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Abstract

In this paper we construct spanning trees in hyperbolic graphs that
represent their hyperbolic compactification in a good way: so that the
tree has a bounded number of distinct rays to each boundary point. The
bound depends only on the (Assouad) dimension of the boundary. As
a corollary we sharpen a result of Gromov which says that from every
hyperbolic graph with bounded degrees one can construct a tree outside
the graph with a continuous surjection from the ends of the tree onto
the hyperbolic boundary such that the surjection is finite-to-one. We will
construct a tree with these properties inside the hyperbolic graph, which
in addition is also a spanning tree of that graph.

1 Introduction

A spanning tree of a graph is called end-faithful if the tree contains exactly one
ray from each end, starting at the root. Halin [6] proved that every countable
graph has an end-faithful spanning tree. So it is a natural question to ask - if
we replace the end-compactification of a graph by other compactifications that
refine the end-compactification - what we can expect of the spanning tree with
respect to the new compactification: Is it possible that the ends of a spanning
tree represent the boundary points of another compactification also in a one-to-
one correspondence?

In this paper we study such a generalization of end-faithful spanning trees
to spanning trees in hyperbolic graphs, replacing the end-compactification by
the hyperbolic compactification.

A hyperbolic graph G is a locally finite connected graph for which there
exists a δ such that for every three vertices every geodesic between two of them
is contained in a δ-neighbourhood of the union of any two geodesics between
the two other vertices. A hyperbolic boundary point is an equivalence class of
the following equivalence relation of geodetic rays: Two geodetic rays (xi)i∈N

and (yi)i∈N are equivalent if lim infi→∞ d(xi, yi) is bounded. The hyperbolic
boundary ∂G is the set of all hyperbolic boundary points. This is one of many
equivalent definitions of the hyperbolic boundary (see [4, 9] and Section 2 of
this paper).
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It is not in general possible to have spanning trees which are faithful to
hyperbolic boundary points instead of ends. An easy example is the graph G of
Figure 1. Its hyperbolic boundary is an arc A. Now consider any spanning tree
T of G. Whenever a vertex x separates T into at least two infinite components,
any two of these either have a common boundary point or there is a boundary
point that separates them on A. In the first case, the common boundary point
is the limit of two inequivalent rays, while in the second case the separating
boundary point is not a limit of any ray. In either case, therefore, the tree is
not faithful to the boundary. We shall return to this example in Section 4.
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Figure 1: A hyperbolic graph with its boundary

Instead of spanning trees that are faithful to boundary points, we may per-
haps hope that we get spanning trees that have only a global bounded number
of distinct paths from the root to each boundary point. This is indeed true if
the boundary has finite Assouad dimension, which is our main result:

Theorem 1.1. Let G be a locally finite hyperbolic graph whose boundary ∂G

has finite Assouad dimension. Then there exists an n ∈ N, depending only on
the dimension, and a rooted spanning tree T of G, with the following properties:

(i) Every ray in T converges to a point in the boundary of G;

(ii) for every boundary point η of G there is a ray in T converging to η;

(iii) for every boundary point η of G there are at most n distinct rays in T that
start at the root of T and converge to η.

We prove Theorem 1.1 in section 5.
Gromov [5, §7.6] states the following theorem:

Theorem 1.2. Let X be a locally finite δ-hyperbolic graph with maximum degree
N < ∞. Then there is a locally finite tree T (X) with maximum degree at
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most exp(exp((δ + 1)N)) with a continuous map ∂T → ∂X that is finite-to-
one; additionally a boundary point of X has at most exp(exp(exp((δ + 1)N)))
preimages.

Gromov constructed the tree T (X) independently of the local structure of
the graph X , just depending on the metric of X . Thus a vertex in T (X) may
have higher degree than all vertices in X .

Let G be a locally finite hyperbolic graph and let T be a subtree of G such
that every ray in T converges to some boundary point in G. Let ι : T ∪ ∂T →
G∪∂G be the continuous extension of the identity on T . We call the restriction
of ι to the boundary of T the canonical map ∂T → ∂G.

As a corollary of Theorem 1.1 we obtain the following strengthening of The-
orem 1.2:

Theorem 1.3. Let G be a locally finite hyperbolic graph with maximum degree
N < ∞. Then there exists a rooted spanning tree T of G with a canonical map
∂T → ∂G that has at most M preimages of each boundary point of G, where M

is a constant depending only on N .

As the hyperbolic boundary is defined as equivalence classes of geodetic rays,
a natural class of spanning trees is the class of geodetic spanning trees. These are
spanning trees that preserve the distance to the root from the distance-metric
of the graph. Thus any ray in any geodetic spanning tree of a locally finite
hyperbolic graph converges to a hyperbolic boundary point. But these spanning
trees does not fulfill the conclusion (iii) of Theorem 1.1: there is no bound on the
maximum number of ends of the tree mapping canonically to a given hyperbolic
boundary point; indeed, there can be infinitely many (Example 4.2). However,
we shall obtain a lower bound on the maximum number of tree ends mapping
to a common hyperbolic boundary point. This bound depends only on the
topological dimension of the hyperbolic boundary.

Theorem 1.4. Let G be a locally finite hyperbolic graph whose boundary has
topological dimension n ∈ N. Then every rooted geodetic spanning tree T has
the following property:

(∗) There is a boundary point η ∈ ∂G with at least n+1
2 distinct rays starting

in the root and converging to η.

In Section 3 we will give explicit definitions of the two dimensional concepts
we use, the Assouad dimension and the topological dimension, and state some
of their properties. For a more detailled introduction to the Assouad dimension
we refer to Luukkainen [8, Appendix A].

2 Hyperbolic graphs

Let G = (V, E) be a graph. A geodesic is a path between two vertices x and y

with length d(x, y) and denoted by [x, y]. A triangle is a set of three vertices
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(not necessarily distinct) - called corners of the triangle - together with paths
between each two of these vertices. These paths are called sides of the triangle.
The triangle is geodetic if all sides of the triangle are geodesics. We write [x, y, z]
for a geodetic triangle with corners x, y and z.

We are investigating G from a topological point of view, so that every edge
of G can be understood as a homeomorphic image of the real interval [0, 1].

The graph G is called (δ-)hyperbolic if there exists a δ such that for every
geodetic triangle [x, y, z] each of its sides lies in a δ-neighbourhood of the other
two sides.

Let o be a vertex in G. The Gromov-product (with respect to o) for two
vertices x and y is (x, y)o := 1

2 (d(x, o)+ d(y, o)− d(x, y)). If it is obvious by the
context that we use o as the base-point for the product, we simply write (x, y).
An easy proposition is due to Gromov.

Proposition 2.1. [5, 1.1B] Let G be a graph and o ∈ V G. If

(x, y)o ≥ min {(x, z)o, (y, z)o} − δ

for all x, y, z ∈ V G, then there is

(x, y)w ≥ min {(x, z)w, (y, z)w} − 2δ

for every w ∈ V G.

Another definition of hyperbolicity uses the Gromov-product. So one might
expect that this definition depends on the vertex o, but Proposition 2.1 has
shown to us that this is not the case. See for example [1, Proposition 2.1] for a
proof of the following Proposition.

Proposition 2.2. A locally finite graph G is hyperbolic if and only if there is
a vertex o and some δ ∈ R≥0 with (x, y)o ≥ min {(x, z)o, (y, z)o} − δ for all
x, y, z ∈ V G.

We are now introducing the ends of infinite graphs and the hyperbolic bound-
ary of infinite hyperbolic graphs. A ray is a one-way infinite path, a double ray
is a two-way infinite path. Two rays are equivalent if no finite set of vertices
separates them. An end is an equivalence class of rays. A geodetic ray is a
ray π = x0x1 . . . with d(xi, xj) = |i − j| for all i, j ≥ 0, and a double ray
. . . x−1x0x1 . . . is a geodetic double ray if d(xi, xj) = |i − j| for all i, j ∈ Z. A
well-known fact is the following:

Proposition 2.3. [9, (22.12)] The equivalence of geodetic rays in hyperbolic
graphs is an equivalence relation.

Hence we are able to define the hyperbolic boundary of a hyperbolic graph:
A hyperbolic boundary point is an equivalence class of geodetic rays. Let ∂G be
the set of hyperbolic boundary points, and let Ĝ be G ∪ ∂G.

We are also giving a second topological definition of the hyperbolic boundary:
A sequence (xi)i≥0 converges to a vertex x if lim

i→∞
(xi, x) = 0. A sequence (xi)i≥0
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converges to ∞ if lim
i,j→∞

(xi, xj) → ∞. Like above, it is independent of the choice

of o, so we just wrote (xi, xj) instead of (xi, xj)o. Two sequences (xi)i≥0, (yj)j≥0

are equivalent if lim
i,j→∞

(xi, yj) = ∞. In hyperbolic graphs this equivalence is

indeed an equivalent relation. The hyperbolic boundary can also be defined as
equivalence classes of this equivalence relation. A sequence (xi)i≥0 tends to a
boundary point if it is in its equivalence class. In [4] the equivalence of these
definitions is shown.

A third way to define the boundary is by defining a metric dε on G and
then defining Ĝ as the completion of G induced by dε. Let ε > 0 with ε′ :=
exp(εδ) − 1 ≤

√
2 − 1. Let

̺ε(x, y) := exp(−ε(x, y)),

̺ε(x0, . . . , xn) :=

n∑

i=1

̺ε(xi−1, xi)

and
dh(x, y) := inf {̺ε(c) | c chain between x and y} .

It is easy to check that dε is a metric on G.
An important theorem about the hyperbolic boundary is the following.

Theorem 2.4. [4, Proposition 7.2.9] If G is a locally finite hyperbolic graph,

then (Ĝ, dε) is a compact metric space.

We will now define a topology on G, which is compatible with the topology
of Ĝ which is induced by dε.

For two vertices and/or hyperbolic boundary points a and b we define the
Gromov-product (once more):

(a, b) := sup lim inf
i,j→∞

(xi, yj)

where the supremum is taken over all sequences (xi)i≥0 → a and (yi)i≥0 → b.
Obviously it is just the same as the previous definition for vertices, so we were
allowed to use the same symbol. Let Nk(x) := {y ∈ Ĝ|(x, y) > k} for every
x ∈ ∂G and every k ∈ R≥0 and let Br(x) = {y ∈ V G|d(x, y) < r} for every
x ∈ V G and r ∈ R≥0.

Proposition 2.5. [1, Proposition 4.8] Let G be a locally finite hyperbolic graph.
The union of the sets Br(x) for all x ∈ V G and all r ∈ R≥0 and Nk(x) for all

x ∈ ∂G and all k ∈ R≥0 form a basis for a topology on Ĝ.

This topology is compatible with the metrics dε, which makes the boundary
to a compact metric space by Proposition 2.6.

Proposition 2.6. [4, Proposition 7.3.10] Let G be a locally finite hyperbolic

graph. There exists a metric dε on Ĝ such that (Ĝ, dε) is a compact metric
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space and such that the metric is compatible with the just defined topology in the
sense that

ε′ · exp(−ε · (η, ν)) ≤ dε(η, ν) ≤ exp(−ε · (η, ν))

for all η, ν ∈ ∂G and for ε′ = exp(εδ) − 1.
In addition every ε with ε′ ≤

√
2 − 1 has this property.

Proposition 2.6 is the reason why it possible that we will use the metric in
some place, the topology in some other place, and sometimes use them both
together.

Proposition 2.7. [4, Proposition 7.5.17] Let G be a locally finite hyperbolic
graph. There exists a continuous surjection from the hyperbolic boundary of G

to its set of ends whose fibres are the connected components of ∂G.

We will state some propositions that we will need later.

Proposition 2.8. [9, (22.11) and (22.15)] Let G be a locally finite hyperbolic
graph with two distinct boundary points η and ν. Let o be a vertex in G, (xi)i∈N

a geodetic ray converging to η, and (yj)j∈N a geodetic ray converging to ν. Then
the following two properties holds:

(i) There is a geodetic ray in G starting in o and having only finitely many
vertices different from (xi)i∈N.

(ii) There is a geodetic double ray having only finitely many vertices different
from (xi)i∈N and (yj)j∈N. One side of the geodetic double ray converges to
η, the other to ν.

Proposition 2.9. [1, Lemma 4.6 (4)] Let G be a δ-hyperbolic graph. Then the
inequalities

(x, y) ≤ d(z, [x, y]) ≤ (x, y) + 2δ

holds for all x, y, z ∈ V G.

Proposition 2.10. [4, Remark 7.2.7] Let G be a locally finite δ-hyperbolic graph,
and let η and ν be hyperbolic boundary points. There is

(η, ν) − 2δ ≤ lim inf(xi, yj) ≤ (η, ν)

for all sequences (xi)i∈N → η and (yi)i∈N → ν.

A direct consequence of the Propositions 2.9 and 2.10 is Proposition 2.11.

Proposition 2.11. Let G be a locally finite δ-hyperbolic graph, let η and ν

be hyperbolic boundary points of G, and let o be the base-point of the Gromov-
product.

(η, ν) − 2δ ≤ d(o, π) ≤ (η, ν) + 2δ

holds for all geodetic double rays π from η to ν.
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The proof of the following Lemma can be found for example in [3, Lemma
8.1.2].

Lemma 2.12. Let V0, V1, . . . be an infinite sequence of disjoint non-empty finite
sets, and let G be a graph with V G =

⋃
i∈N

Vi. Assume that every vertex v in a
set Vn with n ≥ 1 has a neighbour f(v) in Vn−1. Then G contains a ray v0v1 . . .

with vn ∈ Vn for all n.

A spanning tree of a graph G is a tree with vertex set V G whose edge set
is a subset of EG. A geodetic spanning tree with root r is a spanning tree with
root r ∈ V G such that for every v ∈ V G there is dG(r, v) = dT (r, v).

3 Dimensions of topological spaces

Let us introduce the first dimension, just depending on the topology of a space:
Let X be a topological space. A refinement U of an open cover V of X is an
open cover of X such that for every U ∈ U there is a V ∈ V with U ⊆ V . X

has topological dimension at most n if every open cover has a refinement such
that each x ∈ X lies in at most n + 1 elements of the refinement, and X has
topological dimension n (notation; dim(X) = n) if it has topological dimension
at most n but not topological dimension at most n− 1. If there exists no n ∈ N

such that X has topological dimension at most n then X has infinite topological
dimension. Let X be an n-dimensional topological space, and let U be an open
cover of X ; U is critical if there exists no refinement V such that each x ∈ X

lies in at most n sets V ∈ V .
Let us now introduce the second dimension, depending on the metric of a

space: Let X be a metric space. For α, β > 0 let S(α, β) be the maximal
cardinality of a subset V of X with α ≤ dX(x, y) ≤ β for all x 6= y ∈ V . Let n

be the infimum of all s ≥ 0 such that there is a C ≥ 0 with S(α, β) ≤ C(β
α
)s

for all 0 < α ≤ β. Then n is called the Assouad dimension of the metric space
X (notation: dimA(X) = n).

Furthermore we introduce a property of metric spaces. Let X be a metric
space. X is doubling if there is κ ≥ 1 such that every ball of radius r can be
covered by at most 2κ balls of radius at most r

2 . Let dim2(X) be the infimum
of all κ such that X is doubling with this κ. A subset Y of X has diameter
sup {d(x, y) | x, y ∈ Y } (notation: diam(Y )), and a set Y of subsets of X has
diameter diam(Y) = sup {diam(Y ) | Y ∈ Y}. For every r ≥ 0, a family B =
(Bi)i∈I of subsets of X has r-multiplicity at most n if every subset of X with
diameter at most r intersects with at most n members of the family. A point
x ∈ X has r-multiplicity at most n in B if Br(x) intersects with at most n

members of the family B non-trivially.
For a metric space X it is equivalent that dim2(X) is finite and that dimA(X)

is finite by the following theorem of Luukkainen [8, Theorem A.3].

Theorem 3.1. Let X be a metric space. X is doubling if and only if X has
finite Assouad dimension.
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It is easy to adapt the proof of [7, Lemma 2.3] for Lemma 3.2.

Lemma 3.2. Let X be a metric space with dim2(X) = κ and let r > 0. Then

X has a covering B of closed balls of radius r such that B =
⋃2κ

k=0 Bk and each
family Bk has r-multiplicity at most 1; so B has r-multiplicity at most 2κ.

Furthermore it is possible, to choose a given subset Y of X with d(x, y) > r

for all x, y ∈ Y so that Y is a subset of the set of centers of the balls Bk.

Remark 3.3. Let X be a metric space. Then there is dim(X) ≤ dimA(X).
This follows directly from the definitions of both dimensions.

4 Two examples

In this section we will give two examples: The first example is a locally finite
hyperbolic graph that has no rooted spanning tree with exactly one ray from
the root to each boundary point of G. The second example is a locally finite
hyperbolic graph that has only one boundary point but every rooted geodetic
spanning tree (T, r) has infinitely many distinct rays starting in r and converging
to the only boundary point.

Example 4.1. Let us construct the following graph G: Let the layer k be a set
of 2k−1 + 1 vertices xk

1 to xk
2k−1+1. Let V G be the disjoint union of the layers

k for all k ∈ N. Let two vertices in the same layer k be adjacent if and only if
they are xk

i and xk
i+1 for some i ≤ 2k−1 + 1. Two vertices of different layers are

adjacent if and only if the vertices are xk
i and xk+1

j with 2(i − 1) + 1 = j. The
resulting graph is a planar graph with one end but whose hyperbolic boundary
is homeomorphic to the unit interval [0, 1].

Let us suppose that there exists a rooted spanning tree (T, r) such that every
ray in T converges to some boundary point and such that there is exactly one
r-η-path for every boundary point η. Then there is a vertex x such that T − x

has at least two infinite components. Let C1 and C2 be two components of T −x

and let πi be a ray in Ci (i = 1, 2) such that the following properties holds for
C1, C2, π1 and π2.

(i) The graph G[C1 ∪ C2] has only one end.

(ii) The graph G[C1 ∪ C2] − πi has precisely two ends for every i ∈ {1, 2}.

(iii) All components of G[Ci] − πi that are adjacent to G[Cj ] with i 6= j are
finite.

Let ϕ be a homeomorphism from the boundary of G to [0, 1]. Let ηi be the
boundary point of G to which πi converges. We may assume that ϕ(η1) ≤ ϕ(η2).
If ϕ(η1) 6= ϕ(η2), then there is some η ∈ ∂G with ϕ(η1) < ϕ(η) < ϕ(η2). This
contradicts the choice of π1 and π2. Thus ϕ(η1) = ϕ(η2) and η1 = η2 since ϕ is
a homeomorphism. This completes Example 4.1.
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Example 4.2. Let Vk be a set of 2k elements such that the Vk are pairwise
disjoint. Let G be a graph with vertex set

⋃
k∈N

Vk. Any two vertices of the
same Vk are adjacent. Furthermore any x ∈ Vk with k 6= 0 has precisely one
neighbour in Vk−1, two neighbours in Vk+1, and no other neighbours.

This graph is obviously a hyperbolic graph with one end and one boundary
point. Let T be a geodetic spanning tree in G with root r. For every vertex x

in G there is a subgraph H of G such that H is isometric to G and x is mapped
to o ∈ V0. If the graph with r = o has infinitely many distinct r-η-paths for
the only boundary point η, then this is the case for any T with arbitrary r. For
every vertex y there is a unique geodesic from o to y. Since the only boundary
point has infinitely many distinct geodetic rays converging to it, T has to contain
them, too. This proves our claim on G.

5 Spanning trees in hyperbolic graphs

In this section we will prove our main result Theorem 1.1 and deduce some
corollaries from that theorem.

Proof of Theorem 1.1. Let dh = dε be one of the metrics of Theorem 2.4 such
that (Ĝ, dh) is a compact metric space with finite Assouad dimension. In
particular, ε ≥ 0 and exp(εδ) − 1 ≤

√
2 − 1. Let r ≥ 0, and let m =

inf {(η, µ) | η, µ ∈ ∂G, dh(η, µ) ≤ r}. Then by Proposition 2.6 there is a δ′ such
that any two boundary points η′, µ′ with (η′, µ′) ≥ m−5δ have distance at most
εδ′, i.e. dh(η′, µ′) ≤ εδ′. For this δ′ the following inequality holds.

δ′ = exp(5εδ) ≤ (
√

2)5 < 8

Let us first construct the spanning tree T and thereafter we will show that T

fulfills the properties (i) to (iii) of the theorem. We will construct the spanning
tree inductively. In each step of the induction there is an εj−1 (with εj−1 > εj)
such that ∂G is covered by the open balls of radius εj−1 and with those boundary
points as centers to which we have already constructed a ray to.

Since ∂G has finite Assouad dimension we may assume by Theorem 3.1 that
∂G is doubling. Let r ∈ V G, and let N = 2dim2(∂G). For the first step choose a
boundary point η ∈ ∂G. Let S0 = {η} = Y0, and let T0 be the graph consisting
of a geodetic ray from r to η.

For the step j of the construction let Tj−1 be the tree, constructed in the
previous step, let Sj−1 be the set of boundary points for that Tj−1 contains
a ray converging to that boundary point, and let Uj−1 be the set of all open
εj−1-balls with centers in Sj−1. Furthermore we may assume that Uj−1 is an
open cover of ∂G and that the tree Tj−1 has the following properties.

(∗) Every edge in Tj−1 lies on such a double ray between two boundary points
in Sj−1 that is a geodetic double ray in G or the edge lies in the tree T0.

(∗∗) Every ray in Tj−1 is eventually geodetic.
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By Lemma 3.2 there is a closed covering Bj of ∂G with balls of radius
εj−1

16 ,
with

εj−1

16 -multiplicity at most N and such that the set Yj of centers of these
balls is a superset of Sj−1. Let εj = a

8N
with a =

εj−1

16 , and let Sj be a subset of
∂G with Sj−1, Yj ⊆ Sj , dh(η, µ) ≥ εj for all η, µ ∈ Sj ,

εj−1

16 -multiplicity at most

N log2(8N) and such that
{
Bεj

(s)|s ∈ Sj

}
is an open cover of ∂G. We obtain this

set by applying the definition of doubling logN (N log2(8N)) times to the sets in
Bj. For every η ∈ Sj \ Sj−1 we will add a new ray to Tj−1 and get Tj.

Let T 0
j = Tj−1. Let Sj \ Sj−1 =

{
µ1, . . . , µ|Sj\Sj−1|

}
with the property that

all µi with 8εj−1-multiplicity 1 in Bj−1 have a smaller index than those that
have 2 · 8εj−1-multiplicity 2 in Bj−1 and so on until we have those that have
N · 8εj−1-multiplicity N in Bj−1. Since the Bj−1 have

εj−2

16 -multiplicity at most
N and 8εj−1 is less than

εj−2

16 , the radius of all B ∈ Bj−1, any point in ∂G has
8εj−1-multiplicity at most N . Thus we have enumerated the whole Sj−1 \Sj−1.

Let us build new rays to the µi one by one in the order they are enumerated.
For every µi there is an η ∈ Sj−1 with dh(µi, η) ≤ εj−1. Let π be a geodetic
double ray from µi to η such that the new ray uses an infinite subray of the
existing ray in T i−1

j to η. This is possible by Proposition 2.8 and since the rays

in T i−1
j are eventually geodetic by construction and by the property (∗∗). It

might happen that π intersects with T i−1
j non-trivially apart from the common

infinite subray to η. But then a common vertex is part of a geodetic double ray
between two other boundary points of Sj−1 ∪ {µ1, . . . , µi−1} in T i−1

j (by the

construction of T i−1
j ). To at least one of the endpoints (say η′) of that geodetic

double ray, µi has distance less than δ′εj−1 ≤ 8εj−1 as d(o, [µi, η
′]) ≥ d(o, [µi, η])

by the hyperbolicity of G and (µi, η)− 5δ ≤ (µi, η
′) by Proposition 2.11. Hence

dh(µi, η
′) ≤ εj−1δ

′. So we are adding an infinite subray to T i−1
j and get a

tree T i
j .

Let us call µi connected to η if π intersects with T i−1
j only on the common

infinite subray to η and connected to η′ else. If µi is connected to η then µi

is eventually connected to η. If µi is connected to η′ and η′ ∈ Sj−1 then µi is
eventually connected to η′, and if µi is connected to η′ but η′ 6∈ Sj−1 then µi is
eventually connected to the boundary point, η′ is eventually connected to.

Let Tj be the union of all T i
j , in other words

Tj = T
|Sj\Sj−1|
j .

By the construction it is clear that (∗) and (∗∗) hold for Tj and that Tj is a
tree.

Let T ′ =
⋃

i∈N
Ti. Since all Ti are trees and Ti−1 ⊆ Ti, T ′ is a tree.

There are two remaining things: First we have to add—without creating
new rays—every vertex that lies in G − T ′ with some edge to T ′ and then we
have to check the properties (i) to (iii) of the theorem.

We are adding the vertices of G−T ′ recursively by their distance to r to T ′.
First we can easily extend the tree by adding all finite components of G−T ′ to
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T ′. Then we add every vertex with distance d(r, G − T ′) to T ′ by a path lying
outside of Bd(r,G−T ′)(r). There might be vertices for that does not exist such
a path. We do not add these. Let T ′

1 be the new tree. Then the vertices in
G − T ′

1 with distance d(r, G − T ′
1) lie in finite components of G − T ′

1. For the
following step we keep in mind the largest distance d1 from r to a vertex lying
on T ′

1 − T ′. In the step of recursion first we add again every finite component
of G− T ′

i . We take again paths to T ′
i that are lying outside Bd1

(r). Once more
there can be vertices that cannot be connected to T ′

i in such a way. These will
be treated at the beginning of the next step.

Let T =
⋃

i∈N
T ′

i . Obviously T is a spanning tree of G and there is not any
new ray created on the way from T ′ to T . Thus to prove the properties (i) to
(iii) of the theorem, we only need to prove them for T ′.

Let us first prove two claims.

Claim 5.1. Let µi1 and µi2 be elements of Sj \ Sj−1 with dh(µi1 , µi2) ≤ 8εj−1

and such that both do not have (n − 1)8εj−1-multiplicity n − 1 but n8εj−1-
multiplicity n in Bj−1. Then for any B ∈ Bj−1 with dh(µi1 , B) ≤ n8εj−1 there
is dh(µi2 , B) ≤ n8εj−1 and vice versa.

Proof. Since the (n− 1)8εj−1-multiplicity of both µi1 and µi2 must be n, every
set with distance at most n8εj−1 to µik

has distance at most (n − 1)8εj−1 to
µik

and thus distance at most n8εj−1 to µil
with k 6= l.

Claim 5.2. Let µi+1 be connected to µ ∈ Sj in T i
j . Then there is dh(η, µi+1) ≤

8Nεj−1. If µ ∈ Sj−1 is eventually connected to η in Tj−1, then dh(η, µ) ≤
8Nεj−1diam(Bj−1) ≤ 1

2Nεj−1εj−2.

Proof. Any boundary point η with 8εj−1-multiplicity 1 in Bj−1 can only be
connected to a boundary point µ with dh(η, µ) ≤ 8εj−1 by the construction.
Both these boundary points must lie in the same B ∈ Bj−1. By induction we
know that η is eventually connected to a boundary point µ′ such that η and
µ′ lie in the same B ∈ Bj−1. Let us assume that η has k8εj−1-multiplicity
k in Bj−1. Our aim was to connect η to a boundary point µ ∈ Sj−1 with
d(µ, η) ≤ εj−1. But by our construction η is connected to a boundary point ν

with dh(η, ν) ≤ 8εj−1 and ν ∈ Sj−1∪{µ1, . . . , µi−1} if µ = µi. By claim 5.1 and
induction, ν is contained in an element B ∈ Bj−1 which is responsible for the
k8εj−1-multiplicity of η in Bj−1. This proves the first statement of claim 5.2.
For the second statement it follows by induction that ν′, the boundary point η

is eventually connected to, lies in one of those B ∈ Bj−1 which are responsible
for the k8εj−1-multiplicity of η in Bj−1 and since diam(Bj−1) ≤ εj−2

16 we have
dh(η, ν′) ≤ k8εj−1diam(Bj−1), the second statement of claim 2.

Let us finally prove (i) to (iii) of the theorem. For a closed ball Bk ∈ Bk

let B′
k denote Bk together with all other at most N8 closed balls in Bk with

distance at most 8Nεk to Bk.
By (∗∗) we constructed the new rays always such that they have an infinite

geodetic subray. Thus all we have to prove for (i) is that every ray we created
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by the construction of infinitely many rays converges to some boundary point.
Let us assume that π is a ray in T with the property that there exists infinitely
many finite subpaths of π such that each of these subpaths was used by the
construction of another ray. Since Ĝ is compact, π has at least one limit point
η in ∂G. Thus we have to prove that there exists no second limit point. Let
Bk ∈ Bk be one of the closed balls in step k which contains η. Any second
boundary point must lie - like η does - in

⋂
k∈N

B′
k by claim 5.2. Since

⋂
k∈N

B′
k

is a set with at most one element, π has precisely one accumulation point.

For the proof of (ii) let η be a boundary point of G. Then for each k there
is at least one closed ball Bk in the step k such that η is contained in Bk. In
the construction (since η ∈ Bk) we have chosen a boundary point xk in Bk with
dh(xk, η) ≤ εk and constructed a ray πk to xk. Since G is locally finite, there
is an infinite path π such that each edge of that path is contained in infinitely
many of the rays to the xk. π must have η as an accumulation point by the
Gromov-product, by claim 2 and by the choice of the rays πk. As (i) holds, π

has precisely one accumulation point, η.

To any closed ball B ∈ Bk in step k there are at most N8 closed balls in
the step k − 1 sending rays to boundary points in B and additional each ball
sends at most N log2(8N) many rays to boundary points in B. Thus the number
of rays to one boundary point in bounded by N8+log2(8N) and hence bounded
by a function depending only on the doubling property of ∂G. Since for given ε

the doubling property depends only on the Assouad dimension, this proves the
only remaining part (iii) of Theorem 1.1.

Theorem 1.1 tells us that the number of distinct rays to a boundary point
is finite and bounded, if the Assouad dimension of a hyperbolic boundary is
finite. Since the Assouad dimension depends on the metric, it would be good
if the existence on an upper bound does not depend on the metric we used for
the completion of G. Bonk and Schramm [2, section 6 and 9] showed that this
is indeed the case: If one hyperbolic metric dε on G induces a boundary with
finite Assouad dimension, then all hyperbolic metrics dε′ have that property
and all boundaries are doubling metric spaces. But it need not to be the case
that dimA(∂G, dε) = dimA(∂G, dε′). Thus it remains open, if there is another
dimension concept, perhaps the topological dimension—recall that dim(X) ≤
dimA(X) for all metric spaces by Remark 3.3—, invariant under changing the
metric dh such that the upper bound of distinct rays to one boundary point
depends only on that dimension.

Any graph G has bounded growth at some scale if there are constants r, R

with R > r > 0 and N ∈ N such that every ball of radius less than R can be
covered by N balls of radius less than r.

Bonk and Schramm [2, Theorem 9.2] proved the following theorem about
hyperbolic graphs with bounded growth at some scale.
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Theorem 5.3. Let X be a locally finite hyperbolic graph with bounded growth
at some scale. The hyperbolic boundary ∂G is doubling and has finite Assouad
dimension.

This immediately proves the following corollary.

Corollary 5.4. Let G be a locally finite hyperbolic graph with bounded growth
at some scale. Then there exists an n ∈ N and a rooted spanning tree T of G

with the following properties:

(i) Every ray in T converges to a point in the boundary of G;

(ii) for every boundary point η of G there is a ray converging to η;

(iii) for every boundary point η of G there are at most n distinct rays in T

starting at the root of T and converging to η.

The most important examples of graphs with bounded growth at some scale
are graphs with bounded degree. These are in particular all almost transitive
graphs and thus all Cayley-graphs.

The canonical map ∂T → ∂G, where T is a spanning tree of G like in
Theorem 1.1, exists and thus we immediately get the following corollary.

Corollary 5.5. Let G be a locally finite hyperbolic graph whose boundary ∂G has
finite Assouad dimension. Then there exists a rooted spanning tree T of G such
that the canonical map ∂T → ∂G has at most M preimages of each boundary
point of G, where M is a constant depending onlyon the Assouad dimension of
∂G.

We can also replace the assumption on the Assouad dimension of the hyper-
bolic boundary in the previous corollary by bounded growth at some scale and
get:

Corollary 5.6. Let G be a locally finite hyperbolic graph with bounded growth
at some scale. Then there exists a rooted spanning tree T of G such that the
canonical map ∂T → ∂G has at most M preimages of each boundary point of
G, where M is a constant depending only on the bounded growth.

A direct consequence is Theorem 1.3.

6 Geodetic spanning trees in hyperbolic graphs

In this section we will prove Theorem 1.4. Before we are able to prove the
theorem, we first have to prove some propositions.

Proposition 6.1. Let G be a locally finite hyperbolic graph, T a rooted geodetic
spanning tree of G and S a finite set of vertices. Let Z be the set of limit points
of all rays in a connected component C of T − S. Then Z is a closed subset of
∂G.
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Proof. Let z be a boundary point of G with z ∈ Z. We have to show z ∈ Z.
So let (ηi)i∈N be an infinite sequence in Z of boundary points converging to
z. Let πi be a geodetic ray from the root of T to ηi with only finitely many
vertices outside C. Since G is locally finite, so is T . Hence there exists a ray
π in T such that each edge of T lies in infinitely many of the rays πi. Since
T is a geodetic tree, π has exactly one limit point η. Furthermore, π has also
only finitely many vertices outside C, and thus η is an element of Z. Using the
Gromov-product we see that π converges towards the limit point of (ηi)i∈N and
hence z = η ∈ Z.

Proposition 6.2. Let G be a locally finite hyperbolic graph. Let U be a finite
open cover of ∂G. Every rooted geodetic spanning tree T has the following
property:

(∗∗) There is a finite set of vertices S such that for every connected component
C of T − S there is a U ∈ U such that each ray in C converges to an
u ∈ U .

Proof. Let us suppose that there is no finite set S of vertices fulfilling (∗∗).
Thus for very finite set S of vertices there is a set Z of limit points of rays in
one connected component C of T − S such that there is no U ∈ U with Z ⊆ U .
Hence we have to extend S by at least one vertex s from C. Since we have to
make this infinitely often, the Infinity-Lemma 2.12 gives us a ray π in T from
that we have to take infinitely many vertices. Let η be the limit point of π in
∂G. Then there exists a U ∈ U with η ∈ U . Since U is open, there is a k such
that every boundary point ν of G with (η, ν) ≥ k lies in U . But then there is
a vertex x with distance at most k + 3δ such that for every boundary point µ,
that is contained in the set of limit points of rays in that component of T − x

that contains the infinite part of π, there is (η, µ) ≥ k and hence the set of
those boundary points is a subset of U . Thus we only used finitely many of the
vertices of π.

Proposition 6.3. Let G be a locally finite hyperbolic graph. Let T be a rooted
geodetic spanning tree of G such that there exists an m ∈ N and such that for
every η ∈ ∂G there are at most m distinct rays in T starting in the root of T

and converging to η. Let U be a finite open cover of ∂G, let S be a finite set of
vertices as in Lemma 6.2, let Ci be the infinite components of T − S, let Zi be
the set of all limit points of rays in Ci, and lLet Z be the set of all Zi. Then
there exists an ε > 0 such that Bε(η) intersects with at most m elements of Z
non-trivially.

Proof. Since there are only m distinct r-η-rays for every η ∈ ∂G, each η is
contained in at most m different elements of Z.

Let us assume that the Proposition does not hold. Then there is an infinite
sequence of boundary points (ηi)i∈N and an infinite sequence of real numbers
(εi)i∈N that converges to 0 such that every εi-neighbourhood of ηi intersects
with at least m + 1 elements of Z non-trivially. The sequence of the boundary
points has an accumulation point η as ∂G is compact. We may assume that the
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sequence converges towards η. Since Z has only finitely many elements, there is
a Zi1 which intersects with an infinite subsequence non-trivially. Because each
εi-neighbourhood of ηi intersects with m+1 elements of Z non-trivially, we addi-
tionally find Zi2 , . . . , Zim+1

∈ Z such that each of them intersects with infinitely
many Bεi

(ηi) non-trivially. Hence η lies in the closure of all Zi1 , . . . , Zim+1
. Since

the sets Zij
are closed by Lemma 6.1, η lies in all of them. But this contradicts

the fact that any µ ∈ ∂G lies in at most m elements of Z.

Now we are able to proof Theorem 1.4.

Proof of Theorem 1.4. Let U be a critical open cover of ∂G. We know that ∂G

is compact and hence we may assume that U is finite. Additionally, we may
assume that there is an m such that T contains at most m distinct rays from the
root to each η ∈ ∂G since otherwise the theorem trivially holds. By Proposition
6.2 there is a set Z of closed subsets of ∂G such that for every Z ∈ Z there is
a U ∈ U with Z ⊆ U and by Proposition 6.3 there is an ε > 0 such that Bε(η)
intersects with only m elements of Z non-trivially for every η ∈ ∂G. Let us
define for every Z ∈ Z a set Z ′ that consists of Z and every ε-neighbourhood
of all η ∈ Z. Then Z ′ is an open set. Let U be in U with Z ⊆ U , and let Z ′′ be
Z ′ ∩ U . Then Z ′′ is an open set, too. Let V be the set of all the Z ′′ for Z ∈ Z.
By construction, V is an open cover of ∂G and also a refinement of U . Thus
every η ∈ ∂G lies in at most n + 1 elements of V . Since U is critical, there is an
η ∈ ∂G that lies in exactly n + 1 elements of V . By the construction of the Z ′′

each boundary point lies in at most 2m of the sets as it is in at most m elements
of Z and as at most m elements of Z intersects with Bε(η) non-trivially. Thus
we get that 2m ≥ n + 1 and hence the theorem is proved.

We immediately get the following corollary of Theorem 1.4.

Corollary 6.4. Let G be a locally finite hyperbolic graph whose boundary has
infinite topological dimension. Then for every rooted geodetic spanning tree T

there is no n ∈ N such that for every boundary point η ∈ ∂G there are at most
n distinct rays in T starting at the root and converging to η.

In contrast to the upper bound of arbitrary spanning trees, the lower bound
of distinct rays to one boundary point in geodetic spanning trees is best possible
and we showed the non-existence of an upper bound in section 4. So we have
determined the best upper and lower bounds in this case.
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