(
1 1 −1

))
=

{
0, if qn ≤ cn−1/2 for all n ∈ N,
1, if qn ≥ Cn−1/2 for all n ∈ N.

2.4. Extremal problems for hypergraphs. The last result deals with extremal
problems for hypergraphs. An `-uniform hypergraph H is a pair (V,E), where the

vertex set V is some finite set and the edge set E ⊆
(
V
`

)
is a subfamily of the

`-element subsets of V . As usual we call 2-uniform hypergraphs simply graphs. For
some hypergraph H we denote by V (H) and E(H) its vertex set and its edge set
and we denote by v(H) and e(H) the cardinalities of those sets. For an integer n we

denote by K
(`)
n the complete `-uniform hypergraph on n vertices, i.e., v(K

(`)
n ) = n

and e(K
(`)
n ) =

(
n
`

)
. An `-uniform hypergraph H ′ is a sub-hypergraph of H, if

V (H ′) ⊆ V (H) and E(H ′) ⊆ E(H) and we write H ′ ⊆ H to denote that. For a
subset U ⊆ V (H) we denote by E(U) the edges of H contained in U and we set



6 MATHIAS SCHACHT

e(U) = |E(U)|. Moreover, we write H[U ] for the sub-hypergraph induced on U ,
i.e., H[U ] = (U,E(U)).

For two `-uniform hypergraphs F and H we say H contains a copy of F , if
there exists an injective map ϕ : V (F ) → V (H) such that ϕ(e) ∈ E(H) for every
e ∈ E(F ). If H contains no copy of F , then we say H is F -free. We denote by
ex(H,F ) the maximum number of edges of an F -free sub-hypergraph of H, i.e.,

ex(H,F ) = max{e(H ′) : H ′ ⊆ H and H ′ is F -free} .
Mantel [33], Erdős [8], and Turán [41] were the first to study this function for

graphs. In particular, Turán determined ex(Kn,Kk) for all integers n and k.
This line of research was continued by Erdős and Stone [12] and Erdős and Si-
monovits [10] and those authors showed that for every graph F with chromatic
number χ(F ) ≥ 3 we have

ex(Kn, F ) =

(
1− 1

χ(F )− 1)
+ o(1)

)(
n

2

)
, (7)

where χ(F ) is minimum number r such that there exists a partition V1∪̇ . . . ∪̇Vr =
V (F ) such that E(Vi) = ∅ for every i ∈ [r]. Moreover, it follows from the result of
Kövari, Sós, and Turán [31] that

ex(Kn, F ) = o(n2) (8)

for graphs F with χ(F ) ≤ 2.
For an `-uniform hypergraph F we define the Turán density

π(F ) = lim
n→∞

ex(K
(`)
n , F(
n
`

) .

For a graph F the Turán density π(F ) is determined due to (7) and (8). For
hypergraphs (8) was extended by Erdős [9] to `-partite, `-uniform hypergraphs.
Here an `-uniform hypergraph F is `-partite if its vertex set can be partitioned
into ` classes, such that every edge intersects every partition class in precisely one
vertex. Erdős showed that π(F ) = 0 for every `-partite, `-uniform hypergraph F .
For other `-uniform hypergraphs only a few results are known and, for example,

determining π(K
(3)
4 ) is one of the best known open problems in the area. However,

one can show that π(F ) indeed exists for every hypergraph F (see, e.g. [26]).
We study the random variable ex(G(`)(n, q), F ) for `-uniform hypergraphs F ,

where G(`)(n, q) denotes the binomial random `-uniform sub-hypergraph of K
(`)
n

with edges of K
(`)
n included independently with probability q. It is easy to show

that
ex(H,F ) ≥ π(F )e(H)

for all `-uniform hypergraphs H and F (see, e.g. [25, Proposition 8.4] for a proof
for graphs). We are interested in the threshold for the property that a.a.s.

ex(G(`)(n, q), F ) ≤ (π(F ) + o(1))e(G(`)(n, q)) . (9)

Results of that sort appeared in the work of Babai, Simonovits, and Spencer [1]
who showed that (9) holds for F = K3 and q = 1/2. In fact, it follows from an
earlier result of Frankl and Rödl [15] that the same holds as long as q � n−1/2.
The systematic study for graphs was initiated by Kohayakawa and his coauthors. In
particular, Kohayakawa,  Luczak, and Rödl formulated a conjecture for the threshold
of Turán properties for random graphs (see Conjecture 2.6 below).
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For an `-uniform hypergraph F with e(F ) ≥ 1 we set

m(F ) = max
F ′⊆F
e(F ′)≥1

d(F ′) with d(F ′) =

{
e(F ′)−1
v(F ′)−` , if v(F ′) > `

1/` , if v(F ′) = ` .
(10)

If follows from the definition of m(F ), that if q = Ω(n−1/m(F )) then a.a.s. the num-
ber of copies of every sub-hypergraph F ′ ⊆ F in the random hypergraph G(`)(n, q)
has at least the same order of magnitude, as the number of edges. Recall that a
similar heuristic gave rise to the thresholds in the theorem above.

Conjecture 2.6 ([29, Conjecture 1 (i )]). For every graph F with at least one edge
and every ε > 0 there exists C > 0 such that for every sequence of probabilities
q = (qn)n∈N with qn ≥ Cn−1/m(F ) we have

lim
n→∞

P (ex(G(n, qn), F ) ≤ (π(F ) + ε)e(G(n, qn))) = 1 .

Conjecture 2.6 was verified for a few special cases. As already mentioned for
F = K3 the conjecture follow from a result in [15]. For F being a clique with 4,
5, or 6 vertices the conjecture was verified by Kohayakawa,  Luczak, and Rödl [29],
Gerke, Schickinger, and Steger [20] and Gerke [19]. Moreover, the conjecture is
known to be true when F is a cycle due to the work of Füredi [17] (for the cycle of
length four) and Haxell, Kohayakawa, and  Luczak [23, 24] (see also [27, 32]) and
the conjecture is known to be true for trees. The best current bounds on q for
which (9) holds for F being a clique and for arbitrary F were obtained by Szabó
and Vu [39] and Kohayakawa, Rödl, and Schacht [30].

We verify this conjecture for all graphs F and the natural analogue of this con-
jecture for hypergraphs. (For `-partite, `-uniform hypergraphs such a conjecture
was made in [37, Conjecture 15].)

Theorem 2.7. For every `-uniform hypergraph F with at least one vertex contained
in at least two edges and every ε ∈ (0, 1 − π(F )) there exist constants C > c > 0
such that for any sequence of probabilities q = (qn)n∈N we have

lim
n→∞

P
(

ex
(
G(`)(n, qn)

)
≤ (π(F ) + ε)e

(
G(`)(n, qn)

))
=

{
0, if qn ≤ cn−1/m(F ) for all n ∈ N,
1, if qn ≥ Cn−1/m(F ) for all n ∈ N.

In Section 4 we will deduce the 1-statements of Theorems 2.3, 2.4, 2.5, and 2.7
from the main result, Theorem 3.3, which we present in the next section. The proofs
of the 0-statements will be more elementary and will be also given in Section 4.

3. Main technical result

The main result will be phrased in the language of hypergraphs. We will study
sequences of hypergraphs H = (Hn = (Vn, En))n∈N. In the context of Theorem 2.2
one may think of Vn = [n] and En being the arithmetic progressions of length k.
In the context of Theorems 2.3, 2.4, and 2.5 the corresponding hypergraphs the
reader should have in mind are defined in a very similar way. Moreover, for The-

orem 2.7 one should think of Vn = E(K
(`)
n ) being the edge set of the complete

hypergraph K
(`)
n and edges of En correspond to copies of F in K

(`)
n .
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In order to transfer an extremal result from the classical, deterministic setting to
the probabilistic setting we will require that a stronger quantitative version of the
extremal result holds (see Definition 3.1 below). Roughly speaking, we will require
that a sufficiently dense sub-structure not only contains one copy of the special
configuration (not only one arithmetic progression or not only one copy of F ), but
instead the number of those configurations should be of the same order as the total
number of those configurations in the given underlying ground set.

Definition 3.1. Let H = (Hn)n∈N be a sequence of k-uniform hypergraphs and
α ≥ 0. We say H is α-dense if the following is true.

For every ε > 0 there exist ζ > 0 and n0 such that for every n ≥ n0 and every
U ⊆ V (Hn) with |U | ≥ (α+ ε)|V (Hn)| we have

|E(Hn[U ])| ≥ ζ|E(Hn)|.

The second condition in Theorem 3.3 imposes a lower bound on the smallest
probability for which we can transfer the extremal result to the probabilistic setting
(see Definition 3.2). For a k-uniform hypergraph H = (V,E), i ∈ [k − 1], v ∈ V ,
and U ⊆ V we denote by degi(v, U) the number of edges of H containing v and
having at least i vertices in U \ {v}. More precisely,

degi(v, U) = |{e ∈ E : |e ∩ (U \ {v})| ≥ i and v ∈ e}| . (11)

For q ∈ (0, 1) we let µi(H, q) denote the expected value of the sum over all such
degrees squared with U = Vq being the binomial random subset of V

µi(H, q) = E

[∑
v∈V

deg2
i (v, Vq)

]
.

Definition 3.2. Let H = (Hn)n∈N be a sequence of k-uniform hypergraphs, let
p = (pn)n∈N ∈ (0, 1)N be a sequence of probabilities, and let K ≥ 1. We say H is
(K,p)-bounded if the following is true.

For every i ∈ [k − 1] there exists n0 such that for every n ≥ n0 and q ≥ pn we
have

µi(Hn, q) ≤ Kq2i |E(Hn)|2

|V (Hn)|
. (12)

With those definitions at hand, we can state the main result.

Theorem 3.3. Let H = (Hn = (Vn, En))n∈N be a sequence of k-uniform hyper-
graphs, let p = (pn)n∈N ∈ (0, 1)N be a sequence of probabilities satisfying pkn|En| →
∞ as n→∞, and let α ≥ 0 and K ≥ 1. If H is α-dense and (K,p)-bounded, then
the following holds.

For every δ > 0 and (ωn)n∈N with ωn → ∞ as n → ∞ there exists C ≥ 1 such
that for every qn ≥ Cpn the following holds a.a.s. for Vn,qn : If W ⊆ Vn,qn with
|W | ≥ (α+ δ)|Vn,qn |, then E(Hn[W ]) 6= ∅.

The proof of Theorem 3.3 is based on induction on k and for the induction we
will strengthen the statement (see Lemma 3.4 below).

For a k-uniform hypergraph H = (V,E) subsets W ⊆ U ⊆ V , and any integer
i ∈ {0, 1, . . . , k} we consider those edges of H[U ] which have at least i vertices in
W and we denote this family by

EiU (W ) = {e ∈ E(H[U ]) : |e ∩W | ≥ i} .
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Note that
E0
U (W ) = E(H[U ]) and EkU (W ) = E(H[W ]) (13)

for every W ⊆ U .

Lemma 3.4. Let H = (Hn = (Vn, En))n∈N be a sequence of k-uniform hyper-
graphs, let p = (pn)n∈N ∈ (0, 1)N be a sequence of probabilities satisfying pkn|En| →
∞ as n→∞, and let α ≥ 0 and K ≥ 1. If H is α-dense and (K,p)-bounded, then
the following holds.

For every i ∈ [k], δ > 0, and (ωn)n∈N with ωn →∞ as n→∞ there exist ξ > 0,
b > 0, C ≥ 1, and n0 such that for all β, γ ∈ (0, 1] with βγ ≥ α+ δ, every n ≥ n0,
every q with 1/ωn ≥ q ≥ Cpn the following holds.

If U ⊆ Vn with |U | ≥ β|Vn|, then the binomial random subset Uq satisfies with
probability at least

1− 2−bq|Vn|

the following property: For every subset W ⊆ Uq with |W | ≥ γ|Uq| we have∣∣EiU (W )
∣∣ ≥ ξqi|En| .

Theorem 3.3 follows directly from Lemma 3.4 applied with i = k, β = 1, γ =
α+ δ, and U = Vn.

3.1. Probabilistic tools. We will use Chernoff’s inequality in the following form
(see, e.g., [25, Corollary 2.3]).

Theorem 3.5 (Chernoff’s inequality). Let X ⊆ Y be finite sets and p ∈ (0, 1]. For
every 0 < % ≤ 3/2 we have

P
(∣∣|X ∩ Yp| − p|X|∣∣ ≥ %p|X|) ≤ 2 exp(−%2p|X|/3) . �

We also use an approximate concentration result for (K,p)-bounded hyper-
graphs. The (K,p)-boundedness only bounds the expected value of the quantity∑
v deg2

i (v, Vp). In the proof of Lemma 3.4 we need an exponential upper tail bound
and, unfortunately, it is known that such bounds usually not exist. However, it was
shown by Rödl and Ruciński in [35] that on the prize of deleting a few elements such
bound can be obtained. We will again apply this idea in the proof of Lemma 3.4.

Proposition 3.6 (Upper tail [35, Lemma 4]). Let H = (Hn = (Vn, En))n∈N be
a sequence of k-uniform hypergraphs, let p = (pn)n∈N ∈ (0, 1)N be a sequence of
probabilities, and let K ≥ 1. If H is (K,p)-bounded, then the following holds.

For every i ∈ [k − 1] and every η > 0 there exist b > 0 and n0 such that for
every n ≥ n0 and every q ≥ pn the binomial random subset Vn,q has the following

property with probability at least 1− 2−bq|Vn|+1+log2 k. There exists a set X ⊆ Vn,q
with |X| ≤ ηq|Vn| such that∑

v∈Vn

deg2
i (v, Vn,q \X) ≤ 4kk2Kq2i |En|2

|Vn|
.

The proof follows the lines of [35, Lemma 4] and we include it for completeness.

Proof. Suppose H is (K,p)-bounded and i ∈ [k − 1] and η > 0 are given. We set

b =
η

4(k − 1)2

and n0 be sufficiently large, so that (12) holds for every n ≥ n0 and q ≥ pn.
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For every j = i, . . . , 2(k − 1) we consider the family Sj defined as follows

Sj =
{

(S, v, e, e′) : S ⊆ Vn, v ∈ Vn, e, e′ ∈ En such that |S| = j,

v ∈ e ∩ e′, S ⊆ (e ∪ e′) \ {v}, |e ∩ S| ≥ i and |e′ ∩ S| ≥ i
}
.

Let Sj be the random variable denoting the number of elements (S, v, e, e′) from

Sj with S ∈
(
Vn,q

j

)
. By definition we have

∑2k−2
j=i E [Sj ] ≤ 4k−1µi(Hn, q) and due

to the (K,p)-boundedness of H we have

max
j=i,...,2(k−1)

E [Sj ] ≤
2k−2∑
j=i

E [Sj ] ≤ 4k−1µi(Hn, q) ≤ 4k−1Kq2i |En|2

|Vn|
.

Let Zj be the random variable denoting the number of sequences

((Sr, vr, er, e
′
r))r∈[z] ∈ S z

j

of length

z =

⌈
ηq|Vn|

4(k − 1)2

⌉
≤
⌈

ηq|Vn|
2(k − 1)j

⌉
which satisfy

(i ) the sets Sr are contained in Vn,q and
(ii ) the sets Sr are mutually disjoint, i.e., Sr1 ∩Sr2 = ∅ for all 1 ≤ r1 < r2 ≤ z.

Clearly, we have

E [Zj ] ≤ |Sj |zqjz = (E [Sj ])z ≤
(

4k−1Kq2i |En|2

|Vn|

)z
.

On the other hand, if

∑
v∈Vn

deg2
i (v, Vn,q \X) ≥ 4kk2Kq2i |En|2

|Vn|
≥

2k−2∑
j=i

j · 2 · 4k−1Kq2i |En|2

|Vn|

for any X ⊆ Vn,q with |X| ≤ ηq|Vn|, then there exists some j0 ∈ {i, . . . , 2k − 2}
such that

Zj0 ≥
(

2 · 4k−1Kq2i |En|2

|Vn|

)z
.

Markov’s inequality bounds the probability of this event by

P
(
∃j0 ∈ {i, . . . , 2k − 2} : Zj0 ≥ 2z

(
4k−1Kq2i |En|2

|Vn|

)z)
≤

2k−2∑
j=i

P
(
Zj ≥ 2z

(
4k−1Kq2i |En|2

|Vn|

)z)
≤ 2k · 2−z ≤ 2−bq|Vn|+1+log2 k ,

which concludes the proof of Proposition 3.6. �
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3.2. Proof of Lemma 3.4. Let H = (Hn = (Vn, En))n∈N be a sequence of k-
uniform hypergraphs, let p = (pn)n∈N ∈ (0, 1)N be a sequence of probabilities, and
let α ≥ 0 and K ≥ 1 such that H is α-dense and (K,p)-bounded. We prove
Lemma 3.4 by induction on i.

Induction start (i = 1). For δ > 0 and (ωn)n∈N (which plays no role for the
induction start) we appeal to the α-denseness of H and let ζ and n1 be the constants
given by this property for ε = δ/8. We set

ξ =
δζ

4k
, b =

δ3

193
, C = 1 , and n0 = n1 .

Let β, γ ∈ (0, 1] satisfy βγ ≥ α+ δ, let n ≥ n0 be sufficiently large, q ≥ pn, and let
U ⊆ Vn with |U | ≥ β|Vn| be given. We consider the set Y ⊆ U defined by

Y =

{
u ∈ U : |{e ∈ E(Hn[U ]) : u ∈ e}| ≤ ζ|En|

2|Vn|

}
.

In other words, Y is the set of vertices in U with low degree in Hn[U ]. Due to the
α-denseness of H we have

|Y | ≤
(
α+

δ

8

)
|Vn| .

It follows from Chernoff’s inequality that with probability at least

1− 2 exp(−δ2q|U |/48)− 2 exp(−δ2q|Vn|/192) ≥ 1− 2−bq|Vn|

we have

|Uq| ≥
(

1− δ

4

)
q|U | and |Uq ∩ Y | ≤

(
α+

δ

4

)
q|Vn| .

Consequently, for every W ⊆ Uq satisfying |W | ≥ γ|Uq| we have

|W | ≥ γ|Uq| ≥
(

1− δ

4

)
γq|U | ≥

(
1− δ

4

)
βγq|Vn|

≥
(

1− δ

4

)
(α+ δ) q|Vn| ≥

(
α+

δ

2

)
q|Vn| ≥ |Uq ∩ Y |+

δ

2
q|Vn|

and the definition of Y yields∣∣E1
U (W )

∣∣ ≥ |W \ Y | · 1

k

ζ|En|
2|Vn|

≥ δ

2
q|Vn| ·

1

k

ζ|En|
2|Vn|

= ξq|En| .

This concludes the proof of the induction start.

Induction step (i −→ i + 1). Let i ≥ 1, δ > 0, and (ωn)n∈N with ωn → ∞ as
n→∞ be given. We will expose the random set Uq in several rounds. The number
of “main” rounds R will depend on the constant ξ(i, δ/8), which is given by the
induction assumption. More precisely, let

ξ′ = ξ(i, δ/8) , b′ = b(i, δ/8) , C ′ = C(i, δ/8) , and n′ = n0(i, δ/8)

be given by the induction assumption applied with δ′ = δ/8. We set

R =

⌈
4k+2k2K

δ(ξ′)2
+ 1

⌉
. (14)

Overview. Roughly, speaking our argument is as follows. We will expose Uq
in R main rounds of the same weight, i.e., we will chose qR in such a way that
(1 − q) = (1 − qR)R and we let Uq = U1

qR ∪ · · · ∪ U
R
qR . Since, every subset W ,
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which we have to consider, contains at least γ ≥ α + δ proportion of the elements
of Uq there must be at least δR/4 rounds such that |UsqR ∩W | ≥ (α + δ/2)|UqR |.
For those rounds we will appeal to the induction assumption, which combined
with Proposition 3.6, implies that U contains at least Ω((ξ′)2|Vn|) elements u ∈ U
with the property that every such u completes “many” elements in EiU (W ∩ UsqR)

to elements in Ei+1
U (W ∩ UsqR). Moreover, in each of these “substantial” rounds

(ξ′)2|Vn|/(4k+1k2K) new “rich” elements u will be created. Consequently, after at
most δR/4−1 of these substantial rounds all but, say, at most (α+δ/8)|Vn| < γ|Vn|
elements of U are rich and in the final substantial round W ∩ UqR must contain

many rich u ∈ Uand therefore create many elements from Ei+1
U (W ).

However, the error probabilities in the later rounds will have to beat the number
of choices for the elements of W in the earlier rounds. For that we will split the
earlier main rounds into several subrounds. This does not affect the argument indi-
cated above, since our bound on the number of “rich” elements will be independent
of qR. We now continue with the details of this proof.

Constants. Set

η =
δ2

9
(15)

and let b̂ and n̂ be given by Proposition 3.6 applied with i and η. We set

b∗ = min

{
δ4

106
,
b′

3
,
b̂

3

}
and B =

⌈
1 +

1.012

b∗

⌉
. (16)

Finally, let

ξ =
ξ′δ2

18k(RBR−1)i+1
, (17)

b = min

{
δ3

60001RBR−1
,

b∗

2RBR−1

}
, (18)

C = RBR−1C ′ , (19)

and let n0 ≥ max{n′, n̂} be sufficiently large.
Suppose β and γ ∈ (0, 1] satisfy

βγ ≥ α+ δ .

Let n ≥ n0 and let q satisfy 1/ωn ≥ q ≥ Cpn. Moreover, let U ⊆ Vn be such that
|U | ≥ β|Vn|. Note that

min{β, γ} ≥ α+ δ ≥ δ > 0 and |U | ≥ (α+ δ)|Vn| .

For a simpler notation from now on we suppress the subscript n in pn, Hn, Vn
and En.

Details of the induction step. As discussed above we generate the random set
Uq in several rounds. We will have R main rounds and for that we choose qR such
that

1− q = (1− qR)R .

For s ∈ [R] we will further split the sth main round into BR−s subrounds. For
s ∈ [R] we set

rs = BR−s
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and let qs satisfy

(1− qR) = (1− qs)rs .

Note that for sufficiently large n, due to qn ≤ 1/ωn and ωn →∞ we have(
1 +

δ

100

)
q

R
≥ qR ≥

q

R
and

(
1 +

δ

100

)
qR

BR−s
≥ qs ≥

qR
BR−s

, (20)

and due to the choice of B we have

s−1∑
t=1

qt ≤ 1.01
qR
BR

s−1∑
t=1

Bt
(16)

≤ b∗

1.01

qR
BR

Bs ≤ b∗

1.01
qs . (21)

We proceed as follows we first consider r1 rounds with probability q1, which all
together establish the first main round and we denote the random subsets obtained
by

U1
qR = U1,1

q1 ∪ · · · ∪ U
1,r1
q1 .

This is followed by r2 rounds with probability q2 establishing the second main
round. This way we have

Uq = U1
qR ∪ · · · ∪ U

R
qR

and for all s ∈ [R]

UsqR = Us,1qs ∪ · · · ∪ U
1,rs
qs .

Furthermore, let W ⊆ Gq with |W | ≥ γ|Uq| and let

W s = W ∩ UsqR and W s,j = W ∩ Us,jqs
for all s ∈ [R] and j ∈ [rs].

In our analysis we focus on “substantial” rounds. For that let S ⊆ [R] be the
set defined by s ∈ S if and only if

|W s| ≥
(
γ − δ

2

)
|UsqR | .

By definition of S, for every s ∈ S exists some js ∈ [rs] such that

|W s,js | ≥
(
γ − δ

2

)
|Us,jsqs |

and for the rest of the proof we fix such an js for every s ∈ S. The following claim
is a direct consequence of Chernoff’s inequality.

Claim 1. Let A denote the event that |S| ≥ δR/4. Then P (A) ≥ 1− 2−2bq|V |.

Proof. Due to Chernoff’s inequality we have

|Us,jqs | = (1± 0.01δ)qs|U | . (22)

for all s ∈ [R] and every j ∈ [rs] with probability at least

1− 2

R∑
s=1

rs exp(−δ2qs|U |/30000) ≥ 1− 2−2bq|V | ,
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where we used q1 ≤ qs, (20), the choice of b in (18) and the fact that n is sufficiently
large for the last inequality. Since |W | ≥ γ|Uq| we have

|S| ≥ |W | −R · (1 + δ/100)(γ − δ/2)qR|U |
(1 + δ/100)qR|U |

≥ (1− δ/100)γq

(1 + δ/100)qR
−
(
γ − δ

2

)
R

(20)

≥ δ

4
R

with probability at least 1− 2−2bq|V |. �

For the rest of the proof we analyze the rounds indexed by (s, js) for s ∈ S. For
s ∈ S we set

W (s) =
⋃
t∈S
t≤s

W t,jt and U(s) =
⋃
t∈S
t≤s

U t,jtqt .

Note that W (t) = U(t) = ∅ for all t < mins∈S s. Roughly, speaking we will show
for every s ∈ S that either Ei+1

U (W (s)) is sufficiently large or Ω(|V |) new “rich”
elements in U will be created. More precisely, for s ∈ S we consider the following
subset Zs ⊆ U of rich elements

Zs :=

{
u ∈ U : degi(u,W

s,js , U) ≥ ξ′

2
qis
|E|
|V |

}
,

where

degi(u,W
s,js , U) :=

∣∣{e ∈ E : |e ∩ (W s,js \ {u})| ≥ i and e ⊆ U
}∣∣ . (23)

Note that degi(u,W
s,js , V ) = degi(u,W

s,js) and, hence, for every set U ⊆ V and
every u ∈ V we have

degi(u,W
s,js , U) ≤ degi(u,W

s,js) . (24)

Similarly, as above we set

Z(s) =
⋃
t∈S
t≤s

Zs

Claim 2. For every s ∈ S and any choice of W (s − 1) ⊆ U(s − 1) let BW (s−1)

denote the event that Us,jsqs satisfies the following properties:

(i ) |Us,jsqs | ≤ 1.01qs|U | and

(ii ) for every W s,js with |W s,js | ≥ (γ − δ/2)|Us,jsqs | either

|Ei+1
U (W (s))| ≥ ξqi+1|E| (25)

or

|Z(s) \ Z(s− 1)| ≥ (ξ′)2

4k+1k2K
|V | . (26)

Then

P
(
BW (s−1) | U(s− 1)

)
≥ 1− 2−2b∗qs|V | ,

where P
(
BW (s0−1) | U(s0 − 1)

)
= P

(
BW (s0−1)

)
for s0 = mins∈S s.
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Before we verify Claim 2 we deduce Lemma 3.4 from it. Let C denote the event
that the conclusion of Lemma 3.4 holds. If event A holds and BW (s−1) holds for
every s ∈ S, then C must hold, since (26) in Claim 2 can occur at most

4k+1k2K

(ξ′)2

(14)
<

δ

4
R ≤ |S|

times and, therefore, (25) in Claim 2 must occur. Below we will verify that this
happens with a sufficiently large probability. Setting P (U(s0 − 1)) = 1 for s0 =
mins∈S s, we have

P (¬C) ≤ P (¬A) +
∑
S⊆[R]

∑
s∈S

∑
U(s−1)

∑
W (s−1)

P
(
¬BW (s−1) | U(s− 1)

)
P (U(s− 1)) ,

where the first sum runs over all subsets S ⊆ [R] with |S| ≥ δR/4, the third sum
runs over all choices of U(s− 1) =

⋃
t∈S,t<s U

t,jt
qt with |U t,jtqt | ≤ 1.01qt|G|, and the

inner sum runs over all 21.01|V |
∑

t∈S,t<s qt choices of W (s−1) ⊆ U(s−1). Therefore,
Claims 1 and 2 yield

P (¬C) ≤ 2−2bq|V | + 2R
R∑
s=1

21.01|V |
∑s−1

t=1 qt · 2−2b∗qs|V |

(21)

≤ 2−2bq|V | + 2RR2−b
∗q1|V |

(20)

≤ 2−2bq|V | + 2RR2−b
∗q|V |/(RBR−1)

(18)

≤ 2−bq|V | ,

where the last inequality holds for sufficiently large n. This concludes the proof of
Lemma 3.4 and it is left to verify Claim 2. �

Proof of Claim 2. Let s ∈ S, W (s − 1) ⊆ U(s − 1) be given. Note that this also
defines Z(s − 1). We first observe that property (i ) of Claim 2 holds with high
probability In fact, due to Chernoff’s inequality, with probability at least

1− 2 exp(−δ2qs|U |/30000)
(16)

≥ 1− 2−3b∗qs|V |

we even have
|Us,jsqs | = (1± 0.01δ)qs|U | (27)

and below we assume that (27) holds. We distinguish two cases for property (ii ).

Case 1 (|U \ Z(s− 1)| < (γ − 3δ/4)|U |). Due to Chernoff’s inequality with prob-
ability at least

1− 2 exp(−δ2(α+ δ/4)qs|U |/192)
(16)

≥ 1− 2−3b∗qs|V |

we have
|Us,jsqs \ Z(s− 1)| ≤

(
γ − 5

8δ
)
|Us,jsqs | .

Since s ∈ S it follows that

|W s,js
qs ∩ Z(s− 1)| ≥ δ

8
|Us,jsqs |

(27)

≥ 0.99
δ

8
qs|U | ≥

δβ

9
qs|V | ≥

δ2

9
qs|V | .

Hence the definition of Z(s− 1) ⊆
⋃
t∈S,t<s Z

s and q1 ≤ qt for all t ∈ S yields

|Ei+1
U (W (s))| ≥ δ2

9
qs|V | ·

1

k

ξ′

2
qi1
|E|
|V |

≥ ξ′δ2

18k
qi+1
1 |E|

(20)

≥ ξ′δ2

18k(RBR−1)i+1
qi+1|E|

(17)

≥ ξqi+1|E| .
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In other words, for this case we showed that alternative (25) happens with proba-
bility at least 1− 2 · 2−3b∗qs|V | ≥ 1− 2−2b∗qs|V |.

Case 2 (|U \ Z(s− 1)| ≥ (γ − 3δ/4)|U |). In this case we consider

U ′ = U \ Z(s− 1) .

We set

β′ =
|U ′|
|V |

and γ′ =

(
γ − 7δ

8

)
|U |
|U ′|

.

Clearly, β′ ∈ (0, 1],

0 < γ′ ≤ γ − 7δ/8

γ − 3δ/4
≤ 1 ,

and

β′γ′ =

(
γ − 7δ

8

)
|U |
|V |
≥
(
γ − 7δ

8

)
β ≥ γβ − 7δ

8
≥ α+

δ

8
.

Hence, we can apply the induction assumption to U ′. More precisely, the induction
assumption asserts that with probability at least

1− 2b
′qs|V |

every subset Ŵ ′ ⊆ U ′qs with Ŵ ′ ≥ γ′|U ′qs | satisfies∣∣∣EiU ′(Ŵ ′)∣∣∣ ≥ ξ′qis|E| . (28)

Note that, in fact,

qs
(20)

≥ q

RBR−1
≥ Cp

RBR−1

(19)

≥ C ′p .

We split the random subset Us,jsqs = U ′qs∪̇U
′′
qs , where

U ′qs = Us,jsqs \ Z(s− 1) and U ′′qs = Us,jsqs \ U ′qs .

Similarly, we split W s,js = W ′∪̇W ′′ where W ′ = W s,js∩U ′qs and W ′′ = W s,js∩U ′′qs .
It follows again from Chernoff’s inequality that

|U ′qs | =
(

1± δ

16

)
qs|U ′| (29)

holds with probability at least

1− 2 exp(−δ2qs|U ′|/768)
(16)

≥ 1− 2−3b∗qs|V | .

We distinguish two sub-cases depending on the size of W ′′.

Case 2.1 (|W ′′| > δ|Us,jsqs |/8). In this case, it follows from the W ′′ ⊆ Z(s− 1)

|Ei+1
U (W (s))| ≥ |W ′′| · 1

k

ξ′

2
qi1
|E|
|V |
≥ δ

8
|Us,jsqs | ·

ξ′

2k
qi1
|E|
|V |

(27)

≥ δ

9
qs|U | ·

ξ′

2k
qi1
|E|
|V |
≥ δβ

9
qs ·

ξ′

2k
qi1|E| ≥

δ2ξ′

18k
qi+1
1 |E|

(17)

≥ ξqi+1|E| .

In other words, for this case we showed that alternative (25) happens with proba-
bility at least 1− 2 · 2−3b∗qs|V | ≥ 1− 2−2b∗qs|V |.

Case 2.2 (|W ′′| ≤ δ|Us,jsqs |/8).
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In this case we appeal to the (K,p)-boundedness of H. It follows from Propo-
sition 3.6 and the choice of η in (15) that with probability at least

1− 2−b̂qs|V |+1+log2 k

there exists a set X ⊆ U ′qs such that

|X| ≤ ηqs|V |
(15)

≤ δ2

16
qs|V | ≤

δ

16
(α+ δ)qs|V |

≤ δ

16
γqs|V | ≤

δ

16
qs|U |

(27)

≤ δ

8
qs|Us,jsqs | (30)

and ∑
u∈U ′

deg2
i (u,W

′ \X,U ′)
(24)

≤
∑
u∈U ′

deg2
i (u,W

′ \X)

≤
∑
u∈U ′

deg2
i (u, U

′
qs \X) ≤ 4kk2Kq2i

s

|E|2

|V |
. (31)

Consider the set

Ŵ ′ = W ′ \X .

Since s ∈ S, it follows from (30) and the assumption of this case that

|Ŵ ′| ≥ |W s,js | − |W ′′| − |X| ≥
(
γ − δ

2

)
|Us,jsqs | − 2

δ

8
|Us,jsqs | ≥

(
γ − 3δ

4

)
|Us,jsqs | .

Furthermore assertions (27) and (29) yield

|Ŵ ′|
|U ′qs |

≥
(
γ − 3δ

4

) |Us,jsqs |
|U ′qs |

≥ (γ − 3δ/4)(1− δ/100)

1 + δ/16

|U |
|U ′|

≥
(
γ − 7δ

8

)
|U |
|U ′|

= γ′

In other words, Ŵ ′ satisfies |Ŵ ′| ≥ γ′|U ′qs | and from the induction assumption we

infer that (28) holds with probability at least 1− 2−b
′qs|V | and then∑

u∈U ′
degi(u, Ŵ

′, U ′) ≥ |EiU ′(Ŵ ′)| ≥ ξ′qis|E| . (32)

For

Ẑ =

{
u ∈ U ′ : degi(u, Ŵ

′, U ′) ≥ ξ′

2
qis
|E|
|V |

}
it follows from the Cauchy-Schwarz inequality

4kk2Kq2i
s

|E|2

|V |
(31)

≥
∑
u∈U ′

deg2
i (u, Ŵ

′, U ′) ≥
∑
u∈Ẑ

deg2
i (u, Ŵ

′, U ′)

≥ 1

|Ẑ|

∑
u∈Ẑ

degi(u, Ŵ
′, U ′)

2

(32)

≥ 1

|Ẑ|

(
ξ′qis|E|

2

)2

.

Consequently,

|Ẑ| ≥ (ξ′)2

4k+1k2K
|V | .
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Since Ẑ ⊆ U ′ = U \Z(s− 1) we have Ẑ is disjoint from Z(s− 1). Furthermore, by

definition of Ẑ we have Ẑ ⊆ Zs. Therefore, (26) of Claim 2 holds with probability
at least

1− 2 · 2−3b∗qs|V | − 2−b̂qs|V |+1+log2 k − 2−b
′qs|V |

(16)

≥ 1− 2−2b∗qs|V | ,

which concludes the proof of Claim 2.

�

4. Proof of the new results

In this section we prove Theorems 2.2, 2.3, 2.4, 2.5, and 2.7. While the involved
0-statements will follow from standard probabilistic arguments, the 1-statement of
those results will follow from Theorem 3.3.

4.1. Proof of Theorems 2.2 and 2.3. Clearly Theorem 2.2 follows from Theo-
rem 2.3 applied with ` = 1 and F = [k] and it suffices to verify Theorem 2.3.

The 0-statement of Theorem 2.3. We start with the 0-statement of the theorem.
Let F ⊆ N` with |F | ≥ 3 and ε > 0 be given and set

c =

(
1− 2ε

2

)1/(|F |−1)

.

We distinguish different cases depending on the sequence q = (qn).

Case 1 (qn � n−(`+1)/|F |). In this case the expected number of homothetic copies
of F in [n]`qn tends to 0. Hence, we infer from Markov’s inequality that a.a.s. [n]`qn
contains no homothetic copy of F , which yields the claim in that rage.

Case 2 (n−` � qn � n−1/(|F |−1)). In this range the expected number of homo-
thetic copies of F in [n]`qn is asymptotically smaller than the expected number of

elements in [n]`qn . Moreover, it follows from Chernoff’s inequality that a.a.s. |[n]`qn |
is very close to its expectation. Consequently, it follows from Markov’s inequality
that a.a.s. the number of homothetic copies of F in [n]`qn is o(|[n]`qn |). Therefore, by

removing one element from every homothetic copy of F in |[n]`qn | a.a.s. we obtain

a subset Y of size |Y | ≥ ε|[n]`qn |, which contains no homothetic copy of F at all,
which yields the 0-statement in this case.

Note that due to |F | ≥ 3 the ranges considered in Cases 1 and 2 overlap. Simi-
larly, the range considered in the case below overlaps with the one from Case 2.

Case 3 (n−(`+1)/|F | � qn ≤ cn−1/(|F |−1)). Again appealing to Chernoff’s inequal-
ity applied to the size of [n]`qn we infer that it suffices to show that a.a.s. the number

of homothetic copies of F in [n]`qn is at most (1− 2ε)qnn
`.

Let ZF be the random variable denoting the number of such copies. Clearly,

E [ZF ] ≤ q|F |n n`+1 and standard calculations show that the variance of ZF satisfies

Var [ZF ] = O
(
q2|F |−1
n n`+2 + q|F |n n`+1

)
.

Consequently, Chebyshev’s inequality yields

P
(
ZF ≥ 2q|F |n n`+1

)
≤ Var [ZF ]

q
2|F |
n n2`+2

= O

(
1

qnn`
+

1

q
|F |
n n`+1

)
= o(1) ,
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due to the range of qn we consider in this case. Hence, the claim follows from the
choice of c, which yields

2q|F |n n`+1 ≤ (1− 2ε)qnn
` . �

The 1-statement of Theorem 2.3. We now turn to the 1-statement of Theorem 2.3.
We first note that if qn = Ω(1), then the theorem follows directly from Chernoff’s
inequality combined with the original result of Furstenberg and Katznelson. Hence
we can assume w.l.o.g. qn = o(1).

Let F ⊆ N` with k = |F | ≥ 3 and ε ∈ (0, 1). We want to apply Theorem 3.3.
For that we consider the following sequence of k-uniform hypergraphs H = (Hn =
(Vn, En))n∈N. Let Vn = [n]` and let every homothetic copy of F form an edge
in En. In particular, |En| = n`+1. We set pn = n−1/(k−1), p = (pn)n∈N and α = 0.
Clearly, for those definitions the conclusion of Theorem 3.3 yields the 1-statement
of Theorem 2.3. In order to apply Theorem 3.3 we have to verify the following
three conditions

(a ) pkn|En| → ∞ as n→∞,
(b ) H is α-dense, and
(c ) H is (K,p)-bounded.

By definition of pn and Hn we have

pkn|En| = Ω
(
n−k/(k−1)n`+1

)
= Ω

(
n`−1/(k−1)

)
,

which yields (a ), as ` ≥ 1 and k ≥ 3.
Condition (b ) holds, due to work of Furstenberg and Katznelson [18]. In fact, it

follows from the result in [18], that for every configuration F ⊆ N` and every ε > 0
there exist ζ > 0 and n0 such that for every n ≥ n0 every subset U ⊆ [n]` with
|U | ≥ εn` contains at least ζn`+1 homothetic copies of F . In other words, H is
0-dense.

Hence, it is only left to verify condition (c ). We have to show that for every
i ∈ [k − 1] and q ≥ pn = n−1/(k−1) we have

µi(Hn, q) = E

[∑
v∈Vn

deg2
i (v, Vq)

]
= O

(
q2i |En|2

|Vn|

)
= O

(
q2in`+2

)
. (33)

It follows from the definition of degi in (11) that µi(Hn, q) is the expected number
of pairs (F1, F2) of homothetic copies of F which share at least one point v and
at least i points different from v of each copy are contained in [n]`q. The expected
number of such pairs (F1, F2) which share exactly one point can be bounded by
O
(
q2in`+2

)
. Since for every fixed homothetic copy F1 there exist only constantly

many (independent of n) other copies F2, which share two points with F1, the
expected number of such pairs (F1, F2) with |F1 ∩ F2| ≥ 2 is bounded by

O
(
qin`+1

)
= O

(
q2in`+2

)
,

since q ≥ Cpn ≥ Cn−1/(k−1) ≥ Cn−1/i. Consequently, (33) holds, which concludes
the proof of Theorem 2.3. �

4.2. Proof of Theorems 2.4. The proof of the 0-statement follows directly from
the 0-statement of Theorem 1.1 in [36]. Those authors showed that for every ir-
redundant, density regular ` × k matrix with rank ` there exists a constant c > 0
such that for qn ≤ cn−m(A) a.a.s. [n]qn can be partitioned into two classes such that
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none of them contains a distinct-valued solution of the homogeneous system given
by A. Clearly, this implies the 0-statement of Theorems 2.4 for every ε ∈ (0, 1/2).

The 1-statement of Theorem 2.4. First we note that if qn = Ω(1), then the state-
ment follows directly from Chernoff’s inequality combined with the definition of
irredundant, density regular matrix.

Let A be an irredundant, density regular ` × k integer matrix and ε > 0 For
the application of Theorem 3.3 we consider the following sequence of k-uniform
hypergraphs H = (Hn = (Vn, En))n∈N. Let Vn = [n] and for every distinct-
valued solution (x1, . . . , xk) let {x1, . . . , xk} be an edge of En. Moreover we set
pn = n−1/m(A), p = (pn)n∈N and α = 0. The 1-statement of Theorem 2.4 then
follows from the conclusion of Theorem 3.3 and we have to verify the same three
conditions (a )-(c ) as in the proof of the 1-statement of Theorem 2.3.

It was shown in [36, Proposition 2.2 (ii )] that m(A) ≥ k − 1 and due to Rado’s
characterization of partition regular matrices (which contains the class of all density
regular matrices) we have k− ` ≥ 2, which yields |En| = Ω(n2). Therefore, we have

pk|En| = Ω(n−k/(k−1) · n2) = Ω
(
n

k−2
k−1
)

and, hence, condition (a ) is satisfied.
Moreover, based on the Furstenberg-Katznelson theorem from (FuKa78 ) it was

shown by Frankl, Graham, and Rödl in [14, Theorem 2], that the sequence of
hypergraphs H defined above is 0-dense, i.e., condition (b ) is fulfilled.

Consequently, it suffices to verify that H is (K,p)-bounded for some K ≥ 1. For
i ∈ [k − 1] and q ≥ pn = n−1/m(A) we have to show that

µi(Hn, q) = O

(
q2i |En|2

n

)
.

Recalling the definitions of µi(Hn, q) and Hn = ([n], En) we have

µi(Hn, q) = E

∑
x∈[n]

deg2
i (x, Vn,q)

 =
∑
x∈[n]

E
[
deg2

i (x, Vn,q)
]
. (34)

Note that E
[
deg2

i (x, Vn,q)
]

is the expected number of pairs (X,Y ) ∈ [n]k × [n]k

such that

(i ) x ∈ X ∩ Y ,
(ii ) X = {x1, . . . , xk} and Y = {y1, . . . , yk} are solutions of L(A), where

Ax = Ay = 0

for x = (x1, . . . , xk)t and y = (y1, . . . , yk)t, and
(iii ) |X ∩ ([n]q \ {x})| ≥ i and |Y ∩ ([n]q \ {x})| ≥ i.

For fixed x and (X,Y ) let w ≥ 1 be the largest integer such that there exist indices
i1, . . . , iw and j1, . . . , jw for which

xi1 = yj1 , . . . , xiw = yjw . (35)

Consequently,

x ∈ {xi1 , . . . , xiw} = {yj1 , . . . , yjw} (36)

Set W1 = {i1, . . . , iw} and W2 = {j1, . . . , jw}.
For fixed sets W1, W2 ⊆ [k] we are going to describe all (2k − w)-tuples X ∪ Y

satisfying (ii ) and (35). To this end consider the 2`×(2k−w) matrix B, which arises
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from two copies A1 and A2 of A with permuted columns. We set A1 = (AW 1
| AW1

)

and A2 = (AW2
| AW 2

) where for every α = 1, . . . , w the column of AW1
which is

indexed by iα aligns with that column of AW2 which is indexed by jα. Then let

B =

(
AW 1

AW1
0

0 AW2
AW 2

)
.

Without loss of generality we may assume that rank(AW 1
) ≥ rank(AW 2

) and,
therefore,

rank(B) ≥ rank(A) + rank(AW 1
) .

Clearly, the number of (2k−w)-tuples X∪Y satisfying (ii ) and (35) equals the num-
ber of solutions of the homogeneous system given by B, which is O(n2k−w−rank(B)).
Since A is an irredundant, partition regular matrix, it follows from [36, Proposi-
tion 2.2 (i )] that rank(A′) = rank(A) for every matrix A′ obtained from A by
removing one column. Consequently, any matrix B′ obtained from B by removing
one of the middle columns (i.e., one of the w columns of B which consist of a column
of AW1

and a columns of AW2
) satisfies

rank(B′) ≥ rank(A) + rank(AW 1
) = `+ rank(AW 1

) .

Therefore, it follows from (36) that the number of such (2k − w)-tuples that also
satisfy condition (i ) for some fixed x ∈ [n] is at most

O(n2k−w−1−`−rank(AW1
)) . (37)

Finally, we estimate the probability that a (2k − w)-tuple X ∪ Y satisfying (i ),
(ii ), and (35) also satisfies (iii ). Since |X ∩Y ∩ ([n]q \ {x})| = j ≤ w− 1 and q ≤ 1
this probability is bounded by

w−1∑
j=0

q2i−j = O(q2i−w+1) .

In view of (37) we obtain∑
x∈[n]

E
[
deg2

i (x, Vn,q)
]

=
∑
x∈[n]

k∑
w=1

∑
W1,W2⊆[k]
|W1|=|W2|=w

O(n2k−w−1−`−rank(AW1
)q2i−w+1) . (38)

Note that if w = 1, then again due to [36, Proposition 2.2 (i )] we have rank(AW 1
) =

` and, therefore, the contribution of those terms satisfies∑
x∈[n]

∑
W1,W2⊆[k]
|W1|=|W2|=1

O(n2k−2`−2q2i) = O(n2k−2`−1q2i) = O

(
q2i |En|2

n

)
. (39)

For w ≥ 2 and W1 ⊆ [k] with |W1| = w we obtain from the definition of m(A) and
q ≥ n−1/m(A) that

qw−1 ≥ n−w+1−rank(AW1
)+` .



22 MATHIAS SCHACHT

Consequently,

∑
x∈[n]

k∑
w=2

∑
W1,W2⊆[k]
|W1|=|W2|=w

O(n2k−w−1−`−rank(AW1
)q2i−w+1)

=
∑
x∈[n]

k∑
w=2

∑
W1,W2⊆[k]
|W1|=|W2|=w

O(n2k−2−2`q2i)

= O(n2k−2`−1q2i) = O

(
q2i |En|2

n

)
. (40)

Finally, combining (34), (38), (39), and (40) we obtain

µi(Hn, q) = O

(
q2i |En|2

n

)
,

which concludes the proof of the 1-statement of Theorem 2.4. �

4.3. Proof of Theorems 2.5. The proof is similar to the proof of Theorem 2.3
and we only sketch the main ideas.

The 0-statement of Theorem 2.5. We recall that for the validity of the statement
X →1/2+ε

(
1 1 −1

)
we only consider distinct-valued of the Schur equation and

we call such a solutions Schur-triples. The expected number of Schur-triples con-
tained in [n]qn is bounded by q3

nn
2. Consequently, the 0-statement follows from

Markov’s inequality if qn � n−2/3. In the middle range n−1 � qn � n−1/2 it
follows, on the one hand, from Chernoff’s inequality that a.a.s. |[n]qn | ≥ qnn/2.
On the other hand, due to Markov’s inequality a.a.s. the number of Schur-triples
in [n]qn is o(qnn) and, hence, the statement holds in this range of qn. Finally, if

n−2/3 � qn ≤ cn−1/2 for sufficiently small c > 0, then using Chebyshev’s inequality
one obtains the upper bound of

(1− (1/2 + ε))qnn/2

on the number of Schur-triples in [n]qn , which holds a.a.s. Consequently, in view
of Chernoff’s inequality, a.a.s. the random set [n]qn contains a subset of size (1/2 +
ε)|[n]qn |, which contains no Schur-triple. �

The 1-statement of Theorem 2.5. Here the we consider a sequence of 3-uniform hy-
pergraphs, where Vn = [n] and En corresponds to all Schur-triples in [n] and we set
pn = n−1/2 and α = 1/2. For given ε ∈ (0, 1/2) we want to appeal to Theorem 3.3
and for that we assume qn = o(1). Again the 1-statement of Theorem 2.5 follows
from Theorem 3.3 and we have to verify the three conditions (a )-(c ) as in the proof
of the 1-statement of Theorem 2.3.

Condition (a ) follows from the definition of pn and condition (c ) follows from
similar considerations as in the proof of Theorem 2.3 for ` = 1 and k = 3.

In order to verify condition (b ) we have to show that for every ε > 0 there exist
ζ > 0 and n0 such that for n ≥ n0 every subset A ⊆ [n] with |A| ≥ (1/2 + ε)n
contains at least ζn2 Schur-triples.
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So let A ⊆ [n] satisfy (1/2 + ε)n and set A1 = A ∩ {1, . . . , (1 − ε)n} (ignoring
floors and ceilings). It follows that for every z ∈ A \A1 there are at least(

1

2
+ ε

)
n− εn− (1− ε)n

2
=
ε

2
n

pairs x ≤ y with x, y ∈ A such that x+ y = z. Hence, if |A \A1| ≥ 3ε2n/2, then A
contains at least 3ε3n2/4− n Schur-triples and the claim follows.

On the other hand, if |A \A1| < 3ε2n/2, then we have

|A1| ≥
(

1

2
+ ε

)
n− 3ε2

2
n =

(
1

2
+

3ε

2

)
(1− ε)n .

In other words, we obtained a density increment of ε/2 on the interval (1− ε)n and
the conclusion follows from iterating the above argument.

This concludes the proof of condition (b ) and, therefore, Theorem 3.3 yields the
proof of the 1-statement of Theorem 2.5 for sequences q satisfying qn = o(1). The
remaining case, when qn = Ω(1) then follows by similar arguments as given in [25,
Proposition 8.6] and we omit the details. �

4.4. Proof of Theorems 2.7.

The 0-statement of Theorem 2.7. Let F be an `-uniform hypergraph with at least
one vertex of degree 2 and ε ∈ (0, 1− π(F )). We set

c =
1− π(F )− ε

4
.

For the proof of the 0-statement we consider different ranges of q = (qn)n∈N
depending on the density of the densest sub-hypergraph of F and depending on
m(F ). Let F ′ be the densest sub-hypergraph of F with e(F ′) ≥ 1, i.e., F ′ maximizes
e(F ′)/v(F ′). Moreover, let F ′′ be one of those sub-hypergraphs for which

d(F ′′) = m(F )

(see (10) for the definition of those parameters). Note that e(F ′′) ≥ 2, since F
contains a vertex of degree at least two. We consider the following three ranges
for q.

Case 1 (qn � n−v(F ′)/e(F ′)). In this range the expected number of copies of F ′ in
G(`)(n, qn) tends to 0 and, therefore, the statement follows from Markov’s inequal-
ity.

Case 2 (n−` � qn � n−1/m(F )). It follows from the definition of m(F ), that in
this range the expected number of copies of F ′′ in G(`)(n, qn) is asymptotically
smaller than the expected number of of edges of G(`)(n, qn). Therefore, applying
Markov’s inequality to the number of copies of F ′′ and Chernoff’s inequality to
the number of edges G(`)(n, qn) we obtain that a.a.s. the number of copies of F ′′

satisfies o(e(G(`)(n, qn))). Hence, a.a.s. we can obtain an F ′′-free, and consequently,
an F ′′-free sub-hypergraph of G(`)(n, qn) by removing only o(e(G(`)(n, qn))) edges,
which yields the statement for this range of qn.

We note that n−` � n−v(F ′)/e(F ′) since F contains a vertex of degree 2. In other
words, the interval considered in Case 2 overlaps with the interval from Case 1.
Similarly, the range considered in the case below overlaps with the one from Case 2.
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Case 3 (n−v(F ′)/e(F ′) � qn ≤ cn−1/m(F )). Applying again Chernoff’s inequality
to e(G(`)(n, qn)) we see that it suffices to show that a.a.s. the number of copies of
F ′′ is at most (1− (π(F ) + ε))qnn

`/2.
Let ZF ′′ be the random variable denoting the number of such copies. Clearly,

E [ZF ′′ ] ≤ q
e(F ′′)
n nv(F ′′) and standard calculations show that the variance of ZF

satisfies

Var [ZF ′′ ] = O

(
q

2e(F ′′)
n n2v(F ′′)

minF∗⊆F,e(F∗)≥1 q
e(F∗)
n nv(F∗)

)
= O

(
q

2e(F ′′)
n n2v(F ′′)

q
e(F ′)
n nv(F ′)

)
,

due to the choice of F ′ being the densest sub-hypergraph of F . Since qn �
n−v(F ′)/e(F ′) we have q

e(F ′)
n nv(F ′) →∞ and, therefore,

Var [ZF ′′ ] = o
(
q2e(F ′′)
n n2v(F ′′)

)
Consequently, Chebyshev’s inequality yields

P
(
ZF ′′ ≥ 2qe(F

′′)
n nv(F ′′)

)
≤ Var [ZF ′′ ]

q
2e(F ′′)
n n2v(F ′′)

= o(1) .

Moreover, since qn ≤ cn−1/m(F ) and e(F ′′) ≥ 2 it follows from the choice of c that

2qe(F
′′)

n nv(F ′′) ≤ 1− (π(F ) + ε)

2
qnn

` ,

which yields the 0-statement in this case. �

The 1-statement of Theorem 2.7. Let F be an `-uniform hypergraph with at least
Theorem 3.3. For that we consider the sequence of k-uniform hypergraphs H =

(Hn = (Vn, En))n∈N where Vn = E(K
(`)
n ) and edges of En correspond to copies

of F in Kn. Moreover, we set pn = n−1/m(F ) and α = π(F ). Clearly, for this
set up the conclusion of Theorem 3.3 yields the 1-statement of Theorem 2.7 for
sequences q with qn = o(1). In order to apply Theorem 3.3 we have to verify the
three conditions (a )-(c ) stated in the proof of the 1-statement of Theorem 2.3.

Condition (a ) follows from the definitions of pn and En combined. In fact, since
F contains a vertex of degree at least 2 we havem(F ) ≥ 1/(`−1) and pn|En| = Ω(n).
Such a result was obtained by Erdős and Simonovits [11, Theorem 1] and, hence,
it is left to verify condition (c ) only.

To this end observe that Hn is a regular hypergraph with
(
n
`

)
vertices and every

vertex is contained in Θ(nv(F )−`) edges and that |En| = Θ(nv(F )). We will show
that for q ≥ n−1/m(F ) and i ∈ [k − 1] we have

µi(Hn, q) = E

[∑
v∈Vn

deg2
i (v, Vn,q)

]
=
∑
v∈V

E
[
deg2

i (v, Vn,q)
]

= O

(
q2i |En|2

|Vn|

)
.

Due to the definition of H every v ∈ Vn corresponds to an edge e(v) in K
(`)
n .

Therefore, the number E
[
deg2

i (v, Vn,q)
]

is the expected number of pairs (F1, F2) of

copies F1 and F2 of F in K
(`)
n satisfying e(v) ∈ E(F1) ∩ E(F2) and both copies F1

and F2 have at least i edges in E(G(`)(n, q)) \ {e(v)}. Summing over all such pairs
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F1 and F2 we obtain

E
[
deg2

i (v, Vn,q)
]
≤

∑
F1,F2 : e(v)∈E(F1)∩E(F2)

|E(F1)∩E(F2)|−1∑
j=0

q2i−j

= O

 ∑
F1,F2 : e(v)∈E(F1)∩E(F2)

q2i−(|E(F1)∩E(F2)|−1)

 (41)

since q ≤ 1. Furthermore,∑
F1,F2 : e(v)∈E(F1)∩E(F2)

q2i−(|E(F1)∩E(F2)|−1)

= O

 ∑
J : e(v)∈E(J

n2v(F )−2v(J)q2i−(e(J)−1)

 , (42)

where the sum on the right-hand side is indexed all hypergraphs J ⊆ K
(`)
n which

contain e(v) and which are isomorphic to a sub-hypergraph of F . It follows from
the definition of m(F ) and q ≥ n−1/m(F ) that nv(J)qe(J) = Ω(qn`). Combining this
with (41) and (42) we obtain

E
[
deg2

i (v, Vn,q)
]

= O

 ∑
J : e(v)∈E(J)

n2v(F )−2v(J)q2i−(e(J)−1)


= O

 ∑
J : e(v)∈E(J)

n2v(F )−v(J)−`q2i

 .

Moreover, since v(J) ≥ ` we have

E
[
deg2

i (v, Vn,q)
]

= O

 ∑
J : e(v)∈E(J)

n2v(F )−2`q2i

 ,

and, consequently,

µi(Hn, q) =
∑
v∈Vn

O(n2v(F )−2`q2i) = O(n2v(F )−`q2i) = O

(
q2i |En|2

|Vn|

)
.

This concludes the proof of condition (c ) and, therefore, Theorem 3.3 yields the
proof of the 1-statement of Theorem 2.7 for sequences q satisfying qn = o(1). The
remaining case, when qn = Ω(1) then follows by similar arguments as given in [25,
Proposition 8.6] and we omit the details. �
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15. P. Frankl and V. Rödl, Large triangle-free subgraphs in graphs without K4, Graphs Combin.

2 (1986), no. 2, 135–144. 2.4, 2.4
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31. T. Kövari, V. T. Sós, and P. Turán, On a problem of K. Zarankiewicz, Colloquium Math. 3

(1954), 50–57. 2.4
32. B. Kreuter, Probabilistic versions of ramsey’s and turán’s theorems, Ph.D. thesis, Humboldt-

Universität zu Berlin, 1997. 2.4

33. W. Mantel, Vraagstuk XXVIII, Wiskundige Opgaven 10 (1907), 60–61. 2.4
34. R. Rado, Studien zur Kombinatorik, Math. Z. 36 (1933), no. 1, 424–470. 2.2



EXTREMAL RESULTS FOR RANDOM DISCRETE STRUCTURES 27
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