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The Erdős-Menger conjecture

for source/sink sets with disjoint closures

Reinhard Diestel

Erdős conjectured that, given an infinite graph G and vertex sets
A, B ⊆ V (G), there exist a set P of disjoint A–B paths in G and
an A–B separator X ‘on’ P, in the sense that X consists of a choice of
one vertex from each path in P. We prove the conjecture for vertex sets
A and B that have disjoint closures in the usual topology on graphs
with ends. The result can be extended by allowing A, B and X to
contain ends as well as vertices.

1. Introduction

The following conjecture of Erdős is perhaps the main open problems in infinite
graph theory:

Erdős-Menger Conjecture. For every graph G = (V, E) and any two sets

A, B ⊆ V there is a set P of disjoint A–B paths in G and an A–B separator

X consisting of a choice of one vertex from each of the paths in P.

The conjecture appears in print first in Nash-Williams’s 1967 survey [ 11 ] on
infinite graphs, although it seems to be considerably older. It was proved
by Aharoni for countable graphs [ 3 ], and by Aharoni, Nash-Willliams and
Shelah [ 2, 6 ] for bipartite graphs G with bipartition (A, B). As shown by
Aharoni [ 1 ], the bipartite result implies the conjecture for rayless graphs. The
current state of the art, including further partial results by other authors, is
described in Aharoni [ 4 ].

Our main result in this paper is the following:

Theorem 1.1. Every graph G satisfies the Erdős-Menger conjecture for all

vertex sets A and B that have disjoint closures in |G|.

Here, |G| denotes the topological space usually associated with G and its ends,
to be defined formally in Section 2. Although Theorem 1.1 is most naturally
stated in these terms, it can easily be rephrased without formally referring
to |G|: the sets A and B have disjoint closures in |G| if and only if A∩B = ∅
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and every infinite path in G can be separated from A or from B by a finite set
of vertices.

In [ 8 ] the Erdős-Menger conjecture has been generalized to sets A and B

that may include ends as well as vertices (in which case the paths in P may
be rays or double rays between these ends or vertices, and the separator X

may also contain ends from A or B), and proved in this more general form for
countable G. Theorem 1.1, too, generalizes in this way:

Theorem 1.2. Every graph G = (V, E, Ω) satisfies the Erdős-Menger conjec-

ture for all sets A, B ⊆ V ∪Ω that have disjoint closures in |G|.

(Here, V and Ω denote the set of vertices and ends of G, respectively.
The precise definitions of A–B paths and A–B separators for arbitrary sets
A, B ⊆ V ∪Ω are what one expects; see [ 8 ].)

Thus, formally, Theorem 1.1 is just a special case of Theorem 1.2. In the
interest of readability, however, we shall prove Theorem 1.1 directly, and merely
sketch its extension to ends. This extension, though not short, is not difficult
given the main result of [ 5 ] and the techniques from [ 8 ], and the main focus of
this paper is intended as a contribution towards the Erdős-Menger conjecture
itself.

2. Terminology and basic tools

The basic terminology we use is that of [ 7 ] – except that most of our graphs
will be infinite, and |G| will denote a certain topological space associated with
a graph G, not its order. Our graphs are simple and undirected, but the result
we prove can easily be adapted to directed graphs.

An infinite path that has a first but no last vertex is a ray ; a path with
neither a first nor a last vertex is a double ray . The subrays of a ray are its
tails. Any union of a ray R and infinitely many disjoint finite paths ending
on R but otherwise disjoint from R is a comb with back R; the starting vertices
of those paths are the teeth of the comb. (Note that the paths may be trivial,
ie. the teeth of a comb may lie on its back.)

Two rays in a graph G = (V, E) are equivalent if no finite set of vertices
separates them in G. The corresponding equivalence classes of rays are the
ends of G; the set of these ends is denoted by Ω = Ω(G), and G together
with its ends is referred to as G = (V, E, Ω). (The grid, for example, has one
end, the double ladder has two, and the binary tree has continuum many.)
We shall endow our graphs G, complete with vertices, edges and ends, with
a standard topology to be defined below. (When G is locally finite, this is
its “Freudenthal compactification”.) This topological space will be denoted
by |G|, and the closure in |G| of a subset X will be written as X. See [ 9 ] for
more background on ends and this topology.
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To define |G|, we start with G viewed as a 1-complex. Then every edge is
homeomorphic to the real interval [ 0, 1 ], the basic open sets around an inner
point being just the open intervals on the edge. The basic open neighbourhoods
of a vertex x are the unions of half-open intervals [x, z), one from every edge
[x, y ] at x; note that we do not require local finiteness here.

For ω ∈ Ω and any finite set S ⊆ V , the graph G − S has exactly one
component C = C(S, ω) that contains a tail of every ray in ω. We say that ω

belongs to C. Write Ω(S, ω) for the set of all ends of G belonging to C, and
E(S, ω) for the set of all edges of G between S and C. Now let |G| be the point
set V ∪Ω∪

⋃
E endowed with the topology generated by the open sets of the

1-complex G and all sets of the form

Ĉ(S, ω) := C(S, ω)∪Ω(S, ω)∪E′(S, ω) ,

where E′(S, ω) is any union of half-edges (x, y ] ⊂ e, one for every e ∈ E(S, ω),
with x ∈ e̊ and y ∈ C. (So for each end ω, the sets Ĉ(S, ω) with S varying over
the finite subsets of V are the basic open neighbourhoods of ω.) This is the
standard topology on graphs with ends. With this topology, |G| is a Hausdorff
space in which every ray converges to the end that contains it. |G| is easily
seen to be compact if and only if every vertex has finite degree.

A subgraph G′ = (V ′, E′) of G will be viewed topologically as just the
point set V ′ ∪

⋃
E′, without any ends. Then the closure G′ of this set in |G|

may contain some ends of G, which should not be confused with ends of G′.

We now list a few easy or well-known lemmas that we shall need in our
proofs. Let us start with two observations about the Erdős-Menger conjecture
itself. The first is that we may assume A and B to be disjoint:

Lemma 2.1. If G′ := G− (A∩B) satisfies the Erdős-Menger conjecture for

A′ := A \B and B′ := B \A, then G satisfies the conjecture for A and B.

Proof. Let X ′ be an A′–B′ separator on a set P ′ of A′–B′ paths in G′. Then
X ′ ∪ (A∩B) is an A–B separator on the set P ′ ∪ { (x) | x ∈ A∩B } of A–B

paths in G, where (x) denotes the trivial path with vertex x. �

We shall also need the following special case of the Erdős-Menger conjec-
ture, which can be reduced to finite graphs [ 10 ] and is covered by the results
in [ 5 ].

Lemma 2.2. The Erdős-Menger conjecture holds for A and B in G if every

set of disjoint A–B paths in G is finite.

Our next two lemmas are standard tools for infinite graphs.

Lemma 2.3. Let R ⊆ G be a ray, with end ω say, and X ⊆ V . Then ω ∈ X

if and only if G contains a comb with back R and teeth in X.
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Proof. If ω /∈ X, then ω has a neighbourhood Ĉ(S, ω) in |G| that avoids X. As
R ∈ ω, R has a tail in C. Then all the infinitely many disjoint paths that start
on this tail and end in X have to pass through the finite set S, a contradiction.

Conversely, if ω ∈ X then every C = C(S, ω) meets both R and X, and we
can construct the desired comb inductively by taking as S the (finite) union of
the X–R paths already chosen, and finding a new X–R path in C. �

A proof of the following lemma can be found in [ 9 ].

Lemma 2.4. Assume that G is connected, and let U ⊆ V be an infinite set of

vertices. Then G contains either a comb with |U | teeth in U or a subdivided

star with |U | leaves in U . (Note that if U is uncountable then the latter holds.)

3. Proof of Theorem 1.1

The basic idea for the proof of Theorem 1.1 is to reduce the problem to rayless
graphs, an early result of Aharoni [ 1 ]:

Lemma 3.1. (Aharoni 1983)
The Erdős-Menger conjecture holds for all graphs containing no infinite path.

We shall eliminate the infinite paths in our given graph G in three steps. In
the first two steps we eliminate the rays whose ends lie in A and B, respectively,
and in the third step we eliminate any remaining rays.

The first step consists of the following reduction lemma applied with
H := G and U := A and W := B.

Lemma 3.2. Let H = (V, E, Ω) be a graph, and let U, W ⊆ V be such that

U ∩W = ∅. Then there exist a subgraph H ′ = (V ′, E′,Ω′) of H containing W ,

and a set U ′ ⊆ V ′ with Ω′ ∩ U ′ = ∅ (where the closure U ′ is taken in |H ′|),
such that the Erdős-Menger conjecture holds for U and W in H if it holds for

U ′ and W in H ′.

After this first step, it remains to prove the Erdős-Menger conjecture for
A′ := U ′ and B = W in G′ := H ′. By Lemma 2.1, we may assume that
A′ ∩B = ∅. Since Ω′ ∩A′ = ∅ in |G′| as a result of the first application of the
lemma, we then have A′ ∩B = ∅. We may thus apply the lemma again with
H := G′ and U := B and W := A′, to obtain a subgraph G′′ = (V ′′, E′′,Ω′′)
of G′ that contains A′ and a set U ′ =: B′ such that Ω′′ ∩B′ = ∅.

Note that also Ω′′ ∩A′ = ∅ in |G′′|. For by Lemma 2.3 this is equivalent
to the non-existence of a comb in G′′ with teeth in A′. As any such comb
would also lie in G′, its existence would likewise imply Ω′ ∩A′ �= ∅ in |G′|, a
contradiction.

To this graph G′′ we then apply the following lemma as our third reduction
step (setting H := G′′ and U := A′ and W := B′):
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Lemma 3.3. Let H = (V, E, Ω) be a graph, and let U, W ⊆ V be such that

Ω∩ (U ∪W ) = ∅. Then H has a rayless subgraph H ′ ⊆ H containing U ∪W

such that the Erdős-Menger conjecture for U and W holds in H if it does in H ′.

Since the Erdős-Menger conjecture does hold in H ′ by Lemma 3.1, this com-
pletes the proof of Theorem 1.1.

It remains to prove Lemmas 3.2 and 3.3.

Proof of Lemma 3.2. Our first aim is to construct a subgraph H∗ ⊆ H such
that

(i) Ω∩U ∩H∗ = ∅ in |H|;
(ii) W ⊆ V (H∗);

(iii) for every component C of H −H∗, its set SC := NH(C) of neighbours
in H∗ cannot be linked to UC := U ∩ (V (C) ∪ SC) by infinitely many
disjoint paths in HC := H [V (C)∪SC ].

Our desired graph H ′ ⊆ H will be a supergraph of H∗.
We define H∗ by transfinite ordinal recursion, as a limit H∗ =

⋂
α�α∗ Hα

of a well-ordered descending family of subgraphs Hα indexed by ordinals. Let
H0 := H, and for non-zero limits α let Hα :=

⋂
β<α Hβ . For successor ordinals

α+1 we first check whether Ω∩U ∩Hα = ∅ in |H|, in which case we put α =: α∗

and terminate the recursion with H∗ = Hα. Otherwise pick ωα ∈ Ω∩U ∩Hα,
and let Sα be a finite set of vertices such that Ĉ(Sα, ωα) is an open neighbour-
hood of ωα in |H| that does not meet W . (Such a set Sα exists, as U ∩W = ∅
by assumption.) Put Cα := C(Sα, ωα), and let Hα+1 := Hα −Cα.

For any vertex v ∈ H−H∗ we record as α(v) := min{α | v ∈ Cα } the ‘time
it was deleted’. Note that, as ωα ∈ Hα, we have Cα ∩Hα �= ∅ for every α, so
the recursion terminates. Let us write C for the set of components of H −H∗.

H∗ satisfies (i) because H∗ = Hα∗ , and (ii) by the choice of the Sα and Cα.
To prove (iii), let a component C ∈ C be given. Suppose there is an infinite
family Pi = si . . . ui (i ∈ N) of disjoint SC–UC paths in HC . Let us show that
Lemma 2.4 yields a comb in HC with teeth in { si | i ∈ N } ⊆ SC . If not,
then HC contains an infinite subdivided star with leaves in this set; let v be its
centre and α := α(v). As v ∈ Cα but SC ⊆ V (H∗) ⊆ V (Hα+1) ⊆ V (H −Cα),
the finite set Sα separates v in H from the leaves of this star, a contradiction.
So HC contains the desired comb; let ω ∈ Ω denote the end of its back. Then
every basic open neighbourhood Ĉ(S, ω) of ω contains infinitely many si, and
hence also infinitely many Pi and their endvertices in U . Therefore ω ∈ U as
well as ω ∈ SC ⊆ H∗ in |H|, and thus Ω∩U ∩H∗ �= ∅ contradicting (i). This
completes the proof of (iii).

To expand H∗ to our desired subgraph H ′, we now consider the compo-
nents of H −H∗ separately. For every C ∈ C, there exist in HC a finite set PC

of SC–UC paths and an SC–UC separator XC on PC (by (iii) and Lemma 2.2).
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Let DC denote the set of all the components of HC −XC that meet UC , and
put D :=

⋃
C∈C DC . Then let

H ′ := H −
⋃

D and U ′ :=
(
U ∩V ′)∪ ⋃

C∈C
XC .

Let us show that Ω′ ∩U ′ = ∅ in |H ′|. If not, then by Lemma 2.3 there is a
comb K ′ in H ′ with teeth in U ′; let R be its back. Using the paths in

⋃
C∈C PC

(more precisely, their segments between XC and UC), we can extend K ′ to a
comb K in H with back R and teeth in U . Since every infinite subset of V (K)
has the end of R in its closure, our condition (i) implies that K meets H∗ in
only finitely many vertices. We may thus assume that K ⊆ C for some C ∈ C.
As R is also the back of K ′ ⊆ H ′, we thus have R ⊆ C ∩H ′. But the finite set
XC separates C ∩H ′ from UC in HC , and hence the back of K from its teeth
(a contradiction).

It remains to show that the Erdős-Menger conjecture holds for U and W

in H if it holds for U ′ and W in H ′. Assume the latter, and let P ′ be a set of
disjoint U ′–W paths in H ′ with a U ′–W separator X on it. Let P be obtained
from P ′ by appending to every P ∈ P ′ whose first vertex u′ in U ′ lies in U ′

�U ,
and hence in some XC , the XC–UC segment of the path in PC containing u′.
These segments will be disjoint for different u′, because different C ∈ C are
disjoint and the paths in PC are disjoint for each C. (We remark that u′ may
lie on XC for several C if u′ ∈ H∗, so the choice of C may not be unique.)

Thus, P is a set of disjoint U–W paths in H, and X consists of a choice of
one vertex from each path in P. It remains to show that X separates U from
W in H. So let Q be a U–W path in H. If Q ⊆ H ′ then its first vertex lies
in U ∩ V ′ ⊆ U ′, so Q links U ′ to W in H ′ and hence meets X. Suppose then
that Q has a vertex in H − H ′, and let z be its last such vertex. Then the
component D of H −H ′ containing z is an element of DC for some C ∈ C, so
NH(D) = XC ⊆ U ′. As W ⊆ V ′ and hence W ∩D = ∅, the vertex z is not
the last vertex of Q. But the vertex x following z on Q lies in H ′, and hence
in XC ⊆ U ′. So xQ joins U ′ to W in H ′ and hence meets X. �

For our proof of Lemma 3.3 we need the following lemma of Stein [ 12 ].
Let T be a finite set of vertices in a graph J . A T -path, for the purpose of this
paper, is any path whose endvertices lie in T , whose inner vertices lie outside T ,
and which has at least one inner vertex. Paths P1, . . . , Pk are said to be disjoint
outside some given Q ⊆ J if Pi ∩Pj ⊆ Q whenever i �= j.

Lemma 3.4. Let J be a graph, let T ⊆ V (J) be finite, and let k ∈ N. Then

J has a finite subgraph J ′ containing T such that for every T -path Q = s . . . t

in J that meets J − J ′ there are k distinct T -paths from s to t in J ′ that are

disjoint outside Q.
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A proof of Lemma 3.4 can be found in [ 8 ].

Proof of Lemma 3.3. As in the proof of Lemma 3.2, we start by construct-
ing a subgraph H∗ ⊆ H. This time, we require that H∗ satisfy the following
conditions:

(i) Ω∩H∗ = ∅ in |H|;
(ii) U ∪W ⊆ V (H∗);

(iii) for every component C of H −H∗, its set SC := NH(C) of neighbours
in H∗ is finite.

Again, our desired graph H ′ ⊆ H will be a supergraph of H∗.
We define H∗ recursively as before, putting H0 := H and Hα :=

⋂
β<α Hβ

for non-zero limits α. For successor ordinals α+1 we check whether Ω∩Hα = ∅
in |H|, in which case we put α =: α∗ and terminate the recursion with H∗ = Hα.
Otherwise we pick ωα ∈ Ω∩Hα and an open neighbourhood Ĉ(Sα, ωα) of ωα

in |H| that avoids U ∪W , which exists as Ω∩ (U ∪W ) = ∅ by assumption. We
finally let Cα := C(Sα, ωα) and Hα+1 := Hα −Cα.

For vertices v ∈ H −H∗ put α(v) := min {α | v ∈ Cα }. Write C for the
set of components of H −H∗, and let HC := H [V (C)∪SC ] for each C ∈ C.

As before, H∗ clearly satisfies (i) and (ii). To prove (iii), consider any
component C ∈ C. If SC is infinite, then HC contains a comb with teeth in SC

(as before). But then the back of this comb has its end in H∗, contradicting (i).
Therefore SC is finite, as claimed.

To expand H∗ to our desired subgraph H ′, we again consider the compo-
nents of H −H∗ separately. For each C ∈ C, denote by H ′

C the graph J ′ which
Lemma 3.4 returns on input J := HC and k := |SC |. We then define

H ′ := H∗ ∪
⋃

C∈C
H ′

C .

Let us show that H ′ is rayless. Suppose there is a ray R in H ′, say with
end ω ∈ Ω. Since H ′ contains from every component C of H −H∗ only (part
of) the finite subgraph H ′

C , R must have infinitely many vertices in H∗. But
then ω lies in the closure in |H| of this set of vertices and hence in H∗, contrary
to (i).

It remains to show that the Erdős-Menger conjecture holds for U and W in
H if it does so in H ′. Suppose there exist in H ′ a set P of disjoint U–W paths
and a U–W separator X on P. As H ′ ⊆ H, it suffices to show that X also
separates U from W in H. Suppose not, and let Q be a U–W path in H −X.
As Q starts and ends in H ′, and every segment of Q outside H ′ lies in some
C ∈ C, we can find a sequence of internally disjoint segments sQt of Q, each
with all its inner vertices in some C ∈ C (and at least one of these outside H ′)
and its endvertices s, t in SC , such that the union of these segments contains
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Q−H ′. Our aim is to replace each of these segments sQt ⊆ HC with an SC-
path Pst from s to t in H ′

C that avoids X: this will turn Q into a connected
subgraph of H ′ −X that contains both the starting vertex of Q in U and its
endvertex in W , contradicting our assumption that X separates U from W

in H ′.
For our choice of Pst, Lemma 3.4 offers k = |SC | different paths that are

disjoint outside sQt. Since Q avoids X, we can thus find Pst as desired if we
can show that X has fewer than k vertices in C. But every x ∈ X ∩V (C) lies
on a path Px ∈ P that links U to W , and hence by (ii) has at least two vertices
in SC . As these Px are disjoint for different x, X has at most |SC |/2 < k

vertices in C. �

4. Sketch of a proof of Theorem 1.2

The proof of Theorem 1.2 is basically a combination of the proof of Theorem 1.1
with some special techniques developed in [ 8 ]. Assuming familiarity with [ 8 ],
we describe in this section which difficulties arise when one adapts the proof of
Theorem 1.1 to ends, and how to deal with these difficulties. Our description
amounts to a sketch of a proof of Theorem 1.2 that should allow any reader to
reconstruct the details.

One formal problem with the proof of Theorem 1.2 is that the ends of the
subgraphs G′ and G′′ resulting from the first two reduction steps in our proof
of Theorem 1.1 are never, formally, ends of G. Thus if B contains ends as well
as vertices, it is not formally possible to require that B be contained in G′ (as
we do require in the first reduction step). What we shall prove instead is that

Every ray of an end ω ∈ B has a tail in G′, and all such tails (for

fixed ω) belong to the same end ω′ of G′.
(4.1)

We then have a map ω �→ ω′ from B ∩ Ω to Ω′, which is clearly injective.
Replacing any end ω in B with its image ω′ in Ω′, we may then require of G′

that V ′ ∪Ω′ should contain this amended set B. This problem does not arise
in the second reduction step, because A′ will consist of vertices only.

Alternatively, it would be possible to avoid considering ends of G′ and of
G′′ altogether, and instead work with the closures of these subgraphs in |G|.
This results in other formal complications.

Let us briefly address how the lemmas in Section 2 have to be adapted.
Lemma 2.1 remains unchanged. Lemma 2.2 will be replaced by the main re-
sult from [ 5 ], which implies that the Erdős-Menger conjecture with ends holds
whenever the source set A is countable. (This will be used in HC with SC as
the source set.) Lemma 2.3 adapts to ends in that the teeth of a comb and
the elements of X may now be either ends or vertices. Lemma 2.4 remains
unchanged, but we shall also need its uncountable version now (which always
gives a subdivided star).
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We now discuss how to adapt Lemma 3.2 and its proof. The statement
of the lemma changes in two respects. First, we shall have to contract rather
than delete some of the components D ∈ D, so the reduced graph H ′ will be
a minor rather than a subgraph of H. (Vertices of H that are neither deleted
nor affected by the contraction will be viewed as vertices of H ′.) Second, as
the set W ⊆ V ∪Ω cannot be required to lie in V ′ ∪Ω′ (as explained above),
it has to be replaced by a set W ′ ⊆ V ′ ∪Ω′ whose position in |H ′| reflects the
position of W in |H|.

Lemma 4.2. Let H = (V, E, Ω) be a graph, and let U, W ⊆ V ∪Ω be such

that U ∩ W = ∅. Then there exist a minor H ′ = (V ′, E′,Ω′) of H and sets

U ′, W ′ ⊆ V ′ ∪Ω′ that satisfy the following conditions:

(a) Ω′ ∩U ′ = ∅ (in particular, U ′ ⊆ V ′);

(b) if Ω∩W = ∅ then Ω′ ∩W ′ = ∅ (and in particular, W ′ ⊆ V ′);

(c) the Erdős-Menger conjecture holds for U and W in H if it holds for U ′

and W in H ′.

Condition (b) ensures that the gain of the first application of the lemma, that
Ω′ ∩A′ = ∅, is preserved in its second application (where W := A′).

To prove Lemma 4.2, we start by constructing a subgraph H∗ of H ex-
actly as in the proof of Lemma 3.2. As before, the termination rule for the
contruction of H∗ ensures that

(i) Ω∩U ∩H∗ = ∅ in |H|.

Now consider a component C of H −H∗. Its set of neighbours SC in H∗

must be countable, as otherwise Lemma 2.4 would give us an infinite (even
uncountable) subdivided star in HC with leaves in SC , with the same contra-
diction as before (as its centre v should be separated from SC by the finite
set Sα(v)). The fact that SC is countable enables us, by the main result of [ 5 ]
(which establishes the Erdős-Menger conjecture with ends for any graph G in
which A and B can be countably separated), to find in HC =: (VC , EC ,ΩC)
a set PC of disjoint SC–UC paths with an SC–UC separator XC on it, for any
set UC ⊆ VC ∪ΩC .

But how should we define UC now that U may contain ends of H? The
answer is the same as with B and H ′ before: there is a natural way in which
ΩC ‘contains’ the ends in Ω∩U that have a ray in HC . Indeed, if one ray R of
an end ω ∈ Ω∩U has a tail in HC then so does every other such ray R′, and
these tails of R and R′ are equivalent in HC . For since R and R′ are equivalent
in H, there are infinitely many disjoint paths in H between their tails. But
only finitely many of these paths can meet SC , since they would otherwise form
a comb with R or R′ that has its teeth in SC ⊆ H∗ but whose back lies in
ω ∈ U , contradicting (i). So we may take as UC the set U ∩ VC together with
the set of those ends of HC whose rays lie in U ∩Ω.
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Property (i) and the ends version of Lemma 2.3 now imply that the sets
PC and XC are actually finite, just as in the proof of (iii) for Lemma 3.2. If
XC consists of vertices only, we proceed as earlier: we delete the components
D of HC − XC that contain a vertex from UC or a ray from an end in UC .
Suppose now that XC also contains some ends (from UC). Then its vertices
alone still separate SC from all the vertices and ends in UC other than those
in XC . We then delete every component D of HC − (XC ∩ V ) that contains
a vertex from UC or a ray from an end in UC , and put its set of neighbours
(a subset of XC ∩ V ) in U ′. To separate off the ends in UC ∩XC , we expand
SC ∪ (XC ∩V ) to a finite set TC ⊆ VC that separates the ends in XC pairwise.
Now consider an end ω ∈ XC . By definition of TC , there is a unique compo-
nent Cω of HC −TC containing a ray from ω. Put Hω := H [V (Cω)∪TC ]; as
TC ⊇ SC , this is a subgraph of HC . In Hω, apply Lemma 3.4 with T := TC and
k := |TC |+ 2 to obtain a finite subgraph J ′ =: H ′

ω of Hω, and let Dω denote
the component of H −H ′

ω containing a ray from ω. Contract Dω to a single
vertex, and put this vertex in U ′. (This part of the proof is copied from the
proof of Lemma 5.2 in [ 8 ], and is explained there in more detail.) The proof
of condition (a) in Lemma 4.2 now follows Lemma 3.2: any comb with teeth
in U ′ can be modified into a comb in H with teeth in U (which may be ends)
that meets H∗ in infinitely many vertices, contradicting (i).

In order to satisfy (b), we have to define W ′ as explained earlier in the
context of condition (4.1). So W ′ consists of all the vertices in W , together with
those ends of H ′ that contain a ray from an end in W . For this to make sense
(and for (b) and (c) to hold) we have to prove that every end in W contains
such a ray, and that any two such rays from the same end in W are equivalent
in H ′. These assertions follow from the fact that no ray whose end lies in W is
contained in a component D that we deleted or contracted, and every such ray
meets only finitely many such components D. (Otherwise it contains infinitely
many vertices from U ′, and forms the back of a comb with teeth in U . But
this cannot happen since U ∩W = ∅.) With these precautions, any comb in
H ′ with teeth in W ′ (which may be ends) is also a comb in H with teeth in W ,
which implies (b).

The proof of (c) is not short, but it follows exactly the proof of [ 8, Lem-
ma 5.2 ]. This completes our sketch of the proof of Lemma 4.2.

Lemma 3.3 can be used for the proof of Theorem 1.2 unchanged.
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Mathematics of Paul Erdős II , Springer-Verlag Heidelberg 1997.

6. R. Aharoni, C.St.J.A. Nash-Willliams & S. Shelah, A general criterion for
the existence of transversals, Proc. London Math. Soc. 47 (1983), 43–68.

5. H. Bruhn, R. Diestel & M. Stein, The Erdős-Menger conjecture with ends
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