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RAMSEY PROPERTIES OF RANDOM DISCRETE STRUCTURES

EHUD FRIEDGUT, VOJTĚCH RÖDL, AND MATHIAS SCHACHT

Abstract. We study thresholds for Ramsey properties of random discrete

structures. In particular, we determine the threshold for Rado’s theorem for

solutions of partition regular systems of equations in random subsets of the
integers and we prove the 1-statement of the conjectured threshold for Ram-

sey’s theorem for random hypergraphs. Those results were conjectured by

Rödl and Ruciński and similar results were obtained independently by Conlon
and Gowers.

1. Introduction

Ramsey theory is an important branch of combinatorics. Roughly speaking, a
Ramsey type result asserts for some given configuration F and some integer r the
existence of a configurationG such that any partition (or coloring) ofG into r classes
has the property that a copy of F is completely contained in one of the r partition
classes. For example, one of the first results of this type can be found in the work of
Hilbert [14], where it was shown that for every ` and for every finite partition of the
natural numbers N = {1, 2, 3, . . . } there exists a partition class which contains an

affine cube of dimension `, i.e., a set of the form {x0 +
∑`
i=1 εixi : εi ∈ {0, 1}} for

some x0, x1, . . . , x` ∈ N. Classical results of that type include the work of Schur [33],
van der Waerden [36], Rado [24], Ramsey [25], Erdős and Szekeres [3], Hales and
Jewett [13], Graham, Leeb, and Rothschild [11], and others (see the, e.g., [12] for
more details).

Applications of probabilistic arguments to obtain bounds in Ramsey theory have
a long tradition. On the other hand, the study of Ramsey type properties of random
structures was initiated only more recently by  Luczak, Ruciński, and Voigt [19] and
further studied by Rödl and Ruciński with their collaborators [7, 9, 10, 26, 27, 28,
29, 30, 31] (for more related results by others see [8, 17, 18, 20, 21, 22, 23]). The aim
of this paper is to establish a general result which yields Ramsey type results for
random discrete structures (see Theorem 2.5). As a consequence, combined with
the work from [29] we establish the threshold for Rado’s theorem for random subsets
of the integers (see Theorem 1.1) and we obtain the 1-statement for the conjectured
threshold of Ramsey’s theorem for random hypergraphs (see Theorem 1.2). Similar
results were obtained independently by Conlon and Gowers [2].
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1.1. Random subsets of the integers. Ramsey type results for the integers
embody the following pattern. For every finite coloring of N there exist integers
x1, . . . , xk all of the same color, which satisfy some prescribed condition. For the
condition x1 + x2 = x3 such a result was proved by Schur [33] and for x1, . . . , xk
forming an arithmetic progression of length k this is the result of van der Waer-
den [36]. In 1933 Rado [25] published a far-reaching generalization of these results.
For an `×k matrix A = (aij) of integers consider the system L(A) of homogeneous
linear equations

k∑
j=1

aijxj = 0 for 1 ≤ i ≤ ` .

We say that a matrix A is partition regular if for any finite coloring of N there
is always a solution (x1, . . . , xk) of L(A) with all xi having the same color. Rado
characterized partition regular matrices and it follows directly from that character-
ization that k ≥ rank(A)+2 is a necessary condition (see, e.g., [12] for details). We
note that the single equation x1 + x2 − x3 = 0 is partition regular due to Schur’s
theorem while the same follows for x1 +x2−2x3 = 0 by van der Waerden’s theorem.
On the other hand, the equation x1 + x2 − 3x3 = 0 fails to have that property.

We say a partition regular matrix A is irredundant if there exists a solution
(x1, . . . , xk) of L(A) such that xi 6= xj for all 1 ≤ i < j ≤ k and otherwise we
say A is redundant. It is easy to show that for every redundant ` × k matrix A
there exists an irredundant `′ × k′ matrix A′ for some `′ < ` and k′ < k with the
same family of solutions (viewed as sets). More precisely, (y1, . . . , yk′) is a solution
of L(A′) if and only if there exists a solution (x1, . . . , xk) for L(A) with

{x1, . . . , xk} = {y1, . . . , yk′}

(see, e.g., [29, Section 1] for details). Due to this consideration it is natural to
restrict to irredundant, partition regular matrices A.

We denote by [n] = {1, . . . , n} the first n positive integers and for a subset
Z ⊆ [n], a positive integer r ∈ N, and an irredundant, ` × k integer matrix A we
write

Z → (A)r (1)

if for every coloring of Z with r colors, there exists a solution (x1, . . . , xk) of L(A)
such that all xi are distinct and contained in Z and have the same color. A standard
compactness argument combined with Rado’s theorem yields that for any r ∈ N
and every

partition regular matrix A we have [n]→ (A)r for every n ≥ n(A, r) sufficiently
large. Our first main result determines the density required by random subsets of
[n] to satisfy the same property.

For p ∈ (0, 1] let [n]p denote the binomial random subset of [n] with integers from
[n] included independently, each with probability p. In other words, we consider
the finite probability space on all subsets of [n], where

P ([n]p = Z) = p|Z|(1− p)n−|Z|

holds for all Z ⊆ [n]. In [10, 28, 29] the question when [n]p → (A)r holds with prob-
ability close to 1 was investigated. To characterize the sequences of probabilities
p = (pn)n∈N with that property we consider the following parameter introduced
in [29].
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Let A be an ` × k integer matrix and let the columns be indexed by [k]. For a
partition W ∪̇W ⊆ [k] of the columns of A, we denote by AW the matrix obtained

from A by restricting to the columns indexed by W . Let rank(AW ) be the rank

of AW , where rank(AW ) = 0 for W = ∅. We set

mA = max
W ∪̇W=[k]
|W |≥2

|W | − 1

|W | − 1 + rank(AW )− rank(A)
. (2)

It was shown in [29, Proposition 2.2 ii)] that for irredundant, partition regular
matrices A the denominator of (2) is always at least 1.

For example, if A consists of the single equation x1 + x2 − x3 = 0 considered
by Schur, then mA = 2. Moreover, if A corresponds to an irredundant, partition
regular matrix with the property that the solutions of L(A) form an arithmetic
progression of length k, then mA = k − 1.

One of the main results in [29] asserts that for every irredundant, partition
regular matrix A there exists some c > 0 such that if p = (pn) satisfies pn ≤
cn−1/mA , then

lim
n→∞

P ([n]pn → (A)2) = 0 . (3)

Note that by definition P ([n]pn → (A)r) ≤ P ([n]pn → (A)2) for every r ≥ 2. More-

over, extending a result from [28] in [29] the complementing result for p� n−1/mA

was obtained for a special subclass of partition regular matrices, which we consider
below.

We say an irredundant, partition regular `× k matrix A is density regular if any
subset Z ⊆ N with positive upper density, i.e.,

lim sup
n→∞

|Z ∩ [n]|
n

> 0 ,

contains a solution (x1, . . . , xk) of L(A) with all xi distinct. For example, Sze-
merédi’s famous theorem on arithmetic progressions [34] shows that if the solutions
of L(A) form an arithmetic progression, then A is density regular. More generally,
it was shown in [4] that an irredundant, partition regular matrix is density regular
if and only if (1, . . . , 1) is a solution of L(A).

Complementing (3), Rödl and Ruciński showed in [29] that for every irredundant,
density regular matrix A and every integer r ≥ 2 there exists C > 0 such that if
p = (pn) satisfies pn ≥ Cn−1/mA , then

lim
n→∞

P ([n]pn → (A)r) = 1 . (4)

For the special case, when solutions of L(A) form an arithmetic progression the same
result appeared already in [28]. In other words, combining (3) and (4) it follows
that pn = n−1/mA is the threshold for the property [n]pn → (A)r for irredundant,
density regular matrices A. It was conjectured in [29] that this extends to all
irredundant, partition regular matrices A. For the special case, when A consists
only of the equation x1 + x2 − x3 = 0 (considered by Schur) and r = 2 this was
verified in [10]. Our first main result addresses the general case.

Theorem 1.1. Let A be an irredundant, partition regular integer matrix and let
r ∈ N. There exist constants 0 < c < C such that for any sequence of probabilities
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p = (pn)n∈N we have

lim
n→∞

P ([n]pn → (A)r) =

{
1, if pn ≥ Cn−1/mA

0, if pn ≤ cn−1/mA .

Due to (3) it suffices to show the 1-statement in the theorem above. This state-
ment will follow from a more general result presented in Section 2. We deduce the
1-statement of Theorem 1.1 in Section 3.

1.2. Ramsey properties for random hypergraphs. The second main result
concerns partition properties of random hypergraphs. An `-uniform hypergraph H
is a pair (V,E), where the vertex set V is some finite set and the edge set E ⊆ [V ]` is
a subfamily of the `-element subsets of V . As usual we call 2-uniform hypergraphs
simply graphs. For some hypergraph H we denote by V (H) and E(H) its vertex
set and its edge set and we denote by v(H) and e(H) the cardinalities of those

sets. For an integer n we denote by K
(`)
n the complete `-uniform hypergraph on n

vertices, i.e., v(K
(`)
n ) = n and e(K

(`)
n ) =

(
n
`

)
. For a subset U ⊆ V (H) we denote

by E(U) the edges of H contained in U and we set e(U) = |E(U)|. Moreover, we
write H[U ] for the subhypergraph induced on U , i.e., H[U ] = (U,E(U)).

Ramsey’s theorem [25] asserts that for every `-uniform hypergraph F and every
r ∈ N there exists some n(F, r) such that for every n ≥ n(F, r) we have

K(`)
n → (F )r ,

i.e., every r-coloring of the edges of K
(`)
n yields a monochromatic copy of F . More

generally, for `-uniform hypergraphs F and G and r ∈ N we write G → (F )r, if
for every partition E1∪̇ . . . ∪̇Er = E(G) there exists some s ∈ [r] and an injective
mapping ϕ : V (F )→ V (G) such that ϕ(e) ∈ Es for every e ∈ E(F ).

Similarly as in the context of Rado’s theorem we are interested in random ver-
sions of Ramsey’s theorem. Here we study the binomial model G(`)(n, p) of `-

uniform hypergraphs, where edges of the complete hypergraph K
(`)
n are included

independently with probability p. More precisely, we consider the finite probability

space with ground set E(K
(`)
n ) where for any `-uniform hypergraph H with vertex

set V (K
(`)
n ) we have

P
(
G(`)(n, p) = H

)
= pe(H)(1− p)(

n
`)−e(H) .

For a fixed `-uniform hypergraph F and r ∈ N we are interested in the asymptotic
growth of the smallest sequence of probabilities p = (pn)n∈N such thatG(`)(n, pn)→
(F )r holds asymptotically, almost surely (a.a.s.), i.e.,

lim
n→∞

P
(
G(`)(n, pn)→ (F )r

)
= 1 . (5)

This question was first studied in [19] and there it was shown that (5) holds
for F = K3 being a graph triangle, r = 2, and p = pn � 1/

√
n (as noted in [19]

this also follows implicitly from an earlier result in [5]). The result from [19] was
generalized for the same condition on p to an arbitrary number of colors by Rödl
and Ruciński in [27]. Finally in [28] Rödl and Ruciński solved the problem for
arbitrary graphs F and any number of colors r ∈ N by showing that (5) is valid
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as long as p ≥ Cn−1/mF for some C = C(F, r), where (in general for an `-uniform
hypergraph F with e(F ) ≥ 1) we set

mF = max
F ′⊆F
e(F ′)≥1

d(F ′) with d(F ′) =

{
e(F ′)−1
v(F ′)−` , if v(F ′) > `

1/` , if v(F ′) = ` .
(6)

If follows from the definition of mF , that p = Ω(n−1/m(F )) then a.a.s. the number of
copies of every subhypergraph graph F ′ ⊆ F in the random hypergraph G(`)(n, p)
has at least the same order of magnitude, as the number of edges. This property
seems to be a necessary condition for (5) to hold. This belief was indeed verified
for graphs in [26], where it was shown that for “most” graphs F there exists some
c > 0 such that for any p = (pn)n∈N with pn ≤ cn−1/mF we have

lim
n→∞

P
(
G(2)(n, pn)→ (F )2

)
= 0

Here “most” means all graphs F with the exception of forests consisting of stars and
paths of length three, which show a slightly different behavior (see [16, Chapter 8]
for details).

Our second main result, Theorem 1.2, establishes the general result for `-uniform
hypergraphs. We believe that the matching 0-statement also holds for “most”
hypergraphs F , but we will not study this here.

Theorem 1.2. Let F be an `-uniform hypergraph with maximum degree at least 2
and let r ∈ N. There exists a constant C > 0 such that for any sequence of
probabilities p = (pn)n∈N satisfying pn ≥ Cn−1/mF we have

lim
n→∞

P
(
G(`)(n, pn)→ (F )r

)
= 1 .

Theorem 1.2 was conjectured by Rödl and Ruciński [30, Conjecture 1.23]. In [30]

and in [31] such a result was already established for the special cases when F = K
(3)
4

and for `-partite, `-uniform hypergraphs F . Theorem 1.2 follows from the more
general result presented in Section 2 and we present the reduction in Section 3.

2. Main technical result

In this section we introduce a general environment allowing to prove Theorem 1.1
and Theorem 1.2 along the same lines. We note that the earlier results of Rödl
and Ruciński in [28, 30] were based on applications of the regularity lemma for
graphs and 3-uniform hypergraphs [35, 6]. Due to the somewhat technical nature
of the regularity lemma for hypergraphs, proving even special cases of Theorem 1.2
presented several technical difficulties. Although the approach taken here uses some
ideas from [28], we will, similarly as in [31], avoid the use of the regularity lemma.
The approach here can be viewed as a refinement of the work in [32], where related
extremal and Turán-type problems for random subsets of the integers and random
hypergraphs were studied.

2.1. Statement of main result. It will be convenient to consider sequences of
k-uniform hypergraphs H = (Hn)n∈N. In the context of Theorem 1.1 for a given
irredundant, partition regular `× k matrix, one may think of the vertex set V (Hn)
to be [n] and the edges being the solutions (x1, . . . , xk) of L(A) with xi 6= xj for
1 ≤ i < j ≤ k. In view of Theorem 1.2, for a given `-uniform hypergraph F

with k edges we may think of V (Hn) being the edge set of K
(`)
n and every edge of
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E(Hn) corresponds to a copy of F in K
(`)
n . The two main assumptions allowing

to apply the main result, Theorem 2.5, are (r, ζ)-Ramseyness (cf. Definition 2.1)
and (K,p)-boundedness (cf. Definition 2.3). Roughly speaking, H will be (r, ζ)-
Ramsey, if a quantitative Ramsey-type result for the original structure holds. For
Rado’s theorem such a strengthening was deduced from Deuber’s theorem in [4]
and for Ramsey’s theorem it follows directly from Ramsey’s original argument.
The (K,p)-boundedness will impose a lower bound on p and we will verify this
condition for Theorem 1.1 and Theorem 1.2 in Section 3.

Definition 2.1. Let H = (V,E) be a k-uniform hypergraph and r ∈ N. We say
H is r-Ramsey, if for every partition V 1∪̇ . . . ∪̇V r of V there exists an s ∈ [r] such
that e(V s) 6= 0.

For a subset U ⊆ V and ζ > 0, we say the induced subhypergraph H[U ] is
(r, ζ)-Ramsey, if for every partition U1∪̇ . . . ∪̇Ur of U there exists an s ∈ [r] such
that e(Us) ≥ ζ|E|.

Moreover, for a sequence H = (Hn)n∈N of k-uniform hypergraphs, we say H is
(r, ζ)-Ramsey, if for all but finitely many n the hypergraph Hn is (r, ζ)-Ramsey.

We note that in the definition of (r, ζ)-Ramseyness the number of required
monochromatic edges is given in terms of the global number e(H) of the edges
of H and not in terms of e(U). The next observation follows directly from the
Definition 2.1.

Fact 2.2. Let r1 . . . , r` be positive integers, let ζ > 0, let H = (V,E) be a k-uniform

hypergraph, and let U1∪̇ . . . ∪̇U ` be a partition of U ⊆ V . If H[U ] is (
∑`
j=1 rj , ζ)-

Ramsey, then there exists an j ∈ [`] such that H[U j ] is (rj , ζ)-Ramsey. �

For a k-uniform hypergraph H = (V,E), i ∈ [k − 1], v ∈ V , and U ⊆ V we
denote by degi(v, U) the number of edges of H containing v and having at least i
vertices in U \ {v}, i.e.,

degi(v, U) = |{e ∈ E : |e ∩ (U \ {v})| ≥ i and v ∈ e}| .
For q ∈ (0, 1] we let µi(H, q) denote the expected value of the sum over all such
degrees squared with U = Vq being the binomial random subset of V with proba-
bility q

µi(H, q) = E

[∑
v∈V

deg2
i (v, Vq)

]
. (7)

Definition 2.3. Let H = (Hn)n∈N be a sequence of k-uniform hypergraphs, let
p = (pn)n∈N be a sequence of probabilities, and let K ≥ 1. We say H is (K,p)-
bounded if the following is true.

For every i ∈ [k − 1], there exists n0 such that for every n ≥ n0 and q ≥ pn we
have

µi(Hn, q) ≤ Kq2i |E(Hn)|2

|V (Hn)|
. (8)

We will use the following recursive function.

Definition 2.4. We define the function R : N× N→ N recursively by setting

R(1, r) = 1 , R(i, 1) = 1 ,

and
R(i+ 1, r + 1) = R(i, r + 1) + (r + 1)R(i+ 1, r)
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for every i, r ∈ N.

The results stated in the introduction are consequences of the following theorem.

Theorem 2.5. Let H = (Hn)n∈N be a sequence of k-uniform hypergraphs, let
p = (pn)n∈N be a sequence of probabilities satisfying pn → 0 and pkn|E(Hn)| → ∞
as n→∞, and let ζ > 0, K ≥ 1, and r ∈ N.

If H is (R(k, r), ζ)-Ramsey and (K,p)-bounded, then there exists a C ≥ 1 such
that for qn ≥ Cpn a.a.s. the binomial random subset Vn,qn of V (Hn) induces an
r-Ramsey hypergraph.

We remark that typically satisfying the (K,p)-boundedness will be the more re-
strictive assumption on p compared to pkn|E(Hn)| → ∞. The proof of Theorem 2.5
is based on induction on k+r and for the induction we will strengthen the statement
(see Lemma 2.7 below).

For a k-uniform hypergraph H = (V,E) subsets W ⊆ U ⊆ V , and any integer
i ∈ {0, . . . , k} we consider those edges of H[U ] which have at least i vertices in W
and we denote this family by

EiU (W ) = {e ∈ E(U) : |e ∩W | ≥ i} .

Note that

E0
U (W ) = E(U) and EkU (W ) = E(W ) (9)

for every W ⊆ U .
The next technical definition is crucial to our induction scheme.

Definition 2.6. Let H = (V,E) be a k-uniform hypergraph and W ⊆ U ⊆ V . Let
i ∈ [k], r ∈ N, ξ > 0 and q ∈ (0, 1]. We say H[W ] is (i, r, ξ, q, U)-Ramsey, if for
every partition W 1∪̇ . . . ∪̇W r of W there exists an s ∈ [r] such that∣∣EiU (W s)

∣∣ ≥ ξqi|E| .
The next lemma states that under some fairly general assumptions (R(i, r), ζ)-

Ramseyness of H[U ] implies (with probability close to 1) that H[Uq] is (i, r, ξ, q, U)-
Ramsey.

Lemma 2.7. Let H = (Hn = (Vn, En))n∈N be a sequence of k-uniform hyper-
graphs, let p = (pn)n∈N be a sequence of probabilities satisfying pkn|En| → ∞ as
n→∞, and let K ≥ 1. Suppose H is (K,p)-bounded.

For every i ∈ [k], r ∈ N, ζ > 0, and (ωn)n∈N with ωn → ∞ as n → ∞ there
exist ξ > 0, b > 0, C ≥ 1, and n0 such that for every n ≥ n0, every q with
1/ωn ≥ q ≥ Cpn the following holds.

If U ⊆ Vn and Hn[U ] is (R(i, r), ζ)-Ramsey, then the binomial random subset Uq
satisfies

P (H[Uq] is (i, r, ξ, q, U)-Ramsey) ≥ 1− 2−bq|Vn| .

Theorem 2.5 follows from Lemma 2.7 applied with i = k and U = Vn. Note
that the property of being r-Ramsey is monotone and, hence, it suffices to verify
Theorem 2.5 for q = o(1).

2.2. Probabilistic tools. We will use Chernoff’s inequality [1] in the following
form.
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Theorem 2.8 (Chernoff’s inequality (see, e.g., [16, Corollary 2.3])). Let X ⊆ Y
be finite sets and p ∈ (0, 1]. For every 0 < % ≤ 3/2 we have

P
(∣∣|X ∩ Yp| − p|X|∣∣ ≥ %p|X|) ≤ 2 exp(−%2p|X|/3) . �

We will also use Janson’s inequality [15].

Theorem 2.9 (Janson’s inequality (see, e.g. [16, Theorem 2.14])). Let H = (V,E)
be a k-uniform hypergraph, U ⊆ V , i ∈ {2, . . . , k}, and q ∈ (0, 1]. For every edge
e ∈ E(U) fix some i-element subset I(e) ⊆ e (in an arbitrary way) and set

1(e) =

{
1 , if I(e) ⊆ Uq
0 , otherwise.

For every % > 0 the binomial random subset Uq satisfies

P
(
|EiU (Uq)| ≤ (1− %)qi|E(U)|

)
≤ P

 ∑
e∈E(U)

1(e) ≤ (1− %)qi|E(U)|


≤ exp

(
−%

2q2i|E(U)|2

2∆i

)
,

where ∆i = E [
∑∑

{1(e) · 1(e′) : e, e′ ∈ E(U) and I(e) ∩ I(e′) 6= ∅}]. �

We note that ∆i can be bounded by qµi−1(H, q). In fact, it follows from the
linearity of the expectation that

∆i = E
[∑∑

{1(e) · 1(e′) : e, e′ ∈ E(U) and I(e) ∩ I(e′) 6= ∅}
]
,

≤ E

∑
u∈Uq

∣∣∣{(e, e′) : u ∈ I(e) ∩ I(e′) , I(e) ⊆ Uq , and I(e′) ⊆ Uq
}∣∣∣


=
∑
u∈U

qE
[∣∣∣{(e, e′) : u ∈ I(e) ∩ I(e′) , (I(e) \ {u}) ⊆ Uq ,

and (I(e′) \ {u}) ⊆ Uq
}∣∣∣]

≤ q
∑
v∈V

deg2
i−1(v, Vq)

= qµi−1(H, q) . (10)

We also use an approximate concentration result for (K,p)-bounded hyper-
graphs. The boundedness of H only bounds the expected value of the quantity∑
v deg2

i (v, Vp). In the proof of Lemma 2.7 we need an exponential upper tail
bound and, unfortunately, it is known that such bounds usually do not hold. How-
ever, it was shown by Rödl and Ruciński in [28] that on the prize of deleting a few
elements such a bound can be obtained.

Proposition 2.10 (Upper tail [28, Lemma 4]). Let H = (Hn = (Vn, En))n∈N be a
sequence of k-uniform hypergraphs, let p = (pn)n∈N be a sequence of probabilities,
and let K ≥ 1. Suppose H is (K,p)-bounded.

For every i ∈ [k − 1] and every η > 0 there exist b > 0 and n0 such that for
every n ≥ n0 and every q ≥ pn the binomial random subset Vn,q has the following
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property with probability at least 1 − 2−bq|Vn|. There exists a set |X| ⊆ Vn,q with
X ≤ ηq|Vn| such that∑

v∈Vn

deg2
i (v, Vn,q \X) ≤ 4kk2Kq2i |En|2

|Vn|
.

The proof follows the lines of [28, Lemma 4] (see also [32]).

Proof. Suppose H is (K,p)-bounded and i ∈ [k − 1] and η > 0 are given. We set

b =
η

4(k − 1)2

and let n0 be sufficiently large, so that (8) holds for every n ≥ n0 and q ≥ pn.
For every j = i, . . . , 2(k − 1) we consider the family Sj defined as follows

Sj =
{

(S, v, e, e′) : S ⊆ Vn, v ∈ Vn, e, e′ ∈ En such that |S| = j,

v ∈ e ∩ e′, S ⊆ (e ∪ e′) \ {v}, |e ∩ S| ≥ i and |e′ ∩ S| ≥ i
}
.

Let Sj be the random variable denoting the number of elements (S, v, e, e′) from

Sj with S ∈
(
Vn,q

j

)
. By definition we have

∑2k−2
j=i E [Sj ] ≤ 4k−1µi(Hn, q) and due

to the (K,p)-boundedness of H we have

max
j=i,...,2(k−1)

E [Sj ] ≤
2k−2∑
j=i

E [Sj ] ≤ 4k−1µi(Hn, q) ≤ 4k−1Kq2i |En|2

|Vn|
.

Let Zj be the random variable denoting the number of sequences

((Sr, vr, er, e
′
r))r∈[z] ∈ S z

j

of length

z =

⌈
ηq|Vn|

4(k − 1)2

⌉
≤
⌈

ηq|Vn|
2(k − 1)j

⌉
which satisfy

(i ) the sets Sr are contained in Vn,q and
(ii ) the sets Sr are mutually disjoint, i.e., Sr1 ∩Sr2 = ∅ for all 1 ≤ r1 < r2 ≤ z.

Clearly, we have

E [Zj ] ≤ |Sj |zqjz = (E [Sj ])z ≤
(

4k−1Kq2i |En|2

|Vn|

)z
. (11)

On the other hand, if

∑
v∈Vn

deg2
i (v, Vn,q \X) ≥ 4kk2Kq2i |En|2

|Vn|
≥

2k−2∑
j=i

j · 2 · 4k−1Kq2i |En|2

|Vn|

for any X ⊆ Vn,q with |X| ≤ ηq|Vn|, then there exists some j0 ∈ {i, . . . , 2k − 2}
such that

Zj0 ≥
(

2 · 4k−1Kq2i |En|2

|Vn|

)z
.
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Markov’s inequality bounds the probability of this event by

P
(
∃j0 ∈ {i, . . . , 2k − 2} : Zj0 ≥ 2z

(
4k−1Kq2i |En|2

|Vn|

)z)
≤

2k−2∑
j=i

P
(
Zj ≥ 2z

(
4k−1Kq2i |En|2

|Vn|

)z) (11)

≤
2k−2∑
j=i

P (Zj ≥ 2z(E [Zj ])
z)

≤ 2k · 2−z ≤ 2−bq|Vn|+1+log2 k ,

which concludes the proof of Proposition 2.10. �

The next lemma, also due to Rödl and Ruciński from [28], states the if a bino-
mial random subset enjoys a monotone property with very high probability, then a
slightly enlarged random subset will have a “robust” variant of this property with
similar probability. Here we say an event holds with very high probability if the
probability of failing is exponentially small in the expected size of Vq.

Proposition 2.11 ([28, Lemma 3]). Let U be a set and let P be a family of subsets
of U closed under supersets. For all δ ∈ (0, 1) and b > 0 satisfying δ(3− log2 δ) ≤ b
and q ∈ (0, 1] the following holds. If

P
(
U(1−δ)q ∈ P

)
≥ 1− 2−bq|U |

then

P (∀X ⊆ Uq with |X| ≤ δq|U |/2 we have (Uq \X) ∈ P) ≥ 1− 2−δ
2q|U |/20 . �

2.3. Proof of main result. We start with a simple observation.

Fact 2.12. Let H = (V,E) be a k-uniform hypergraph, let U ⊆ V , and let ζ > 0
and K ≥ 1. If

∑
v∈V deg2

k−1(v, V ) ≤ K|E|2/|V | and e(U) ≥ ζ|E|, then the set

Y =

{
u ∈ U : degk−1(u, U) ≥ ζ

2

|E|
|V |

}
satisfies

|Y | ≥ ζ2

4K
|V | .

Proof. Due to the definition of Y we have∑
y∈Y

degk−1(y, U) ≥ e(U)− ζ

2

|E|
|V |
|U | ≥ ζ

2
|E| .

Hence, it follows from the Cauchy-Schwarz inequality

ζ2

4
|E|2 ≤

∑
y∈Y

degk−1(y, U)

2

≤ |Y |
∑
y∈Y

deg2
k−1(y, U)

≤ |Y |
∑
v∈V

deg2
k−1(v, V ) ≤ |Y | ·K |E|

2

|V |
,

which yields the claim. �



RAMSEY PROPERTIES OF RANDOM DISCRETE STRUCTURES 11

Proof of Lemma 2.7. Let H = (Hn = (Vn, En))n∈N be a sequence of k-uniform
hypergraphs, let p = (pn)n∈N be a sequence of probabilities such that pkn|En| → ∞
and H is (K,p)-bounded for some K ≥ 1. We prove Lemma 2.7 by induction on
i+ r.

Induction start for i = 1 and r ∈ N. In this case we need to show that
for given r, ζ and (ωn)n∈N there exist ξ, b, C, and n0 so that for n ≥ n0 the
(R(1, r), ζ)-Ramseyness of Hn[U ] implies (1, r, ξ, q, U)-Ramseyness of H[Uq] with
very high probability. This will follow from Chernoff’s inequality and Fact 2.12. In
fact, let ζ > 0 (the sequence (ωn)n∈N will play no role in the induction start and
we only need the upper bound on q in the induction step). We set

ξ =
ζ3

16krK
, b =

ζ2

49K
, C = 1 ,

and let n be sufficiently large. Note that for sufficiently large n, the (K,p)-
boundedness of H (applied for q = 1) yields

µk−1(Hn, 1) =
∑
v∈V

deg2
k−1(v, V ) ≤ K |En|

2

|Vn|
.

For every U ⊆ Vn satisfying Hn[U ] is (R(1, r), ζ)-Ramsey we have e(U) ≥ ζ|En|.
Consequently, we infer from Fact 2.12 that

|Y | ≥ ζ2

4K
|Vn| . (12)

Furthermore, due to the definition of Y we have for every q ∈ (0, 1]

|E1
U (Uq)| ≥

1

k
|Y ∩ Uq| ·

ζ

2

|En|
|Vn|

and for every partition U1
q ∪̇ . . . ∪̇Urq of Uq there exists an s ∈ [r] such that

|E1
U (Usq )| ≥ ζ

2kr
|Y ∩ Uq|

|En|
|Vn|

Finally, it follows from Chernoff’s inequality that |Y ∩Uq| ≥ q|Y |/2 with probability
at least 1− 2 exp(−q|Y |/12). Hence, the choice of ξ and b and (12) yields

P (Hn[Uq] is (1, r, ξ, q, U)-Ramsey) ≥ 1− 2 exp(−q|Y |/12) ≥ 1− 2−bq|Vn|

for sufficiently large n and q ≥ pn, since q|Vn| ≥ pn|Vn| ≥ pn|En|1/k →∞.

Induction start for i ≥ 2 and r = 1. This case follows from Janson’s inequality.
For ζ > 0 we set

ξ =
ζ

2
, b =

ζ2

8K
, C = 1 .

Let n be sufficiently large and q ≥ pn so that

µi−1(Hn, q) ≤ Kq2i−2|En|2/|Vn| .

For every U ⊆ Vn, which is (R(i, 1), ζ)-Ramsey we have e(U) ≥ ζ|En|. Conse-
quently, (10) combined with Janson’s inequality applied with % = 1/2 yields

P
(
|EiU (Uq)| ≤

ζ

2
qi|En|

)
≤ exp

(
− ζ

2q2i−1|En|2

8µi−1(Hn, q)

)
≤ 2−bq|Vn| ,

which yields the lemma for r = 1.
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Induction step. We will verify the lemma for i+1 ≥ 2 and r+1 ≥ 2 and suppose
the lemma holds for i and r + 1 and for i + 1 and r. Let ζ > 0 and ω = (ωn)n∈N
be given.

Outline. We will expose the random set Uq in L rounds. Suppose Uq1 is the
outcome of the first round and let U1

q1∪̇ . . . ∪̇U
r+1
q1 be an arbitrary partition of Uq1 .

Due to the induction assumption applied for i and r + 1 we will infer that there
must be some color s1 ∈ [r + 1] such that |EiU (Us1q1 )| = Ω(qi1|E|). We consider the
set W1 ⊆ U of vertices such that every vertex w ∈ W1 is contained in at least
Ω(qi1|E|/|V |) edges from EiU (Us1q1 ). Note that if for some later round for ` > 1 some
w ∈ W1 appears in Uq` and w will be also colored with the same color s1, i.e.,

w ∈ Us1q` , then this will create edges in Ei+1
U (Us1q1 ∪ U

s1
q`

) ⊆ Ei+1
U (Us1q ). Moreover,

we will infer from the (K,p)-boundedness of H that W1 is of linear order, i.e.,
|W1| = Ω(|V |).

In the second round we will repeat the same argument and obtain some s2 ∈
[r + 1] and a set W2. However, we will also ensure that W2 \W1 is large. For that
we will apply the induction assumption to U \W1. In fact, this is the reason for
allowing an arbitrary subset U ⊆ V in Lemma 2.7. As a result we will ensure that
|W2 \W1| ≥ λ|V | for some fixed λ > 0 (only depending on K, i+ 1, r + 1, and ζ).
Recall that we can only apply the induction assumption for i and r + 1 to U \W1

only, if H[U \W1] is still (R(i, r + 1), ζ)-Ramsey.
In general we will repeat the argument from the first round and obtain sets

W1, . . . ,W`−1 such that |Wj \
⋃j−1
i=1 Wi| ≥ λ|V | for every j ∈ [` − 1] and integers

s1, . . . , s`−1 ∈ [R + 1] such that |EiU (U
sj
qj )| = Ω(qij |E|) for every j ∈ [` − 1]. We

stop when H[U \W ] fails to be (R(i, r+ 1), ζ)-Ramsey for W =
⋃`−1
j=1Wj . Clearly,

after at most 1/λ < L rounds we arrive at the situation, that H[U \ W ] is not
(R(i, r + 1), ζ)-Ramsey and then we will argue as follows.

Since H[U ] was (R(i+1, r+1), ζ)-Ramsey, by Fact 2.2 and the definition of R(·, ·)
we then have that H[W ] must be ((r + 1) · R(i + 1, r), ζ)-Ramsey. Consequently,
there must be some t ∈ [r + 1] such that for

W t =
⋃

j:sj=t

Wj

we have that H[W t] is (R(i + 1, r), ζ)-Ramsey. In other words, we are ready to
apply the induction assumption with i+ 1 and r to W t. By definition of W t every

vertex of W t is contained in Ω(qi|E|/|V |) edges from EiU (
⋃`−1
j=1 U

t
qj ) and, therefore,

if a substantial fraction of the vertices Uq` ∩W t will be assigned the color t, then

we have |Ei+1
U (

⋃`
j=1 U

t
qj )| = Ω(qi+1|E|), which is what we have to show. If, on the

other hand, the number of vertices of color t in Uq` ∩W t is negligible, then the

induction assumption applied for i + 1 and r to W t will yield that Ei+1
U (Usq`) is

large for some s ∈ [r + 1] \ {t}.
In the proof we will need that the error probabilities in the later rounds will

have to beat the number of (r+ 1)-colorings of the earlier rounds. For that we will

chose q` in such a way that q` �
∑`−1
j=1 qj and ql = Θ(q) for every ` ∈ [L]. This

will require that all statements in the proof have to hold with very high probability.
We now give the details of this proof and first define all constants involved in the
proof.
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Constants. The number of rounds L will depend on the constant ξ(i, r+1, ζ,ω),
which is given by the induction assumption. More precisely, let

ξ′ = ξ(i, r + 1, ζ,ω) , b′ = b(i, r + 1, ζ,ω) ,

C ′ = C(i, r + 1, ζ,ω) , and n′ = n0(i, r + 1, ζ,ω)

be given by the induction assumption applied for i, r + 1, ζ, and ω. We set

L =

⌈
4k+i+1k2K

(ξ′)2
+ 1

⌉
. (13)

Moreover, we will appeal to the induction assumption for i+ 1, r, ζ, and ω and let

ξ∗ = ξ(i+ 1, r, ζ,ω) , b∗ = b(i+ 1, r, ζ,ω) ,

C∗ = C(i+ 1, r, ζ,ω) , and n∗ = n0(i+ 1, r, ζ,ω)

be the corresponding constants. Let 1/2 ≥ δ > 0 be sufficiently small so that

δ(3− log2 δ) ≤ min

{
b′

2
,
b∗

2

}
(14)

and set

b̂ =
δ2ζ2

80K
. (15)

Furthermore, we appeal to Proposition 2.10 with K, i, and

η =
δζ2

8K
(16)

and obtain

b = b(K, i, η), C = C(K, i, η), and n = n0(K, i, η) . (17)

Next we set

bmin = min

{
ζ2

25K
,
b̂

2
,
b

2

}
and B = max

{
4 log2(r + 1)

bmin
,

32K

δζ2

}
+ 1 (18)

and finally let

ξ = min

{
δζ2ξ′(1− δ)i

32kK
, ξ∗(1− δ)i+1

}
·
(
B − 1

BL − 1

)i+1

, (19)

b =
bmin

3

B − 1

BL − 1
, (20)

C =
max

{
C ′ , C∗ , C

}
1− δ

· B
L − 1

B − 1
, (21)

and let n0 ≥ max{n′, n∗, n} be sufficiently large. Let n ≥ n0, let q ∈ (0, 1] such
that

Cpn ≤ q ≤
1

ωn
.

Finally, appealing to the assumptions of Lemma 2.7, let U ⊆ Vn such that

Hn[U ] is (R(i+ 1, r + 1), ζ)-Ramsey . (22)

From now on we drop the subscript n for a simpler notation. We have to show that
H[Uq] is (i+ 1, r + 1, ξ, q, U)-Ramsey with very high probability.
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As mentioned above we will expose Uq in L rounds, where the elements in the
`-th round will be included with probability q`. For that let q1 be the solution of
the equation

1− q =

L∏
`=1

(
1−B`−1q1

)
and set

q` = B`−1q1

for every ` = 2, . . . , L. For sufficiently large n we have

q1 ≥
q∑L

`=1B
`−1

= q
B − 1

BL − 1
, (23)

since ωn →∞ and q ≤ 1/ωn. Due to the choice of C in (21) and q ≥ Cpn we have

qL > · · · > q1 ≥
max

{
C ′ , C∗ , C

}
1− δ

· pn . (24)

The choice of B in (18) yields for every ` = 2, . . . , L

`−1∑
j=1

qj = q1

`−2∑
j=0

Bj = q1
B`−1 − 1

B − 1

(18)

≤ min

{
bmin

4 log2(r + 1)
,
δζ2

32K

}
B`−1q1 ≤

δζ2

32K
q` (25)

holds.
For later reference we note that due to the choice of constants in (21) and (24)

the following statements hold by induction assumption. For every subset S ⊆ U
and ` ∈ [L] we have

H[S] is ((R(i, r + 1), ζ)-Ramsey

⇒ P
(
H[S(1−δ)q` ] is (i, r + 1, ξ′, (1− δ)q`, S)-Ramsey

)
≥ 1− 2−b

′(1−δ)q`|S| (26)

and

H[S] is ((R(i+ 1, r), ζ)-Ramsey

⇒ P
(
H[S(1−δ)q` ] is (i+ 1, r, ξ∗, (1− δ)q`, S)-Ramsey

)
≥ 1− 2−b

∗(1−δ)q`|S|. (27)

Details of the induction step. For our analysis we require some notation.
Recall, the random subsets of the L rounds by Uq1 , . . . , UqL and let Uq =

⋃
`∈[L] Uq` .

Moreover, we let χ` : Uq` → [r+1] be a partition of Uq` and we denote the partition
classes by U1

q`
∪̇ . . . ∪̇Ur+1

q`
, i.e., for every s ∈ [r + 1] and ` ∈ [L]

Usq` = χ−1
` (s) .

Since the sets Uqj and Uqj′ may not be disjoint we will require that the partitions
χj and χj′ are consistent, i.e., those functions agree on Uqj ∩ Uqj′ .

In the proof those vertices of U , which are contained in many edges in EiU (Usq`)
play a crucial role. For that we define for every ` ∈ [L] and s ∈ [r + 1] the set

W s
` =

{
u ∈ U : degi,U (u, Usq`) ≥

ξ′(1− δ)i

2
qi`
|E|
|V |

}
, (28)
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where

degi,U (u, Usq`) =
∣∣{e ∈ E(U) : u ∈ e and |(e \ {u}) ∩ Usq` | ≥ i

}∣∣
is the degree of the vertex u in the edge set EiU (Usq`). It follows directly from the
definition that

degi,U (u, Usq`) ≤ degi,V (u, Usq`) ≤ degi,V (u, Uq`) = degi(u, Uq`) . (29)

Finally, for ` ∈ [L] we denote by W` the set of vertices with large degree in some
partition class, i.e.,

W` =
⋃

s∈[r+1]

W s
` .

The following claim, roughly speaking, says that given subsets Uq1 , . . . , Uq`−1
of

U and consistent partitions χj : Uq` → [r + 1] for j ∈ [` − 1] the random set Uq`
satisfies the following with very high probability:

For any (r+ 1)-partition of Uq` either W` contains Ω(|V |) new elements disjoint
from W1, . . . ,W`−1 (see (ii.a ) below) or there exists some s ∈ [r + 1] such that

Ei+1
U (

⋃`
j=1 U

s
qj ) will be large (see (ii.b ) below).

Claim 1. Let ` ∈ [L], let subsets Uq1 , . . . , Uq`−1
of U satisfy∣∣∣⋃`−1

j=1 Uqj

∣∣∣ ≤ 2
∑`−1
j=1 qj |U | (30)

and let consistent (r + 1)-partitions χj : Uqj → [r + 1] for j ∈ [`− 1] be given.
With probability at least

1− 2−bminq`|V |

the random set Uq` satisfies the following:

(i ) |Uq` | ≤ 2q`|U |
and for every partition χ` : Uq` → [r + 1]

(ii.a ) either ∣∣∣W` \
⋃`−1
j=1Wj

∣∣∣ ≥ (ξ′)2

4k+i+1k2K
|V | ,

(ii.b ) or there exists an s ∈ [r + 1] such that∣∣∣Ei+1
U

(⋃`
j=1 U

s
qj

)∣∣∣ ≥ ξqi+1|E| .

We first deduce Lemma 2.7 from Claim 1. Let A denote the event that H[Uq]
is (i + 1, r + 1, ξ, q, U)-Ramsey and for given Uq(` − 1) = (Uq1 , . . . , Uq`−1

) and
for given χ(` − 1) = (χ1, . . . , χ`−1) with χj : Uqj → [r + 1] being consistent for
j = 1, . . . , `− 1, let Bχ(`−1) be the event that the conclusion of Claim 1 holds. In
other words, Claim 1 states that for the randomly chosen set Uq` we have

P
(
Bχ(`−1) | Uq(`− 1)

)
≥ 1− 2−bminq`|V | . (31)

Note that Uq(0) and χ(0) are vectors of length 0. For ` = 1 we set

P
(
Bχ(0) | Uq(0)

)
= P

(
Bχ(0)

)
,

where Bχ(0) denotes the event that

(i ) |Uq1 | ≤ 2q1|U |
and for every partition χ1 : Uq1 → [r + 1]

(ii.a ) either |W1| ≥ (ξ′)2|V |/(4k+i+1k2K) ,
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(ii.b ) or there exists an s ∈ [r + 1] such that |Ei+1
U (Usq1)| ≥ ξqi+1|E| .

Again Claim 1 states that

P
(
Bχ(0)

)
≥ 1− 2−bminq1|V | .

Note that if Bχ(`) holds for every ` ∈ [L], then alternative (ii.a ) cannot alway
occur since

4k+i+1k2K

(ξ′)2

(13)
< L .

Hence, if Bχ(`) holds for every ` ∈ [L], then conclusion (ii.b ) in Claim 1 must hold

for some ` ∈ [L]. Consequently, for every partition of
⋃`
j=1 Uqj into r + 1 classes

there exists some s ∈ [r + 1] such that |Ei+1
U (

⋃`
j=1 U

s
qj )| ≥ ξqi+1|E|. In other

words, since
⋃`
j=1 Uqj ⊆ Uq, the hypergraph H[Uq] is (i+ 1, r + 1, ξ, q, U)-Ramsey

and event A occurs. Below we will verify that this happens with a sufficiently high
probability

P (¬A ) ≤
L∑
`=1

∑
Uq(`−1)

∑
χ(`−1)

P
(
¬Bχ(`−1) | Uq(`− 1)

)
P (Uq(`− 1)) ,

where the middle sum runs over all choices of Uq(`− 1) = (Uq1 , . . . , Uq`−1
) satisfy-

ing (30) and the inner sum runs over all (r + 1)2|V |
∑`−1

j=1 qj partitions χ(` − 1) of
Uq(`− 1). Therefore, (31) yields

P (¬A ) ≤
L∑
`=1

(r + 1)2|V |
∑`−1

j=1 qj · 2−bminq`|V | .

Since
∑`−1
j=1 qj ≤

bmin

4 log2(r+1)q` by (25) and q1 ≤ q` we have

P (¬A ) ≤ L · 2−bminq1|V |/2
(20),(23)

≤ 2−bq|V |

where the last inequality holds for sufficiently large n. This concludes the proof of
Lemma 2.7 and it is left to verify Claim 1. �

Proof of Claim 1. Let ` ∈ [L], Uq1 , . . . , Uq`−1
and partitions χ1, . . . , χ`−1 be given.

Note that this defines the sets W s
j for j ∈ [` − 1] and s ∈ [r + 1] as well. We first

observe that property (i ) of Claim 1 holds with high probability. Since (22) holds,
we have e(U) ≥ ζ|E| and, therefore, the (K,p)-boundedness of H combined with
Fact 2.12 yields

|U | ≥ ζ2

4K
|V | .

Hence, Chernoff’s inequality yields

P (|Uq` | ≥ 2q`|U |) ≤ 2 exp(−q`|U |/3)
(18)

≤ 2−2bminq`|V | . (32)

for sufficiently large n.
For the rest of the proof we distinguish two cases depending on the structure of

the complement of
⋃`−1
j=1W` in U . For that we set

Û = U \
`−1⋃
j=1

Wj .
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Case 1 (H[Û ] is (R(i, r+1), ζ)-Ramsey). Note that it follows from the the Ramsey-

ness of H[Û ] that e(Û) ≥ ζ|E|. Therefore, the (K,p)-boundedness of H combined
with Fact 2.12 yields

|Û | ≥ ζ2

4K
|V | . (33)

In this case we appeal to induction assumption for i and r + 1 and focus to the
restriction on H[Û ] (cf. (26)). In fact, the induction assumption for i and r + 1
yields

P
(
H
[
Û(1−δ)q`

]
is (i, r + 1, ξ′, (1− δ)q`, Û)-Ramsey

)
≥ 1− 2−b

′(1−δ)q`|Û |

≥ 1− 2−(b′/2)q`|Û |

Since being (i, r + 1, ξ′, (1 − δ)q`, Û)-Ramsey is closed under supersets, in view
of (14) we infer from Proposition 2.11 that with probability at least

1− 2−δ
2q`|Û |/20

(15),(33)

≥ 1− 2−b̂q`|V | (34)

the random set Ûq` has the property that H[Ûq` \ X] is (i, r + 1, ξ′, (1 − δ)q`, Û)-

Ramsey for every X ⊆ Ûq` with |X| ≤ δq`|Û |/2. In other words, for every such

set X and every partition Û1
q`
∪̇ . . . ∪̇Ûr+1

q`
of Ûq` there exists an s ∈ [r+1] such that∣∣∣Ei

Û
(Ûsq` \X)

∣∣∣ ≥ ξ′(1− δ)iqi`|E| . (35)

Recalling the definition

Ei
Û

(Ûsq` \X) = {e ∈ E(Û) : |e ∩ (Ûsq` \X)| ≥ i} .
and recalling that i+ 1 ≤ k we note that∣∣∣Ei

Û
(Ûsq` \X)

∣∣∣ ≤∑
u∈Û

{
e ∈ E(Û) : u ∈ e and (e \ {u}) ∩ (Ûsq` \X)| ≥ i

}
=
∑
u∈Û

degi,Û (u, Ûsq` \X) .

Consequently, (35) implies∑
u∈Û

degi,Û (u, Ûsq` \X) ≥ ξ′(1− δ)iqi`|E| . (36)

Moreover, due Proposition 2.10 and the choice of constants in (17) with proba-
bility at least

1− 2−bq`|V | (37)

there exists a set X ⊆ Vq` of size at most

|X| ≤ ηq`|V |
(16)

≤ δq`|Û |/2
such that∑

u∈Û

deg2
i,Û

(u, Ûsq` \X)
(29)

≤
∑
v∈V

deg2
i (v, Vq` \X) ≤ 4kk2Kq2i

`

|E|2

|V |
. (38)

Let

Ŵ s
` =

{
u ∈ Û : degi,Û (u, Ûsq`) ≥

ξ′(1− δ)i

2
qi`
|E|
|V |

}
. (39)
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Note that by definition Ŵ s
` ⊆W` and W s

` is disjoint from
⋃`−1
j=1Wj .

Summarizing, due to (34) and (37) with probability at least 1−2−b̂q`|V |−2−bq`|V |

the random set Ûq` satisfies properties (36) and (38) for every partition of Ûq` and
we infer by the Cauchy-Schwarz inequality that

4kk2Kq2i
`

|E|2

|V |
(38)

≥
∑
u∈Û

deg2
i,Û

(u, Ûsq` \X) ≥
∑
u∈Ŵ s

`

deg2
i,Û

(u, Ûsq` \X)

≥ 1

|Ŵ s
` |

 ∑
u∈Ŵ s

`

degi,Û (u, Ûsq` \X)

2

.

Moreover∑
u∈Ŵ s

`

degi,Û (u, Ûsq` \X)

≥
∑
u∈Û

degi,Û (u, Ûsq` \X)−
∑

u∈Û\Ŵ s
`

degi,Û (u, Ûsq` \X)

(36),(39)

≥ ξ′

2
(1− δ)iqi`|E| .

Combining the last two estimates and δ ≤ 1/2 we obtain

|Ŵ s
` | ≥

(ξ′)2

4k+i+1k2K
|V | .

In other words, in this case property (ii.a ) holds with probability at least

1− 2−b̂q`|V | − 2−bq`|V |

and in view of (32) and the choice of bmin in (18) for sufficiently large n this yields
the proof of Claim 1 in this case.

Case 2 (H[Û ] is not (R(i, r+ 1), ζ)-Ramsey). Due to (22), the assumption of this
case combined with Fact 2.2, and the definition of the function R(·, ·) in Defini-
tion 2.4 we have

H[U \ Û ] is ((r + 1) ·R(i+ 1, r), ζ)-Ramsey. (40)

Recall that

U \ Û =

`−1⋃
j=1

Wj =

`−1⋃
j=1

r+1⋃
s=1

W s
j .

For s ∈ [r + 1] let

W s = {w ∈ U \ Û : w ∈W s
j for some j ∈ [`− 1]} =

`−1⋃
j=1

W s
j .

Clearly,

W 1 ∪ · · · ∪W r+1 = U \ Û .
We remark that this W 1∪· · ·∪W r+1 is not necessarily a partition of U\Û . However,
it follows from Fact 2.2 and (40), that there exists a t ∈ [r + 1] such that

H[W t] is (R(i+ 1, r), ζ)-Ramsey. (41)
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Next combine (41) with Fact 2.12 and the (K,p)-boundedness of H to obtain

|W t| ≥ ζ2

4K
|V | . (42)

Moreover, due to (41) we can apply the induction assumption for i + 1 and r
to H[W t] (cf. (27)). This yields

P
(
H
[
W t

(1−δ)q`
]

is (i+ 1, r, ξ∗, (1− δ)q`,W t)-Ramsey
)
≥ 1− 2−b

∗(1−δ)q`|W t|

≥ 1− 2−(b∗/2)q`|W t| .

Similarly as in the former case, we infer from Proposition 2.11 that with probability
at least

1− 2−δ
2q`|W t|/20

(15),(42)

≥ 1− 2−b̂q`|V | (43)

the random set W t
q`

has the property that

H[W t
q`
\X] is (i+ 1, r, ξ∗, (1− δ)q`,W t)-Ramsey (44)

for every X ⊆W t
q`

with |X| ≤ δq`|W t|/2.
Note that in the statement above only partitions into r classes are considered,

while we have to deal with (r + 1)-partitions here. Let χ` : Uq` → [r + 1] be an

arbitrary partition. Depending on the cardinality of χ−1
` (t) ∩W t

q`
we will argue in

two different ways. In fact, if∣∣χ−1
` (t) ∩W t

q`

∣∣ ≥ δ

4
q`|W t| , (45)

then we infer from the fact that W t =
⋃`−1
j=1W

t
j and (28)∣∣∣Ei+1

U

(⋃`
j=1 U

t
qj

)∣∣∣ =
∣∣∣{e ∈ E(U) :

∣∣∣e ∩⋃`j=1 U
t
qj

∣∣∣ ≥ i+ 1
}∣∣∣

≥ 1

k

∑
u∈χ−1

` (t)∩W t
q`

degi,U

(
u,
⋃`
j=1 U

t
qj

)

≥ 1

k

∑
u∈χ−1

` (t)∩W t
q`

max
j∈[`−1]

degi,U (u, U tqj )

≥ 1

k
· δ

4
q`|W t| · ξ

′(1− δ)i

2
qi1
|E|
|V |

.

Hence, if χ` satisfies (45), then since q1 ≤ q`∣∣∣Ei+1
U

(⋃`
j=1 U

t
qj

)∣∣∣ (42)

≥ δζ2ξ′(1− δ)i

32kK
qi+1
1 |E|

(23)

≥ δζ2ξ′(1− δ)i

32kK

(
B − 1

BL−1 − 1

)i+1

qi+1|E|
(19)

≥ ξqi+1|E| .

In other words, if χ` satisfies (45), then the resulting partition satisfies conclu-
sion (ii.b ) of Claim 1.

If, on the other hand, (45) does not hold, then setting

X =
(
χ−1
` (t) ∩W t

q`

)
∪
`−1⋃
j=1

Uqj
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we have

|X|
(30)

≤ δ

4
q`|W t|+ 2|U |

`−1∑
j=1

qj ≤
δ

4
q`|W t|+ 2|V |

`−1∑
j=1

qj

(42)

≤ δ

4
q`|W t|+ 8K

ζ2
|W t|

`−1∑
j=1

qj
(25)

≤ δ

2
q`|W t| .

Since W t ⊆ U and χ−1
` (s) ∩ (W t

q`
\X) ⊆

⋃`
j=1 U

s
qj , it follows from (44) that there

exists some s ∈ [r + 1] \ {t} such that∣∣∣Ei+1
U

(⋃`
j=1 U

s
qj

)∣∣∣ ≥ ∣∣Ei+1
W t

(
χ−1
` (s) ∩ (W t

q`
\X)

)∣∣
≥ ξ∗(1− δ)i+1qi+1

` |E|
(23),(19)

≥ ξqi+1|E| ,

which again implies conclusion (ii.b ) of Claim 1.
Summarizing, it follows from (43), that in this case conclusion (ii.b ) of Claim 1

holds for any χ` : Uq` → [r+1] with probability at least 1−2−b̂q`|V |. This combined
with (32) concludes the proof of Claim 1 , since

1− 2−b̂q`|V | − 2−2bminq`|V |
(18)

≥ 1− 2−bminq`|V |

for sufficiently large n. �

3. Proof of the new results

In this section we deduce Theorem 1.1 and Theorem 1.2 from Theorem 2.5.

Proof of Theorem 1.1. Note that due to (3) it suffices to verify the 1-statement of
Theorem 1.1 and we will show that this follows from Theorem 2.5. Let A be an
irredundant, partition regular ` × k matrix. Without loss of generality we may
assume that A has full rank, i.e., rank(A) = `. As mentioned in the introduction,
it follows from Rado’s characterization of partition regular matrices that k ≥ `+ 2.

For every n ∈ N we consider the k-uniform hypergraph Hn = ([n], En) where
the edges of Hn are the k-sets {x1, . . . , xk} ⊆ [n] such that (for some ordering) the
vector (x1, . . . , xk) is a solution of L(A). (Note that we disregard solutions of L(A)
which consist of less than k distinct integers). Let pn = n−1/mA (cf. (2)).

The conclusion of Theorem 2.5 yields Theorem 1.1, since (by definition) H[Vn,qn ]
is r-Ramsey if and only if [n]qn → (A)r and we have to show that H and p satisfy
the assumptions of Theorem 2.5. This means, we have to verify the the following

(a ) pn = n−1/mA → 0 as n→∞,
(b ) pkn|En| → ∞ as n→∞,
(c ) for every R ∈ N exists some ζ > 0 such that H is (R, ζ)-Ramsey, and
(d ) H is (K,p)-bounded for some K ≥ 1.

Clearly, pn = n−1/mA → 0 due to the definition of mA. It was shown in [29,
Proposition 2.2 ii)] that mA ≥ k − 1 and due to Rado’s characterization we have
k − ` ≥ 2, which yields |En| = Ω(n2). Therefore, we have

pk|En| = Ω(n−k/(k−1) · n2) = Ω
(
n

k−2
k−1
)
.

Moreover, it follows from [4, Theorem 1], that for every R ∈ N there exists some
ζ > 0 for which H is (R, ζ)-Ramsey. Consequently, it suffices to verify that H is
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(K,p)-bounded for some K ≥ 1. For i ∈ [k − 1] and q ≥ n−1/mA we have to show
that

µi(Hn, q) = O

(
q2i |En|2

n

)
.

Recalling the definition of µi(Hn, q) in (7) and Hn = ([n], En) we have

µi(Hn, q) = E

∑
x∈[n]

deg2
i (x, Vn,q)

 =
∑
x∈[n]

E
[
deg2

i (x, Vn,q)
]
. (46)

Note that E
[
deg2

i (x, Vn,q)
]

is the expected number of pairs (X,Y ) ∈ [n]k × [n]k

such that

(i ) x ∈ X ∩ Y ,
(ii ) X = {x1, . . . , xk} and Y = {y1, . . . , yk} are solutions of L(A), where

Ax = Ay = 0

for x = (x1, . . . , xk)t and y = (y1, . . . , yk)t, and
(iii ) |X ∩ ([n]q \ {x})| ≥ i and |Y ∩ ([n]q \ {x})| ≥ i.

For fixed x and (X,Y ) let w ≥ 1 be the largest integer such that there exist indices
i1, . . . , iw and j1, . . . , jw for which

xi1 = yj1 , . . . , xiw = yjw . (47)

Consequently,

x ∈ {xi1 , . . . , xiw} = {yj1 , . . . , yjw} (48)

Set W1 = {i1, . . . , iw} and W2 = {j1, . . . , jw}.
For fixed sets W1, W2 ⊆ [k] we are going to describe all (2k − w)-tuples X ∪ Y

satisfying (ii ) and (47). To this end consider the 2`×(2k−w) matrix B, which arises
from two copies A1 and A2 of A with permuted columns. We set A1 = (AW 1

| AW1
)

and A2 = (AW2
| AW 2

) where for every α = 1, . . . , w the column of AW1
which is

indexed by iα aligns with that column of AW2
which is indexed by jα. Then let

B =

(
AW 1

AW1
0

0 AW2
AW 2

)
.

Without loss of generality we may assume that rank(AW 1
) ≥ rank(AW 2

) and,
therefore,

rank(B) ≥ rank(A) + rank(AW 1
) .

Clearly, the number of (2k−w)-tuples X∪Y satisfying (ii ) and (47) equals the num-
ber of solutions of the homogeneous system given by B, which is O(n2k−w−rank(B)).
Since A is an irredundant, partition regular matrix, it follows from [29, Proposi-
tion 2.2 i)] that rank(A′) = rank(A) for every matrix A′ obtained from A by remov-
ing one column. Consequently, any matrix B′ obtained from B by removing one of
the middle columns (i.e., one of the w columns of B which consist of a column of
AW1

and a columns of AW2
) satisfies

rank(B′) ≥ rank(A) + rank(AW 1
) = `+ rank(AW 1

) .

Therefore, it follows from (48) that the number of such (2k − w)-tuples that also
satisfy condition (i ) for some fixed x ∈ [n] is at most

O(n2k−w−1−`−rank(AW1
)) . (49)
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Finally, we estimate the probability that a (2k − w)-tuple X ∪ Y satisfying (i ),
(ii ), and (47) also satisfies (iii ). Since |X ∩Y ∩ ([n]q \ {x})| = j ≤ w− 1 and q ≤ 1
this probability is bounded by

w−1∑
j=0

q2i−j = O(q2i−w+1) .

In view of (49) we obtain∑
x∈[n]

E
[
deg2

i (x, Vn,q)
]

=
∑
x∈[n]

k∑
w=1

∑
W1,W2⊆[k]
|W1|=|W2|=w

O(n2k−w−1−`−rank(AW1
)q2i−w+1) . (50)

Note that if w = 1, then again due to [29, Proposition 2.2 i)] we have rank(AW 1
) = `

and, therefore, the contribution of those terms satisfies∑
x∈[n]

∑
W1,W2⊆[k]
|W1|=|W2|=1

O(n2k−2`−2q2i) = O(n2k−2`−1q2i) = O

(
q2i |En|2

n

)
. (51)

For w ≥ 2 and W1 ⊆ [k] with |W1| = w we obtain from the definition of mA and
q ≥ n−1/mA that

qw−1 ≥ n−w+1−rank(AW1
)+` .

Consequently,

∑
x∈[n]

k∑
w=2

∑
W1,W2⊆[k]
|W1|=|W2|=w

O(n2k−w−1−`−rank(AW1
)q2i−w+1)

=
∑
x∈[n]

k∑
w=2

∑
W1,W2⊆[k]
|W1|=|W2|=w

O(n2k−2−2`q2i)

= O(n2k−2`−1q2i) = O

(
q2i |En|2

n

)
. (52)

Finally, combining (46), (50), (51), and (52) we obtain

µi(Hn, q) = O

(
q2i |En|2

n

)
,

which concludes the proof of Theorem 1.1. �

Proof of Theorem 1.2. Let F be an `-uniform hypergraph with k = e(F ) ≥ ∆(F ) ≥
2 edges. For every n ∈ N we consider the k-uniform hypergraph Hn = (Vn, En)

with Vn = E(K
(`)
n ) and edges of Hn correspond to (unlabeled) copies of F in

K
(`)
n . Furthermore, let pn = n−1/mF (cf. (6)). It is easy to see that the conclu-

sion of Theorem 2.5 yields Theorem 1.2, i.e., H[Vn,qn ] is r-Ramsey if and only if

G(`)(n, qn)→ (F )r. Therefore, it is left to show that H and p satisfy the assump-
tions of Theorem 2.5 (see properties (a )-(d ) in the proof of Theorem 1.1).
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Note that it follows directly from the definition ofH = (Hn)n∈N and p = (pn)n∈N
that pn → 0 and pkn|En| = Ω(n), since ∆(F ) ≥ 2. Moreover, the original proof of
Ramsey’s theorem implies that for every R ∈ N there exists some ζ > 0 such that
the sequence H = (Hn)n∈N is (R, ζ)-Ramsey. Consequently, it is left to verify that
H is (K,p)-bounded for some constant K ≥ 1.

To this end observe that Hn is a regular hypergraph with
(
n
`

)
vertices and every

vertex is contained in Θ(nv(F )−`) edges and that |En| = Θ(nv(F )). We will show
that for q ≥ n−1/mF and i ∈ [k − 1] we have

µi(Hn, q) = E

[∑
v∈Vn

deg2
i (v, Vn,q)

]
=
∑
v∈V

E
[
deg2

i (v, Vn,q)
]

= O

(
q2i |En|2

|Vn|

)
.

Due to the definition of H every v ∈ Vn corresponds to an edge e(v) in K
(`)
n .

Therefore, the number E
[
deg2

i (v, Vn,q)
]

is the expected number of pairs (F1, F2) of

copies F1 and F2 of F in K
(`)
n satisfying e(v) ∈ E(F1) ∩ E(F2) and both copies F1

and F2 have at least i edges in E(G(`)(n, q)) \ {e(v)}. Summing over all such pairs
F1 and F2 we obtain

E
[
deg2

i (v, Vn,q)
]
≤

∑
F1,F2 : e(v)∈E(F1)∩E(F2)

|E(F1)∩E(F2)|−1∑
j=0

q2i−j

= O

 ∑
F1,F2 : e(v)∈E(F1)∩E(F2)

q2i−(|E(F1)∩E(F2)|−1)

 (53)

since q ≤ 1. Furthermore,∑
F1,F2 : e(v)∈E(F1)∩E(F2)

q2i−(|E(F1)∩E(F2)|−1)

= O

 ∑
J : e(v)∈E(J

n2v(F )−2v(J)q2i−(e(J)−1)

 , (54)

where the sum on the right-hand side is indexed all hypergraphs J ⊆ K
(`)
n which

contain e(v) and which are isomorphic to a subhypergraph of F . It follows from
the definition of mF and q ≥ n−1/mF that nv(J)qe(J) = Ω(qn`). Combining this
with (53) and (54) we obtain

E
[
deg2

i (v, Vn,q)
]

= O

 ∑
J : e(v)∈E(J)

n2v(F )−2v(J)q2i−(e(J)−1)


= O

 ∑
J : e(v)∈E(J)

n2v(F )−v(J)−`q2i

 .

Moreover, since v(J) ≥ ` we have

E
[
deg2

i (v, Vn,q)
]

= O

 ∑
J : e(v)∈E(J)

n2v(F )−2`q2i

 ,
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and, consequently,

µi(Hn, q) =
∑
v∈Vn

O(n2v(F )−2`q2i) = O(n2v(F )−`q2i) = O

(
q2i |En|2

|Vn|

)
,

which concludes the proof of Theorem 1.2. �
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