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Abstract

Two non-isomorphic graphs are twins if each is isomorphic to a sub-

graph of the other. We prove that a rayless graph has either infinitely

many twins or none.

1 Introduction

Up to isomorphism, the subgraph relation ⊆ is antisymmetric on finite graphs:

If a finite graph G is (isomorphic to) a subgraph of H, i.e. G ⊆ H, and if also

H ⊆ G, then G and H are isomorphic. For infinite graphs this need no longer be

the case, see Figure 1. Two non-isomorphic graphs G and H are weak twins if G

is isomorphic to a subgraph of H and vice versa, and strong twins if both these

subgraph embeddings are induced. When G and H are trees the two notions

coincide, and we just speak of twins.

... ...

Figure 1: Each of the two graphs is a subgraph of the other.

The trees in Figure 1 are twins, and by deleting some of their leaves we can

obtain infinitely many further trees that are twinned with them. On the other

hand, no tree is a twin of the infinite star. Bonato and Tardif [3] conjectured

that every tree is subject to this dichotomy: that it has either infinitely many

trees as twins or none. They call this the tree alternative conjecture.

In this paper we prove the corresponding assertion for rayless graphs, graphs

that contain no infinite path:
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Theorem 1. The following statements hold with both the weak and the strong

notion of ‘twin’.

(i) A rayless graph has either infinitely many twins or none.

(ii) A connected rayless graph has either infinitely many connected twins or

none.

We do not know of any counterexamples to the corresponding statements for

arbitrary graphs, rayless or not.

Note that the ‘strong twin’ version of Theorem 1 does not directly imply the

‘weak twin’ version. Indeed, consider the complete bipartite graph K2,∞ with

one partition class consisting of two and the other of (countable-)infinitely many

vertices. By deleting any edge we obtain a weak twin of K2,∞. However, it is

straightforward to check that K2,∞ has no strong twin.

We have stressed in the theorem that for a connected rayless graph we may

restrict ourselves to twins that are also connected. This is indeed a stronger

statement: For example, an infinite star has disconnected weak twins—add

isolated vertices—but no connected ones. We do not know whether the same

can occur for strong twins.

Twins were first studied in [2]. The tree alternative conjecture was formulated

in [3], where it was proved in the special case of rayless trees. (Note that

Theorem 1 reproves this case.) Most of the work there was spent on showing that

the conjecture holds for rooted rayless trees, which motivated Tyomkyn [12] to

verify the conjecture for arbitrary rooted trees. Moreover, Tyomkyn established

the tree alternative conjecture for certain types of locally finite trees. (A graph

is locally finite if all its vertices have finite degree.) A proof of the conjecture

for arbitrary unrooted locally finite trees has remained elusive.

In [12], a slightly different approach is outlined as well. If a graph G has a twin,

then mapping G to that twin and back embeds it as a proper subgraph in itself.

Tyomkyn conjectures that, with the exception of the ray, every locally finite

tree that is a proper subgraph of itself has infinitely many twins.

In this paper we consider only embeddings as subgraphs or induced subgraphs,

leading to weak or strong twins. It seems natural, however, to ask a similar

question for other relations on graphs, such as the minor relation or the im-

mersion relation. Does a graph always have either infinitely many ‘minor-twins’

or none at all? Conceivably, the question of when a graph is a proper minor

of itself, as is claimed for countable graphs by Seymour’s self-minor conjecture,



should play a role in this context. The self-minor conjecture is described in

Chapter 12.5 in [5]; partial results are due to Oporowski [8] and Pott [10]. In

related work, Oporowski [9] characterises the minor-twins of the infinite grid,

and Matthiesen [7] studies a complementary question with respect to the topo-

logical minor relation, restricted to rooted locally finite trees.

In the next section we introduce a recursive technique for handling rayless

graphs, which we will use in Section 3 to prove Theorem 1.

2 A rank function for rayless graphs

All our graphs are simple. For general graph theoretical concepts and notation

we refer the reader to [5].

Our proof of Theorem 1 is based on a construction by Schmidt [11] (see also

Halin [6] for an exposition in English) that assigns an ordinal rk(G), the rank

of G, to all rayless graphs G as follows:

Definition 2. Let rk(G) = 0 if and only if G is a finite graph. Then recursivley

for ordinals α > 0, let rk(G) = α if and only if

(i) G has not been assigned a rank smaller than α; and

(ii) there is a finite set S ⊆ V (G) such that every component of G − S has

rank smaller than α.

It is easy to see that the graphs that receive a rank are precisely the rayless

ones. The rank function makes the class of rayless graphs accessible to induc-

tion proofs. One of the first applications of the rank was the proof of the re-

construction conjecture restricted to rayless trees by Andreae and Schmidt [1].

Recently, the rank was used to verify the unfriendly partition conjecture for

rayless graphs, see [4].

We shall need a few properties of the rank function that are either simple con-

sequences of the definition or can be found in [6]. Let G be an infinite rayless

graph, and let S be minimal among the sets as in (ii) of Definition 2. It is not

hard to see that S is unique with this property. We call S the kernel of G and

denote it by K(G). Furthermore, it holds that:

• if H is a subgraph of G, then rk(H) ≤ rk(G); and

• if G is connected, then K(G) is non-empty; and

• rk(G−X) = rk(G) for any finite X ⊆ V (G).



In particular, if C is a component of G−K(G), then G[C ∪K(G)] has smaller

rank than G.

To illustrate the definition of the rank, let us note that an infinite star has

rank 1, and its kernel consists of its centre. The same holds for the graphs in

Figure 1. On the other hand, the disjoint union of infinitely many infinite stars

(or in fact, of any graphs of rank 1) has rank 2 and an empty kernel.

3 The proofs

In this section we prove the ‘strong twin’ version of Theorem 1. All proofs will

apply almost literally to the case of weak twins instead of strong twins. For

that reason we will often drop the qualifiers ‘strong’ and ‘weak’.

Let G,H be two rayless graphs and let X ⊆ V (G) and Y ⊆ V (H) be finite

vertex subsets. We call a homomorphism φ : G → H a strong embedding

of (G,X) in (H,Y ) if it is injective, φ(G) is an induced subgraph of H, and

φ(X) ⊆ Y . Alternatively, we shall say that φ : (G,X) → (H,Y ) is a strong

embedding. Observe that φ preserves edges as well as non-edges. We call (G,X)

and (H,Y ) isomorphic if there is an isomorphism γ : (G,X) → (H,Y ), i.e. if γ

is a graph-isomorphism between G and H with γ(X) = Y . We say that (G,X)

and (H,Y ) are strong twins if they are not isomorphic and there exist strong

embeddings φ : (G,X) → (H,Y ) and ψ : (H,Y ) → (G,X); note that φ(X) = Y

and ψ(Y ) = X in this case. For (G,X) and (H,Y ) to be weak twins we only

require φ and ψ to be injective homomorphisms with φ(X) = Y and ψ(Y ) = X.

Let us point out that rayless graphs G and H are (strong resp. weak) twins if

and only if the tuples (G, ∅) and (H, ∅) are (strong resp. weak) twins.

As we have noted, subgraphs of rayless graphs do not have larger rank. More-

over, if a subgraph G′ of a rayless graph G has the same rank as G, then

K(G′) ⊆ K(G) since K(G) ∩ V (G′) is a set as in (ii) of Definition 2. We thus

have:

Lemma 3. Let G and H be rayless graphs, and let there be injective homo-

morphisms φ : G → H and ψ : H → G. Then φ(K(G)) = K(H) and

ψ(K(H)) = K(G).

In particular, the lemma implies that if (G,X) and (H,Y ) are twins, then

(G,X ∪K(G)) and (H,Y ∪K(H)) are twins too.

Let G and H be rayless graphs, and let X ⊆ V (G) and Y ⊆ H be finite vertex

sets. We write X̄ as a shorthand for X ∪ K(G), and define Ȳ analogously.



Assume there are (strong) embeddings φ : (G,X) → (H,Y ) and ψ : (H,Y ) →

(G,X) and set ι := ψ ◦ φ. Since, by Lemma 3, ι induces an automorphism on

(the subgraph induced by) the finite set X̄ there exists a k with ιk ↾ X̄ = idX̄ .

By replacing φ with φ ◦ ιk−1, we may assume that

φ : (G,X) → (H,Y ) and ψ : (H,Y ) → (G,X) are embeddings
so that the restriction of ι = ψ ◦ φ to X̄ coincides with idX̄ .

(1)

Assume now that (G,X) and (H,Y ) are isomorphic by virtue of an isomorphism

γ. In that case, abusing symmetry and notation, let us write (G,X) ≃η (H,Y ),

where η denotes the isomorphism X → Y induced by γ. Denote by CG the set

of all subgraphs G[C ∪ X̄] of G, where C is a component of G− X̄. For A ∈ CG

set

IG(A) := {D ∈ CG : (D, X̄) ≃id (A, X̄)}.

Lemma 4. Let G and H be rayless graphs, and let X ⊆ V (G) and Y ⊆ V (H)

be finite. The following statements are equivalent.

(i) (G,X) and (H,Y ) are isomorphic.

(ii) There is a bijection α : CG → CH and an isomorphism η : G[X̄] → G[Ȳ ]

with η(X) = Y so that (A, X̄) ≃η (α(A), Ȳ ) and |IG(A)| = |IH(α(A))| for

all A ∈ CG.

Moreover, if (i) and (ii) hold, then α, η, and the isomorphism φ : (G,X) →

(H,Y ) can be chosen so that φ ↾ X̄ = η and φ(A) = α(A) for every A ∈ CG.

Proof. First assume that (i) holds and let φ : (G,X) → (H,Y ) the isomorphism

certifying this fact. Put η := φ ↾ X̄. Observe that, by Lemma 3, for every

A ∈ CG there is a B ∈ CH with φ(A) = B; set α(A) := B. Clearly, α is a bi-

jection and (A, X̄) ≃η (α(A), Ȳ ). It remains to show that |IG(A)| = |IH(α(A))|

for all A ∈ CG. Indeed, for every C ∈ IG(A) we have α(C) ∈ IH(α(A)): Since

(A, X̄) ≃id (C, X̄), by virtue of an isomorphism γ say, φ ◦ γ ◦ φ−1 is an iso-

morphism certifying (α(A), Ȳ ) ≃id (α(C), Ȳ ). Hence we obtain |IH(α(A))| ≥

|IG(A)| and analogously |IG(A)| ≥ |IH(α(A))|.

Now assume that (ii) holds. Then for every A ∈ CG there is an isomorphism

φA : A→ α(A) that witnesses (A, X̄) ≃η (α(A), Ȳ ). Now the function φ : G→

H defined by φ ↾ A := φA for every A is an isomorphism of (G,X) and (H,Y )

satisfying φ ↾ X̄ = η and φ(A) = α(A) for every A ∈ CG.

We call the tuple (G,X) connected if G−X is connected.



Lemma 5. Let (G,X) and (H,Y ) be strong twins, where G and H are rayless

graphs, and X ⊆ V (G) and Y ⊆ V (H) finite. Then (G,X) has infinitely many

strong twins. If both (G,X) and (H,Y ) are connected, then (G,X) has infinitely

many connected strong twins.

Before we prove the lemma let us remark that it immediately implies the strong

version of Theorem 1 if we set X = Y = ∅.

Proof of Lemma 5. We proceed by transfinite induction on the rank of G. For

rank 0 the statement is trivially true as finite graphs do not have twins. We

may thus assume that G has rank κ > 0 and that the lemma is true for rank

smaller than κ.

Assume there exists a C0 ∈ CG so that (C0, X̄) has a connected twin. Then, as

C0 has rank smaller than κ, the inductive hypothesis provides us with infinitely

many connected twins (Ci,Xi), i > 0, of (C0, X̄). By applying (1) to (C0, X̄)

and (Ci,Xi) we may assume that the restrictions to X̄ and Xi, respectively, of

the mutual embeddings are inverse isomorphisms. Hence, by identifying Xi with

X̄ by this isomorphism we may assume that the twins have the form (Ci, X̄)

and that the corresponding embeddings induce the identity on X̄. Denote by

T the set of C ∈ CG for which either (C, X̄) ≃id (C0, X̄), or for which (C, X̄) is

a twin of (C0, X̄) by virtue of mutual embeddings that each induce the identity

on X̄. For every i ∈ N, define Gi to be the graph obtained from G by replacing

every C ∈ T by a copy of Ci.

The construction ensures two properties. First, there are strong embeddings

(G,X) → (Gi,X) and (Gi,X) → (G,X) for every i. So, if infinitely many of

the (Gi,X) are non-isomorphic, we have found infinitely many twins of (G,X).

Second, for j 6= k it follows that |IGk
(Cj)| = 0 6= |IGj

(Cj)|. Consequently,

Lemma 4 implies

(Gj , X̄) 6≃id (Gk, X̄). (2)

Assume that for distinct i, j, k the tuples (Gi,X), (Gj ,X) and (Gk,X) are iso-

morphic. Thus, by Lemma 4 there are isomorphisms η between X̄ ⊆ V (Gi) and

X̄ ⊆ V (Gj) and η′ between X̄ ⊆ V (Gi) and X̄ ⊆ V (Gk) so that (Gi, X̄) ≃η

(Gj , X̄) and (Gi, X̄) ≃η′ (Gk, X̄). Now, if η = η′, then the resulting isomor-

phism between Gj and Gk would induce the identity on X̄, which is impossible

by (2). As there are only finitely many automorphisms of the finite set X̄, we

deduce that each (Gi,X) is isomorphic to only finitely many (Gj ,X). There-

fore we can easily find among the (Gi,X) infinitely many that are pairwise

non-isomorphic.



Finally, we claim that if (G,X), i.e. G−X, is connected, then so is each (Gi,X),

i.e. Gi −X. Indeed, by construction there is an embedding (G,X) → (Gi,X)

that restricts to the identity on X̄ and whose image meets all components of

Gi−X̄. As G−X is connected, as well as each component of Gi−X̄, we deduce

that Gi −X is connected.

Thus, we may assume from now on that

for each C ∈ CG, (C, X̄) has no connected twin. (3)

By symmetry, the same holds for (H,Y ).

Let φ : (G,X) → (H,Y ) and ψ : (H,Y ) → (G,X) be strong embeddings, and

recall that by (1) we may assume that ι := ψ ◦ φ induces the identity map on

X̄. By Lemma 4 and symmetry, we may assume that for η := φ ↾ X̄ there

are A ∈ CG and B ∈ CH with (A, X̄) ≃η (B, Ȳ ) so that |IG(A)| > |IH(B)|. In

particular, we have |IH(B)| <∞.

Observe that by Lemma 3

for every C ∈ CG there is a (unique) D ∈ CG with ι(C) ⊆ D. (4)

Furthermore, we point out that ι is a strong self-embedding of (G,X), and also

of (G, X̄).

We define a directed graph Γ on CG as vertex set by declaring (C,D) to be an

edge if ι(C) ⊆ D for C,D ∈ CG. We do allow Γ to have loops and parallel edges

(which then, necessarily, are pointing in opposite directions). Note that by (4)

every vertex in Γ has out-degree one. Define A to be the set of those A′ ∈ IG(A)

for which the unique out-neighbour does not lie in IG(A).

Suppose that distinct A1, A2 ∈ IG(A) are mapped by φ into the same B′ ∈ CH .

If A1 (and then also A2) is finite, then |V (B′)| > |V (Ai)| for i = 1, 2 since the

injectivity of φ implies φ(A1)∩φ(A2) = Ȳ . Consequently, we obtain B′ /∈ IH(B).

Let now A1 and A2 be infinite. Unless rk(B′) > rk(A1) = rk(A2) it follows that

φ(K(Ai)) ⊆ K(B′) for i = 1, 2. Since A1 − X̄ and A2 − X̄ are connected the

kernels K(Ai − X̄) are non-empty (but finite). Again from φ(A1) ∩ φ(A2) = Ȳ

we obtain that K(B′) has larger cardinality than either of K(A1) and K(A2),

which implies B′ /∈ IH(B). Therefore, we have in all cases that B′ /∈ IH(B).

Since (3) and (4) necessitate that φ(A′) is contained in an element of IH(B) for

every A′ ∈ IG(A) \ A we deduce that |A| ≥ |IG(A)| − |IH(B)|. Thus, it holds

that

A 6= ∅, and if IG(A) is infinite, then so is A. (5)



By construction, the set A is independent in Γ. Moreover,

there is no directed path in Γ with both endvertices in A, and
there is no directed cycle containing any A′ ∈ A.

(6)

To prove (6), suppose that C1, . . . , Ck is a directed path in Γ with C1, Ck ∈

A. Since repeated application of ι maps every (C1, X̄) into any (Ci, X̄) and

likewise (Ci, X̄) into (Ck, X̄) ≃id (C1, X̄), we deduce that (Ci, X̄) ≃id (Cj , X̄)

for i, j ∈ {1, . . . , k}, as they cannot be twins by (3) (recall that ι ↾ X̄ = idX̄

by (1)). However, (C1, X̄) ≃id (C2, X̄) violates C1 ∈ A. The same arguments

hold if C1, . . . , Ck is a directed cycle that meets A.

Define A− to be the set of all C ∈ CG from which there is a nontrivial directed

path in Γ ending in A. Setting A+ := CG \ (A ∪ A−) we see with (6) that

(A−,A,A+) partitions CG. By definition, the out-neighbour of an A′ ∈ A does

not lie in A, and by (6) the out-neighbour does not lie in A− either. Hence,

we have ι(A′) ⊆
⋃

A+. On the other hand, the definition of A− implies that

the out-neighbour of every A+ ∈ A+ is contained in A+. Thus it follows that

ι(A+) ⊆
⋃

A+. In summary, we obtain:

(A−,A,A+) partitions CG and ι
(

⋃

A ∪
⋃

A+
)

⊆
⋃

A+. (7)

We claim that there exists a strong self-embedding γ : (G,X) → (G,X) that

induces the identity on X̄ and satisfies

γ(G) ∩
⋃

A = X̄. (8)

On X̄ we define γ to be the identity. For every other vertex v ∈ V (G) we

consider the unique C ∈ CG containing v. If C ∈ A− we set γ(v) := v, and

if C ∈ A ∪ A+ we put γ(v) := ι(v). Note that by (4) it holds that for every

C ∈ CG we have γ ↾ C = idC or γ ↾ C = ι ↾ C. It is immediate from (7) that (8)

holds. Moreover, since the identity as well as ι are strong self-embeddings it

follows from (7) that γ is one, too.

Let us now construct infinitely many strong twins of (G,X). Assume first that

IG(A) is a finite set. Add a disjoint copy Ã of A to G and identify every vertex in

X̄ with its copy in Ã. The resulting graph G1 is clearly a supergraph of G. But

we can also embed (G1,X) in (G,X): extend γ to an embedding of (G1,X) in

(G,X) by mapping Ã− X̄ to A′− X̄ for some A′ ∈ A. Here, we use that A 6= ∅,

by (5). Note that |IG1
(A)| = |IG(A)|+ 1. Now we repeat this process, with G1

in the role of G, so as to obtain G2, and so on. Since |IGi
(A)| 6= |IGj

(A)| for all

i 6= j, we can deduce from Lemma 4, as in the proof of (3), that each (Gi,X)



is isomorphic to only finitely many (Gj ,X). Therefore we can find among the

(Gi,X) infinitely many twins of (G,X).

So, consider the case when IG(A) contains infinitely many elements A1, A2, . . ..

Set Gi := G − (
⋃

A \ {A1, . . . , Ai} − X̄) for i ∈ N. Since, by (8), γ can be

used to embed (G,X) in (Gi,X) we can again find infinitely many twins of

(G,X)—note that |IGi
(A)| takes different (finite) values.

Finally, observe that in both cases, all the strong twins we constructed are

connected if (G,X) is.
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