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1 Introduction

No doubt, trust is important but also delicate. In general, trusting another person requires

sequential thinking as trust must be shown before another person decides whether to

reward or to exploit it. If exploitation is advantageous and punishment is not feared,

trust will hardly develop because it is simply rational to exploit shown trust. However,

this kind of rationality is often questioned by actual behavior of individuals. Empirical

and experimental studies have repeatedly shown that actual human behavior is driven by

other motives than pure individual maximization of outcomes (see e.g. Fehr and Gächter

1998 or Fehr and Fischbacher 2005). Prominent explanations are inequality aversion in

the sense of Fehr and Schmidt (1999) or Bolton and Ockenfels (2000), or the willingness to

respond kindly to actions that are perceived as kind, a behavior which is usually referred

to as reciprocity (see e.g. Falk and Fischbacher 2006). What these explanations have in

common is that they all add an individual factor to the objective (in most cases monetary)

outcome. If this individual factor is large enough, rational behavior can diverge from what

an orientation on objective factors alone would predict: People sometimes do not care that

exploiting others’ trust will make them better off in pecuniary terms.

A crucial question is whether or not such behavior driven by non-monetary motives can

succeed or, more radically, survive. In business life it is almost straight-forward to assume

that a non profit maximizing behavior can not survive, at least if there are competitors

taking advantage of it. On the individual level, one might ask whether people can be

immune against monetary incentives. If people permanently observe that others are more

successful in monetary terms, they may eventually switch to the behavior leading to more

monetary success. Such an evolutionary perspective with respect to the game of trust

and preference distinguished player types is picked up by e.g. Güth and Kliemt (1994

and 1998).1 A key result is that trustworthy behavior will diminish, given that agents

interact under uncertainty concerning other players types and occasionally tremble. Only

if players can discriminate perfectly between trustworthy and non-trustworthy types will

the trustworthy ones prevail. On the one hand, perfect information about another person

is a theoretical myth, so one could argue that there is little hope for a long run success of

trustworthy behavior. On the other hand, perfect information, as it is used in these models,

1The authors use the so called indirect evolutionary approach. Applications to other, e.g. ultimatum
and dictator, games are e.g. Huck and Oechssler (1999) or Güth and Napel (2006).
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only concerns knowing how the other agent will behave. The difference in information leads

to a difference in strategic behavior. If we know that another person is non-trustworthy, we

will never trust him in the first place. If we do not know another person, we might trust or

not trust based on our expectation and experience with other people. Knowing the other

person in this context means to have some experience that allows to apply a discriminating

strategy. This is what is called a personal relationship. A personal relationship need not

be private. It is sufficient that there is enough reliable information available that allows

to discriminate between different player types.2 By these assumptions, interaction under

personal relationships captures repeated interaction as e.g. with family members, friends,

colleagues, or frequent business partners. To some extent it also captures the application

of trigger strategies such as the famous tit-for-tat discussed in Axelrod (1984). Clearly, in

real life interactions take place both with others to whom there is a personal relationships

and with strangers.

The present paper sets up a model capturing all aspects pointed out above. The

strategic dilemma of the basic trust game and the existence of multiple player types. The

force of evolution driven by material payoffs and the fact that interaction takes place with

and without personal relationships. The main question is whether or not and, if yes,

under which conditions trust and trustworthiness can prevail. The analysis is carried out

using the indirect evolutionary approach. The model description is provided in section

2. The parallel game of interaction with and without the application of a discriminating

strategy is introduced in section 3. Section 4 checks the results for robustness against

trembles and section 5 introduces trustworthy player types that have a tendency to trust

or misinterpret the competitive nature of the game. Section 6 concludes. The main finding

is that the fraction of trustworthy players in the population will not vanish in the parallel

game. Rather, the evolutionary stable outcomes are either a population state where all

players are trustworthy, or an interior solution with both types present. The results are

robust against trembles for a wide variety of payoff structures. A tendency to trust by the

trustworthy players can, however, lead to an overall decline in their fraction.

2For instance, Bolton, Katok, and Ockenfels (2004) and Güth, Mengel, and Ockenfels (2007) have stud-
ied the (generally positive) effect of reputation mechanisms in internet trade with anonymous interaction.
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2 The model

The basic game studied is the two player sequential game of trust. Player A is the first

mover and has to decide whether to trust (denoted by T ) or not trust (N) in his co-

player.3 If she does not trust, the game ends and both players receive an identical payoff

of s. If the choice is to trust, i.e. play T , the second mover player B decides whether to

reward (R) or exploit (E) the trust shown by the first mover. Rewarding trust yields an

identical payoff of r to both players while exploitation yields a payoff of 1 to the second

mover and 0 to the first mover. The payoffs represent pecuniary or objective payoffs. It is

assumed that 1 > r > s > 0. Thus, the game is a social dilemma game because the only

Nash equilibrium is (N,E), yielding the payoff vector (s, s) while cooperative behavior

would lead to the pareto superior payoff vector (r, r). The basic game is embedded in an

evolutionary process driven by the objective payoffs and played by a possibly infinitely

large population. Nature moves at the beginning of each stage and randomly matches the

agents in pairs to play the game. Each player is assigned the role of either first or second

mover, both with probability 1/2. Time passes continuously from 0 to t with t ∈ [0,+∞).

The indirect evolutionary version of the game is studied in Güth and Kliemt (1994),

Güth and Kliemt (1998) and Güth, Kliemt, and Napel (2006). Each player is endowed with

a preference parameter mi which affects the subjective evaluation of the pecuniary payoff

of exploiting trust. The utility of the second mover associated with the choice E is defined

as ui,2(·, E) = 1 − mi. For all other actions utility is simply given as u(π) = π. mi is a

purely private parameter, basically defined on R and possibly heterogeneously distributed

among agents. A preference parameter mi > 1 − r is denoted as mR. In this case, the

utility of the choice R exceeds the utility of the choice E and players with a preference

parameter mR therefore rationally choose R in second mover position. These players are

called trustworthy or rewarding types and are denoted by θR. Consequently, mE labels a

preference parameter mi < 1 − r. The influence of mE is too weak to affect the choice

compared to the basic game without such parameters. Players with a preference parameter

mE are called non-trustworthy or exploitive types and are denoted by θE.

The introduction of mi turns the game into a Bayesian game with two types of players.

3In experimental studies as e.g. Bolle (1998), player A is endowed with a certain amount of money. A
then decides how much to pass to the second mover. The experimenter multiplies the amount and gives it
to the second mover who has to decide how much of the enlarged amount to return to the first mover.
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A player faces a game of incomplete information if he or she does not know the preference

parameter of the co-player. Following Harsanyi (1967), the game can be transformed

into a game with complete but imperfect information by introducing additional moves of

nature. Assuming that the agents know the exact fractions of types, players will base their

decisions on that knowledge. If a player has a personal relationship to his co-player and

if this relationship allows him to discriminate between trustworthy and exploitive types,

the behavior is the same as in a game of perfect information, i.e. the player behaves as if

she knows the type of her co-player. Nature carries out three moves at the beginning of

each stage. First, the population is separated into two groups. A λ-fraction (0 < λ < 1) is

chosen to play the game of complete, in fact, perfect information while a fraction of (1−λ)

plays in the imperfect information setting. Second, nature assigns the type of player A

and B according to the distribution of types in the population and third, it assigns first

and second mover positions. The game tree in Figure 1 illustrates the situation.4

A fundamental assumption of the indirect evolutionary approach is that players behave

fully rational with respect to the current stage game and with respect to their utility (not

with respect to pecuniary payoffs). As a consequence, second mover behavior is completely

determined by the preference parameter mi. First mover behavior is either determined by

the type of the co-player, if known, or by the expected payoffs of the choices T and N

calculated on the basis of the fraction of trustworthy players in the population. Rationality

with respect to the current stage game means that the evolutionary process, solely driven by

material success, is not considered by the agents at all. Although the evolutionary process

is not considered by the agents, it may indirectly influence the outcome. Under imperfect

information, the strategies are population state dependent because the population state

influences the expected first mover payoff and hence first mover behavior. So, evolution

might influence behavior and behavior might influence evolution. This is what makes the

approach indirect.

The position in the game tree is an element of the relevant information set to each player.

In the case of perfect information, the co-players type is added, in the case of imperfect

information, the fraction θtR of trustworthy players. The strategy for a trustworthy player

4The lower arms of the tree ending with “. . . “ represent those subgames where player B moves first.
The upper arms of the tree ending with “. . . ” are those where player A is an exploitive type. Actually, it
is assumed that imperfect information is only present with respect to the co-players type. It is assumed
that a player always knows his own type. Therefore, the dashed line indicating imperfect information is
drawn between two subgames with an identical first mover type.
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Figure 1: A stage of the parallel game

under perfect information is hence given as:

s(θR) :

(
(1st, θj,2) 7−→

{
T if θj,2 = θR

N if θj,2 = θE
, 2nd 7−→ R

)
(1)

A trustworthy player facing incomplete information uses a Bayesian Nash strategy based on

the expected payoff he receives from the first mover choices T and N . The threshold value

of the current fraction of trustworthy types at which the expected payoffs from playing N

and T are equal is denoted by d. Note that θtR is treated as being exogenous, so rationality

implies:

s(θR) :

(
(1st, θtR) 7−→

{
T if θtR > d

N if θtR < d
, 2nd 7−→ R

)
(2)

First mover behavior is identical for both players while an exploiting type always chooses

E in second mover position. The behavior at d is left undefined.5

5It can be assumed that players choose some mixed action [0, 1] at d but it is pointed out below that
this is generally irrelevant.
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Evolution is analyzed using replicator dynamics. It is sufficient to study one equation

(which will be the one for the trustworthy types) because a gain for one type fraction

equals a loss in the other fraction so all changes add up to zero and all solutions lie on

the projection ∆ = [0, 1]. Each point in ∆ corresponds to a vector θt = (θtR, θ
t
E) called a

population state. It will generally be assumed that both types are present in the population

initially so the dynamics start in the interior of ∆, i.e. θ0 ∈ int(∆). If the objective payoff

of a type is larger than the average payoff in the population, that type spreads. Otherwise

it declines. In the case of only two existing types, the general equation can be simplified

to: (
∂θtR
∂t

)1

= θtR(1− θtR)
[
π(θR, θ

t)− π(θE, θ
t)
]

(3)

π(θR, θ
t), π(θE, θ

t) are the expected payoffs for each strategy given the current population

state. The superscript “1” indicates a game of perfect information and a superscript “0”

will be used to label imperfect information. In the parallel game the population is split

into two separate groups in each stage. Each group plays the game independently of the

other. The joint replicator equation is hence the weighted sum of the equations of both

(information) settings. The superscript “λ” indicates the parallel game. The general form

is given as follows: (
∂θtR
∂t

)λ
= λ

(
∂θtR
∂t

)1

+ (1− λ)

(
∂θtR
∂t

)0

(4)

The replicator equations in the parallel game are piecewise defined functions. It turns

out that the associated vector field ϕ
R

is discontinuous at the threshold level d stated in

the strategies (this is shown in the analysis). At d, the limits from the left and right of

ϕ
R

as θtR approaches d do not coincide which implies that there is no well defined phase

(i.e. a replicator equation does not exist). This is quite unusual and, to some extend,

problematic. Therefore, I will shortly deal with the question of behavior and especially

stability at d. First, the two domains of definition of the vector field ϕ
R

are [0, d) and

(d, 1]. Now, one case that may occur is that all phases have the same sign. Clearly, one

would expect that the process will then reach the boundary bd(∆) implied by the signs,

i.e. either a fraction of trustworthy players equal to 1 or 0. However, as the replicator

equation, i.e. the time derivative, at d does not exist, the case that the process halts at d

can not be excluded. Let ξ
R

(t, θ0)t→∞ be the solution mapping for the trustworthy types.

To ”solve” the problem, note

6



Assumption 1 If all phases in ϕ
R
|[0,d) and ϕ

R
|(d,1] have the same sign, then for all θ0

R ∈
int(∆), ξ

R
(t, θ0)t→∞ → bd∗(∆) with bd∗(∆) the boundary determined by the signs of ϕ

R
.

So it is just assumed that the process will not halt at d.6 There are two more possible cases

that may arise. The vector fields can have opposing signs or at least one of them can be

equal to zero. In the first case, the system will converge to d for any initial value starting in

the interior so one naturally thinks of asymptotic stability. In the second case, the system

will at least not move further away from d which is typically associated with Lyapunov

stability. Stability is generally acompanied by a zero phase but in the present case, there

is no phase defined and the limits from the left and right are often unequal to zero. To

ensure that the standard definitions of Lyapunuv- and asymptotic stability apply, recall

first that Lyapunov stability means that for a neighborhood B around d containing some

neighborhood B0, all forward orbits from B0 are contained in B, i.e. γ+(B0∩∆) ⊂ B (see

Weibull 1996, p. 244). Asymptotic stability additionally requires that the system always

converges to d ∈ B0.

Proposition 1 If ϕ
R
|[0,d) ≥ 0 and ϕ

R
|(d,1] ≤ 0, then ξ

R
(t∗, d) = d for all t ≥ t∗ and d is

Lyapunov-stable. If both inequalities hold strict, d is asymptotically stable.

Proof. Assume ξ
R

(0, θ) = d and ξ
R

(t, θ) 6= d for some t > 0. Then, from the mean value

theorem, it follows that ϕ
R
|d′ < 0 for some d′ < d or ϕ

R
|d′ > 0 for some d′ > d. Contra-

diction. Hence, d is stationary and, by assumptions on ϕ
R

, Lyapunov or asymptotically

stable.

Hence, although the vector fields are not continuous, the standard definitions of Lyapunov-

and asymptotic stability are still applicable.

3 The parallel game

Following the setup of the model, the replicator system for the parallel game is derived

by combining the replicator equations of the perfect and imperfect information setting. In

the perfect information case, all players may be in first or second mover position, each case

occurring with probability 1/2. According to their strategy, both types will trust in the

6The assumption seems reasonable because every perturbed process would imply that solution.
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trustworthy players which have a population share of θtR. Facing a trustworthy player, each

agent will receive r. If, however, the first mover faces an exploitive type, he will assure

himself a payoff of s, irrespective of his own type. The trustworthy types will always be

trusted and they will always reward. Thereby, their second mover expected payoff is r

while it is s for the exploitive types. The expected payoffs are given as

π(θR, θ
t) = 1/2

(
θtRr + (1− θtR)s

)
+ 1/2r (5)

π(θE, θ
t) = 1/2

(
θtRr + (1− θtR)s

)
+ 1/2s (6)

The replicator equation for the trustworthy types is obtained by plugging the expected

payoffs into equation (3). For the sake of simplicity, the term 1
2
θtR(1 − θtR) is abbreviated

by α. (
∂θtR
∂t

)1

= α(r − s) (7)

This function is clearly positive for all θtR, as, by assumption, θ0 ∈ int(∆) and r > s. Thus,

the fraction of trustworthy types approaches 1 if the players can perfectly discriminate

between both player types.7 In the case of imperfect information actions are dependent

on a threshold population share of trustworthy types which yields two different cases. The

expected payoff from trusting as a first mover is πi,1(T, ·) = θtRr, so the choice T is only

rational if θtR > s/r. Hence, the threshold level d stated in the strategies is θtR = s/r.

For θtR < s/r, no player shows trust and all players receive the same payoff, s. Hence

the replicator equation is zero. The case is different for θtR > s/r. The expected payoffs

are again the sum of interaction as first and second mover. In second mover position, the

rewarding types will receive r and the exploitive types will receive 1. The expected payoffs

are given as:

π(θR, θ
t) = 1/2θtRr + 1/2r (8)

π(θE, θ
t) = 1/2θtRr + 1/2 (9)

The replicator equation for the trustworthy types under imperfect information is the piece-

wise defined function: (
∂θtR
∂t

)0

=

{
0 if θtR < s/r

α(r − 1) if θtR > s/r
(10)

7This result is equivalent to Theorem 3.1 in Güth and Kliemt (1994).
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For all θtR > s/r, this function is strictly negative due to assumptions θ0 ∈ int(∆) and

1 > r. The fraction of trustworthy types will therefore converge toward θtR = s/r.8 Note

that s/r 6= 0 or 1 and hence α > 0. Note further that r − 1 6= 0. Hence, the limit of ϕ
R

from the left as θtR approaches d is zero, but the limit from the right is not and so the

vector field is discontinuous at that point. Besides this discontinuity, the population state

θtR = s/r is Lyapunov stable according to Proposition 1.

The replicator equation for the parallel game is obtained by combining functions (7)

and (10) via the weighting parameter λ ∈ (0, 1). The result is, again, a piecewise defined

function with a vector field discontinuity at the threshold level of trustworthy types:(
∂θtR
∂t

)λ
=

{
αλ(r − s) if θtR < s/r

α [λ(1− s) + r − 1] if θtR > s/r
(11)

The first part of this function is strictly positive as α, λ, and (r − s) are strictly positive.

Hence, for any population share of trustworthy types below the threshold level, their frac-

tion approaches θtR = s/r irrespective of λ. In the second case, θtR > s/r, the dynamics are

λ-dependent. The critical λ-value is obtained by setting the second part of the replicator

equation equal to zero which yields:

λ∗ =
1− r
1− s

(12)

Clearly, if both parts of equation (11) are positive, then the fraction of trustworthy types

approaches 1. Note however, that due to the discontinuity of the vector field at θtR = s/r

(= d) we need Assumption 1 to ensure that the system crosses d if θ0
R < d initially. If the

second part of the replicator equation is negative, then the fraction of trustworthy types

will converge to the interior solution θtR = s/r.

Theorem 1 For all θ0 ∈ int(∆), the fraction of trustworthy types approaches 1 if λ > λ∗

and θtR = s/r if λ < λ∗.

Proof. Let λ = λ∗+η and let η ∈ R be a sufficiently small real number so that λ ∈ (0, 1) ∀η.

The replicator equation for the trustworthy types in the case θtR > s/r becomes(
∂θtR
∂t

)λ
θt
R>s/r

= αη(1− s) (13)

8This result is equivalent to Theorem 3.2 in Güth and Kliemt (1994). The authors also show that the
introduction of trembles leads to an overall decline in the fraction of the trustworthy types.
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Since 1 > s, the equation is positive if η > 0 and negative if η < 0.

Both possible results are asymptotically stable. However, asymptotic stability of the

interior solutions is based on Proposition 1. The following bifurcation diagram with s = .33

and r = .66 summarizes all results of this section.9
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Figure 2: Bifurcation diagramm for equation (11)

For θtR equal to 0 or 1, all states are stationary. In the isolated imperfect information

case (λ = 0), θtR converges to s/r if initially above that value. If λ = λ∗ the fraction of

trustworthy types converges to s/r if initially below that value. In all other cases, the

system develops as described in Theorem 1. Four results should be pointed out. First,

trust and trustworthiness can prevail in a combined version of perfect and imperfect in-

formation. Second, even if interaction in personal networks is rarely frequent, the fraction

of trustworthy players converges toward an interior solution. Third, λ∗ and s/r both in-

crease in s and decrease in r. Hence, there is a kind of trade-off between a more risky

environment (“large“ λ∗ so the probability that λ < λ∗ increases) and a higher security

level s/r (players switch to non trusting behavior). Finally, it seems hard to reasonably

find out which payoff combinations stand for which kind of situations. But note, whenever

the payoff distance ‖1− r‖ equals the distance ‖r − s‖, then λ∗ = 1/2. So it is just the

more frequent form of interaction that decides if trust and trustworthiness prevail.

9Loosely speaking, a bifurcation occurs whenever the qualitative nature of the solution radically changes
when certain parameter values are crossed (see e.g. Hirsch, Smale, and Devaney 2004, chap. 1, 15). The
bifurcation diagrams plot several vertical phase lines for different parameter values of λ.
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4 The parallel game with trembles

It was argued in the introduction and model description, that personal relationships allow

players to discriminate between both player types just as if information were perfect. Of

course, players may believe they know the type of their co-player, but, in fact, they do not.

Modeling such failures in judgment will amount to the introduction of an error probability

ε for the perfect information setting. A misjudgment under perfect information is formally

identical to an unintentional choice, i.e. a tremble in the sense of Selten (1975). Trembles

under imperfect information are taken into account as well. However, just as in e.g. Güth

and Kliemt (1994), only first mover trembles are considered. Second movers are asked to

make such a simple choice that trembles seem relatively unreasonable.

The replicator equation for the parallel game with trembles is derived just as in the

last section by building the replicator equations for the perfect and imperfect information

setting and combining them via λ. Note that in the replicator equations the expected pay-

offs of both types are subtracted from one another. Since first mover payoffs are identical,

it is sufficient to derive the second mover expected payoffs. Under perfect information, a

trustworthy player will be trusted with probability (1−ε) and not trusted with probability

ε. An exploitive player receives s with probability (1−ε) and 1 with probability ε. Second

mover expected payoffs under perfect information are:

π2(θR, θ
t) = 1/2 [(1− ε)r + εs] (14)

π2(θE, θ
t) = 1/2 [(1− ε)s+ ε] (15)

Imperfect information payoffs are derived in a similar way. Again, there are two cases. For

θtR > s/r, second mover expected payoffs are given as:

π2(θR, θ
t) = 1/2 [(1− ε)r + εs] (16)

π2(θE, θ
t) = 1/2 [(1− ε) + εs] (17)

and for θtR < s/r:

π2(θR, θ
t) = 1/2 [(1− ε)s+ εr] (18)

π2(θE, θ
t) = 1/2 [(1− ε)s+ ε] (19)

11



The replicator equation for the perfect information takes the following form:(
∂θtR
∂t

)1

= α [r − s− ε(1 + r − 2s)] (20)

and the replicator equation for the imperfect information setting is the piecewise defined

function: (
∂θtR
∂t

)0

=

{
αε(r − 1) if θtR < s/r

α(1− ε)(r − 1) if θtR > s/r
(21)

Finally, the replicator equation for the parallel game with trembles is derived by combining

equations (20) and (21) which yields:(
∂θtR
∂t

)λ
=

{
α [λ(1− 2ε)(1− s)− (1− ε)(1− r)] if θtR < s/r

α [λ(1− 2ε)(r − s)− ε(1− r)] if θtR > s/r
(22)

First, one can observe that both parts of the imperfect information replicator equation

(21) are strictly negative, given that α, ε > 0 and r < 1. Hence, the overall fraction

of trustworthy types must approach zero if the perfect information equation (20) turns

negative.

Lemma 1 The fraction of trustworthy types will approach zero under perfect information

if ε > ε′ with

ε′ =
r − s

1 + r − 2s
(23)

Proof. Let η ∈ R be a sufficiently small real number and let ε = ε′ + η with η > 0.

The replicator equation for the trustworthy types under perfect information and trembles

becomes (
∂θtR
∂t

)1

= α(−η) (1 + r − 2s) (24)

This function is strictly negative as, by assumption, 1 > r > s, η > 0 and θ0 ∈ int(∆).

So if ε > ε′ any combination of the perfect and imperfect information setting must lead

the exploitive types to prevail. Now, and in difference to the case with no trembles, there

are two critical values of λ leading to bifurcations. Both are obtained by setting the first,
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respectively second, part of equation (22) equal to zero. The threshold level for θtR < s/r

is denoted by λ∗∗ and given as

λ∗∗ =
ε(1− r)

(1− 2ε)(r − s)
(25)

The threshold value for θtR > s/r is denoted λ∗∗∗ with

λ∗∗∗ =
(1− ε)(1− r)
(1− 2ε)(1− s)

(26)

By some manipulation of equations, it is possible to show that whenever ε < ε′, then

λ∗∗ < λ∗∗∗, i.e. some possible case dependencies drop out. Therefore, provided that ε < ε′

and neglecting cases where λ is equal to one of the threshold levels, there are three different

cases to consider. The cases depend on the relation of the true value of λ to both threshold

levels λ∗∗ and λ∗∗∗ identified above.

Theorem 2 Provided ε < ε′: For all θ0 ∈ int(∆), the fraction of trustworthy types ap-

proaches 1 if λ > λ∗∗∗, s/r if λ∗∗ < λ < λ∗∗∗, and 0 if λ < λ∗∗.

Proof. The proof consists of two parts. First it is shown that θtR converges to either 1 or

s/r whenever λ > λ∗∗. Then it is shown that θtR declines toward 0 if λ < λ∗∗.

λ∗∗∗ is a perturbed version of λ∗ stated in section 3. The perturbation term 1−ε
1−2ε

is

strictly positive because ε < 1/2 if ε < ε′.10 Thereby, the proof of Theorem 1 in section

3 will be qualitatively unaffected. So given that ε < ε′ and hence λ∗∗ < λ∗∗∗, it follows

directly that the fraction of trustworthy types will approach 1 whenever λ > λ∗∗∗ and

converges to θtR = s/r whenever λ∗∗ < λ < λ∗∗∗.

If λ < λ∗∗, transitivity implies that λ < λ∗∗∗. So θtR must approach s/r if initially

above that level. If the replicator equation for θtR < s/r is negative, then Assumption 1

guarantees that s/r is passed and θtR will decline toward zero. Now, let λ = λ∗∗ + η and

let η ∈ R be a sufficiently small real number so that λ ∈ (0, 1) ∀η. The replicator equation

for the trustworthy types in the case θtR < s/r becomes(
∂θtR
∂t

)λ
= αη(1− 2ε)(r − s) (27)

This equation is, by assumptions, strictly negative if η < 0 which is required in the theorem.

Hence, if λ < λ∗∗, the fraction of trustworthy players diminishes.

10Recall that ε′ = r−s
1+r−2s . Then I state 1

2 >
r−s

1+r−2s ⇔ 1 > r which is true.
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Each λ implies a unique outcome. Again, the vector field is discontinuous at θtR =

s/r so Assumption 1 may be needed to reach the boundaries of ∆, or, if the system

develops toward the interior solution, Proposition 1 is required to state asymptotic stability.

Trembles or misjudgments may lead to an overall decline of trustworthy players. To get a

better impression of the destabilizing influence of trembles, the following diagrams illustrate

the values of the critical tremble probability ε′ and the critical frequency of interaction

under personal relationships λ∗∗ for all possible values of s and r.

Figure 3: Tremble probability ε′.
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Figure 4: Frequency λ∗∗ with ε′ = 0.05

Both figures illustrate that trust and trustworthiness are relatively stable against trem-

bles in a combined perfect imperfect information environment. In figure 3, the surface is

the critical upper level of the tremble probability ε, so if trembles occur with a smaller

probability, then the development of θtR depends on λ. For reasonable tremble probabilities

of e.g. 2%, 5%, or maybe even 10%, a sure decline in the fraction of trustworthy types will

only occur if the distance ||r−s|| gets very ”small”. A similar result is highlighted in figure

4. The surface is the lower boundary for the interaction frequency under personal relation-

ships given a tremble probability of 5%. If the actual value of λ is below the surface, then

trustworthiness will diminish. However, one observes that this sure decline generally re-

quires very low interaction frequencies as long as ||r−s|| is not too ”small”. Hence, as long

as the tremble probability is reasonably low and the payoffs are well specified, the positive

support from interaction under perfect information can outweigh the effects of trembles. In

diffenerce to what was found in the last section, there is not the kind of trade-off between a

more risky environment and a higher security level. If s/r gets closer to 1, due to a smaller

distance ||r− s||, then the system also enters the regions where trembles indeed destabilize
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the population of trustworthy players. The following bifurcation diagram summarizes the

results with parameters set to s = .33, r = .66 and ε = .05.
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Figure 5: Bifurcation diagramm for equation (22)

5 Unawareness and a tendency to trust

This section will analyze the evolution of types if the trustworthy players are unaware

about the competitive nature of the game, or, if they have a tendency to trust. From

the perspective of a trustworthy player and in terms of utility, the game is cooperative

as rewarding yields a superior outcome compared to exploiting in second mover position.

This perspective may lead to two different kinds of failures. One possibility is that the

trustworthy players do not recognize that the game is competitive even in utility terms (it

is competitive in pecuniary terms anyway, but this is ignored by all players). Of course,

if they recognize that there are two distinct player types and that the non-trustworthy

players will always exploit in second mover position, then they understand that the game

is competitive in utility terms. However, from their perspective it might happen that

they judge exploitive second mover behavior as unintentional or at least expect that those

players will soon recognize that cooperative play is ”superior”. A second kind or failure is

based on psychological aspects. Players with a preference for the cooperative solution may

simply underestimate or even ignore the competitive nature because they ”want” the game

to be cooperative. They possibly ask themselves why those other people do not understand

15



that they are all better off if they cooperate. Alternatively, they might refuse to accept

that the world is competitive. Both aspects, unawareness or unconsciousness about the

competitive nature of the game and possible psychological aspects, lead to a tendency to

trust by the trustworthy players. As a consequence, they will trust in first mover position

although rationality implies to choose not to trust. This version is a possible setup of the

game with bounded rational players in the sense of Gigerenzer and Selten (2002) where

players apply simple heuristic rules in complex environments. In this light, the imperfect

information environment is complex and the trustworthy agents react to this complexity

by carrying out that choice, that appears to be the natural one. It is not assumed that

players are irrational. If they know that their co-player is not trustworthy, they will not

trust as a first mover. Hence, the strategies for perfect information and the strategy by the

exploitive players for imperfect information are left unchanged. In contrast, the strategy

of the trustworthy players under imperfect information is now defined as

s(θR) :
(
(1st) 7−→ T, (2nd) 7−→ R

)
. (28)

Obviously, for all population states with a fraction of trustworthy players above s/r, noth-

ing changes. Therefore, the second part of equation (11) derived in section 3 is unaffected

and the system behaves dependent on λ∗ as described in Theorem 1. What is affected

are the expected payoffs for θtR < s/r. Now, a trustworthy first mover will be rewarded

with probability θtR and exploited with probability (1 − θtR). In second mover position,

he will only get to move if the first mover is a trustworthy type. Otherwise, the game

ends immediately. The exploitive types will never show trust in first mover position and

hence receive a payoff of s. In second mover position, they can exploit a θtR-fraction of the

population because that fraction of players will (always) trust them. They do not get the

chance to act and receive s if the first mover is an exploitive type as well. The expected

payoffs are given as:

π(θR, θ
t) = 1/2

[
2θtRr +

(
1− θtR

)
s
]

(29)

π(θE, θ
t) = 1/2

[
s+ θtR +

(
1− θtR

)
s
]

(30)

The replicator equation for the trustworthy types under imperfect information becomes:(
∂θtR
∂t

)0

= α
(
2θtRr − θtR − s

)
(31)
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Combining equation (31) with equation (7) (perfect information) via λ and adding the

equation for the case θtR > s/r yields the replicator equation for the parallel game with

”unaware” trustworthy players:(
∂θtR
∂t

)λ
=

{
α [θtR(1− λ)(2r − 1) + λr − s] if θtR < s/r

α [λ(1− s) + r − 1] if θtR > s/r
(32)

The first part of the equation is in a stationary state whenever λ = λ′ with11

λ′ =
s− θtR(2r − 1)

r − θtR(2r − 1)
(33)

In order to avoid too much case dependencies, it is assumed that r > 1/2. Note

Lemma 2 For θtR < s/r, θtR approaches s/r if λ > λ′ and 0 if λ < λ′.

Proof. Let η ∈ R be a small real number and let λ = λ′ + η. The replicator equation for

θtR < s/r becomes (
∂θtR
∂t

)λ
= α(−η)

[
θtR(r − 1) + r(θtR − 1)

]
(34)

The inner square bracket term is strictly negative by assumptions θtR ∈ int(∆) and r ∈
(1/2, 1) and η enters the relationship with negative sign. Hence, the overall relationship

will be positive if η > 0 and negative if η < 0 which proves the Lemma.

The overall behavior of the system will depend on the position of λ with respect to λ∗

and λ′. For example, if θ0
R > s/r and λ < λ∗, then the fraction of trustworthy players will

approach θtR = s/r. Now it depends on the relationship of λ to λ′ whether the fraction

falls to zero or whether the interior state is stable. Note that λ∗ can be greater or smaller

than λ′ and that λ′ is a (decreasing) function of θtR. Summarizing all cases yields:

Theorem 3 For all θ0 ∈ int(∆), the fraction of trustworthy players will approach 1 when-

ever λ > max {λ∗, λ′}, s/r if λ′ < λ < λ∗ and 0 if λ < λ′.

11It is of course also possible to solve with respect to a value θ′. However, doing so and plugging θ′ into
λ′ yields λ′ = λ. Hence, if the system is in a restpoint because θt

R = θ′, then λ must have the value λ′.
It also works the other way around. If λ = λ′, then θt

R = θ′. Therefore, it is not necessary to solve for a
value θ′ and consider cases where θt

R is above or below that value.
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Proof. The theorem just combines the results of Theorem 1 and Lemma 2.

The main result of the analysis of the parallel game in section 3 was that, even if players

do not interact under personal relationships very often, the fraction of trustworthy players

develops at least to an interior solution. Being unaware about the competitive nature

of the imperfect information setting, or with trustworthy players having a tendency to

trust, this stability becomes dependent on λ and the distribution of types. The following

bifurcation diagrams illustrate the situation. In the left hand diagram, s = .33 and r = .66

so s+ r = 1. In the right hand diagram s = .5 and r = .75 so s+ r > 1. In order to focus

on the critical points, the horizontal λ-axis has been restricted to the interval [.25, .75].

All phase lines to the left or right of the chosen boundaries are identical to the respective

outer ones drawn in the diagrams.
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Figure 6: Bifurcation diagram,

s = .33, r = .66
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Figure 7: Bifurcation diagram,

s = .5, r = .75

As the illustrations highlight, a tendency to trust is quite dangerous for the trustworthy

types. In sharp contrast to the results of the previous sections, trust and trustworthiness

may only prevail if interaction under personal relationships is very frequent and, if it not

so frequent, if the initial share of trustworthy player is high.
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6 Conclusion

The model presented in this paper is, in a way, a catch-all model with respect to the ques-

tion whether trust and trustworthiness can survive in a competitive world. Under the label

of personal relationships, all aspects of e.g. repeated interaction have been summarized

with no further differentiation regarding for example interaction under different group sizes

or strategic behavior as the application of trigger strategies. Having made this abstraction

and under the assumption that personal relationships allow to discriminate between differ-

ent player types, the question whether trust and trustworthiness can prevail was analyzed

in a world with an infinitely large population and random interaction. The crucial parame-

ter in this model is the frequency with which players interact under personal relationships.

In the basic model, it was found that trust and trustworthiness do not diminish. Rather,

if the frequency of interaction under personal relationships is high, then a monomorphic

population with all players trusting and rewarding evolves. Otherwise, there is a stable in-

terior solution in which trusting and non-trusting, rewarding and exploitive behavior exist.

It was shown that the results are relatively stable against trembles for a wide variety of

payoff structures. Only if there is little gain from rewarded trust in comparison to showing

no trust (small distance between s and r), the trustworthy types will vanish. In contrast

to that, trustworthy types with a tendency to trust highly endanger their own survival

chances.

Of course, the crucial question is how high the real frequency of interaction under

personal relationships is. One may argue that most of our interaction takes place with

people we have some experience with, which would induce a high frequency. However,

an important aspect in the model is that all decisions are taken to be identical, e.g. all

contracts a company signs are of equal worth or all secrets we want to share are equally

important to us. This is surely not realistic. A company may have signed multiple contracts

of minor importance with little legal underpinning, i.e. by simply relying on their partners.

But this need necessarily induce the company to trust the same partners if higher costs or

risks are involved. In these cases it may instead rely on written contracts. The probability

the firm expects trust to be rewarded will be reflected in the length of the contract. In such

a case, the personal relationship exists, but it is irrelevant in the particular trust situation.

Hence, the frequency of interaction under personal relationships will be lower and the
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interior solution might emerge. After all, an overall success of trust and trustworthiness, as

well as their sure decline, seem relatively unreasonable. Additionally, the interior solution

allows for all behaviors to be present in the population while still being evolutionary stable.

Dealing with issues of human behavior rather than the evolution of genotypes, the interior

solution appears to be close to ”reality”.

Finally, the case of trustworthy players with a tendency to trust yields an interesting

insight. One may read a tendency to trust as getting too confident about the presence of

trustworthiness. Such an overconfidence is then exploited. But more frequent exploitation

may induce people to be more aware. If the unawareness of the trustworthy players is

removed, then their share will develop back toward the interior solution. In total, un-

awareness based on overconfidence could expand the interior solution to a set which is

characterized by cycling periods of more and less trustful behavior.
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