HAMBURGER BEITRÄGE ZUR MATHEMATIK

Heft 166
A Cantor-Bernstein theorem for paths in graphs
R. Diestel, Hamburg
C. Thomassen, TU Denmark

A Cantor-Bernstein theorem for paths in graphs

Reinhard Diestel \& Carsten Thomassen

Abstract

We give two short proofs of Pym's Cantor-Bernstein analogue for systems of disjoint paths in graphs.

The Cantor-Bernstein theorem says that if for two infinite sets A and B there are injective functions $A \rightarrow B$ and $B \rightarrow A$ then there is a bijection $A \leftrightarrow B$. As is well known, this can be rephrased (and very easily proved; see e.g. [4]) in terms of matchings in bipartite graphs (A, B). Pym [2, 3] proved the analogous result for disjoint paths between two vertex sets A and B in an arbitrary graph, the theorem restated below. While the proof in [2] is quite long, the one in [3] is short but indirect, applying the Rado Selection Principle to a suitably strengthened finite statement.

The purpose of this note is to give two short and direct proofs: one very simple proof by transfinite induction, and another which elaborates the first but avoids using the axiom of choice. The two proofs can be read independently.

Let us say that a set \mathcal{P} of paths in a graph G covers a set $U \subseteq V(G)$ if every vertex in U is the first or the last vertex of some path in \mathcal{P}. Any other terms or notation we use can be found in [1].

Theorem. Let $G=(V, E)$ be a graph, and let $A, B \subseteq V$. Suppose that G contains a set \mathcal{P} of disjoint $A-B$ paths covering A, and a set \mathcal{Q} of disjoint $A-B$ paths covering B. Then G contains a set of disjoint $A-B$ paths covering $A \cup B$.

First proof. Our aim is recursively to construct a transfinite sequence $\left(\mathcal{P}_{\alpha}\right)_{\alpha \leqslant \alpha^{*}}$ of sets of disjoint $A-B$ paths each covering A, so that $\mathcal{P}_{\alpha^{*}}$ also covers B.

For each α, every path $P \in \mathcal{P}_{\alpha}$ will have the form $P=a \ldots c \ldots b$, where $c=c(P)$ is some specified vertex on P. The initial segment $a \ldots c$ of P will always be an initial segment of some path in \mathcal{P}, and its final segment $c \ldots b$ will be a final segment of some path in \mathcal{Q}. We write A_{α} for the set of all vertices on such initial segments $a \ldots c$, ie. put $A_{\alpha}:=\bigcup_{P \in \mathcal{P}_{\alpha}} V(P c)$ where $P c$ denotes the initial segment $a \ldots c$ of P. Note that $A \subseteq A_{\alpha}$, since by assumption \mathcal{P}_{α} covers A.

For each α, every $b \in B$ will have an 'index' $i_{\alpha}(b) \in \mathbb{N}$, defined as follows. Given $b \in B$, let Q be the path in \mathcal{Q} ending at b. Let x be the last vertex of Q in A_{α}; this exists, because Q begins in $A \subseteq A_{\alpha}$. Then let $i_{\alpha}(b)$ be the length of $x Q$, the final segment of Q starting at x. (If \mathcal{P}_{α} happens to cover b, then $x Q$ coincides with the final segment $c \ldots b$ of the path in \mathcal{P}_{α} covering b.) We shall define the sets \mathcal{P}_{α} in such a way that for all $\beta<\alpha$ we have $i_{\beta} \leqslant i_{\alpha}$ (pointwise) and $i_{\beta}(b)<i_{\alpha}(b)$ for some $b \in B$. In particular, $i_{\beta} \neq i_{\alpha}$, giving $\left|\alpha^{*}\right| \leqslant \aleph_{0}^{|B|}$. Thus, our recursion will terminate.

We start the recursive definition of the \mathcal{P}_{α} with $\mathcal{P}_{0}:=\mathcal{P}$, putting $c:=b$ for each path. For the recursion step at successor ordinals $\alpha+1$, let $\mathcal{P}_{\alpha+1}$ be obtained from \mathcal{P}_{α} as follows. If \mathcal{P}_{α} covers B, put $\alpha=: \alpha^{*}$ and stop the recursion. Suppose now that some $b^{\prime} \in B$ does not lie on any path in \mathcal{P}_{α}. Let Q^{\prime} be the path in \mathcal{Q} ending in b^{\prime}, and let x be the last vertex of Q^{\prime} that lies on some path $P=a \ldots c \ldots b$ in \mathcal{P}_{α} (where $\left.c=c(P)\right)$. As $c \ldots b$ is a final segment of some path $Q \neq Q^{\prime}$ in \mathcal{Q} but x does not lie on any other path in \mathcal{Q}, the vertex x precedes c on P (Fig. 1). Let $\mathcal{P}_{\alpha+1}$ be obtained from \mathcal{P}_{α} by replacing P with $P^{\prime}:=a P x Q^{\prime} b^{\prime}$, and put $c^{\prime}=c\left(P^{\prime}\right):=x$.

Figure 1. Modifying $P \in \mathcal{P}_{\alpha}$ into $P^{\prime} \in \mathcal{P}_{\alpha+1}$

Clearly the new path P^{\prime} again has the required form $a \ldots c^{\prime} \ldots b^{\prime}$, and $\mathcal{P}_{\alpha+1}$ covers A. Moreover, we have $i_{\alpha+1}(b)>i_{\alpha}(b)$. Indeed, $i_{\alpha}(b)$ is the length of the final segment $c Q$ of the path $Q \in \mathcal{Q}$ ending in b. But $c Q$ avoids $\mathcal{P}_{\alpha+1}$, so the final segment $y Q$ of Q whose length is $i_{\alpha+1}(b)$ contains $c Q$ properly. Finally, we have $i_{\alpha+1} \geqslant i_{\alpha}$ on all of B, because $A_{\alpha+1} \subseteq A_{\alpha}$.

It remains to consider the limit step in our recursion. Let α be a non-zero limit ordinal, and assume that \mathcal{P}_{β} has been defined as required for all $\beta<\alpha$. Recall that when P is changed into P^{\prime} in the successor step, its initial segment $a \ldots c$ gets shorter. Thus, the path containing a given vertex $a \in A$ changes only finitely often as β approaches α. Hence for every a there is a path P starting in a that lies in \mathcal{P}_{β} for every β greater than some $\beta_{0}<\alpha$, and we take this path as the path in \mathcal{P}_{α} starting at a. To define the function $i_{\alpha}: B \rightarrow \mathbb{N}$, notice that for every $b \in B$ the value of $i_{\beta}(b)$ is bounded by the length of the path in \mathcal{Q} ending in b, and so again the values of $i_{\beta}(b)$ agree for all β greater than some $\beta_{0}<\alpha$ depending on b. We may thus take as i_{α} the pointwise limit of the functions $i_{\beta}(\beta<\alpha)$.

Formally, the path system constructed in the above proof depends on the choices of the uncovered vertex $b^{\prime} \in B$ made at each step in the recursion. One can show, however, that these choices influence only the (transfinite) route by which the proof arrives at the final path system: that system itself is actually independent of the choices made in its construction.

The above observation suggests that it should be possible to rewrite the proof in a way that does not appeal to the axiom of choice. This is indeed possible. In the following proof we define the paths of the final system directly. This complicates the proof somewhat, because we now have to show that our 'locally' defined paths are disjoint and cover B.

Second proof of the Theorem (avoiding AC).
We shall consider various families $\left(P_{a}\right)_{a \in A}$ of disjoint $A-B$ paths such that $a \in P_{a}$ for all a; let us call such a family an A-family. Every such path P_{a} will have a specified vertex $c=c\left(P_{a}\right)$ such that its initial segment $P_{a} c$ is contained in a path from \mathcal{P} and its final segment $c P_{a}$ is contained in a path from \mathcal{Q}. (For the paths $P \in \mathcal{P}$ we specify their last vertex as $c(P)$.) We shall write $\bar{P}_{a}:=P \stackrel{\circ}{c}$ for the initial segment of P_{a} up to but not including c.

If a vertex x lies on $\bar{P}_{a} \cap Q$ for some $Q \in \mathcal{Q}$, and replacing P_{a} with the path $P_{a}^{\prime}:=P_{a} x Q$ results in another A-family (which is the case iff $x Q \cap P_{a^{\prime}}=\emptyset$ for all $a^{\prime} \neq a$), we say that this new family is obtained from the old by a switch at x, and specify $c\left(P_{a}^{\prime}\right):=x$ (Fig. 2). Note that since x lies on at most one path P_{a} and on at most one $Q \in \mathcal{Q}$, this switch (i.e., the new A-family) is well defined just by the vertex x.

Figure 2. Changing P_{a} into P_{a}^{\prime} by a switch at x
Lemma. If $\left(P_{a}\right),\left(P_{a}^{\prime}\right),\left(P_{a}^{\prime \prime}\right)$ are A-families such that $\left(P_{a}^{\prime}\right)$ and $\left(P_{a}^{\prime \prime}\right)$ are each obtained from $\left(P_{a}\right)$ by a finite sequence of switches, then an A-family $\left(R_{a}\right)$ with $\bar{R}_{a}=\bar{P}_{a}^{\prime} \cap \bar{P}_{a}^{\prime \prime}$ for all a can be obtained from $\left(P_{a}\right)$ by a finite sequence of switches.

Proof of the lemma: Let $\left(P_{a}^{\prime \prime}\right)$ have been obtained from $\left(P_{a}\right)$ by switches at the vertices x_{1}, \ldots, x_{n} (in this order), with interim families $\left(P_{a}^{i}\right)$ after switching at x_{i}. Now consider the family $\left(P_{a}^{\prime}\right)$, and apply switches at x_{1}, \ldots, x_{n} (in this order) whenever possible. More formally, we ask for x_{1}, \ldots, x_{n} in turn whether x_{i} defines a switch in the A-family $\left(R_{a}^{i-1}\right)$ obtained from $\left(P_{a}^{\prime}\right)$ by switches at x_{1}, \ldots, x_{i-1} (whenever possible). If so, we perform this switch and call the resulting family $\left(R_{a}^{i}\right)$; if not, we leave the current family unchanged, ie. put $R_{a}^{i}:=R_{a}^{i-1}$ for all a. Induction on i shows that, for all i,

- $\bar{R}_{a}^{i-1}=\bar{P}_{a}^{i-1} \cap \bar{P}_{a}^{\prime}$ for all $a \in A$;
- x_{i} defines a switch in $\left(R_{a}^{i-1}\right)$ whenever $x_{i} \in \bar{R}_{a}^{i-1}$ for some a;
- $\bar{R}_{a}^{i}=\bar{P}_{a}^{i} \cap \bar{P}_{a}^{\prime}$ for all $a \in A$.

For $i=n$ this is yields the desired result with $R_{a}:=R_{a}^{n}$, completing the lemma.
We start our main proof by rewriting \mathcal{P} as an A-family $\left(P_{a}\right)_{a \in A}$. For each $d \in A$ separately, let x_{d} be the first vertex on P_{d} such that a suitable finite sequence of switches turns $\left(P_{a}\right)$ into an A-family $\left(P_{a}^{d}\right)_{a \in A}$ with $c\left(P_{d}^{d}\right)=x_{d}$. We claim that $\left(P_{a}^{a}\right)_{a \in A}$ is an A-family covering B.

Every path $P=P_{a}^{a}$ is taken from some A-family, and hence has a vertex $c=c(P)$ such that $P c$ is an initial segment of a path in \mathcal{P} and $c P$ is a final segment of a path in \mathcal{Q}. To show that the paths P_{a}^{a} are disjoint for different a, let $a^{\prime} \neq a$ and consider $P^{\prime}:=P_{a^{\prime}}^{a^{\prime}}$. It suffices to show that $c P \cap P^{\prime} c^{\prime}=\emptyset$, where $c^{\prime}:=c\left(P^{\prime}\right)$. The minimality of $x_{a^{\prime}}=c^{\prime}$ implies that $P^{\prime} c^{\prime} \subseteq P_{a^{\prime}}^{a}$. But $P_{a^{\prime}}^{a}$ lies in a common A-family with $P=P_{a}^{a}$, and hence avoids $c P$.

To show that the paths P_{a}^{a} cover B, consider any uncovered $b \in B$ and let Q be the path in \mathcal{Q} containing b. Let x be the last vertex of Q that lies on $P_{a}^{a}=: P$ for some $a=: a_{0}$. Then $x \in \bar{P}$, since otherwise $P \supseteq x Q \ni b$. Consider the finite set $A^{\prime}:=\left\{a \neq a_{0} \mid x Q \cap P_{a} \neq \emptyset\right\}$. By our lemma, there is a finite sequence of switches that turns \mathcal{P} into a family $\left(P_{a}^{\prime \prime}\right)$ such that $\bar{P}_{a^{\prime}}^{\prime \prime}=\bigcap_{d \in A^{\prime}} \bar{P}_{a^{\prime}}^{d}=\bar{P}_{a^{\prime}}^{a^{\prime}}$ for all $a^{\prime} \in A^{\prime}$. Since $x Q$ avoids all these $P_{a^{\prime}}^{a^{\prime}}$ and $x \in \bar{P} \subseteq \bar{P}_{a_{0}}^{\prime \prime}$, it follows that x defines a switch in $\left(P_{a}^{\prime \prime}\right)$. This switch produces an A-family containing the path $P x Q$ with $c(P x Q)=x \in \bar{P}$, contradicting the minimality of $c(P)=x_{a_{0}}$ on $P_{a_{0}}$.

References

1. R. Diestel, Graph Theory (2nd edition), Springer-Verlag 2000. http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/download.html
2. J.S. Pym, The linking of sets in graphs, J. London Math. Soc. 44 (1969), 542550.
3. J.S. Pym, A proof of the linkage theorem, J. Math. Anal. Appl. 27 (1969), 636638.
4. C. Thomassen, Infinite graphs, in (L.W. Beineke and R.J. Wilson, eds.): Selected Topics in Graph Theory 2, Academic Press 1983.

Reinhard Diestel
Mathematisches Seminar der Universität Hamburg
Bundesstraße 55
D - 20146 Hamburg
Germany
diestel@math.uni-hamburg.de

Carsten Thomassen Mathematical Institute Technical University DK - 2800 Lyngby Denmark
C.Thomassen@mat.dtu.dk

