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Abstract

We demonstrate that the fusion algebra of conformal defects of a two-dimensional
conformal field theory contains information about the internal symmetries of
the theory and allows one to read off generalisations of Kramers-Wannier du-
ality. We illustrate the general mechanism in the examples of the Ising model
and the three-states Potts model.
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Introduction

Kramers and Wannier found a high/low temperature duality for the Ising model [1] that
asserts that a correlator of Ising spins 〈σx1

· · ·σxn
〉 at inverse temperature β is equal to a

disorder correlation function 〈µx1
· · ·µxn

〉 at the dual inverse temperature β̃ =− 1
2
ln tanhβ.

In the disorder correlator, the couplings between neighbouring spins dual to the links of
n/2 lines, with each of the positions xk at the end of one of the lines, are chosen to be
antiferromagnetic (opposite to the standard ferromagnetic nearest-neighbour coupling).
This duality has since been considerably generalised, see e.g. [2, 3].

The significance of Kramers-Wannier duality lies in the fact that it relates the high-
temperature expansion (weak coupling regime) of a lattice model to its low-temperature
expansion (strong coupling regime) and thereby makes the latter accessible to perturbation
theory.

Kramers-Wannier-like dualities are also a useful tool in understanding the phase struc-
ture of a lattice model. At zero magnetic field, the Ising model has a critical point when
β = β̃. Its universality class is described by a two-dimensional conformal field theory (CFT)
with central charge c = 1

2
. Physical quantities like critical exponents can then be determined

by a CFT calculation, relating them to scaling dimensions of bulk fields. The critical Ising
model is self-dual under Kramers-Wannier duality, so that a correlator involving spin and
disorder fields is equal to another correlator in the same CFT, but with spin fields and
disorder fields interchanged.

It is clearly desirable to be able to read off the possible high/low temperature dualities
leaving a given critical model fixed solely from knowing its universality class, i.e., its CFT
description. In this letter, we provide such a method by relating order/disorder dualities of
CFT correlators to conformal defects. Not every defect can be used to establish a duality,
but only what we will call ‘duality defects’. Below we present a method that allows us
to identify such defects by studying the fusion algebra of all conformal defects. Duality
defects relate perturbations of a CFT in different marginal directions, thus allowing one to
explore the vicinity of a model in its moduli space, and they also relate different relevant
directions, allowing one to extend the order/disorder duality of the CFT to a genuine
high/low temperature duality away from the critical point.

Defects in the critical Ising model

Before exhibiting the underlying mechanism in generality, we investigate in some detail
the critical Ising model as a first non-trivial example. At central charge c = 1

2
the Virasoro

algebra has three unitary irreducible highest-weight representations, which we denote by
1, σ, ε. Their weights are h1 =0, hσ = 1

16
and hε = 1

2
. Correspondingly, there are three

primary bulk fields, the identity 1, the spin field σ(z) and the energy field ε(z), with
chiral/antichiral conformal weights (0, 0), ( 1

16
, 1

16
) and (1

2
, 1

2
), respectively.

Next, we introduce conformal defects. One can think of a conformal defect on a surface
as being obtained by cutting the surface along the defect line and re-joining the two sides of
the cut by an appropriate boundary condition, i.e. a prescription on how bulk fields behave
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a)

=
T (z) T (z)

b)

=
∑

intermed.
defects

φ(z)

φ(z)

Figure 1: A conformal defect is transparent to the stress tensor (a), while a bulk field φ
generically becomes a sum of disorder fields (b).

when crossing the cut. This prescription must preserve the conformal symmetry, i.e. both
the chiral and antichiral components T (z) and T̄ (z̄) of the conformal stress tensor must
vary continuously across the cut. In contrast, other bulk fields are permitted to exhibit a
more complicated behaviour. In fact, dragging a conformal defect across a bulk field other
than the stress tensor generally results in disorder fields, as illustrated in figure 1.

Because the defect line commutes with the stress tensor, it can be continuously deformed
without changing the value of a correlator. In this sense a conformal defect is tensionless.
Defect lines can only start and end on field insertions. Such fields are called disorder fields.
Since a defect is invisible to T and T̄ , disorder fields fall into representations of two copies
of the Virasoro algebra, just as the bulk fields do.

By an argument similar to one used in the analysis of conformal boundary conditions
[4], in the Ising model one finds three conformal defects [5]. They are labelled by the three
c = 1

2
irreps of the Virasoro algebra. The defect of type 1 is the trivial defect, in the presence

of which all fields are continuous. The ε-defect corresponds to a line of antiferromagnetic
couplings in the lattice realisation, while the σ-defect does not have a straightforward
lattice interpretation [6] and has long been overlooked. The appearance of the σ-defect
illustrates that a systematic analysis of a universality class, using CFT methods, can lead
to structural insight not obvious from studying a concrete lattice realisation.

In addition to the bulk fields 1, σ(z) and ε(z) we will also consider the disorder field
µ(z). Pairs of disorder fields µ(z1) and µ(z2) are joined by a defect line of type ε. A
disorder field has the same conformal weights as the spin field, i.e. ( 1

16
, 1

16
).

The results reported in this letter are obtained in the approach to CFT [7, 8] that is
based on topological field theory (TFT) in three dimensions. A chiral CFT can be described
by the boundary degrees of freedom of a three-dimensional topological field theory [9, 10].
The observables of the TFT are (networks of) Wilson lines. Each Wilson line is labelled
by a representation of the chiral algebra of the CFT, i.e., by 1, σ or ε in the example of the
Ising model. The vertices of the network of Wilson lines are labelled by intertwiners of the
corresponding representations. In the TFT formalism [7, 8], a CFT correlator on a surface
X (oriented, without boundary) with field insertions is described as follows: one first
constructs a three-manifold by taking an interval above each point of X, M =X × [1,−1].
The two boundary components X ×{1} and X ×{−1} support the two chiral degrees of
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σ

σ =

σ

σ
σε

Figure 2: The TFT-representation of the pulling a defect of type σ past a spin field.
Collapsing the circular σ-Wilson line on the rhs generates the TFT-representation of the
disorder field µ(z).

freedom of the CFT, respectively. At each field insertion on X, a Wilson line with the
corresponding label is inserted which runs along the interval [−1, 1], thus connecting the
two boundary components of M . A defect line on the surface X is described by a Wilson
line inserted on X ×{0}⊂M and labelled again by σ or ε, depending on the defect type.
Consider, for instance, the effect of pulling a σ-defect past a spin field σ(z) as in figure 1b.
This turns out to generate a disorder field µ(z) and an ε-defect. In the TFT formalism,
this process amounts to the identity in figure 2, which is then easily verified.

A straightforward calculation within the TFT-framework allows one to find the set of
rules summarised in figure 3 for taking defects past field insertions. In this figure, the
normalisation of the fields is chosen such that 〈σ(z) σ(w)〉= 〈µ(z) µ(w)〉= |z−w|−1/4 and
〈ε(z) ε(w)〉= |z−w|−2. Also, three-valent vertices between two σ-defects and one ε-defect
have been labelled with a suitably normalised intertwiner.

We can now obtain the first example for an order/disorder duality, the correlator of four
spin fields on the sphere. In this correlator we insert a small circular σ-defect, which changes

σ σ

ε

σ(z) µ(z)

a)

=
ε ε

σ σ

σ(z) µ(z)

b)

=

σ σ

ε(z) −ε(z)

c)

=

ε ε

σ(z) −σ(z)

d)

=

ε ε

ε(z) ε(z)

e)

=

ε ε

ε

ε
µ(z) µ(z)

f)

=

Figure 3: Taking defects of type σ and ε past field insertions. The TFT-representation of
a) is given in figure 2.
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Figure 4: Order/Disorder duality of a correlator of four spin fields on a sphere, and of two
spin fields on a torus, as induced by the σ-defect.

the value of the correlator by the quantum dimension dim(σ) =
√

2 of the representation
σ. Pulling the defect circle around the sphere and past the field insertions results in a
disorder correlator as shown in figure 4a. Using the rules of figure 3, it is easy to verify
that repeating this procedure removes the ε-defects and replaces the disorder fields again
by spin fields. This is the order/disorder duality of the Ising model on the sphere. The
rules in figure 3 immediately imply that when one studies duality on a torus, the non-trivial
topology results in a sum over several configurations, as illustrated in figure 4b.

The mechanism can be generalised to surfaces with boundaries. In the Ising model,
the boundary conditions are again labelled by the c = 1

2
irreps [4]: 1 and ǫ describe fixed

boundary conditions with ‘spin up’ and ‘spin down’, respectively, while σ describes the ‘free’
boundary condition. Owing to the Ising fusion rules σ ⋆1=σ ⋆ ǫ = σ and σ ⋆ σ = 1+ ε, a
σ-defect in front of a ‘spin up’ or a ‘spin down’ boundary condition can be replaced by
a ‘free’ boundary condition without defect, while a σ-defect in front of a ‘free’ boundary
condition yields the sum of a ‘spin up’ and a ‘spin down’ boundary condition. One thus
obtains the well-known duality of fixed and free boundary conditions [3].

So far, we have considered the order/disorder duality only at the critical point. However,
the rules listed in figure 3 also allow us to establish the duality away from the critical point.
For example, note that taking a σ-defect through the energy field ε(z) results in a change
of sign. Perturbing the CFT by ε(z) amounts to a change of temperature, and applying
the duality to each term in a perturbation series leads to the equality

〈

σ(x) σ(x′) e−λ
∫

ε(y) d2y
〉

=
〈

µ(x) µ(x′) eλ
∫

ε(y) d2y
〉

for the example of a two-point correlator on the sphere.

The general mechanism

We are now in a position to describe a general mechanism that works for all unitary rational
conformal field theories. For such models, there is a finite set of primary bulk fields φa(z).
One denotes the number of such fields transforming in representations i and j of the chiral
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and antichiral symmetries, respectively, by Zij. The matrix Z thus describes the modular
invariant torus partition function of the CFT.

We restrict our attention to conformal defects that preserve enough additional symme-
try to keep the model rational. We call a defect ‘simple’, iff it cannot be written as a sum
of other defects. The number of simple defects is given by tr(ZZt) [5, 8]. Let us denote
the set of simple defects by {Dα |α∈K} for some label set K, with the label for the trivial
defect denoted by ‘e’. In general, one must assign an orientation to a defect line.

Consider two simple defects running parallel to each other and with the same orienta-
tion. In the limit of vanishing distance they fuse to a single defect which is, in general, a
superposition of simple defects. This gives rise to a (not necessarily commutative) fusion
algebra of defects [5, 11], written schematically as

Dα ⊗ Dβ =
∑

γ∈K

N̂ γ
αβ Dγ .

In the TFT formalism, the general class of models we are studying now is described by an
algebra A in the category of representations of the chiral algebra of the CFT. Defects are
then described as bimodules of A, and the defect fusion rules above amount to decomposing
the tensor product over A of two bimodules into a direct sum of simple bimodules, which
can be performed explicitly. The bimodule describing the trivial defect De turns out to be
A itself. If the two parallel defects have opposite direction we write Dα ⊗D∨

β .
Two subsets of defects turn out to be of particular interest. The first one is the set G

of group-like defects. A defect X is called group-like, iff X⊗X∨ =De. One can show that
group-like defects are simple, so that G ⊆K. Further, for two group-like defects D and D′,
their fusion D⊗D′ is again group-like. This turns G into a (in general nonabelian) group
with unit De, via Dg ⊗Dh = Dgh and Dg−1 =D∨

g . From figure 1b we see that taking any
group-like defect past a bulk field results in a sum of bulk fields, since the only intermediate
defect that does occur is the trivial one, Dg ⊗D∨

g =De. Commuting a group-like defect
past all bulk fields in a correlator results in a correlator of different bulk fields, but having
the same value. Thus, group-like defects produce an internal symmetry of the CFT . For
the Ising model one has G = {1, ε}, a Z2 group, and from figure 3d we see that the defect
ε indeed acts by reversing the sign of the spin field.

The second and larger subset is formed by the duality defects . A defect X is a duality
defect, iff there exists another defect Y such that taking first X and then Y past a bulk
field results only in a sum of bulk fields, with no disorder fields present. In other words,
commuting X past all fields in an order correlator in general gives a disorder correlator.
However, subsequently commuting Y past all fields in this disorder correlator gives back an
order correlator. Thus, duality defects produce order-disorder dualities of the CFT. Using
the TFT formalism, one can establish the following simple characterisation of duality
defects: X is a duality defect, if and only if every simple defect in X ⊗X∨ is a group-like
defect. A detailed proof will be presented elsewhere. Clearly, the set D of simple duality
defects satisfies G ⊆D⊆K.

Note that in order to determine G and D in a given model, it suffices to know the fusion
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algebra of defects. In the Ising model one finds D= {1, σ, ε}=K. The duality defect σ
generates the original Kramers-Wannier duality.

The above discussion is limited to the critical point. However, suppose that for a given
duality defect Dα we can find a bulk field φ(z) such that taking Dα past φ(z) results in
another bulk field φ̃(z), rather than in a sum of bulk fields and disorder fields. (In the
Ising model, the field ε(z) has this property with respect to the defect labelled by σ, see
figure 3c.) Then the duality induced by Dα provides an equality between a correlator of
the CFT perturbed by

∫

φ(z) d2z and the dual correlator perturbed by
∫

φ̃(z) d2z.

The critical three-states Potts model

The critical three-states Potts model has central charge c =4/5 and corresponds to a D-
type model in the classification of Virasoro-minimal models. It has first been considered
in [12]. The number of simple conformal defects in this model is tr(ZZt) = 16 (and there
are 8 conformal boundary conditions). The defect fusion rules can be computed using
Ocneanu quantum algebras [5, 11], or weak Hopf algebras, or by TFT methods. The re-
sult can be summarised as follows. The set of defect labels can be written as K=Kx ×Ky

with Kx = S3 ∪{u+, u−} and Ky = {1, ϕ}, where S3 denotes the permutation group of three
symbols. The fusion product Dx,y ⊗Dx′,y′ =

∑

r∈x·x′

∑

s∈y·y′Dr,s is obtained by the follow-
ing rules. The product in Ky is given by Lee-Yang fusion rules ϕ ·ϕ =1 + ϕ, while the
product in Kx is described as follows. For p, p′∈S3, p · p′ is given by the product in S3,
and p ·uε = uε′ with ε∈{±1} and ε′ = ε sgn(p); finally, denoting the elements of S3 by
e (identity), p12, p13, p23 (transpositions), and p123, p132 (cyclic permutations), we have
u+ ·u+ =u− · u− = e + p123 + p312 and u+ ·u− = u− ·u+ = p12 + p13 + p23. Owing to the
presence of S3, the fusion algebra of defects is non-commutative in this model. One can
convince oneself that the group-like defects are G = {(p, 1) | p∈S3} and the duality-defects
are D= {(x, 1) | x∈Kx}.

The S3-structure of the group-like defects could again have been expected from the
lattice model realisation of the three-states Potts model; it amounts to a permutation of
the three possible values of the spin.

The critical three-states Potts model contains 12 primary bulk fields and 208 primary
disorder fields. Of these, we consider the energy operator E(z) of left/right conformal
weight (2

5
, 2

5
), the two spin fields S±(z) of weight ( 1

15
, 1

15
) and the two disorder fields Z±(z)

of the same weight, where Z+ generates a defect of type (p123, 1) and Z− one of type
(p132, 1). We find that taking a duality defect of type (uε, 1) through a spin field Sν(z), for
ε, ν ∈{±1}, generates a disorder field Zεν(z), and vice versa. Furthermore, taking Du±,1

past the energy field E(z) gives −E(z), so that the the order/disorder duality at the critical
point extends to a high/low temperature duality off the critical point.

Conclusions

We have demonstrated that the fusion algebra of defects in a CFT contains a lot of physical
information: Internal symmetries correspond to group-like defects, and the order/disorder
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dualities to duality defects. The analysis is carried out within CFT, it allows one to study
symmetry properties of universality classes of critical behaviour without reference to a
particular lattice realisation. To compute the dual correlator one must simply commute a
given duality defect past all field insertions. This procedure can be applied to correlators
on surfaces of arbitrary genus and even with boundary. Via conformal perturbation theory,
one can also identify high/low temperature dualities in the vicinity of the critical point.

To conclude, we mention that these considerations can also be applied to the free boson.
One then finds that T -duality is induced by duality defects, too. The defect line in this
example is labelled by the Z2-twisted representation of the U(1)-current algebra.
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