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Abstract

We compute the fundamental correlation functions in two-dimensional rational con-
formal field theory, from which all other correlators can be obtained by sewing: the
correlators of three bulk fields on the sphere, one bulk and one boundary field on
the disk, three boundary fields on the disk, and one bulk field on the cross cap. We
also consider conformal defects and calculate the correlators of three defect fields
on the sphere and of one defect field on the cross cap.
Each of these correlators is presented as the product of a structure constant and
the appropriate conformal two- or three-point block. The structure constants are
expressed as invariants of ribbon graphs in three-manifolds.
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1 Introduction and summary

This paper constitutes part IV of the series announced in [1], in which the relation [2, 3, 4]
between rational two-dimensional conformal field theory (RCFT) and three-dimensional topo-
logical quantum field theory (TFT) is combined with non-commutative algebra in modular
tensor categories to obtain a universal, model independent, construction of CFT correlation
functions. In the previous parts of the series, we concentrated on the description of correlators
without field insertions, i.e. partition functions [ I ], on the special features that arise when the
world sheet is unoriented [ II ], and on the case that the CFT is obtained as a simple current
construction [ III ]. In the present part we give the fundamental correlation functions of the
CFT, i.e. a finite set of correlators from which all others can be obtained [5,6,7] via sewing and
chiral Ward identities.

1.1 Correlators from sewing of world sheets

The correlators of a CFT should be single-valued functions of the world sheet moduli, like
the positions of the field insertions or, more generally, the world sheet metric. Further, the
correlators are subject to factorisation, or sewing, constraints. These constraints arise when a
world sheet is cut along a circle or an interval and a sum over intermediate states is inserted on
the cut boundaries. This procedure allows one to express a correlator on a complicated world
sheet (e.g. of higher genus) in terms of simpler building blocks. The fundamental building
blocks are [5, 6, 7] the correlators 〈ΦΦΦ〉 for three bulk fields on the sphere, 〈ΦΨ〉 for one bulk
field and one boundary field on the disk, 〈ΨΨΨ〉 for three boundary fields on the disk, and
〈Φ〉× for one bulk field on the cross cap. Actually, the requirement of covariance under global
conformal transformations determines each of these correlators up to the choice of a non-zero
vector in the relevant coupling space. The components of these vectors are called structure

constants .
Depending on what class of surfaces one allows as world sheets for the CFT, different sets

of these fundamental correlators (or, equivalently, structure constants) are required:

class of world sheets fundamental correlators

(1) oriented, with empty boundary 〈ΦΦΦ〉

(2) unoriented, with empty boundary 〈ΦΦΦ〉, 〈Φ〉×
(3) oriented, with empty or non-empty boundary 〈ΦΦΦ〉, 〈ΦΨ〉, 〈ΨΨΨ〉

(4) unoriented, with empty or non-empty boundary 〈ΦΦΦ〉, 〈ΦΨ〉, 〈ΨΨΨ〉, 〈Φ〉×

The factorisation of a given correlator into the fundamental building blocks is not unique.
Requiring that the different ways to express a correlator in terms of sums over intermediate
states agree gives rise to an infinite system of constraints for the data 〈ΦΦΦ〉, 〈ΦΨ〉, 〈ΨΨΨ〉,
〈Φ〉×. One way to define a CFT is thus to provide a collection of candidates for the fundamental
correlators that are required in (1) – (4) and show that they solve these factorisation constraints
and lead to single-valued correlators.

Holomorphic bulk fields (like the component T of the stress tensor) lead to conserved charges
and chiral Ward identities, which constrain the form of the correlation functions. Solutions to
the chiral Ward identities are called conformal blocks. In rational CFT the space of conformal
blocks for a given correlator is finite-dimensional. Another important consequence of rationality
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is that the fundamental correlators have to be given only for a finite collection of fields; for all
other fields they are then determined by the chiral Ward identities.

The conformal blocks that are relevant for the correlators on a given world sheet X are
actually to be constructed on the double X̂ of X. The surface X̂ is obtained as the orientation
bundle over X, divided by the equivalence relation that identifies the two possible orientations
above points on the boundary of X:

X̂ = Or(X)/∼ with (x, or) ∼ (x,−or) for x∈ ∂X . (1.1)

For example, if X is orientable and has empty boundary, then X̂ just consists of two copies of
X with opposite orientation. A correlator C(X) on the world sheet X is an element in the space
of conformal blocks on the double,

C(X) ∈ H(X̂) . (1.2)

This is known as the principle of holomorphic factorisation [8].
The conformal blocks on a surface Σ are generically multivalued functions of the moduli

of Σ. Upon choosing bases in the spaces H(Σ), the behaviour of the blocks under analytic
continuation and factorisation can be expressed through braiding and fusing matrices B and
F [9, 10, 11]. These matrices are in fact already determined by the four-point blocks on the
Riemann sphere. One can then express the constraints on the fundamental correlators coming
from factorisation and single-valuedness in terms of fusing and braiding matrices. It turns out
that there is a finite set of equations which the structure constants must obey in order to yield
a consistent CFT. These are the so-called sewing constraints [5, 6].

The first class of CFTs for which explicit solutions for the structure constants have been
calculated are the A-series Virasoro minimal models. The constants for 〈ΦΦΦ〉, 〈ΦΨ〉, 〈ΨΨΨ〉
and 〈Φ〉× are given in [12, 13, 14, 7], respectively. By now many more solutions are known;
pertinent references will be given at the end of sections 4.2 – 4.6, in which the calculation of the
individual structure constants in the TFT framework is carried out.

Remarkably, one can also obtain exact expressions for some of the fundamental correlation
functions in a few examples of non-rational CFTs in which the chiral algebra V is too small
to make all spaces of conformal blocks finite-dimensional. The most complete answers are
known for Liouville theory, see e.g. [15,16,17] and references cited therein. The structure of the
expressions found in this case is very similar to the Cardy case of a rational CFT. This similarity
might serve as a guideline when trying to extend aspects of the TFT-based construction beyond
the rational case.

1.2 Correlators from 3-d TFT and algebras in tensor categories

The sewing constraints form a highly overdetermined system of polynomial equations, which
is difficult to solve directly. Instead, one can try to identify an underlying algebraic structure
that encodes all information about a solution. In our TFT-based construction, this underlying
structure is an algebra A in a certain tensor category. The associativity of this algebra is in
fact a sewing constraint, applied to a disk with four insertions on the boundary. This turns
out to be the only non-linear constraint to be solved in the TFT approach; all other relevant
equations are linear.
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We will consider CFTs that can be defined on world sheets of type (3) or type (4). Each of
these two cases requires slightly different properties of the algebra A, but they can, and will,
be treated largely in parallel.

Our construction of CFT correlators takes two pieces of data as an input:

(i) The chiral algebra V.
This fixes the minimal amount of symmetry present in the CFT to be constructed. More
specifically, the holomorphic (and anti-holomorphic) bulk fields contain as a subset the
fields in V, and all boundary conditions and defect lines preserve V (with trivial gluing
automorphism).

We demand V to be a rational conformal vertex algebra and denote by Rep(V) its representa-
tion category. The properties 1 of V then imply that Rep(V) is a modular tensor category (see
section I:2.1 for definition, references and our notational conventions). To any modular tensor
category C one can associate a three-dimensional topological field theory TFT(C), see e.g. [19,20]
as well as section I:2.4 and section 3.1 below. The TFT supplies two assignments. The first,
E 7→H(E) associates to an (extended) surface E the space H(E) of states, a finite-dimensional

vector space. The second assignment takes a cobordism E
M
−→E ′, i.e. a three-manifold with

‘in-going’ boundary E and ‘out-going’ boundary E ′ together with an embedded ribbon graph,
and assigns to it a linear map Z(M): H(E)→H(E ′). In the case of Chern--Simons theory, the
state spaces of the TFT can be identified with the spaces of conformal blocks of the corre-
sponding WZW model [2]. In the case of three points on the sphere, for a general RCFT the
identification of the state spaces of the TFT with spaces of conformal blocks is a consequence
of the definition of the tensor product; for more general situations it follows by the hypothesis
of factorisation.

According to the principle (1.2), in order to specify a CFT we must assign to every world
sheet X a vector C(X) in H(X̂). This will be done with the help of TFT(C), by specifying for

every X a cobordism ∅
MX−→ X̂ and setting C(X) :=Z(MX). Since C =Rep(V) encodes all the

monodromy properties of the conformal blocks, the question whether the collection {C(X)} of
candidate correlators satisfies the requirements of single-valuedness and factorisation can be
addressed solely at the level of the category C. In particular, the analysis does not require the
knowledge of the explicit form of V or of the conformal blocks. The first input in the TFT
construction is thus

• a modular tensor category C

which determines in particular also TFT(C).
For the construction of the vector C(X)∈H(X̂) it is actually not necessary that C is the

representation category of a vertex algebra; only the defining properties of a modular tensor
category are used. The vertex algebra and its conformal blocks are relevant only when one
wishes to determine the correlators as actual functions . In particular, in those cases where
non-isomorphic vertex algebras have equivalent representation categories (as it happens e.g. for
WZW theories based on so(2n+1) at level 1 with n taking different values congruent modulo
8), the TFT approach yields the same link invariants in the description of the correlators. It

1 To be precise, V must obey certain conditions on its homogeneous subspaces, be self-dual, have a semi-
simple representation category, and fulfill Zhu’s C2 cofiniteness condition [18].
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is only after substituting multivalued functions for the conformal blocks that two such models
have different correlators as actual functions of moduli and insertion points.

(ii) An algebra A in C.
There are generically several distinct CFTs which share the same chiral algebra V, the
best known example being the A-D-E-classification of minimal models [21]. The additional
datum we need to specify the CFT uniquely is an algebra A in the tensor category C.

More precisely, what is needed is

• a symmetric special Frobenius algebra (see section I:3) for obtaining a CFT defined on
world sheets of type (3);

• a Jandl algebra, i.e. a symmetric special Frobenius algebra together with a reversion

(see section II:2), for obtaining a CFT defined on world sheets of type (4).

At the level of the CFT, specifying a symmetric special Frobenius algebra corresponds to
providing the structure constants for three boundary fields on the disk (denoted 〈ΨΨΨ〉 above)
for a single boundary condition. To obtain a Jandl algebra, one must [ II ] in addition provide a
reversion (a braided analogue of an involution) on the boundary fields that preserve the given
boundary condition.

Suppose now we are given such a pair (C, A) of data. The correlators CA of the conformal
field theory CFT(A) associated to this pair are obtained as follows. Given a world sheet X, one
constructs a particular cobordism MX, the connecting manifold [4] together with a ribbon graph
RX embedded in MX. The different ingredients of X, like field insertions, boundary conditions
and defect lines, are represented by specific parts of the ribbon graph RX, and also the algebra
A enters in the definition of RX; this will be described in detail in section 3. Next one uses
TFT(C) to define the correlator of CFT(A) on X as CA(X) :=Z(MX).

One can prove [V ] that the correlators supplied by the assignment X 7→CA(X) are single-
valued and consistent with factorisation or, equivalently, with its inverse operation, sewing.
This implies in particular that the fundamental correlators 〈ΦΦΦ〉, 〈ΦΨ〉, 〈ΨΨΨ〉 and 〈Φ〉×
obtained in this manner solve the sewing constraints.

We conjecture that, conversely, every CFT build from conformal blocks of the rational
vertex algebra V defined on world sheets of types (3) and (4) can be obtained from a suitable
pair (C, A) with C =Rep(V). This converse assignment is not unique: several different algebras
lead to one and the same CFT. This corresponds to the freedom of choosing the particular
boundary condition whose structure constants are used to define the algebra structure. All
such different algebras are, however, Morita equivalent.

For theories defined on world sheets of type (3), it has been advocated in [22, 23, 24, 25]
that aspects of the fundamental correlators are captured by the structure of a weak Hopf
algebra, respectively an Ocneanu double triangle algebra. Indeed, a weak Hopf algebra furnishes
(see [26], and e.g. [27] for a review) a non-canonical description of a module category over a
tensor category, i.e. of the situation that in our TFT-based construction is described by the
algebra A in the tensor category Rep(V).
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1.3 Plan of the paper

In section 2 we introduce the fusing matrices for the categories CA of A-modules and ACA of
A-bimodules. These are useful for obtaining compact expressions for the structure constants.
In section 3 the ribbon graph representation of field insertions is described. We will consider
three kinds of fields: boundary fields, bulk fields, and defect fields. By a boundary field we
mean either a field that lives on a boundary with a given boundary condition or a field that
changes the boundary condition. Likewise, a defect field can either live on a defect line of a
given type, or change the defect type. A bulk field can thus be regarded as a special type of
defect field, namely one that connects the invisible defect to the invisible defect.

In section 4 the ribbon invariants for the fundamental correlators 〈ΦΦΦ〉, 〈ΦΨ〉, 〈ΨΨΨ〉 and
〈Φ〉× are computed, as well as the correlators 〈ΘΘΘ〉 of three defect fields on the sphere, and
〈Θ〉× of one defect field on the cross cap. Up to this point the discussion proceeds entirely at
the level of the tensor category C, i.e. of the monodromy data of the conformal blocks.

We would also like to obtain the fundamental correlators as explicit functions of the field
insertion points. The necessary calculations, which are presented in section 6, require additional
input beyond the level of C, namely the vertex algebra V with representation category Rep(V)
and the notions of intertwiners between V-representations and of conformal blocks, as well
as the isomorphism between the state spaces of the TFT and the spaces of conformal blocks.
These additional ingredients are the subject of section 5. Unlike the mathematical prerequisites
employed in the earlier sections 2 – 4, some of this machinery is not yet fully developed in the
literature. However, in section 6 we only need the two- and three-point conformal blocks, which
are well understood.

The formulas which give our results for correlators of boundary fields Ψ , bulk fields Φ and
defect fields Θ are listed in the following table.

Ribbon Ribbon invariant Ribbon invariant Correlation
Correlator invariant in a basis in Cardy case A=1 function

〈ΨΨΨ〉 eq. (4.5) eq. (4.12) eq. (4.67) eq. (6.16)

〈ΦΨ〉 eq. (4.16) eq. (4.23) eq. (4.72) eq. (6.26)

〈ΦΦΦ〉 eq. (4.28) eq. (4.34) eq. (4.69) eq. (6.31)

〈ΘΘΘ〉 eq. (4.38) eq. (4.42) eq. (4.68) eq. (6.36)

〈Φ〉× eq. (4.48) eq. (4.52) eq. (4.76) eq. (6.42)

〈Θ〉× eq. (4.54) eq. (4.60) eq. (4.75) eq. (6.44)

Acknowledgements. We are indebted to N. Potylitsina-Kube for her skillful help with the
numerous illustrations. J.F. is supported by VR under project no. 621–2003–2385, and C.S. is
supported by the DFG project SCHW 1162/1-1.
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2 Fusing matrices for modules and bimodules

To exhibit the mathematical structure encoded by the bulk and boundary structure constants,
we make use of the concept of module [28, 29, 30, 26] and bimodule categories. As the main
focus of this paper lies on the computation of correlators, we do not develop the mathematical
formalism in all detail.

Given a tensor category C, a right module category over C comes by definition with a
prescription for tensoring objects of M with objects of C from the right,

⊗M : M×C → M . (2.1)

The tensor product ⊗M must be compatible with the tensor product ⊗ of C in the sense that
there are associativity isomorphisms

(M ⊗M U) ⊗M V ∼= M ⊗M (U ⊗V ) (2.2)

for U, V ∈Obj(C) and M ∈Obj(M), such that the corresponding pentagon identity is satisfied,
as well as unitality isomorphisms M ⊗M 1∼=M obeying appropriate triangle identities.

A bimodule category B is a straightforward extension of this concept, allowing both for a
left action of a tensor category C and a right action of a possibly different tensor category D,

⊗l
B : C × B → B and ⊗r

B : B ×D → B . (2.3)

The compatibility conditions of the different tensor products are given by associativity isomor-
phisms

U ⊗l
B (V ⊗l

B X) ∼= (U ⊗C V ) ⊗l
B X (left action) ,

(X ⊗r
B R) ⊗r

B S
∼= X ⊗r

B (R⊗D S) (right action) ,

U ⊗l
B (X ⊗r

B R) ∼= (U ⊗l
B X) ⊗r

B R (left and right action commute)

(2.4)

for U, V ∈Obj(C), R, S ∈Obj(D) andX ∈Obj(B). Again the various associators must fulfill the
corresponding pentagon identities, and again there are also unitality isomorphisms satisfying
triangle identities. In our application it is natural to take the category B to be a tensor category
as well; then there are also the corresponding additional associators and pentagon identities.

In section 4 we will see that the boundary structure constants encode the associator of a
module category, while the structure constants of bulk and defect fields give the associator of
a bimodule category. In the present section we define the expansion of these associators in a
basis. This gives the fusing matrices for modules and bimodules.

2.1 Fusing matrices for modules

The right module category relevant for our purposes is the category CA of left A-modules, where
A is an algebra in a tensor category C (see e.g. section I:4, or section 2.3 of [31]; we take C
to be strict.) Given a left A-module M =(Ṁ, ρ), we can tensor with any object U of C from
the right so as to obtain again a (generically different) left A-module M ⊗U = (Ṁ ⊗U, ρ⊗ idU)
(with all tensor products taken in C). This defines a right action ⊗: CA×C→CA.

We take A to be a symmetric special Frobenius algebra and C to be a modular tensor
category. Then also CA is semisimple and has a finite number of non-isomorphic simple objects
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[32, 33]. Let {Ui | i∈I} be a set of representatives of isomorphism classes of simple objects of
C and {Mκ | κ∈J} a set of representatives of isomorphism classes of simple left A-modules.
Thus lower case roman letters i, j, k, ... appear as labels for simple objects Ui, Uj , Uk, ... of C,
while lower case greek letters µ, ν, κ, ... from the upper range of the alphabet appear as labels
for simple A-modules Mµ,Mν ,Mκ, ... (later on, we will use such greek letters also for simple
bimodules).

As a first step towards defining the fusing matrices for CA we choose bases in the spaces
HomA(Mµ⊗Ui,Mν),

ψα(µi)ν := ∈ HomA(Mµ⊗Ui,Mν) .

Mµ

Mν

α

Ui

(2.5)

We do not restrict this choice of basis in any way, except for i= 0, i.e. when Ui = 1. In this
case we demand the basis element to be ψ(µ0)µ = idMµ . Both the basis morphisms (2.5) and the
basis morphisms λα(ij)k ∈Hom(Ui⊗Uj , Uk) that were chosen in (I:2.29) will be labelled by lower
case greek letters α, β, γ, ..., chosen from the beginning of the alphabet.

We also need bases in the spaces HomA(Mν ,Mµ⊗Ui), which we denote by {ψ̄
(µi)ν
α }. We

choose these bases such that they are dual to the ψα(µi)ν in the sense that ψα(µi)ν ◦ψ̄
(µi)ν
β = δα,β idMν .

Just as for the morphisms λα(ij)k in (I:2.31), owing to the semisimplicity of CA the morphisms
ψα(µi)ν obey the completeness relation

∑

κ∈J

Aiµ
κ∑

α=1

Mµ

Mµ

Mκ

α

ᾱ

Ui

Ui

=

Mµ

Mµ

Ui

Ui

(2.6)

Here we abbreviate the dimension of the morphism space HomA(Mµ⊗Ui,Mκ) by Aiµ
κ; according

to proposition I:5.22, these non-negative integers give the annulus coefficients of the CFT.
The fusing matrices G[A] relate two different bases of the space HomA(Mµ⊗Ui⊗Uj ,Mν).

We denote these bases by {b
(1)
ακβ} and {b

(2)
γkδ}, with the individual vectors given by

Mκ

Mµ

Mν

α

β

Ui Uj Mµ

Mν

γ

δ

Ui

Uk

Uj

b
(1)
ακβ := and b

(2)
γkδ := (2.7)
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Let us verify that these are indeed bases. Linear independence can be seen by composing with
the corresponding dual basis elements. Completeness of {b(1)ακβ} is seen by applying (2.6) twice.

A similar reasoning establishes completeness of {b
(2)
γkδ}. Also note that there are

∑
κ Aiµ

κAjκ
ν

basis elements of type b(1) and
∑

kNij
kAkµ

ν basis elements of type b(2). That these two numbers
are indeed equal has been established in theorem I:5.20(v). In CFT, equality of the two sums
means that the annulus coefficients furnish a NIMrep of the fusion rules [34, 22, 35].

The fusing matrix of the module category CA describes a change of basis from b(1) to b(2).
There exists a unique set of numbers G[A]

(µij) ν
ακβ,γkδ such that

Mκ

Mµ

Mν

α

β

Ui Uj Mµ

Mν

γ

δ

Ui

Uk

Uj

=
∑

k∈I

Akµ
ν∑

γ=1

Nij
k∑

δ=1

G[A]
(µij) ν
ακβ,γkδ (2.8)

We denote the fusing matrix arising here by G[A] rather than by F[A], because in the Cardy
case A=1 it reduces to the inverse fusing matrix G of C, see (I:2.40). By composing (2.8) with

the basis of HomA(Mν ,Mµ⊗Ui⊗Uj) dual to {b
(2)
γkδ}, one arrives at the following ribbon invariant

for G[A]:

G[A]
(µij) ν
ακβ,γkδ

Mν

Mν

=
Mµ

Mκ

α

β

γ̄

Mν

Mν

Ui

Uk

Uj

δ̄ (2.9)

A possibility to compute these numbers is to first find all simple A-modules Mµ by decomposing
induced modules (see section I:4.3), which is a linear (and finite) problem. Next one needs to
identify the spaces HomA(Mµ⊗Ui,Mν) as subspaces of Hom(Ṁµ⊗Ui, Ṁν). This can be done
by finding the eigenspaces of the projector f 7→ f that takes a morphism f ∈Hom(Ṁµ⊗Ui, Ṁν)
to its A-averaged morphism f , which is known to lie in the subspace HomA(Mµ⊗Ui,Mν), see
definition I:4.3 and lemma I:4.4. This is again a linear problem. These ingredients suffice to
evaluate (2.9).
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By construction, the matrices G[A] solve the pentagon relation

µ i j k

ν

κ

λ

µ i j k

ν

p

λ

µ i j k

ν

p

q

µ i j k

ν

κ r

µ i j k

ν

q

r

G[A]

G[A]

G[A]

G[A]

GF (2.10)

Explicitly, this pentagon reads

∑

ε

G[A]
(κjk) ν
α2λα3 , εrδ2

G[A]
(µir) ν
α1κε , γ1qδ1

=
∑

p

∑

β1,β2,γ1

G[A]
(µij)λ
α1κα2 , β1pβ2

G[A]
(µpk) ν
β1λα3 , γ1qγ2

G
(ijk) q
β2pγ2 , δ1rδ2

.
(2.11)

If one prefers the fusing matrix F of C to appear directly, rather than its inverse G, one may
rewrite this in the form

∑

β1

G[A]
(µij)λ
α1κα2 , β1pβ2

G[A]
(µpk) ν
β1λα3 , γ1qγ2

=
∑

r

∑

δ1,δ2,ε

G[A]
(κjk) ν
α2λα3 , εrδ2

G[A]
(µir) ν
α1κε , γ1qδ1

F
(ijk) q
δ1rδ2 , β2pγ2

.
(2.12)

When all morphism spaces involved are one-dimensional, these relations simplify considerably,
e.g. (2.11) reads

G[A]
(κjk) ν
λ , r G[A](µir) νκ , q =

∑

p

G[A](µij) λκ , p G[A]
(µpk) ν
λ , q G(ijk) q

p , r . (2.13)

Remark 2.1 :

(i) The fusing matrices G[A] (or rather, their inverses F[A]) also appear in an approach to CFT
based on graphs and cells [22,23], where the notation (1)F is used. The (1)F are required to solve
a pentagon relation; the corresponding equation for G[A] is (2.11). In fact, the associativity
conditions between the categories C, CA and ACA give rise to a number of pentagon relations,
called the “Big Pentagon”, for the corresponding associators. The associators and the pen-
tagon relations can be visualised using cells (known as Ocneanu cells) [36,37], and can also be
interpreted in terms a 2-category with two objects, see e.g. [27] for more details.
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(ii) As observed for the Cardy case A=1 in [14, 38], and for the general case in [39], the pen-
tagon for G[A] is equivalent to the sewing (or factorisation) constraint [6] for four boundary
fields on the upper half plane. If Ψµνa denotes a boundary field which changes a boundary
condition described by the A-module Mν to Mµ (looking along the real axis towards +∞) and
has chiral representation label a, the boundary OPE symbolically takes the form

Ψµνa Ψ νκa =
∑

c

cµνκabc Ψ
µκ
c , (2.14)

where the constants cµνκabc are the OPE coefficients 2. Factorisation of the correlator of four
boundary fields leads to the constraint [6]

cµνκabf c
µκρ
fcd =

∑

c

cνκρbce c
µνρ
aed F

(a b c)d
e f . (2.15)

By relation (2.12), this equation in the unknowns c is solved by

cµνκabc = G[A](µab) κν , c , (2.16)

where again all multiplicity labels are omitted.
And indeed, when evaluating the corresponding ribbon invariant in (4.8) below, one finds the
explicit expression (4.12) for the coefficient occurring in the correlator of three boundary fields.
This expression implies 3 (2.16). We thus arrive at the conclusion that the boundary OPE
coefficients are given by the 6j-symbols of the module category CA.

2.2 Fusing matrices for bimodules

The bimodule category that is needed for the description of the bulk structure constants is
of the form 4 C ×B×C→B. Here C denotes the tensor category dual 5 to C in the sense that
if C = (C,⊗) then C =(C,⊗opp). Denoting the quantities in C with a bar, this means that
U =U and U ⊗V = V⊗U . The bimodule category B of interest here is the category ACA of
A-bimodules, see definition I:4.5.

For the action of C and C on ACA there are, in each case, two possibilities. Let us start with
⊗l

B: C × ACA→ ACA. Given an object U of C and an A-bimodule X =(Ẋ, ρl, ρr), we define the
bimodules U ⊗±X as

U ⊗+X := (U⊗Ẋ, (idU⊗ρl) ◦ (c −1
U,A⊗idX), idU⊗ρr) and

U ⊗−X := (U⊗Ẋ, (idU⊗ρl) ◦ (cA,U⊗idX), idU⊗ρr) ,
(2.17)

2 With all multiplicity labels and coordinate dependence in place, one obtains an equation of the form
(I:3.11).

3 In (4.12) the combination c
κνµ

jik̄
c
µκµ

kk̄0
appears because it describes a three-point correlator, rather than an

OPE coefficient.
4 As mentioned in section 1.1, we treat here only theories defined on surfaces of types (3) and (4). When one

does not include surfaces with boundary, one can also consider heterotic theories, in which case more general
bimodule categories C ×B×D→B occur.

5 The dual of a tensor category (C,⊗) is e.g. defined in section 6.2 of [31], where it was taken to be (Copp,⊗)
rather than (C,⊗opp). These two categories are tensor equivalent via the functor ?∨, i.e. by taking the duals of
objects and morphisms.
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respectively. (In graphical notation, for ⊗+ the U -ribbon passes above the A-ribbon, while
for ⊗− it passes below.) We take the functor ⊗l

B to be given by ⊗+. Similarly we can define
bimodules X ⊗±U when tensoring with U from the right as

X ⊗+ U := (Ẋ⊗U, ρl⊗idU , (ρr⊗idU) ◦ (idX⊗cU,A)) and

X ⊗− U := (Ẋ⊗U, ρl⊗idU , (ρr⊗idU) ◦ (idX⊗c
−1
A,U)) ,

(2.18)

respectively. (In graphical notation, again for ⊗+, U passes above A, while for ⊗−, it passes
below.) We take the functor ⊗r

B to be given by ⊗−.
The reason for choosing the actions of C and C on ACA in this particular way is that

defect fields are to be labelled by elements of the space HomA|A(U ⊗+X ⊗− V, Y ) of bimod-
ule morphisms between the A-bimodules U⊗+X⊗−V and Y . In [ I , II ] instead the space
HomA|A(X⊗−V, Y⊗+U∨) of bimodule morphisms was used. These two spaces are canonically
isomorphic; an isomorphism can be given as follows.

Lemma 2.2 :
The mapping

ϕ : HomA|A(X ⊗− V, Y ⊗+ U∨) → HomA|A(U ⊗+X ⊗− V, Y ) (2.19)

given by
ϕ(f) := (d̃U ⊗ idY ) ◦ (idU ⊗ [cY,U∨ ◦ f ]) (2.20)

is an isomorphism.

Proof:
That ϕ(f) commutes with the left and right action of A follows by a straightforward use of the
definitions. Further, one readily checks that the map ϕ̃ acting as

ϕ̃(g) := c −1
Y,U∨ ◦ (idU∨ ⊗ g) ◦ (b̃U ⊗ idX ⊗ idV ) (2.21)

for g ∈HomA|A(U⊗+X⊗−V, Y ) is left and right inverse to ϕ. X

It follows from proposition I:4.6 that the category of A-bimodules is isomorphic to the
category of left modules over the algebra A⊗Aop. Since A is a symmetric special Frobenius
algebra, so is A⊗Aop. It follows that the category of A⊗Aop-modules is semisimple, and hence

ACA is semisimple, too. Let us choose a set of representatives {Xκ | κ∈K} of isomorphism classes
of simple A-bimodules.

The algebra A is called simple iff it is a simple bimodule over itself or, equivalently, iff
Z(A)00 =1, see definition 2.26 and remark 2.28(i) of [31] for details. If A is simple, then we
choose the representatives of simple modules such that X0 =A.

Further, we choose bases {ξα(iµj)ν} of the spaces HomA|A(Ui⊗
+Xµ⊗

−Uj , Xν), with graphical
representation

ξα(iµj)ν =:

Ui Xµ

Xν

α

Uj

(2.22)
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For the special case i= j= 0 we choose ξ(0µ0)µ = idXµ . The number of elements in the basis

{ξα(iµj)ν} of HomA|A(Ui⊗
+Xµ⊗

−Uj , Xν) is denoted by Z
Xµ|Xν
ij ; more generally, for any two A-

bimodules X and Y we set

Z
X|Y
ij := dim HomA|A(Ui⊗

+X⊗−Uj , Y ) = dim HomA|A(X⊗−Uj , Y⊗
+Uı̄) ; (2.23)

the second equality follows from lemma 2.2 together with U∨
i
∼=Uı̄. We denote the basis elements

dual to (2.22) by ξ̄
(iµj)ν
α ∈HomA|A(Xν , Ui⊗

+Xµ⊗
−Uj); they obey

ξα(iµj)ν ◦ ξ̄
(iµj)ν
β = δα,β idXν and

∑

ν∈K

Z
Xµ|Xν
ij∑

α=1

ξ̄(iµj)ν
α ◦ ξα(iµj)ν = idUi ⊗ idXµ ⊗ idUj (2.24)

The definition (2.23) of Z
X|Y
ij is in accordance with the definition via the ribbon invariant

(I:5.151), as can be seen by inserting the second identity of (2.24) into the ribbon graph (I:5.151)

and using Z
X|Y
00 = dim HomA|A(X, Y ). The numbers Z

X|Y
ij also have a physical interpretation;

they describe the torus partition function with the insertion of two parallel defect lines [40,24];
see section I:5.10 for details.

To motivate the definition of the fusing matrices for B= ACA, let us have a look at the left
action of C on B. By semisimplicity, the isomorphism (Xµ⊗

r
BU i)⊗

r
B U j

∼=Xµ⊗
r
B (U i⊗U j) on

objects gives rise to an isomorphism

⊕

κ

HomB(Xµ⊗
r
B U i, Xκ) ⊗ HomB(Xκ⊗

r
B U j , Xν)

∼=
−→

⊕

k

HomB(Xµ⊗
r
B Uk, Xν) ⊗ HomC(U i⊗U j , Uk)

(2.25)

of morphism spaces. By definition, the space HomC(U i⊗U j, Uk) of morphisms in C is equal to
the morphism space HomC(Uj⊗Ui, Uk) in C, while HomB(Xµ⊗

r
BU i, Xκ) =HomA|A(Xµ⊗

−Ui, Xκ)
etc. We would still like to describe the isomorphism (2.25) with the help of the graphical
representation of morphisms in the ribbon category C. To this end we need a visualisation for
morphisms in C. A natural possibility is to represent them graphically by coupons that face
the reader with their back side. Thus, using dashed lines for ribbons with back side facing the
reader (see the beginning of section II:3 for conventions), we have

U

W

f

V

=

U

W

f

V

(2.26)

for f ∈HomC(U ⊗ V ,W ) =HomC(V⊗U,W ), where on the left hand side the coupon labelled
by f is showing the black side to the reader while on the right hand side it is showing its white
side.
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After these preliminaries we are ready to give the definition of the fusing matrices F[A|A]
of the bimodule category ACA. We have

Ui Uj

Xκ

Xµ

Xν

α

β

Uk Ul Ui Uj

Uq1

Xµ

Xν

γ

Uq2

Uk

δ1 δ2

Ul

=
∑

q1,q2∈I

Z
Xµ|Xν
q1q2∑

γ=1

Nij
q1∑

δ1=1

Nij
q2∑

δ2=1

F[A|A]
(ijµkl) ν
ακβ,γq1q2δ1δ2 (2.27)

Note that this encodes both the left action of C and the right action of C; the individual actions
can be extracted by setting i= j=0 or k= l=0, respectively.

An expression for the bimodule fusing matrix F[A|A] is obtained from (2.27) by composing
with the dual basis. One finds

F[A|A]
(ijµkl) ν
απβ,γq1q2δ1δ2

Xν

Xν

=

Xν

Xν

β

Xπ
α

Xµ

γ

Uj Uk

Ui Ul

δ1 δ2
Uq1 Uq2

=

Xν

Xν

β

α

Xµ

γ

Xπ
Ui Ul

δ1 δ2

Uj Uk

Uq1 Uq2

(2.28)

Evaluating this expression is again a linear problem, but it is more complicated than the proce-
dure for evaluating (2.9). First one must find all simple A-bimodules. By proposition I:4.6, this
is the same as finding all simple A⊗Aop-modules, which (via the method of induced modules) is a
finite, linear problem. Next, the subspaces HomA|A(Ui⊗

+X ⊗−Uj, Y ) of Hom(Ui⊗ Ẋ ⊗Uj , Ẏ )
can be determined as images of the projection operators

P (f) :=

Ui UjX

A

A A

f

Y

(2.29)
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for f ∈Hom(Ui⊗ Ẋ ⊗Uj, Ẏ ). This is a linear problem, after the solution of which one has all
the ingredients at hand that are needed to evaluate (2.28).

By construction, the F[A|A] satisfy a pentagon relation; schematically, this relation looks
like

µ

κ

λ

ν

i j k l m n

µ

ν

i j k l m n

r

t

s

u

F[A|A]

F[A|A]

F[A|A]

F[A|A]

F · F
(2.30)

and explicitly it reads

∑

δ

F[A|A]
(ijκmn) ν
α2λα3 , δtuε1ϕ1

F[A|A]
(tkµlu) ν
α1κδ , γ1rsε2ϕ2

=
∑

p,q

∑

β1,β2,β3,γ2,γ3

F[A|A]
(jkµlm) λ
α1κα2 , β1pqβ2β3

F[A|A]
(ipµqn) ν
β1λα3 , γ1rsγ2γ3

F
(ijk) r
γ2pβ2 , ε1tε2

F
(nml) s
γ3qβ3 , ϕ1uϕ2

.
(2.31)

Remark 2.3 :

(i) In remark 2.1(ii) we have seen that the boundary OPE is given by the 6j-symbols of the
module category CA. In fact, similar considerations apply to bulk and defect fields.
Let Φα be a bulk field with chiral/anti-chiral representation labels αl, αr. Omitting all position
dependence and multiplicity indices, the OPE of two bulk fields can symbolically we written
as

Φα Φβ =
∑

γ

C γ
αβ Φγ . (2.32)
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The OPE coefficients C γ
αβ must solve a factorisation constraint coming from the four-point

correlator on the sphere [5, 6, 41],

C ϕ
αβ C

δ
ϕγ =

∑

ε

C δ
αε C

ε
βγ F (αl βl γl) δl

εl ϕl
F (αr βr γr) δr
εr ϕr , (2.33)

where again all multiplicity indices and summations are omitted. If we identify

C γ
αβ = F[A|A]

(αlβl0βrαr)0
·0·,·γlγr ··

, (2.34)

then (2.33) is equivalent to the pentagon relation (2.31) for the F[A|A]-matrices. Recall that
the bimodule index 0 refers to the algebra A itself (we take A to be simple).
In the TFT approach, the factorisation constraints hold by construction, and indeed the ribbon
invariant (4.28) for the correlator of three bulk fields on the sphere (to be constructed in section
4.4 below) leads to the coefficient (4.34), which implies (2.34). Note that in (4.34) two factors
F[A|A] appear because this equation describes the coefficient for a three-point correlator, which
is a product of two OPE coefficients.
Let us now turn to defect fields. Denote by Θµν

α a defect field which changes a defect described
by a bimodule Xν into a defect described by Xµ. One can think of a bulk field Φα as a special
defect field Θµν

α which changes the invisible defect (labelled by A itself) to the invisible defect,
i.e. with µ and ν set to zero. One can convince oneself that the OPE-coefficients of defect fields
have to fulfill a factorisation condition similar to (2.33) and accordingly we would expect that
these OPE-coefficients are also given by matrix elements of F[A|A]. As before, this does indeed
result from the TFT-computation, see (4.42) below. Thus, just like is the case of boundary
fields, the OPE coefficients of defect fields can be seen as the coefficients of a suitable associator
morphism.

(ii) It is also worth recalling a well-known geometric interpretation of the pentagon identity
for the F-matrices (see e.g. [42]). This uses a description of the 6j-symbols F of a semisimple
tensor category as tetrahedra, with edges labelled by simple objects Ui and faces by morphisms
Hom(Ui⊗Uj, Uk), i.e. schematically

F = (2.35)

In this description, the pentagon identity corresponds to the equality between two ways to
obtain the body of a ‘double tetrahedron’: first, by gluing two tetrahedra along a common face,
and second, by gluing three tetrahedra along an edge common to all three of them (namely the
edge that, in the first description, connects the two vertices not belonging to the distinguished
face) and along three faces each of which is common to two of the tetrahedra. In the resulting
equation, the labels of the common faces and the internal edge are to be summed over.

To obtain an analogous interpretation of the pentagon relation (2.31) for bimodules, one
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can represent the F[A|A] as prisms

F[A|A] = (2.36)

in which the edges of the two triangular faces are labelled by simple objects of C and the
remaining edges by simple A-bimodules. The pentagon (2.31) then describes again the equality
between two ways to obtain a certain geometric body, this time a ‘double prism’: on one
side (two F[A|A]s) two prisms are glued along a common quadrangle; on the other side, they
are instead glued along a quadrangle of which two edges are those edges of the original outer
quadrangles that were not involved in the previous gluing; at the remaining two edges the
quadrangle must touch triangles, and this is achieved by gluing a tetrahedron to each of the
original pairs of triangles. Again, the labels of common faces and internal edges are to be
summed over. Pictorially,

= (2.37)

2.3 Expressions in a basis

As already pointed out, the fusing matrices G[A] and F[A|A] are completely determined by the
modular tensor category C, the symmetric special Frobenius algebra A, and a choice of bases
in the relevant morphism spaces. While the explicit expressions are not very illuminating, we
still quickly go through the calculations, because later on we will need some of the quantities
entering these computations.

We can describe simple subobjects of an object V of C by bases {bV(i,α)} of the morphism

spaces Hom(Ui, V ) and the dual bases {b
(i,α)
V } of Hom(V, Ui), satisfying b

(j,β)
V ◦ bV(i,α) = δji δ

β
α idUi

and the completeness property
∑

i∈I

∑
α b

V
(i,α) ◦ b

(i,α)
V = idV . Their graphical notation is

bV(i,α) =:

Ui

V

α , b
(j,β)
V =:

V

Uj

β̄ (2.38)

For modules, this amounts to the choice of morphisms introduced in (I:4.21). For bimodules we

take analogously bX(i,α) ∈Hom(Ui, Ẋ) and b
(i,α)
X ∈Hom(Ẋ, Ui). In terms of these embedding and
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restriction morphisms we can now expand the morphisms ψα(µk)ν and ξα(iµj)ν described before, as
well as their duals. We choose the conventions

ψα(µk)ν ≡ :=
∑

m,n∈I

〈Um,Ṁµ〉∑

γ1=1

〈Un,Ṁν〉∑

γ2=1

Nmk
n∑

δ=1

[ψα(µk)ν ]
mn
γ1γ2δ

Mµ

Mν

Uk

α

Mµ

Mν

γ1

γ2

Uk

δ

m

n

ψ̄
(µk)ν
α ≡ :=

∑

m,n∈I

〈Um,Ṁµ〉∑

γ1=1

〈Un,Ṁν〉∑

γ2=1

Nmk
n∑

δ=1

[ψ̄(µk)ν
α ]mnγ1γ2δ

Mµ

Mν

Uk

α

Mµ

Mν

γ1

γ2

Uk

δ

n

m

(2.39)

for the module basis; the expansion coefficients [ψα(µk)ν ]
mn
γ1γ2δ

are complex numbers. Analogously,
for bimodules we choose

ξα(iµj)ν ≡ :=
∑

l,m,n∈I

∑

γ1,γ2,δ1,δ2

[ξα(iµj)ν ]
lmn
γ1γ2δ1δ2

Xµ

Xν

Ui Uj

α

Xµ

Xν

γ1

γ2

δ1

δ2
n

m

l

Ui Uj

ξ̄
(iµj)ν
α ≡ :=

∑

l,m,n∈I

∑

γ1,γ2,δ1,δ2

[ξ̄(iµj)ν
α ]lmnγ1γ2δ1δ2

Xµ

Xν

Ui Uj

α

Xµ

Xν

γ2

γ1

δ2

δ1
l

m

n

Ui Uj
(2.40)

Substituting the expansion (2.39) into the ribbon invariant (2.9) for G[A] and taking the trace
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on both sides of (2.9) immediately leads to

G[A]
(µij) ν
ακβ,γkδ =

∑

m,n,r

dim(Un)

dim(Ṁν)

∑

γ1,γ2,γ3,γ4,
ε1,ε2,ε3

[ψα(µi)κ]
mr
γ2γ3ε2

[ψβ(κj)ν ]
rn
γ3γ1ε3

[ψ̄(µk)ν
γ ]mnγ2γ1ε1G

(mij)n
ε2rε3,ε1kδ

. (2.41)

For the fusion matrices of the bimodule category one must substitute (2.40) into (2.28). Using
also the braiding relation (I:2.41), this results in

F[A|A]
(ijµkl) ν
απβ,γq1q2δ1δ2

= 1

dim(Ẋν)

∑

x1,...,x6

∑

ϕ1,ϕ2,ϕ3

∑

ε1,...,ε6

[ξα(jµk)π]
x5x4x3
ϕ3ϕ2ε4ε3

[ξβ(iπl)ν ]
x3x2x1
ϕ2ϕ1ε2ε1

[ξ̄(q1µq2)ν
γ ]x5x6x1

ϕ3ϕ1ε5ε6

∑

ρ1

R
−(lk) q2
ρ1δ2

x1
ǫ1

x2

ǫ2

i

δ1

q1

ǫ6

x1

x6

ǫ5

ρ1

q2

l

x5

ǫ4

k

ǫ3

j

x3

x4

(2.42)

Applying the fusing relation (I:2.40) first to the vertex labelled ǫ3 and then to the vertex labelled
ǫ4 finally yields

F[A|A]
(ijµkl) ν
απβ,γq1q2δ1δ2

=
∑

n1,...,n6

dim(Un1
)

dim(Ẋν)

∑

ϕ1,ϕ2,ϕ3

∑

ε1,...,ε6

[ξα(jµk)π]
n5n4n3
ϕ3ϕ2ε4ε3

[ξβ(iπl)ν ]
n3n2n1
ϕ2ϕ1ε2ε1

[ξ̄(q1µq2)ν
γ ]n5n6n1

ϕ3ϕ1ε5ε6

∑

ρ1,ρ2,ρ3

R
−(lk) q2
ρ1δ2

G(jn4l)n2
ε3n3ε2 , ρ2n6ρ3G

(n5kl)n6
ε4n4ρ3 , ε5q2ρ1F

(ijn6)n1

ε1n2ρ2 , δ1q1ε6
.

(2.43)

In writing the expansions (2.39) and (2.40), as well as the expressions (2.41) and (2.43) for
the fusing matrices, we have included all multiplicity indices. In the Cardy case A=1 treated
below, as well as later on in section 4.8, we make the simplifying assumption that the fusion
rules in C obey Nij

k ∈{0, 1} so as to somewhat reduce the notational burden.

2.4 Example: The Cardy case

Let us now work out the fusion matrices for the module and bimodule categories in the case
A= 1. This choice for the algebra A corresponds to having the charge conjugation modular
invariant as the partition function on the torus. As already mentioned, for further simplifi-
cation we assume in the sequel that the fusion rules of the modular tensor category C satisfy
Nij

k ∈{0, 1}; this allows us to suppress many of the multiplicity labels.
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The simple 1-modules are just the simple objects of C, so that CA∼= C as categories. We
choose the representatives of simple modules as Mµ =Uµ with µ∈I. Similarly, for the bimod-
ules we have ACA∼= C, this time even as tensor categories, and we choose the representatives of
simple bimodules as Xµ =Uµ, µ∈I. Note that we continue to use greek letters to label simple
modules and bimodules to avoid confusion, even though now the three index sets I, J and K
are identical.

Next we must specify the basis elements ψα(µk)ν and ξγ(iµj)ν that we will use. We make the
choices

ψ(µk)ν := βµ,νk and ξγ(iµj)ν := t−1
j α

µ|ν
ij,γ

Uµ Uk

Uν

UµUi Uj

Uγ

Uν

(2.44)

where the (non-zero) constants βµ,νk and α
µ|ν
ij,γ can be chosen at will; later on they will serve

as normalisations of the bulk, boundary and defect fields. The phases tj appearing in (2.44)
have been defined in (II:3.43). If C is the representation category of a conformal vertex algebra
we take tj = exp(−πi∆j) with ∆j the conformal highest weight of the representation labelled
by j. The phases tj are convenient because they will lead to simpler expressions for the bulk
two-point function on the sphere and for the bulk one-point function on the disk.

Because of ψ(µk)ν ∈HomA(Mµ⊗Uk,Mν)∼= Hom(Uµ⊗Uk, Uν), there is no need for a multi-
plicity label in the first formula in (2.44). In contrast, the dimension of the morphism space
HomA|A(Ui⊗

+Xµ⊗
−Uj , Xν) =Hom(Ui⊗Uµ⊗Uj, Uν) can be larger than one, and accordingly

the basis elements ξγ(iµj)ν are labelled by those simple objects Uγ that occur in the fusion Uµ⊗Uj
and for which Niγ

ν 6=0. In the notation introduced in (2.39) and (2.40) the basis choice (2.44)
reads

[ψ(µk)ν ]
mn
··· = βµ,νk δmµ δnν and [ξγ(iµj)ν ]

xyz
···· = t−1

j α
µ|ν
ij,γ δµx δγy δνz . (2.45)

The dot ‘ · ’ stands for a multiplicity label that can take only a single value, the corresponding
morphism space being one-dimensional.

We also need the duals of the bases (2.44). One easily checks that these are given by

ψ̄(µk)ν =
1

βµ,νk
and ξ̄(iµj)ν

γ =
tj

α
µ|ν
ij,γ

Uµ Uk

Uν

UµUi Uj

Uγ

Uν

(2.46)

Substituting the choice of basis (2.44) into (2.9) immediately yields

G[1]
(µij) ν
κ , k =

βκ,νj βµ,κi
βµ,νk

G
(µij) ν
κ k (2.47)
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for the fusion matrices of CA.
For the fusion matrices of the bimodule category we deduce from (2.28) that

F[1|1]
(ijµkl) ν
απβ,γpq =

α
π|ν
il,β α

µ|π
jk,α

α
µ|ν
pq,γ

R− (l k) q tq
tl tk

Uν

Uν Uν

Uν

γ

q
p

µ

i

β

π

j lα

k
(2.48)

Similarly to the calculation in (2.42), applying the fusion relation (I:2.40) first to the vertex for
Hom(Uj ⊗Uα, Uπ) and then to the one for Hom(Uµ⊗Uk, Uα) results in the expression

F[1|1]
(ijµkl) ν
απβ,γpq =

α
π|ν
il,β α

µ|π
jk,α

α
µ|ν
pq,γ

R− (l k) q tq
tl tk

G (j α l) β
π γ G (µ k l) γ

α q F
(i j γ) ν
β p . (2.49)

3 Ribbon graph representation of field insertions

In this section we present the ribbon graph representation for field insertions on boundaries, in
the bulk and on defect lines. This will be used in section 4 to express structure constants as
invariants of ribbon graphs in three-manifolds.

The ribbon graph representations will be given explicitly only for the case of unoriented
world sheets. Recall from [ II ] that in this case the relevant algebraic structure to describe the
full CFT is a Jandl algebra.

It is then straightforward to obtain the oriented case as well. Of course, given an oriented
world sheet, one can just forget the orientation to obtain an unoriented world sheet, for which
one can apply the construction below. However, this is not the correct procedure to use, since
in the two cases different algebraic structures are relevant:

oriented world sheets → symmetric special Frobenius algebra

unoriented world sheets → Jandl algebra

Thus for oriented world sheets one must formulate the construction of the ribbon graphs in a
way that is applicable for any symmetric special Frobenius algebra, not just for those admitting
a reversion. This can be done as follows.
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First, as already emphasised, instead of a Jandl algebra, just a symmetric special Frobenius
algebra is to be used. Second, whenever in the unoriented case an orientation or1 of a boundary
component, respectively or2 of a surface, enters the construction, then in the corresponding
oriented case a canonical choice is provided by the orientation of the world sheet. In the unori-
ented case there are equivalence relations linking the two possible choices for or1,2, and this is
in fact the only place where the reversion of the Jandl algebra enters. In the oriented case these
equivalence relations are not needed and hence only the symmetric special Frobenius structure
is used.

For example, recall from section II:3 that in the unoriented case boundary conditions are
labelled by equivalence classes [M, or1], where M is a left A-module and or1 is an orientation of
the boundary component. The equivalence relation (II:3.1) is that (M, or1)∼ (M ′, or′1) if either
or′1 = or1 and M ′ ∼=M or if or′1 =−or1 and M ′ ∼=Mσ, where Mσ is the module conjugate to M
(see section II:2.3). To obtain the prescription in the oriented case, we use the orientation or∂X

of the boundary that is induced by the world sheet orientation orX to select the pair (M, or∂X).
The second alternative in the equivalence relation is then obsolete.

3.1 A note on conventions

The construction of the ribbon graph described in this section departs slightly from the one
used in [ I ] and [ II ], resulting from a number of choices of conventions that have to be made.
However, in the absence of field insertions the final result, i.e. the ribbon graph embedded in the
connecting manifold, is still the same as in [ I , II ]. To see this let us summarise the conventions
we choose and point out how they differ from those in [ I , II ].

Category of three-dimensional cobordisms

Recall from the summary in sections I:2.3 and I:2.4 that a three-dimensional topological field
theory furnishes a functor (Z,H) from the cobordism category 3--cobord(C) to the category of
finite-dimensional complex vector spaces; such a functor can be constructed from any modular
tensor category C. It turns out to be convenient to give a definition of the objects and morphisms
of 3--cobord(C) slightly different from the one used in section I:2.4.

Objects of 3--cobord are extended surfaces and morphisms of 3--cobord are cobordisms be-
tween extended surfaces. An extended surface E consists of the following data:

A compact oriented two-dimensional manifold without boundary, also denoted by E.

A finite set of marked points – that is, of quadruples (pi, [γi], Vi, εi), where the pi ∈E are
mutually distinct points of the surface E and [γi] is a germ of arcs 6 γi: [−δ, δ]→E with
γi(0) = pi. Furthermore, Vi ∈Obj(C), and εi ∈{±1} is a sign.

A Lagrangian subspace λ⊂H1(E,R).

A morphism E→E ′ is a cobordism M, consisting of the following data:

6 By a germ of arcs we mean an equivalence class [γ] of continuous embeddings γ of intervals [−δ, δ]⊂R

into the extended surface E. Two embeddings γ: [−δ, δ]→E and γ′: [−δ′, δ′]→E are equivalent if there is a
positive ε <δ, δ′ such that γ and γ′ are equal when restricted to the interval [−ε, ε].
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A compact oriented three-manifold, also denoted by M, such that ∂M = (−E)⊔E ′.
Here −E is obtained from E by reversing its 2-orientation and replacing any marked point
(p, [γ], U, ε) by (p, [γ̃], U,−ε) with γ̃(t) = γ(−t), see section I:2.4. The boundary ∂M of a
cobordism is oriented according to the inward pointing normal.

A ribbon graph R inside M such that for each marked point (p, [γ], U, ε) of (−E)⊔E ′ there
is a ribbon ending on (−E)⊔E ′ in the following way. Let ϕ: [0, 1]× [− 1

10
, 1

10
]→M be the

parametrisation 7 of a ribbon S embedded in M and labelled by U ∈Obj(C). If ε=+1, then
the core of S must point away from ∂M and the end of S must induce the germ [γ], i.e.
ϕ(0, 0) = p and [ϕ(0, t)] = [γ(t)]. If ε=−1, then the core of S must point towards ∂M, and
ϕ(1, 0) = p as well as [ϕ(1,−t)] = [γ(t)], the presence of the minus sign implying that the
orientation of the arc is reversed.

The difference to the definition used in section I:2.4 is that we do not take a surface with
embedded arcs, but rather with germs of arcs. 8 The reason for using this definition of extended
surface will become clear in section 5.3 where we assign a germ of arcs to a germ of local
coordinates.

Note also that the allowed ways for a ribbon to end on an arc-germ of an extended surface
depend on the orientations of arc, ribbon-surface and ribbon-core, but not on the orientation of
the three-manifold M or of the extended surface E. The two allowed possibilities are – looked at
from ‘above’ and ‘below’ E, as well as from ‘in front of’ and ‘behind’ the ribbon – the following:

(U,+) (U,−) (U,−) (U,+)

(U,−) (U,+) (U,+) (U,−)

U U U U

U U U U

(3.1)

(For instance, the first picture in the first row is the same as the fourth picture in the first row,
as well as the second and third picture in the second row.)

Ribbon graph embedded in the connecting manifold

In the TFT description of correlators for oriented world sheets, we have the following conven-
tions:

7 By a parametrisation of a ribbon S we mean the following. S has a 2-orientation of its surface and a
1-orientation of its core. The rectangle [0, 1]× [− 1

10 , 1
10 ] carries a natural 2-orientation as a subset of R

2, and
the interval [0, 1]×{0} carries a natural 1-orientation as a subset of the x-axis. A parametrisation ϕ of S is
required to preserve both of these orientations.

8 This convention should be compared to those of [19], which uses the arcs themselves, and of [20], which
uses tangential vectors at the insertion points p. The present convention is a compromise between the two.
Only the behaviour in an arbitrarily small neighbourhood of p is relevant, but it does not need a differential
structure on E.
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The correlator for a world sheet X is described by a cobordism ∅
MX−→ X̂, where X̂ is the double

of X. In particular, X̂ is the outgoing part of the boundary ∂MX.

Field insertions on the world sheet X lead to marked points on the double X̂. For the ribbon

graph inside the cobordism ∅
MX−→ X̂ we take all ribbons ending on ∂MX to have cores pointing

away from the boundary, i.e. ε=+1 for all marked points on X̂.

The non-negative integers (compare formulas (I:5.30) and (I:5.65), and lemma 2.2)

Z(A)ij := dim HomA|A(α−
A (Uj), α

+
A (Uı̄)) = dim HomA|A(Ui⊗

+A⊗− Uj , A) , (3.2)

with α±
A (U) denoting α-induced 9 bimodules, count the number of linearly independent pri-

mary bulk fields Φij(z, z̄) that have chiral representation label i and anti-chiral representation
label j.

Boundary conditions are labelled by left A-modules.

As a consequence (compare (I:5.30) or (3.24) below), when constructing the ribbon graph in
MX for an oriented world sheet X, the ribbons embedded in X must be inserted in such a
manner that their ‘white’ side faces the boundary of MX which has the same orientation as X.
In particular, the orientation of the ribbon-surfaces is opposite to that of the world sheet X.

This clashes with the prescription given in section I:5.1, according to which orientation of
the world sheet and the ribbons agree. The reason is that in [ I ] implicitly, the boundary of a
cobordism was taken to be oriented according to the outward pointing normal. However due
to the conventions above we should use the inward pointing normal.

It is not difficult to convince oneself that all pictures and formulas in [ I ] and [ II ] remain

unchanged provided that

– one uses the inward pointing normal to orient the boundary of a cobordism, and that

– the prescription in sections I:5 and II:3.1 is modified such that ribbons embedded in X⊂MX

have surface orientation opposite to the (local) orientation of X, and similarly their core has
opposite orientation to ∂X if they lie on the world sheet boundary.

From hereon we use this modified prescription both in the oriented and in the unoriented case.

3.2 Boundary fields

A connected component b of the boundary ∂X of the world sheet has the topology of a circle.
On b there may be several insertions of boundary fields, and accordingly the intervals between
the field insertions may be labelled by different boundary conditions. Below we will see that
the configurations of fields and boundary conditions on such a boundary component are again
labelled by equivalence classes, and that this labelling generalises the one for boundaries without
field insertions.

In the sequel we say that two curves ̟ and µ are aligned in a point p of the world sheet iff
there exist parametrisations ̟′(t) of ̟ and µ′(t) of µ such that ̟′(0) = p=µ′(0) and [̟′] = [µ′].

9 For the notion of α-induction, which is due to [43], see e.g. definition 2.21 of [31]. The definition, as well
as a list of references, is also given in section I:5.4 where, however, the notation α(±) is used in place of α±

A .
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Labelling of boundary insertions

A boundary field Ψ is a collection

Ψ = (M,N, V, ψ, p, [γ]) (3.3)

of the following data: M,N are left A-modules, V is an object of C, the morphism ψ is an
element of HomA(M ⊗V,N), p∈ ∂X is a point on the boundary of the world sheet X, and
finally [γ] is an arc germ such that γ(0) = p and that γ is aligned to ∂X in p.

Denote by b([γ1], ... , [γn]) a connected component of ∂X together with n arc germs [γk] such
that γk is aligned to ∂X in γk(0). The points γk(0) mark the insertion points of the boundary
fields. A boundary component b([γ1], ... , [γn]) with n boundary field insertions is labelled by
equivalence classes of tuples

(M1, ... ,Mn′;Ψ1, ... , Ψn; or1) (3.4)

subject to the following conditions.
or1 is an orientation of the boundary circle b.
The points pk = γk(0) are ordered such that when passing along the boundary circle b opposite

to the direction given by or1, one passes from pk to pk+1. (Here and below it is understood that
p0 = pn and pn+1 = p1, and analogously for Mk and Ψk.)

The M1, ... ,Mn′ are left A-modules. Mk labels the boundary condition on the stretch of
boundary between pk−1 and pk. Thus if there are no field insertions, then n′ = 1, and otherwise
n′ =n.

The Ψ1, ... , Ψn are boundary fields with defining data

Ψk = (Mk,Mk+1, Vk, ψk, pk, [γk]) . (3.5)

To define the equivalence relation we need

Definition 3.1 :

Let A be a Jandl algebra in C. Given an object V of C and two left A-modules M and N ,
s≡ sM,N,V is the map s: Hom(Ṁ ⊗V, Ṅ)→Hom(Ṅ∨ ⊗ V, Ṁ∨) defined by

s(ψ) :=

Ṁ∨

Ṅ∨ V

ψ
(3.6)

for ψ ∈Hom(Ṁ ⊗V, Ṅ).
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Lemma 3.2 :
Let A and s be as in definition 3.1. If ψ ∈HomA(M ⊗V,N), then s(ψ)∈HomA(Nσ ⊗V,Mσ).

Proof:
The assertion follows by direct computation from the defining properties of conjugate left
modules, as given in definition II:2.6. X

We can now formulate the equivalence relation on labellings (3.4) of a boundary component
b with (or without) field insertions. Consider two tuples

(M1, ... ,Mn′;Ψ1, ... , Ψn; or1) and (M ′
1, ... ,M

′
n′;Ψ ′

1, ... , Ψ
′
n; or′1) , (3.7)

where Ψk = (Mk,Mk+1, Vk, ψk, pk, [γk]) and Ψ ′
k =(M ′

k,M
′
k+1, V

′
k , ψ

′
k, p

′
k, [γ

′
k]). We assume that the

numbering of boundary insertions is done such that either pk = p′k or pk = p′n−k (otherwise the
numbering must be shifted appropriately).

Definition 3.3 :
The set of labels for the boundary component b([γ1], ... , [γn]) is the set

B
(
b([γ1], ... , [γn])

)
:=

{
(M1, ... ,Mn′;Ψ1, ... , Ψn; or1)

}
/∼ (3.8)

of equivalence classes with respect to the following equivalence relation ∼ : The two tuples (3.7)
are equivalent iff one of the following two conditions is satisfied:

(i) We have or′1 =or1, V
′
k =Vk, p

′
k = pk, [γ′k] = [γk], and for k= 1, ... , n′ there exist isomorphisms

ϕk ∈HomA(M ′
k,Mk) such that

ψk = ϕk+1 ◦ψ
′
k ◦ (ϕ−1

k ⊗ idVk) . (3.9)

(ii) or′1 =−or1, V
′
k =Vn−k, p

′
k = pn−k, [γ′k] = [γn−k], and for k= 1, ... , n′ there exist isomorphisms

ϕk ∈HomA(M ′
k,M

σ
n′−k+1) such that

s(ψn−k) =

{
ϕk+1 ◦ψ

′
k ◦ (ϕ−1

k ⊗ idV ′
k
) if or′1 = or(γ′k) ,

ϕk+1 ◦ψ
′
k ◦ (ϕ−1

k ⊗ θV ′
k
) if or′1 =−or(γ′k) ,

(3.10)

where or(γ′k) denotes the local orientation of b induced by the arc-germ [γ′k].

Marked points on the double

Every boundary field insertion Ψ = (M,N, V, ψ, p, [γ]) on X gives rise to one marked point on
the double X̂. This marked point is given by

(p̃, [γ̃], V,+) (3.11)

with p̃= [p,±or2(p)]. Recall from (1.1) that X̂ is the orientation bundle over X with the two
orientations identified over the boundary ∂X. To obtain the germ [γ̃], first choose a represen-
tative γ of [γ]. Since γ is aligned with ∂X at p, by definition there exists a δ > 0 such that
γ: [−δ, δ]→ ∂X. A representative γ̃: [−δ, δ]→ X̂ of [γ̃] is then given by γ̃(t) := [γ(t),±or2].

Given a labelling B ∈B
(
b([γ1], ... , [γn])

)
, one can verify that the set of marked points on X̂

obtained in the way described above is indeed independent of the choice of representative of B.
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Ribbon graph embedded in the connecting manifold

Note that in a small neighbourhood of a point p on the boundary of the world sheet X, the
connecting manifold MX from (II:3.8) looks as follows:

p (3.12)

Indicated are also the intervals [−1, 1], which according to the identification rule of the gen-
eral prescription degenerate into an interval [0, 1] above each boundary point. The ribbon
graph representation of the boundary component b([γ1], ... , [γn]) labelled by an equivalence
class B= [M1, ... ,Mn′;Ψ1, ... , Ψn; or1] in B

(
b([γ1], ... , [γn])

)
is now constructed as follows.

Choose a representative (M1, ... ,Mn′;Ψ1, ... , Ψn; or1) of the equivalence class B – Choice #1.

Choose a dual triangulation of X such that the insertion points of b lie on edges of the
triangulation – Choice #2.

The orientation or1 of the boundary circle b together with the inward pointing normal induces
an orientation of its neighbourhood in the world sheet X. This fixes a local orientation of X
close to b, which agrees with both the bulk and the boundary orientation of the upper half
plane.

At each vertex of the triangulation which lies on the boundary b place the element 10

������������������������
������������������������
������������������������

������������������������
������������������������
������������������������

y

x

Ṁ

A

Ṁ

(3.13)

in such a way that the orientation of bulk and boundary agree with that around the vertex.

10 Note that the orientations in this picture are opposite to those in (II:3.12). This is due to the change in
convention explained in section 3.1.
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At each insertion point Ψk = (Mk,Mk+1, Vk, ψk, pk, [γk]) place one of the two elements

������������������������
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������

Mk Mk+1

ψk

Vk

Mk Mk+1

ψk

Vk

y

x

y

x

(3.14)

depending on the orientation of the arc-germ [γk] relative to that of the boundary (recall also
the convention in (3.1)). Shown in (3.14) is a horizontal section of the connecting manifold
(3.12). Correspondingly the lower boundary in (3.14) is that of MX while the ribbons Mk

and Mk+1 are placed on the boundary of X as embedded in MX. The arrow on the boundary
in (3.14) indicates the orientation of ∂X (transported to ∂MX along the preferred intervals).
The ribbon graph must be placed in the plane of the world sheet X (embedded in MX) in
such a way that the bulk and boundary orientation of (3.14) agree with the local orientations
at the insertion point pk ∈X.

The prescription involves two choices, and we proceed to show that different choices lead to
equivalent ribbon graphs.

Choice #2:

As in sections I:5.1 and II:3.1, independence of the triangulation follows from the identities
(I:5.11) and (I:5.12). However, if there are field insertions on the boundary we need an additional
move to relate any one dual triangulation to any other dual triangulation. It consists of taking
a vertex of the triangulation past a boundary insertion,

�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������

=

M M N M N

A

A

ψ ψ

V V

N (3.15)

together with a similar identity for an insertion of (3.14 b). The dashed circle in (3.15) rep-
resents the piece of ribbon graph inside the dashed circle in (3.13). This identity is a direct
consequence of the fact that the morphism ψ in Ψ = (M,N, V, ψ, p, [γ]) is an intertwiner of A-
modules, ψ ∈HomA(M⊗V,N).

Choice #1:

Denote by R= (M1, ... ,Mn′;Ψ1, ... , Ψn; or1) and R′ = (M ′
1, ... ,M

′
n′;Ψ ′

1, ... , Ψ
′
n; or′1) two represen-

tatives of B. We will apply the above construction to the representative R′ and show that the
resulting ribbon graph can be turned into the one obtained from R. According to definition
3.3 we must consider two cases.

(i) or′1 =or1. Then also V ′
k = Vk, p

′
k = pk and [γ′k] = [γk], and there exists a choice of isomor-

phisms ϕk ∈HomA(M ′
k,Mk) fulfilling (3.9). Starting with the ribbon graph constructed from

29



R′, we insert on each ribbon M ′
k the identity morphism in the form idM ′

k
=ϕ−1

k ◦ϕk, in such

a way that ϕ−1
k comes next to the field insertion Ψ ′

k. Then we move the morphism ϕk to the
other end of the M ′

k-ribbon. As in (II:3.17), ϕk can be taken past vertices of the triangulation,
which may lie on the boundary interval labelled by M ′

k. After these manipulations, every field
insertion Ψ ′

k comes with the morphism ϕ−1
k to one side and with ϕk+1 to the other. In other

words, for each k the morphism ψ′
k appearing in Ψ ′

k is replaced by ϕk+1 ◦ψ
′
k ◦ (ϕ−1

k ⊗ idVk)≡ψk.
We thus remain with the ribbon graph constructed from R.

(ii) or′1 =−or1. Then also V ′
k =Vn−k, p

′
k = pn−k and [γ′k] = [γn−k], and there exist isomorphisms

ϕk ∈HomA(M ′
k,M

σ
n′−k+1), for k= 1, ... , n′, fulfilling (3.10). We shall demonstrate the equiva-

lence of ribbon graphs in some detail for the second case in (3.10); the first case can be seen
similarly. Around the field insertion Ψ ′

k the ribbon graph obtained from R′, which we denote
by [R′], looks as follows:

������������������������
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������

[R′] =

M ′
kM ′

k+1

V ′
k

p′kor′1

or1

ψ′
k

(3.16)

The two opposite orientations of the boundary are indicated. We are facing the black side of
the ribbons because in order to make the local orientations of (3.16) induced by or′1 agree with
those in (3.14 b), the element (3.14 b) must be turned ‘upside down’ before it is inserted. As in
case (i) we insert idM ′

l
=ϕ−1

l ◦ϕl on each M ′
l , close to Ψ ′

l . After applying in addition a half-twist

and using that, by definition, Ṁσ = Ṁ∨ as an object, this leads to
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[R′] =

M ′
k

M ′
k+1

Mn−k+1 M ′
k

V ′
k

p′kor′1

or1

ψ′
k

ϕ−1
k

ϕk

(3.17)

By a reasoning similar to that of (II:3.18) this specific combination of half-twist and ϕk can be
taken past vertices of the triangulation that lie on the boundary, i.e. past locations at which
A-ribbons arriving from the bulk are attached to the module-ribbons on the boundary. Taking
all of the ϕl to the neighbouring field insertion leads to a ribbon graph which close to Ψ ′

k looks
as

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

[R′] =

M ′
k+1

Mn−k Mn−k+1M ′
k

V ′
k

p′kor′1

or1

ψ′
k

ϕ
−1
k

ϕk+1

(3.18)

The morphism ϕk+1 has arrived from the insertion Ψ ′
k+1 which is not visible in the section of

the full ribbon graph [R′] that we display. Next rotate the coupons labelled by ϕk+1, ψ
′
k and
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ϕ−1
k by 180◦ in the manner already indicated in figure (3.18), and deform the resulting ribbon

graph slightly,
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[R′] =

Mn−k Mn−k+1
M ′
k+1

M ′
k

V ′
k

=Vn−k

p′k = pn−k
or′1

or1

ψ′

k

ϕ
−1
k

ϕk+1

(3.19)

By the second alternative in (3.10), the morphism in the dashed box is equal to s(ψn−k). After
replacing the dashed box by the explicit form of s(ψn−k) in (3.6), the ribbon graph can be
deformed so as to obtain the ribbon graph constructed from the representative R of B.

We have thus established that the ribbon graph that is obtained by our prescription for a
boundary component b([γ1], ... , [γn]) labelled by an equivalence class in B

(
b([γ1], ... , [γn])

)
is

independent of the choices involved.

3.3 Bulk fields

A bulk field insertion is described by a point p in the interior of X, together with an arc-germ
[γ] at p and a label [Φ]. The set of labels for bulk insertions at [γ] will be denoted by D([γ]).
Similarly as for boundary fields, this set consists of equivalence classes of certain tuples.

Labelling of bulk fields

The equivalence relation will be formulated in terms of a linear map ωAUV that is defined as
follows.

Definition 3.4 :

For A a Jandl algebra in C, the morphism ωAUV : Hom(U ⊗A⊗V,A)→Hom(V ⊗A⊗U,A) is
defined by

ωAUV (φ) :=
σ−1

σ

A

V A U

φ
(3.20)

for φ∈Hom(U ⊗A⊗V,A).

Some properties of the map ωAUV that will be needed below are listed in the following lemma.
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Lemma 3.5 :

With A and ωAUV as in definition 3.4, we have:

(i) For any φ∈Hom(U ⊗A⊗V,A) one has ωAV U
(
ωAUV (φ)

)
=φ.

(ii) If φ∈HomA|A(U ⊗+A⊗− V,A), then ωAUV (φ)∈HomA|A(V ⊗+A⊗− U,A).

Proof:
(i) Writing out the ribbon graph for the morphism ωAV U

(
ωAUV (φ)

)
and using σ ◦σ= θA, one can

deform the resulting ribbon graph (which amounts to using that C is sovereign) so as to be left
with the graph for φ.

(ii) One must verify that the morphism ωAUV (φ) commutes with the left and right action of A
if φ itself does. This can be done by a straightforward computation using the definitions (2.17)
and (2.18) of the left and right action of A as well as the defining properties (II:2.6) of the
reversion σ on A. X

Definition 3.6 :

Let [γ] be an arc-germ around a point p= γ(0) in the interior of X. The possible bulk fields
that can be inserted at p are labelled by equivalence classes

D([γ]) =
{
(i, j, φ, p, [γ], or2(p))

}
/∼ . (3.21)

Here i, j ∈I label simple objects, φ is a morphism in HomA|A(Ui⊗
+A⊗−Uj , A), the insertion

point p is at γ(0), and or2(p) is a local orientation of the world sheet X around p. The equivalence
relation is defined as

(
i, j, φ, p, [γ], or2(p)

)
∼

(
j, i, ωAUiUj (φ), p, [γ],−or2(p)

)
. (3.22)

Marked points on the double

Each bulk field insertion [Φ] on the world sheet X gives rise to two marked points on the double
X̂. If

(
i, j, φ, p, [γ], or2(p)

)
is a representative of [Φ], then these two points are

(p̃i, [γ̃i], Ui,+) and (p̃j, [γ̃j], Uj,+) ; (3.23)

the terms appearing in these tuples are given by p̃i = [p, or2(p)], p̃j = [p,−or2(p)], as well as
γ̃i(t) = [γ(t), or2(γ(t))] and γ̃j(t) = [γ(t),−or2(γ(t))]. Here or2(γ(t)) is obtained by the extension
of or2(p) to a neighbourhood of p.

Just like in the case of boundary fields, one verifies that the marked points (3.23) on X̂ are
independent of the choice of representative of [Φ].

Ribbon graph embedded in the connecting manifold

The ribbon graph representation of a bulk field [Φ] is constructed as follows.

Choose a representative (i, j, φ, p, [γ], or2(p)) of [Φ] – Choice #1.

Choose a dual triangulation of X such that the insertion point p lies on an edge and such
that the arc γ is aligned with this edge at p= γ(0) – Choice #2.
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The bulk insertion is treated as a two-valent vertex that is to be included in the dual trian-
gulation. Locally around the insertion point p, the world sheet has the orientation or2. In
MX place the following ribbon graph:

∂MX

∂MX

x

y

x

y

γ

p

Uj

Ui

A A A
φ

t=0-plane

x

y

x

z
y

y

x

7−→

=

∂MX

∂MX

x

y

Ui

Uj

A A A
φ

t=0-plane

x

y

x

z
y

y

x (3.24)

In this figure we display the ribbon graph twice, once looked upon from ‘above’ the connecting
manifold and once looked at from ‘below’. In any case, the orientation of the A-ribbons is
opposite to that of the world sheet and their white side faces the insertion point of the chiral
field label Ui. The ribbon graph (3.24) must be placed in MX in such a manner that the
embedding respects the orientation of the three-manifold MX, the local orientation or2 of
the world sheet X, as well as the orientation of the arcs on the boundary of MX. There is
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precisely one way to do this; no further choice needs to be made.

We proceed to establish independence of the two choices.

Choice #2:

Independence of the dual triangulation follows from the identities (I:5.11) together with a move
that allows to take three-valent vertices of the triangulation past the two-valent vertex formed
by the bulk field insertion

φ φ=
(3.25)

and together with similar identities for different local orientations and for situations where the
A-ribbon arrives from the other side. The empty dashed circle in picture (3.25) stands for the
element (II:3.11), the dashed rectangular box for (II:3.13), and the dashed circle with inscribed
φ for the element (3.24). Analogously as for (I:5.11) and (I:5.12), 11 the equality follows in a
straightforward way upon substituting the definitions and using that the morphism φ is an
intertwiner of A-bimodules.

Choice #1:

Let (i, j, φ, p, [γ], or2) and (j, i, φ′, p, [γ],−or2) be the two representatives of [Φ], i.e. we have
φ′ =ωAUiUj (φ). We must show that

φ φ′= (3.26)

The dashed boxes stand for (II:3.13) and (II:3.14), respectively, while the dashed circle with φ
or φ′ inscribed stands for the element (3.24), inserted with the appropriate orientation.

To facilitate drawing, let us rotate the middle plane of (3.24) into the paper plane and use
the blackboard framing convention. Equation (3.26) then looks as follows.
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=A A A A A
φ φ′

i i

jj

σ σ (3.27)

In the right figure one must insert the element (3.24) ‘upside down’ because the local orientation
of the world sheet is inverted with respect to the left figure. As compared to (3.26), on both
sides of the equation one coproduct has been removed against one product using the Frobenius

11 For detailed derivations, see [ V ].
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property. In the right figure of (3.27) the central part of the ribbon graph can be rotated by
180◦ as indicated. Using also θ−1

A ◦σ=σ−1 this leads to
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(3.27) =
A A A

φ′

i

j

j

σ−1 σ (3.28)

Comparing with (3.20) we see that the part of the ribbon graph inside the dashed box amounts
to the morphism

dashed box = ωAUj Ui(φ
′) = φ , (3.29)

where the last equality follows from the equivalence relation for bulk labels which forces
φ′ =ωAUiUj (φ), together with lemma 3.5. Thus (3.28) is equal to the left hand side of (3.27),
establishing the claimed equality between the left hand side and the right hand side of (3.27).

This finishes the demonstration that the ribbon graph for a bulk field insertion is independent
of the choices involved in its construction.

3.4 Defect fields

Together with the defect fields treated in this section, the three types of fields we consider are
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�����������

bulk field boundary field defect field

(3.30)

Note, however, that this is not the most general way to treat defects. In fact, upon forming
operator products, the first two kinds of fields in (3.30) close amongst each other. But once
we include also the defect field, we can generate the following more general class of fields by
taking operator products,
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(3.31)

i.e. a boundary field with several defect lines attached and a defect field with more than two
defect lines ending on it. For example, a field of the first kind can be obtained by taking the
operator product of a boundary field and a defect field of the types listed in (3.30). While
fields of the type (3.31) and their operator products can be treated in the TFT-formalism in a
natural way, in this paper we will nonetheless only consider fields of the types (3.30).
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Labelling of defect fields

Recall from section II:3.8 that a circular defect d without field insertions and with orientable
neighbourhood is labelled by equivalence classes of triples [X, or1, or2], where X is an A-
bimodule, or1 is an orientation of the defect circle and or2 is an orientation of its neighbourhood.
The equivalence relation is given in (II:3.150).

In order to describe the labelling of a defect circle with field insertions d([γ1], ... , [γn]) we
first need the following definition.

Definition 3.7 :

The linear maps

u : Hom(Ui⊗X ⊗Uj , Y ) → Hom(Uj ⊗X ⊗Ui, Y )

and ũ : Hom(Ui⊗X ⊗Uj , Y ) → Hom(Ui⊗Y ∨⊗Uj , X
∨)

(3.32)

are defined by

Ui UjY ∨

ϑ

X∨

UiUj X

ϑ

Y

u(ϑ) := and ũ(ϑ) := (3.33)

for ϑ∈Hom(Ui⊗X ⊗Uj , Y ).

The maps u and ũ will enter into the formulation of the equivalence relation for defect
labels. This also requires the following lemma, which can be verified by direct calculation.

Lemma 3.8 :

Let A be an algebra and let X, Y be A-bimodules. Then ũ restricts to an isomorphism

ũ : HomA|A(Ui⊗
+ X ⊗− Uj , Y ) → HomA|A(Ui⊗

+ Y v⊗− Uj, X
v) . (3.34)

If A is a Jandl algebra, then in addition u restricts to an isomorphism

u : HomA|A(Ui⊗
+X ⊗− Uj , Y ) → HomA|A(Uj ⊗

+Xs⊗− Ui, Y
s) . (3.35)

Here Xv, Y v and Xs, Y s denote two of the three duals one has for the bimodules X, Y , as
defined in (II:2.40).

After these preliminaries we turn to the description of defect labels. Let A be a Jandl
algebra. A defect field Θ is a collection of data

Θ =
(
X, or2(X), Y, or2(Y ), i, j, ϑ, p, [γ], or2(p)

)
. (3.36)
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Here i, j ∈I, X, Y are A-bimodules, and or2(X) and or2(Y ) are local orientations of the world
sheet on a neighbourhood of the defect line labelled by X and Y , respectively; ϑ is a morphism

ϑ ∈ HomA|A(Ui⊗
+ Z⊗− Uj, Z

′) , (3.37)

where

Z =

{
X if or2(X) = or2(p) ,

Xs if or2(X) = −or2(p)
and Z ′ =

{
Y if or2(Y ) = or2(p) ,

Y s if or2(Y ) = −or2(p) .
(3.38)

Finally p= γ(0) is the insertion point of the defect field, and [γ] is a germ of arcs aligned with
the defect line at p.

A defect circle d([γ1], ... , [γn]) on the world sheet is labelled by equivalence classes of tuples

(
X1, or2(X1), ... , Xn′, or2(Xn′) ; Θ1, ... , Θn ; or1(d)

)
, (3.39)

subject to the following conditions.

or1(d) is an orientation of the defect circle d.

The points pk = γk(0) are ordered such that when passing along the defect circle d in the
direction opposite to or1(d), one passes from pk to pk+1. Here and below it is understood
that p0 ≡ pn and pn+1 ≡ p1, and similarly for Xk and Θk.

The X1, ... , Xn′ are A-bimodules. Xk labels the defect interval between pk−1 and pk. Thus if
there are no field insertions, then n′ = 1, and otherwise n′ =n.

or2(Xk) is a local orientation 12 of the world sheet on a neighbourhood of the defect interval
between pk−1 and pk.

Θk is a defect field with defining data

Θk =
(
Xk, or2(Xk), Xk+1, or2(Xk+1), ik, jk, ϑk, pk, [γk], or2(pk)

)
. (3.40)

Because of the large number of orientations entering the labelling of a defect circle, the
equivalence relation on the tuples (3.39) becomes somewhat technical; we include it merely for
completeness of the presentation.

The relation is conveniently formulated in terms of five basic relations. The full equivalence
class is obtained by completing the relations generated by the basic relations with respect to
transitivity and reflexivity. Consider the two tuples

T =
(
X1, or2(X1), ... , Xn′, or2(Xn′) ; Θ1, ... , Θn ; or1(d)

)
,

T ′ =
(
X ′

1, or′2(X
′
1), ... , X

′
n′, or′2(X

′
n′) ;Θ′

1, ... , Θ
′
n ; or′1(d)

)
.

(3.41)

The basic relations are:

12 If the neighbourhood of the whole defect circle is non-orientable we require that there is at least one
field insertion. This field insertion can transform like an identity field, though, in which case correlators are
independent of the insertion point of this field (recall the corresponding discussion in the second half of section
II:3.8).
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Relation 1: Shift of labels.

The tuples T and T ′ are equivalent if their data are related by or′1(d) =or1(d) and, for every k,
X ′
k =Xk+1, or′2(X

′
k) = or2(Xk+1) and Θ′

k =Θk+1.

Relation 2: Reverse orientation of the defect circle, or′1(d) =−or1(d).

Suppose or′1(d) =−or1(d). Then T and T ′ are equivalent if the following conditions hold. First,
the ordering of the points is reversed in both labellings, [γ′k] = [γn−k]. Second, the bimodules
labelling the defect intervals are related by Xk = (X ′

n−k+1)
v. Finally, the defect fields Θk are

related to the fields

Θ′
ℓ =

(
X ′
ℓ, or′2(X

′
ℓ), X

′
ℓ+1, or′2(X

′
ℓ+1), i

′
ℓ, j

′
ℓ, ϑ

′
ℓ, p

′
ℓ, [γ

′
ℓ], or′2(p

′
ℓ)

)
(3.42)

via

Θk =
(
(X ′

n−k+1)
v, or′2(X

′
n−k+1), (X

′
n−k)

v, or′2(X
′
n−k),

i′n−k, j
′
n−k, β̃ ◦ ũ(ϑ

′
n−k) ◦ (α⊗β⊗ α̃), p′n−k, [γ

′
n−k], or′2(p

′
n−k)

)
,

(3.43)

where ũ is the map defined in (3.33), and

α =





idUi′

n−k

if or1(γk) = or1(d) ,

θUi′
n−k

if or1(γk) =−or1(d) ,
β =

{
id(X′

n−k+1)∨ if or2(pk) = or2(Xk) ,

θ−1
(X′

n−k+1)∨ if or2(pk) =−or2(Xk) ,

α̃ =





idUj′

n−k

if or1(γk) = or1(d) ,

θ−1
Uj′
n−k

if or1(γk) =−or1(d) ,
β̃ =

{
id(X′

n−k)
∨ if or2(pk) = or2(Xk+1) ,

θ(X′
n−k)∨ if or2(pk) =−or2(Xk+1) .

(3.44)

For the next relations, select any k0 ∈{1, 2, ... , n′}.

Relation 3: Isomorphism of bimodules, X ′
k0
∼=Xk0.

The tuples T and T ′ are equivalent if all data of T ′ coincide with the corresponding data of T ,
possibly with the exception of X ′

k0
, Θ′

k0−1 and Θ′
k0

. In the latter case we require the existence
of an isomorphism ϕ∈HomA|A(X ′

k0
, Xk0) such that

ϑ′k0−1 = ϕ−1 ◦ϑk0−1 and ϑ′k0 = ϑk0 ◦ (idUik0
⊗ϕ⊗ idUjk0

) , (3.45)

where ϑ′ and ϑ are the morphisms in the defining data of Θ′ and Θ.

Relation 4: Reverse orientation at a field insertion, or′2(pk0) =−or2(pk0).

The tuples T and T ′ are equivalent if all data of T ′ and T agree, with the exception of Θ′
k0

, for
which it is instead required that if

Θk0 =
(
Xk0 , or2(Xk0), Xk0+1, or2(Xk0+1), ik0, jk0 , ϑk0, pk0, [γk0], or2(pk0)

)
, (3.46)

then Θ′
k0

is given by

Θ′
k0

=
(
Xk0 , or2(Xk0), Xk0+1, or2(Xk0+1),

jk0, ik0 , β̃ ◦u(ϑk0) ◦ (α⊗β⊗ α̃), pk0, [γk0],−or2(pk0)
)
,

(3.47)
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where u is the map defined in (3.33), and

α =

{
θ−1
Ujk0

if or1(γk0) = or1(d) ,

idUjk0
if or1(γk0) =−or1(d) ,

β =

{
idXk0

if or2(pk0) = or2(Xk0) ,

θXk0 if or2(pk0) =−or2(Xk0) ,

α̃ =

{
θUik0

if or1(γk0) = or1(d) ,

idUik0
if or1(γk0) =−or1(d) ,

β̃ =

{
idXk0+1

if or2(pk0) = or2(Xk0+1) ,

θ−1
Xk0+1

if or2(pk0) =−or2(Xk0+1) .

(3.48)

Relation 5: Reverse orientation at a defect segment, or′2(X
′
k0

) =−or2(Xk0).

The tuples T and T ′ are equivalent if all data of T ′ and T agree, with the exception of Xk0 and
or2(Xk0), as well as Θk0−1 and Θk0. For the latter we demand

(X ′
k0

)s = Xk0 and or′2(X
′
k0

) = −or2(Xk0) , (3.49)

as well as

Θk0−1 =
(
X ′
k0−1, or′2(X

′
k0−1), (X

′
k0

)s,−or′2(X
′
k0

),

i′k0−1, j
′
k0−1, β̃ ◦ϑ

′
k0−1, p

′
k0−1, [γ

′
k0−1], or′2(p

′
k0−1)

)
,

Θk0 =
(
(X ′

k0
)s,−or′2(X

′
k0

), X ′
k0+1, or′2(X

′
k0+1),

i′k0 , j
′
k0
, ϑ′k0 ◦ (idUi′

k0

⊗β⊗ idUj′
k0

), p′k0, [γ
′
k0

], or′2(p
′
k0

)
)
,

(3.50)

where

β =

{
idX′

k0
if or2(pk0) = or2(Xk0) ,

θ−1
X′
k0

if or2(pk0) =−or2(Xk0) ,
β̃ =

{
idX′

k0
if or2(pk0−1) = or2(Xk0) ,

θX′
k0

if or2(pk0−1) =−or2(Xk0) .
(3.51)

The set of labels for the defect circle d([γ1], ... , [γn]) is given by the equivalence classes

D(d([γ1], ... , [γn])) =
{ (

X1, or2(X1), ... , Xn′, or2(Xn′) ; Θ1, ... , Θn ; or1(d)
) }
/∼ , (3.52)

where ∼ is the equivalence relation generated by the five basic relations given above.

Marked points on the double

For a defect insertion on the world sheet X the marked points on the double X̂ are the same as
for bulk fields. Each insertion

Θ =
(
X, or2(X), Y, or2(Y ), i, j, ϑ, p, [γ], or2(p)

)
(3.53)

on the world sheet X gives rise to two marked points

(p̃i, [γ̃i], Ui,+) and (p̃j , [γ̃j], Uj,+) (3.54)

on the double X̂. Here again p̃i = [p, or2(p)], p̃j = [p,−or2(p)], as well as γ̃i(t) = [γ(t), or2(γ(t))]
and γ̃j(t) = [γ(t),−or2(γ(t))].
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Ribbon graph embedded in the connecting manifold

The ribbon graph representation of a defect circle d([γ1], ... , [γn]) labelled by an equivalence
class D∈D(d([γ1], ... , [γn])) is constructed as follows.

Choose a representative
(
X1, or2(X1), ... , Xn′, or2(Xn′);Θ1, ... , Θn; or1(d)

)
of D – Choice #1.

Choose a dual triangulation of X which contains the defect circle as a subset, such that each
defect insertion lies on an edge of the dual triangulation – Choice #2.

At each insertion of a defect field Θ=
(
X, or2(X), Y, or2(Y ), i, j, ϑ, p, [γ], or2(p)

)
place – de-

pending on the various orientations – one of the following eight ribbon graphs:

x

z
y

x

y

x

y

x

y

Ui

Uj

Z Z′

d dor1(d) or1(d)

ϑ

Cases (1) – (4) :

x

z
y

x

y

x

y

x

y

Ui

Uj

Z Z′

or1(d) or1(d)

ϑ

Cases (5) – (8) :

(3.55)
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Here in all cases the coupon labelled by ϑ is placed in such a way that its orientation is
opposite to or2(p). The bimodule ribbons are always placed such that the orientation of their
cores is opposite to or1(d). The bimodules Z and Z ′ are related to X and Y as in (3.38).
In cases (1) – (4) the orientation of the arc-germ [γ] is equal to −or1(d). Those parts of the
ribbon graphs that we have put in brackets are to be inserted only if or2(X) =−or2(p) and
or2(Y ) =−or2(p), respectively. In cases (5) – (8) the orientation of the arc-germ [γ] is equal
to +or1(d); the parts of the ribbon graph in brackets are to be understood in the same way
as in cases (1) – (4).

We only briefly sketch how to establish independence of these choices.

Choice #2:

As for bulk fields the fact that the morphism ϑ in a defect field Θ is an intertwiner of A-
bimodules allows one to move vertices of the dual triangulation past insertion points of defect
fields.

Choice #1:

Suppose T and T ′ are two representatives of the equivalence class D labelling the defect circle.
We have to establish that if T and T ′ are linked by one of the five basic relations above, then the
construction leads to equivalent ribbon graphs. This can be done by straightforward, though
tedious, computations. We refrain from presenting them in any detail, except for the example
that T and T ′ are linked by relation 2.

If T and T ′ are linked by relation 2, then in particular pk = p′n−k. Select a point p= pk0 = p′n−k0
and consider only the fragment of the ribbon graph for T and T ′ close to p. Suppose further
that or1(γk0) = or1(d), or2(pk0) = or2(Xk0) and or2(pk0) =−or2(Xk0+1). The other instances of
relation 2 follow by similar considerations. Denote the fragments close to p by [T ] and [T ′].
Applying the construction above gives
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������������������������������

Xk0 Xk0+1

jk0

ik0

or1(d)

ϑ
k
0

X′
n−k0+1 X′

n−k0

j′n−k0

i′n−k0

or1(d)′

ϑ
′ n
−
k
0

[T ] = [T ′] =

(3.56)

Here we displayed the graphs (3.55) using blackboard framing. The upper and lower bound-
ary in these figures represent the upper and lower boundary of the connecting manifold MX .
According to (3.43) in the graph [T ] we should substitute Xk0 = (X ′

n−k0+1)
v, Xk0+1 =(X ′

n−k0
)v,
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ik0 = i′n−k0 , jk0 = j′n−k0 and ϑk0 = θ(X′
n−k0

)∨ ◦ ũ(ϑ
′
n−k0

). This results in
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[T ] =
X′
n−k0+1 X′

n−k0

j′k0

i′k0

ϑ
′n−
k
0

(3.57)

One can now verify that this ribbon graph fragment can be deformed into [T ′] in (3.56).

4 Ribbon graphs for structure constants

The correlation function for an arbitrary world sheet X, which may have boundaries and field
insertions, and which may or may not be orientable, can be computed by cutting X into
smaller pieces and summing over intermediate states. This procedure is known as ‘sewing’. In
principle, every correlator can be obtained in this way from a small number of basic building
blocks, namely the correlators of

— three boundary fields on the disk;

— one bulk field and one boundary field on the disk;

— three bulk fields on the sphere;

— one bulk field on the cross cap.

(The last of these is only needed if non-orientable world sheets are admitted.) Some correlators
involving defect fields will be presented as well, namely

— three defect fields on the sphere;

— one defect field on the cross cap.

However, recall from the discussion in section 3.4 that this does not correspond to the most
general way to treat defects. When cutting a world sheet involving defect lines into smaller
pieces, one is forced to also consider fields of the type (3.31), which we will not do in this paper.

The aim of this and the next two sections is to derive expressions for the building blocks
listed above in the form

( correlator ) = ( const ) × ( conformal block ) . (4.1)

The constants appearing here, to be referred to as structure constants, will be obtained in
sections 4.2 – 4.7 as ribbon invariants in the 3-d TFT. The conformal blocks are then introduced
in section 5, and finally the connection to correlation functions is made in section 6.

Since a given world sheet X can be reduced to the fundamental building blocks in several
different ways, the latter must fulfill a set of consistency conditions, the so-called sewing or
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factorisation constraints [44, 5, 45, 13, 6, 7, 22]. The correlators computed in the TFT approach
satisfy these constraints by construction [4, V ].

When giving the correlators on the disk and on the sphere in sections 4.2 – 4.5, we will fix a
(bulk and boundary) orientation for the world sheet from the start. In this way the expressions
we obtain are valid for oriented CFTs as well. In the unoriented case we can change the
orientation without affecting the result for the correlator, by using the equivalence relations of
section 3.

4.1 Standard bases of conformal blocks on the sphere

Let the world sheet X be one of the building blocks listed above. To compute the constants in
(4.1) we first construct the ribbon graph representation in MX of the correlator on X according
to the rules given in section 3. The TFT assigns to MX an element C(X) in the space H(X̂) of
blocks on the double X̂. In the cases considered here, X̂ is either the sphere S2 or the disjoint
union S2⊔(−S2). The constants are the coefficients occurring in the expansion of C(X) in a
standard basis of blocks in H(X̂). In the present section we describe our convention for the
standard basis in H(S2). In section 5 this basis will be related to products of chiral vertex
operators.

Take the sphere S2 to be parametrised as R
2 ∪{∞}. Define the standard extended surface

E0,n[i1, · · · in] to be R
2 ∪ {∞} with the standard orientation, together with the marked points

{((k, 0), [γk], Uik ,+) | k=1, ... , n} and γk(t) = (k+t, 0). If it is clear from the context what rep-
resentations occur at the marked points, we use the shorthand notation E0,n for E0,n[i1, · · · in].
Let the cobordism B0,n≡B0,n[i1, ... , in; p1, ... , pn−3; δ1, ... , δn−2] be given by the three-manifold
{(x, y, z)∈R

3 | z≥ 0}∪{∞} together with the ribbon graph

B0,n =

z

y

x
1 2 3 n

Ui1 Ui2 Ui3 Uin

δ1

δ2

.

Up1

Up2

Uın

(4.2)

where the δm label the basis elements (I:2.29) in the spaces of three-point couplings. For
example δ1 = 1, ... , Ni2i1

p1 labels the basis of Hom(Ui2 ⊗Ui1 , Up1). Note that in (4.2) all rib-
bons are oriented in such a way that their black side is facing the reader. The linear map
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Z(B0,n, ∅, E0,n): C→H(E0,n), applied to 1∈C, and with all possible choices of the labels
p1, ... , pn−3 and δ1, ... , δn−2, gives the standard basis in the space H(E0,n). For a proof that this
is indeed a basis, see e.g. lemma 2.1.3 in chapter IV of [19] or section 4.4 of [20]. Situations
in which the insertion points are at different positions or in which the arcs are oriented in a
different way can be obtained from (4.2) by continuous deformation.

4.2 Boundary three-point function on the disk

Consider the correlator of three boundary fields on a disk. For future convenience we regard
the disk as the upper half plane plus a point. What is shown in the picture below is a piece of
the upper half plane:

����������������������������
����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������
����������������������������M

y

x
x1 x2 x3

Ψ1 Ψ2 Ψ3 MKN

(4.3)

On the world sheet we choose the standard orientation for bulk and boundary, as indicated.
The three boundary fields are given by

Ψ1 = (N,M,Ui, ψ1, x1, [γ1]) , Ψ2 = (K,N,Uj, ψ2, x2, [γ2]) ,

Ψ3 = (M,K,Uk, ψ3, x3, [γ3]) .
(4.4)

Here the coordinates of the insertion points satisfy 0<x1<x2<x3, and the arc germs [γℓ]
at these points are given by γℓ(t) = (xℓ+t, 0) for ℓ∈{1, 2, 3}. Further, Ui, Uj , Uk are simple
objects, while M,N,K are left A-modules.

Following the procedure for boundary fields described in section 3.2, one finds that the
correlator is determined by the cobordism

MX = z

y

x

i j k

x1 x2 x3

N

M

K
ψ1 ψ2 ψ3

(4.5)

In more detail, this cobordism is obtained as follows. First note that in the situation at hand
any A-ribbons resulting from a dual triangulation of the world sheet X can be eliminated by
repeatedly using the moves (I:5.11) and (I:5.12). Thus only the module ribbons with the field
insertions as in figure (3.14) remain. As explained in section 3.1, all ribbons are inserted with
orientation opposite to that of the world sheet. Also note that the three-manifold displayed in
(4.5) is topologically equivalent to the one indicated in (3.12).
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According to section 4.1, the structure constants c(MΨ1NΨ2KΨ3M)δ are defined to be the
coefficients occurring when expanding (4.5) in terms of a standard basis for the space of blocks
H(X̂). In the case under consideration, X̂ is the sphere with field insertions at x1, x2, x3. The
standard basis is given by the cobordisms

B(x1, x2, x3)δ = z

y

x

i j k

x1 x2 x3

k

δ

(4.6)

which are obtained from (4.2) by shifting the insertion points appropriately. The defining
equation for the structure constants thus reads

Z(MX, ∅, X̂) =

Nij
k̄∑

δ=1

c(MΨ1NΨ2KΨ3M)δ Z(B(x1, x2, x3)δ, ∅, X̂) . (4.7)

To determine the coefficients cδ we compose both sides of the equality with Z(B(x1, x2, x3)δ, X̂, ∅)
from the left, where Bδ is the cobordism dual to Bδ. This removes the summation and results
in the desired ribbon invariant expressing cδ:

c(MΨ1NΨ2KΨ3M)δ =

=

N

M

K

ij

k

k

δ

ψ1ψ2ψ3

S3
n.

N

M

K

i j
k

k

δ

ψ1 ψ2 ψ3

S3
n.

(4.8)

Here the second equality amounts to rotating the ribbon graph in S3 by 180◦ degrees, so that one
is looking at the white sides of the ribbons, rather than their black sides. Also, we introduced
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the notation S3
n. to indicate the graphical representation of the normalised invariant of a ribbon

graph in S3. Recall from the end of section I:5.1 that when the picture of a ribbon graph in a
three-manifold M is drawn, it represents the invariant Z(M) except when M =S3, in which case
it rather represents Z(M)/S0,0. Since S0,0 =Z(S3), this amounts to assigning the value 1 to the
empty graph in S3. To stress this difference, we label figures representing normalised invariants
in S3 by S3

n., rather than by S3. (This notational distinction was not made in [ I , II , III ], where
the normalisation convention for S3 is used implicitly.) Recall also that, by definition, we have

S −2
0,0 =

∑

i∈I

dim(Ui)
2 . (4.9)

Let us express the constant c(MΨ1NΨ2KΨ3M)δ in terms of the basis introduced in (2.5).
To this end we take the modules M,N,K to be simple. A correlator labelled by reducible
modules can be expressed as a sum of correlators labelled by simple modules. We set

M = Mµ , N = Mν , K = Mκ (4.10)

and
ψ1 = ψα1

(νi)µ , ψ2 = ψα2

(κj)ν , ψ3 = ψα3

(µk)κ . (4.11)

It is then straightforward to compute the invariant (4.8) from relation (2.8) for the fusing matrix
of the module category CA. The result is

c(MΨ1NΨ2KΨ3M)δ = dim(Ṁµ)

Ak̄Mκ
Mµ∑

β=1

G[A]
(κji)µ

α2να1 , βk̄δ
G[A]

(µkk̄)µ
α3κβ , ·0·

. (4.12)

The dot ‘ · ’ stands again for a multiplicity label that can only take a single value, the corre-
sponding morphism space being one-dimensional.

Formula (4.12) is in agreement with equation (4.16) of [22]. Note that in [22], the quantities
(1)F are taken as an input, whereas the corresponding quantities G[A] can be computed (with
some effort) in terms of the multiplication of A and the fusing matrices F of C, see section 2.3.

Expressions for the structure constants of three boundary fields in rational conformal field
theory have been obtained previously in various cases for models with charge conjugation
invariant [14, 22, 46, 4] and non-diagonal models [47, 48].

4.3 One bulk and one boundary field on the disk

The next correlator we consider is that of a bulk field Φ and a boundary field Ψ on the disk,
which we again describe as the upper half plane:
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M MΨ

Φ

s

p
(4.13)
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The dotted line indicates the dual triangulation that we will use later on in the construction of
the ribbon graph. The bulk and boundary fields are the tuples

Φ = (i, j, φ, p, [γφ], or2) and Ψ = (M,M,Uk, ψ, s, [γψ]) , (4.14)

where i, j ∈I label simple objects, φ∈HomA|A(Ui⊗
+A⊗− Uj, A) and ψ ∈HomA(M ⊗Uk,M).

Further, the insertion points are p≡ (x, y) and s≡ (s, 0) with y > 0 and s>x> 0, and the two
arc germs are given by γφ(t) = (x+t, y) and γψ(t) = (s+t, 0), respectively. The orientation or2

is the standard orientation of the upper half plane at the insertion point of the bulk field.

The construction of section 3 yields the following ribbon graph inscribed in the connecting
manifold:

Uk

Ui

Uj

ρM

ρMM

M

φ

ψ
A

A

MX =

(4.15)

Here the three-manifold has been drawn as in (3.12). Also, in (4.15) it is understood that the
M-ribbon that leaves the picture to the left and to the right is closed to a large loop. One
may now ‘unfold’ the boundary ∂MX so as to arrive at the equivalent representation of the
three-manifold used also in (4.5). This yields

z

x

y
ij k

ψ
M

A
A

A

M

φ

MX = (4.16)

47



To verify that this cobordism is indeed the same as (4.15), one best works in the full ribbon
representation and translates the picture to blackboard framing only at the very end.

The basis of blocks in H(X̂) in which we expand Z(MX, ∅, X̂) is given by

s321

p̄

py

z

x

UiUj

δ

Uk̄

Uk

B(x, y, s)δ = (4.17)

Also indicated in the figure is the continuation path that one has to choose starting from the
standard situation (4.2). The structure constants c(Φ;MΨ )δ are the expansion coefficients of
(4.16) in terms of (4.17),

Z(MX, ∅, X̂) =
∑

δ

c(Φ;MΨ )δ Z(B(x, y, s)δ, ∅, X̂) . (4.18)

Gluing the cobordism dual to B(x, y, s)δ selects one term in the sum on the right hand side
and thus yields, after a rotation by 180◦, the ribbon graph

i j

k k

ψ
M

A
A

A

M

φ

S3
n.

c(Φ;MΨ )δ =
(4.19)

Remark 4.1 :

An interesting special case is the correlator of one bulk field on the upper half plane, without
any boundary field insertion. The corresponding structure constant c(Φ;M) can be obtained
from (4.19) by taking the boundary field to be the identity, Ψ =(M,M, 1, idṀ , [γ]). Doing so,
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one gets

c(Φ;M) =

i i

i ii

φ

A

A

A

M

M

S3
n.

(4.20)

To obtain (4.20) from (4.19), one needs to get rid of one of the A-ribbons that are attached to
the M-ribbon, by first moving the two representation morphisms close to each other, and then
using the representation property (I:4.2), taking the resulting multiplication morphism past φ
(which is allowed because φ commutes in particular with the left action of A on itself). The
resulting A-loop can be omitted owing to specialness, so that one is left with the unit η. To
arrive at (4.20) it then only remains to deform the resulting ribbon graph a bit.
A ribbon graph of the form (4.20) was already encountered in the definition of the quantity S̃A

in (II:3.89). It follows that

c(Φ;M) =
S̃A(M ;Ui, φ̃)

S0,0
, (4.21)

where φ̃ is the morphism enclosed in a dashed box in (4.20).

Next we express the invariant (4.19) in a basis, making the simplifying assumption that
Nij

k ∈{0, 1} and that 〈Ui, A〉 ∈ {0, 1}. This implies in particular that A is haploid and thus
simple. By convention, the bimodules are then labelled in such a way that X0 =A. Let us
choose the boundary condition and the morphisms for the bulk and boundary field in c(Φ;MΨ )
as

M = Mµ , ψ = ψα(µk)µ , φ = ξβ(i0j)0 . (4.22)

Note that (4.19) can be slightly simplified by removing the A-ribbon that arrives at φ in the
same way as explained in remark 4.1. Substituting (4.22) into (4.19) leads to the ribbon graph
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Ui Uj

β

α

Uk̄Uk

A

A

Mµ

Mµ

S3
n.

c(φ;MΨ ) =

=
∑

m,n,a

∑

ρ,σ

[ξβ(i0j)0]
0jaρ

Mµ (mρ)
a (nσ) [ψα(µk)µ]

mn
ρσ I(i, j, k, a,m, n) ,

(4.23)

where in the second step we have substituted the expansions of ψα(µk)µ and ξβ(i0j)0 given in (2.39)

and (2.40). The coefficients ρM , introduced in (I:4.56), express a representation morphism in a
basis. The function I(i, j, k, a,m, n) is the ribbon invariant

I(i, j, k, a,m, n) =
i

j

k k̄

a

n

m

1

2

3

S3
n.

(4.24)

To evaluate this invariant one first applies the appropriate relation from appendix II:A.1 to

the dashed box marked 1 . Next one inserts a complete basis (I:2.31) at 2 and removes all

braidings with the help of (I:2.41). Finally one applies an F-move (II:2.36) to 3 , so as to obtain
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I(i, j, k, a,m, n) = G
(mkk̄)m
n0 R (n a)m dim(Um)

∑

p

θnθi
θp

F (n i j)m
ap G

(n i j)m

p k̄
. (4.25)

The correlators for one bulk field and one boundary field on the upper half plane, i.e.
the structure constants describing the coupling of bulk to boundary fields, have first been
considered in [13]. There, a constraint is derived which these coefficients have to solve and an
explicit expression for their square is found for the case of the charge conjugation invariant.
Since then, solutions for the coefficients themselves have been found, both for models with
charge conjugation invariant and for more general cases [14,22,47,49,4]. Also, in equation (5.6)
of [23] the bulk-boundary coefficients of spinless bulk fields are expressed through (1)F .

The coupling of a bulk field to the identity on the boundary, i.e. the one-point function of
a bulk field on the disk as in remark 4.1, is easier to obtain than the general bulk-boundary
structure constants, as it can already be recovered from the NIM-rep data (multiplicities in the
tensor products of C and CA) and does not require knowledge of the 6j-symbols [50, 13]. These
coefficients, which determine the boundary state, have been calculated for many models.

4.4 Three bulk fields on the sphere

We now turn to the correlator of three bulk fields on the sphere. Analogously as in the discussion
of the disk, we describe the sphere as R

2 plus a point. The correlator then takes the form

y

x
p1

p2

p3Φ1

Φ2

Φ3

(4.26)

The dotted line again indicates the dual triangulation that will be used in the construction of
the ribbon graph. The three bulk fields are tuples

Φ1 = (i, j, φ1, p1, [γ1], or2) , Φ2 = (k, l, φ2, p2, [γ2], or2) , Φ3 = (m,n, φ3, p3, [γ3], or2) . (4.27)

Here i, j, k, l,m, n∈I label simple objects. φ1 is a morphism in HomA|A(Ui⊗
+A⊗− Uj, A), and

similarly one has φ2 ∈HomA|A(Uk ⊗
+A⊗− Ul, A) and φ3 ∈HomA|A(Um⊗+A⊗− Un, A). The

three fields are inserted at p1, p2 and p3, respectively, with arc germs [γ1], [γ2], [γ3] given by
γ1,2,3(t) = p1,2,3 + (t, 0). The orientations or2 around the insertion points of the three bulk fields
are given by the standard orientation of R

2.
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The construction of section 3 gives the following ribbon graph inscribed in the connecting
manifold:

x

y

x

y

x

y

x

y
z

i

j

l

k

n

m

A
A

A

φ1

φ2

φ3

MX =

(4.28)
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As a basis for the space H(X̂) we take the cobordisms

p1

j

ν

p2

l

p3

n

n̄

B3

y

x

z

p1

i

µ

p2

k

p3

m

m̄

B3

y

x

z

B(p1, p2, p3)µν =

⊔

(4.29)

where the symbol ‘B3’ indicates that the manifolds are solid three-balls, with orientations as
indicated, while ‘⊔’ denotes the disjoint union of the two three-manifolds. Expanding (4.28) in
terms of (4.29) defines the bulk structure constants c(Φ1Φ2Φ3)µν via

Z(MX, ∅, X̂) =
∑

µν

c(Φ1Φ2Φ3)µν Z(B(p1, p2, p3)µν , ∅, X̂) . (4.30)

By gluing the cobordism dual to B(p1, p2, p3)µν we get rid of the summation on the right hand
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side, thus obtaining the ribbon graph

i k

m̄ m

µ̄

φ1 φ2 φ3
A A

A

ν̄

S3
n.

j l

n̄ n

c(Φ1Φ2Φ3)µν =
1

S0,0
(4.31)

The additional factor 1/S0,0 comes from the normalisation of the cobordism dual toB(p1, p2, p3)µν ,
which consists of two copies of B3.

Let us assume that the algebra A is simple, and thus by convention X0 =A. Also, we choose
the morphisms entering the three bulk fields in c(Φ1Φ2Φ3)εϕ as

φ1 = ξα1

(i0j)0 , φ2 = ξα2

(k0l)0 , φ3 = ξα3

(m0n)0 . (4.32)

Inserting these expressions in (4.31) and rotating the resulting graph in such a way that the
white side of the A-ribbons faces the reader results in

ik

m

m̄

α1

α2

α3

X0

X0

X0

ε̄

S3
n.

j l

n̄

n

ϕ̄

c(Φ1Φ2Φ3)εϕ =
1

S0,0
(4.33)

Applying now the definition (2.27) of the F[A|A]-matrices twice, first to the pair α1, α2 of
morphisms, and then to the remaining two bimodule morphisms, the invariant (4.33) becomes

c(Φ1Φ2Φ3)εϕ =
dim(A)

S0,0

∑

β

F[A|A]
(ki0jl)0
α10α2 , βm̄n̄εϕ

F[A|A]
(mm̄0n̄n)0
β0α3 , ·00··

. (4.34)

Multiplying this with the inverse of the two-point correlator, one finds that the bulk OPE
coefficients are given precisely by entries of the matrix F[A|A], as announced in remark 2.3.
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Of the various types of structure constants considered in this paper, the coefficient for the
correlator of three bulk fields has the longest history. Explicit expressions have first been
obtained for the A-series Virasoro minimal models [12, 51], and subsequently for many models
with charge conjugation invariant [52,53,54,55,56] and more general theories [57,58,59,60,61,
62, 63, 64, 65, 22].

4.5 Three defect fields on the sphere

The calculation for three defect fields is almost the same as for three bulk fields. This is not
surprising, as a bulk field is just a special kind of defect field, namely the one connecting the
invisible defect to the invisible defect. We consider three defect fields on a defect circle,

y

x

p1

p2

p3Θ1

Θ2

Θ3

Y Z

X

(4.35)

The three defect fields are tuples

Θ1 = (X, or2, Y, or2, i, j, ϑ1, p1, [γ1], or2) ,

Θ2 = (Y, or2, Z, or2, k, l, ϑ2, p2, [γ2], or2) ,

Θ3 = (Z, or2, X, or2, m, n, ϑ3, p3, [γ3], or2) .

(4.36)

Here or2 is the standard orientation of R
2, i, j, k, l,m, n ∈ I label simple objects, and ϑ1,2,3 are

morphisms
ϑ1 ∈ HomA|A(Ui⊗

+X ⊗− Uj , Y ) ,

ϑ2 ∈ HomA|A(Uk ⊗
+ Y ⊗− Ul, Z) ,

ϑ3 ∈ HomA|A(Um⊗+ Z⊗− Un, X) .

(4.37)

The three fields are inserted at p1, p2, p3, with arc germs [γ1,2,3] given by γ1,2,3(t) = p1,2,3 +(t, 0).

The ribbon graph differs from the one for three bulk fields only in that the annular A-ribbon
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is replaced by the appropriate bimodule ribbons. Thus we obtain

x

y

x

y

x

y

x

y
z

i

j

l

k

n

m

Z

Y

X

ϑ1

ϑ2

ϑ3

MX =

(4.38)

Expanding this in the basis (4.29) defines the structure constants of three defect fields via

Z(MX, ∅, X̂) =
∑

µν

c(X,Θ1, Y, Θ2, Z, Θ3, X)µν Z(B(p1, p2, p3)µν , ∅, X̂) . (4.39)

Gluing the cobordism dual to B(p1, p2, p3)µν yields a ribbon invariant very similar to (4.31):

i k

m̄ m

µ̄

ϑ1 ϑ2 ϑ3
Y Z

X

ν̄

S3
n.

j l

n̄ n

c(X,Θ1, Y, Θ2, Z, Θ3, X)µν =
1

S0,0

(4.40)
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The calculation of the invariant (4.40) runs along the same line as in the case of three bulk
fields. Let us choose

X = Xµ , Y = Xν , Z = Xκ , ϑ1 = ξα1

(iµj)ν , ϑ2 = ξα2

(kνl)κ , ϑ3 = ξα3

(mκn)µ . (4.41)

Inserting this in (4.40) leads to a ribbon invariant similar to (4.33), which can again be evaluated
with the help of the definition (2.27). We find

c(Xµ, Θ1, Xν , Θ2, Xκ, Θ3, Xµ)εϕ =
dim(Ẋµ)

S0,0

∑

β

F[A|A]
(kiµjl)κ
α1να2 , βm̄n̄εϕ

F[A|A]
(mm̄µn̄n)µ
βκα3 , ·00··

. (4.42)

Just like for three bulk fields, multiplying this expression with the inverse of the two-point
correlator one finds that the OPE coefficients for defect fields are entries of the matrix F[A|A].

4.6 One bulk field on the cross cap

After dealing with the fundamental correlators allowing to obtain all orientable world sheets
by sewing, we finally consider the additional world sheet that is needed to construct all non-
orientable surfaces as well, i.e. the cross cap. Correspondingly, the algebra A is now a Jandl
algebra.

We present the cross cap as R
2/∼, with the equivalence relation ∼ identifying points ac-

cording to the rule u∼σ
RP

2(u), where in standard coordinates x, y on R
2, σ

RP
2 acts as

σ
RP

2(x, y) := −1
x2+y2 (x, y) . (4.43)

Consider now the correlator of one bulk field on the cross cap, with the bulk field given by
Φ=(i, j, φ, p, [γ], or2):

y

x
x

y

p
Φ (4.44)

As before, i, j ∈I, φ∈HomA|A(Ui⊗
+A⊗− Uj , A) and γ(t) = p+(t, 0), where p is the insertion

point of the bulk field. The local orientation or2 around p is chosen as indicated in figure
(4.44). The interior of the dashed circle is a fundamental domain of the equivalence relation
u∼σ

RP
2(u). On its boundary, i.e. for |u|=1, points are identified according to u∼−u.

Similarly as in (II:3.10), one can write the connecting manifold as

MX = X̂ × [−1, 0] / ∼ with (u, 0)∼ (σ
RP

2(u), 0) for all u∈ X̂ . (4.45)
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For the cross cap we obtain in this way the three-manifold

y

x

x

y
z

t = −1

t = 0

(4.46)

with orientations as indicated, and with points in the t=0 -plane to be identified according to
u∼σ

RP
2(u). Next we draw the ribbon graph embedded in the t=0 -plane:

i

j

j

i

φφ

A

A

A

A

y

x (4.47)

Note that there is only a single field insertion, but as a consequence of the identification
u∼σ

RP
2(u) the ribbon graph is duplicated in the picture. In (4.47) the Ui- and Uj-ribbons

end in dashed circles; this way we indicate the points at which they leave the t=0-plane so as
to connect to the marked points on the boundary of MX. Recall also the notation (II:3.4) for
the element connecting two A-ribbons with opposite orientation.

The complete ribbon graph, lifted out of the t=0-plane to t < 0 and rotated into blackboard
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framing, looks as follows (again one better uses full ribbon notation to verify this move):

y

x

x

y
z

t=−1

t= 0

ij

j

φA A
MX = (4.48)

The space H(X̂) in this case is one-dimensional if j= ı̄ and zero-dimensional otherwise. For
j= ı̄ we select

y

x

ı̄ i

ı̄ i

B3

B3

B2 =

y

x

=

(4.49)
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as the cobordism describing the basis element in the space of blocks. The structure constant
appearing in

Z(MX, ∅, X̂) = c(Φ)Z(B2, ∅, X̂) (4.50)

is again found by composing Z(MX, ∅, X̂) with the cobordism dual to (4.49). After a suitable
rotation of the three-manifold, this results in

ı̄
i

φA

ı̄

σ

A

RP
3

ı̄

i

φ

A

A

A

ı̄

ı̄

σ

A

RP
3

c(Φ) =
1

S0,0
=

1

S0,0
(4.51)

In the second equality, after deforming the ribbon graph, we use that φ is a morphism
of bimodules, φ∈HomA|A(Ui⊗

+A⊗− Uj , A). Comparing to (II:3.91), we conclude that the
resulting ribbon graph is just

c(Φ) = Γσ(Uı̄, φ
′) / S0,0 , (4.52)

where φ′ is the morphism inside the dashed box on the right hand side of (4.51). Γσ is the
ribbon invariant that was introduced in (II:3.90), which was computed in a basis in (II:3.110).

One-point functions on a cross cap have been first obtained for free bosons, fermions and
ghosts in [66, 67] and for the Ising model in [7]. The cross cap Ishibashi states were discussed
in [68]. A set of cross cap one-point functions for the Cardy case in rational CFTs was given
in [69,4], and for the D-series of su(2) in [70]. Simple current techniques allow one to find more
solutions in the Cardy case, as well as for more general simple current invariants [71,72,73,74,75].
In particular, Gepner (and related) models have recently received a lot of attention, see e.g.
[76, 77, 78].

4.7 One defect field on the cross cap

As already noted in section 4.5, replacing bulk fields by defect fields changes very little in the
calculation of a correlator. Thus we discuss the correlator of one defect field on the cross cap
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only very briefly. The geometric setup for the correlator is
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�������������������

x

y

x

y

x

y

x

y

X

or2(X) =

or2(p) =

or2(X) =

(4.53)

where the defect field is given by Θ= (X,−or2, X, or2, i, j, ϑ, p, [γ], or2) with γ(t) = p+(t, 0) and
ϑ∈HomA|A(Ui⊗

+Xs⊗− Uj , X). The choice of γ implies that at the insertion point of the defect
field the defect runs parallel to the real axis. The orientations or2(p) around the insertion point
and or2(X) around the defect line are chosen as indicated. When giving or2(X) one must take
the orientation-reversing identification of points on R

2 into account.
The connecting manifold MX can be found by the same method that led to (4.48). The

only difference is that the A-ribbon gets replaced by an X-ribbon, and that there is a half-twist
in accordance with (3.55). The resulting ribbon graph is, in blackboard framing,

x

y
z

x

y

t=−1

t= 0

ij

j

X XϑMX = (4.54)

Composing with the dual of the cobordism (4.49) one determines the constant c(X,Θ) appearing
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in the relation Z(MX, ∅, X̂) = c(X,Θ)Z(B2, ∅, X̂) to be

i

X
Xs

ı̄

ı̄

ϑ

RP
3

c(X,Θ) =
1

S0,0 (4.55)

To work out the invariant (4.55) we need to introduce a bit more notation. Note that the
morphism ϑ entering the data for the defect field Θ is an element of HomA|A(Ui⊗

+Xs⊗− Uı̄, X).
If we choose X to be the simple bimodule Xν , then also Xs≡ (Xν)

s is a simple bimodule. Define
a map

s : K −→ K (4.56)

via (Xν)
s∼=Xs(ν). We explicitly choose, once and for all, a set of isomorphisms

Πs
ν ∈ HomA|A(Xν , (Xs(ν))

s) . (4.57)

This is similar to the choice of πi ∈Hom(Ui, (Uı̄)
∨) made in (I:2.23). For our purposes we need

to expand the inverse of Πs
ν in a basis,

Ẋν

Ẋν

(
Πs

ν

)
−1

Ẋν

Ẋν

β

α

x=
∑

x∈I

〈Ux,Ẋν〉∑

α,β=1

[
(Πs

ν)
−1

]x
αβ (4.58)

In writing this relation we used that as objects in C, Xν and (Xs(ν))
s are both equal to Ẋν .

They only differ in the left and right actions of A.
After these preliminaries, let us evaluate the invariant (4.55). We make again the simplifying

assumption that Nij
k ∈{0, 1}. Let us choose

X = Xν and ϑ = ξα(is(ν )̄ı)ν ◦
(
idUi⊗ (Πs

s(ν))
−1⊗ idUı̄

)
. (4.59)
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Substituting this into (4.55) results in

c(X,Θ) =
1

S0,0

i

Xs(ν)

Xν

(Xν)s

ı̄

ı̄

α

Πs −1
s(ν)

RP
3

=
1

S0,0

∑

x,y

∑

γ1,γ2

[ξα(is(ν )̄ı)ν ]
xyx
γ1γ2

[(Πs
s(ν))

−1]xγ2γ1I(i, x, y) . (4.60)

In the second equality we have replaced ξα(is(ν )̄ı)ν and (Πs
s(ν))

−1 by their expansions (2.40) and

(4.58), respectively. If one in addition drags the points where the Uı̄-ribbon touches the iden-
tification plane along the paths indicated 13 one obtains the following representation of the
invariant I(i, x, y):

ı̄
i

ı̄x

y

ı̄ x

RP
3

I(i, x, y) =
(4.61)

To compute I(i, x, y), we apply the relation (II:3.73) to the morphism that is indicated by the
dashed box. Thereby I(i, x, y), which according to (4.61) is the invariant of a graph in RP

3, is

13 When moving the Uı̄-ribbon one must carefully take into account the identification. As discussed at the
end of section II:3.5 this introduces additional twists.
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expressed as the invariant of a graph in S3. In the latter form, I(i, x, y) is straightforward to
evaluate; we find

I(i, x, y) = S0,0 κ
−1

∑

j∈I

S0,j θ
−2
j

θx
θy

1

R (i y)x
G

(y i ı̄) y
x 0 sj,y = P0,y

θx G
(y i ı̄) y
x 0

ty R (i y)x
. (4.62)

In the second step we made use of the definition of the P -matrix [79, 80], see (II:3.122), and
used the notations

Pi,j = κ−1P̂i,j , P̂i,j = (T̂ 1/2ST̂ 2ST̂ 1/2)ij , T̂ij = θ−1
i δij , T̂

1/2
ij = t−1

i δij ; (4.63)

finally, κ=S0,0

∑
kθ

−1
k (dim Uk)

2 is the charge of the modular category C. If C is the repre-
sentation category of a RVOA, it is given by κ=eπic/4, with c the central charge of the chiral
CFT.

4.8 Example: The Cardy case

In this section we apply the TFT formalism to the simplest situation, i.e. to the algebra A=1.
This case has already been treated 14 in [46, 4]. Furthermore we make again the simplifying
assumption that Nij

k ∈{0, 1}.
With the exception of the structure constants for three defect fields on the sphere (4.68)

and one defect field on the cross cap (4.75), the results of this section are not new and merely
serve to illustrate the general formalism developed above. References to previous results in the
literature are listed at the end of sections 4.2 – 4.6 above.

Field content

As is immediate from (I:5.30) and (I:5.19), for A=1 the torus partition function is given by
the charge conjugation modular invariant, Z(1)ij = δi,̄. Thus there is a bulk field Φi for each
simple object. In the notation of section 3.3, we choose

Φi :=
(
i, ı̄, φi, p, [γ], or2(p)

)
, (4.64)

where the morphism φi = ξ ı̄(i0ı̄)0 is given by the basis element introduced in (2.44).
The boundary conditions are in one-to-one correspondence with the simple objects Ui,

too, and the annulus coefficients are given by the fusion rules [50]. Thus we have J =I
and Aiµ

ν =Nµi
ν , compare remark I:5.21(i). Nonetheless we continue use greek letters to label

boundary conditions. Let us denote the field that changes a boundary condition ν to µ and
is labelled by the simple object Uk by Ψµνk . Thus in terms of the notation of section 3.2, we
choose

Ψµνk := (Mµ,Mν , Uk, ψ, p, [γ]) , (4.65)

where the morphism ψ ≡ ψ(µk)ν is the basis element defined in (2.44).
The defects are in one-to-one correspondence with the simple objects Ui as well, so that

K= I. Moreover, the twisted partition functions are again expressed in terms of the fusion

14 In [46,4] the structure constants were derived for a specific normalisation of the bulk and boundary fields.
We find it helpful to reproduce the results with normalisations kept arbitrary. Also, structure constants of
defect fields where not considered in [46, 4].
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rules [40]; as follows from the ribbon representation (I:5.151), we have Z
µ|ν
kl =

∑
k∈I Nkl

mNmµ
ν .

The number Z
µ|ν
kl gives the multiplicity of defect fields carrying chiral and antichiral labels Uk

and Ul, respectively, that change a µ-defect into a ν-defect. Let us denote such fields by Θ
µ|ν
kl,α.

To be specific, in the notation of 3.4 we choose

Θ
µ|ν
kl,α := (Xµ, or2(p), Xν , or2(p), k, l, ξ, p, [γ], or2(p)) , (4.66)

where ξ ≡ ξα(kµl)ν . The multiplicity label α takes all values in I for which Nµl
γNkγ

ν 6= 0.

Three boundary fields

Let us first consider the case of three boundary fields Ψ νµi , Ψκνj and Ψµκk on the disk, changing
boundary conditions from µ to ν to κ to µ as we move along the real axis. Substituting the
expression (2.47) for the fusion matrices of CA into the general expression (4.12) immediately
results in

c(MµΨ
νµ
i MνΨ

κν
j MκΨ

µκ
k Mµ) = βνµi βκνj β

µκ
k G

(κ j i)µ

ν k̄
G

(µk k̄)µ
κ 0 dim(Uµ) . (4.67)

Recall that the constants βνµi etc. give the normalisation of the boundary fields.

Remark 4.2 :

In view of the results in [14, 22, 46, 4, 23] one might have expected that the F-matrices appear
in (4.67), rather than their inverses G. This is, however, merely an issue of normalisation and
of labelling of the boundary conditions, and illustrates the fact that the labelling of boundary
conditions by simple objects is not canonical. Indeed, at the end of this section we will see that
by suitably changing the normalisation of the boundary fields, in addition to relabelling the
boundary conditions as µ 7→ µ̄, the structure constants (4.67) can equivalently be expressed in
terms of F-matrices.

Three defect fields

Next we consider three defect fields. The structure constant of three bulk fields can then be
obtained as a special case thereof. We consider a circular defect consisting of three segments
of defect types µ, ν and κ, respectively, see (4.35). The change of defect type is effected by

three defect fields Θ
µ|ν
ij,α1

, Θ
ν|κ
kl,α2

and Θ
κ|µ
mn,α3. The corresponding structure constant is obtained

by substituting (2.49) into (4.42), resulting in

c(Xµ, Θ
µ|ν
ij,α1

, Xν , Θ
ν|κ
kl,α2

, Xκ, Θ
κ|µ
mn,α3

, Xµ)

= α
µ|ν
ij,α1

α
ν|κ
kl,α2

ακ|µmn,α3

R− (l j) n̄R− (n n̄) 0

tl tj tn

dim(Uµ)

S0,0
∑

β

G
(i α1 l)α2

ν β G
(µ j l)β
α1 n̄ F

(k i β)κ
α2 m̄ G (m̄ β n)α3

κµ G
(µ n̄ n)µ
β 0 F

(mm̄µ)µ
α3 0 .

(4.68)

The constants α
µ|ν
ij,α1

etc. determine the normalisation of the defect fields.
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Three bulk fields

The structure constants of three bulk fields Φi, Φj and Φk on the sphere are obtained by
restricting formula (4.68) to the case µ= ν = κ=0. The expression then simplifies a lot, leading
to

c(Φi, Φj, Φk) = αi αj αk R− (̄ ı̄) k tk
ti tj

G
(i ı̄ ̄) ̄
0 k F

(j i k) 0

̄ k̄

S0,0 dim(Uk)
. (4.69)

Here αi≡α
0|0
īı,̄ı etc. give the normalisation of the bulk fields. In deriving this formula we made

use of the relation
G

(p p̄ p) p
0 0 = R (p̄ p) 0 θp dim(Up)

−1 , (4.70)

which can be verified analogously as the corresponding equation for F in (I:2.45).
The normalisation of the bulk fields can be read off from the two-point structure constant,

divided by the squared norm of the vacuum (expressed as the two-point function of the identity
field). Setting m=0 and j= ı̄ in (4.69) and using once more (4.70) gives

c(Φi, Φı̄)

c(1, 1)
=

αi αı̄
dim(Ui)

. (4.71)

One bulk and one boundary field

Consider now the correlator for one bulk field Φi and one boundary field Ψµµk on the disk, with
boundary condition labelled by µ. To evaluate the general expression (4.23), first note that the

expansion coefficients of the representation morphism are now trivial, ρ
M (m)
0,(m) =1. Also recall

relation (2.45) for the expansion coefficients of ξ and ψ. We then find

c(Φi,Mµ, Ψ
µµ
k ) = t−1

i αi β
µµ
k G

(µkk̄)µ
µ0 dim(Uµ)

∑

p

θµθi
θp

F
(µ i ı̄)µ
0 p G

(µ i ı̄)µ

p k̄
. (4.72)

Of particular interest is the correlator of just one bulk field on the disk, which is obtained from
(4.72) by setting k=1. Using the identities

F
(µ i ı̄)µ
0 p G

(µ i ı̄)µ
p 0 =

dim(Up)

dim(Ui) dim(Uµ)
and si,̄ =

∑

k∈I

θi θj
θk

Nij
k dim(Uk) , (4.73)

one finds

c(Φi,Mµ) =
1

ti

αi
dim(Ui)

si,µ̄ . (4.74)

The phase t−1
i will cancel a corresponding phase in the correlator, see equation (6.27) below.

Also note that here one might have expected si,µ instead of si,µ̄. This difference amounts to
the freedom to choose the labelling of the boundary conditions at will. Indeed, our labelling is
related to the one leading to si,µ by µ↔ µ̄; we will return to this point at the end of the section.
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One defect field on the cross cap

Consider a defect of type ν on a cross cap, together with a defect field insertion θ
s(ν)|ν
īı,α . To

evaluate (4.60) we need to make a definite choice for the isomorphisms Πs
ν . First note that for

A= 1 one has s(ν) = ν for all ν ∈K. It is convenient to choose Πs
ν = tν idUν . One then finds

c(Xν ,Θ
ν|ν
īı,α) = α

ν|ν
īı,α R− (α i) ν tν

ti tα
G

(α i ı̄)α
ν 0

P0,α

S0,0

. (4.75)

One bulk field on the cross cap

The structure constants of one bulk field Φi on the cross cap are obtained by setting ν =0 in
(4.75):

c(Φi) =
αi

dim(Ui)

P0,̄ı

S0,0
. (4.76)

Change of normalisation for boundary fields

Let us now return to the question of expressing the structure constant (4.67) of three boundary
fields in terms of F-matrices instead of their inverses G. We would like to demonstrate that
there is a normalisation of the boundary fields in which (4.67) is expressed in terms of F, but
with all boundary labels µ, ν, κ replaced by their conjugates.

Introduce numbers γνµi by relating two different basis vectors of Hom(Uµ⊗Ui, Uν), according
to

µ i

ν

µ i

µ̄

πµ
ν̄

π−1
ν

ν

= γνµi (4.77)

A short computation shows that this implies the relation

µ i

ν

µ i

µ̄

π−1
µ ν̄

πν

ν

=
dim(Uν)

dim(Uµ)

1

γνµi
(4.78)
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between the dual basis vectors. Consider now the ribbon representation of G
(κ j i)µ

ν k̄
as in (I:2.40).

Take the trace of that relation and replace the three basis vectors λ(νi)µ, λ(κj)ν and Υ(κk̄)µ by
the corresponding right hand sides of (4.77) and (4.78). It is then not difficult to see that the
resulting ribbon graph can be deformed to equal the trace of the left hand side of (I:2.37).
Altogether we obtain

G
(κ j i)µ

ν k̄
=
γµνi γ

ν
κj

γµ
κk̄

F
(j i µ̄) κ̄

ν̄ k̄
. (4.79)

Substituting this relation into (4.67) results in the equality

c(MµΨ
νµ
i MνΨ

κν
j MκΨ

µκ
k Mµ) = (γµνi β

νµ
i ) (γνκj β

κν
j ) (γκµk β

µκ
k ) F

(j i µ̄) κ̄

ν̄ k̄
F

(k k̄ µ̄) µ̄
κ̄ 0 dim(Uµ) . (4.80)

We conclude that by changing the normalisation of the boundary fields and renaming the
boundary conditions as µ→ µ̄, one arrives at the usual expression of the boundary structure
constants in terms of F-matrix elements.

5 Conformal blocks on the complex plane

In the study of CFT correlators there are two different aspects, a complex-analytic and a purely
topological one. The construction of the correlators, as presented in detail in sections 2 – 4 for
the fundamental correlators 〈ΦΦΦ〉, 〈ΦΨ〉, 〈ΨΨΨ〉 and 〈Φ〉×, as well as for the defect correlators
〈ΘΘΘ〉 and 〈Θ〉×, proceeds entirely at the topological level. Given this construction, one would
next like to address the complex-analytic aspect of the correlators, thereby obtaining them as
actual functions of the insertion points. This aspect is treated in the present section and in
section 6. We start in sections 5.1 and 5.2 by recalling the concepts of vertex algebras and
bundles of conformal blocks.

The relation between the 3-d TFT formulation of the correlators and the complex-analytic
description relies on a number of assumptions, thus restricting the class of vertex algebras V to
which our construction can be applied. First, we require the category Rep(V) of representations
of V to be a modular tensor category. Sufficient conditions on V which ensure this property of
Rep(V) have been given in [18].

Given V we can define bundles of conformal blocks for Riemann surfaces with marked points.
Our second condition is to demand that these spaces are finite-dimensional, and that for surfaces
of arbitrary genus the conformal blocks give rise to the same monodromy and factorisation data
as the 3-d TFT constructed from Rep(V). So far there is no complete treatment of this issue
in the literature. However, many results have been obtained, see e.g. [9, 81, 82, 20, 83, 84]. For
the purposes of this paper we do not need a complex-analytic construction of correlators in its
full generality, though, as we only consider particularly simple cases, namely the fundamental
correlators listed above. For these, at most conformal three-point blocks on the Riemann sphere
are needed.

For the purposes of this paper, we will call the class of vertex algebras satisfying these
conditions rational. From now on we take V to be rational in this sense.

Another important issue is the metric dependence of the correlation functions through the
Weyl anomaly, which arises whenever the Virasoro central charge of V is nonzero. Here again
we do not need a general treatment, because we will be interested in the ratio of a correlator
and of the corresponding correlator with all field insertions removed (see section 6.1 below).
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The presence of field insertions does not affect the metric-dependence of a correlator, and hence
the Weyl anomaly cancels in such ratios.

5.1 Chiral vertex operators

In this section we describe the space of conformal blocks on the Riemann sphere P
1, realised

as P
1 =C∪{∞}. To this end we collect a few notions from the theory of vertex algebras,

in particular that of an intertwiner between representations of vertex algebras. However, this
section neither is intended as a review of vertex algebras, nor is it as general as it could be in a
vertex algebra setting. Rather, the main purpose is to specify some notations and conventions
needed in the description of the CFT correlation functions. For a much more detailed exposition
of vertex algebras the reader may consult e.g. [82, 83, 85].

Vertex algebras and intertwiners

One formalisation of the physical concept of a chiral algebra for a conformal field theory is the
structure of a conformal vertex algebra V. This is a vector space RΩ, the space of states, which
is Z≥0-graded with finite-dimensional homogeneous subspaces, equipped with some additional
structure. In particular, there is a state-field correspondence, assigning to every W∈RΩ a field
W (z) = Y (W ; z)∈End(RΩ)[[z, z−1]]. Here End(V)[[z]], for V a vector space, denotes the space
of formal power series in the indeterminate z with coefficients in End(V). The state space RΩ,
also called the vacuum module, contains a distinguished vector vΩ, the vacuum state, for which
the associated field is the identity, Y (vΩ; z) = idRΩ

, and for which Y (u; z)vΩ =u + O(z) for all
u∈RΩ. The grading of the state space RΩ is given by the conformal weight. The vacuum
vΩ is a non-zero vector in the component of weight zero, which we assume to be one-dimen-
sional. The component of weight two contains the Virasoro vector vvir, whose associated field
Y (vvir; z) =T (z) is the (holomorphic component of the) stress tensor.

We will be interested in representations of the vertex algebra V and intertwiners between
them. A representation of V of lowest conformal weight ∆ consists of a (∆+Z≥0)-graded vector
space R and a map ρ: RΩ →End(R)[[z±1]], subject to some additional consistency conditions.
An intertwining operator between three modules Ri, Rj , Rk with conformal highest weights
∆i, ∆j , ∆k is a map

Vi
jk(· ; z) : Rj −→ z∆i−∆j−∆kHom(Rk,Ri)[[z

±1]] , (5.1)

satisfying a condition to be described in a moment.
In the sequel we make the simplifying assumption that certain power series of our interest

possess a non-empty domain of convergence when the indeterminate z is replaced by a complex
variable, again denoted by z; they can then be regarded as complex-valued functions analytic
in that domain. For instance, suppose we are given some fields ϕi(z)∈ z

αiHom(Ri,Ri+1)[[z
±1]],

which may be either fields W (z) in the chiral algebra (in which case Ri+1 = Ri) or intertwining
operators Vi

p,i+1(v; z) for some V-representation Rp and some v∈Rp. For any two homogeneous
vectors a∈R1 and 15 b∗ ∈R∗

n+1 we have

(b∗, ϕn(zn) · · ·ϕ1(z1) a) ∈ zα1
1 · · · zαnn C[[z±1

1 , ... , z±1
n ]] (5.2)

15 Here R∗
i is the restricted dual of the vector space Ri, which by definition is the direct sum of the duals of

the (finite-dimensional) homogeneous subspaces of Ri, i.e. R∗
i =

⊕∞

n=0R
∗

(n) for Ri =
⊕∞

n=0R(n).
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with suitable numbers αi. It is then assumed that, when taking the zj in the power series (5.2)
to be complex variables (and thereby interpreting them as field insertion points in the complex
plane), this series converges for all (z1, z2, ... , zn)∈Cn satisfying |zn|> . . . > |z1|> 0.

As another example where we assume convergence, let us formulate the condition for
Vi
jk(· ; z) to be an intertwining operator. For a∗ ∈R∗

i , b∈Rj and c∈Rk, consider the three
formal power series

f1(z) = ( a∗, ρi(W (z)) Vi
jk(b;w) c ) ,

f2(z) = ( a∗, Vi
jk(ρj(W (z−w)) b;w) c ) ,

f3(z) = ( a∗, Vi
jk(b;w) ρk(W (z)) c ) ,

(5.3)

which are elements of w∆i−∆j−∆kC[[z±1,w±1,(z−w)−1]]. What we assume is that, with z and w
interpreted as complex variables, each of these three series has a non-zero domain of conver-
gence. Usually f1(z) converges for |z|> |w|, f2(z) for |z−w|< |w|, and f3(z) for |w|> |z|> 0.
Then the condition for Vi

jk(· ;w) to be an intertwining operator is that the three functions
f1,2,3(z) coincide upon analytic continuation and can have poles only at z= 0, w and ∞.

As already mentioned, we demand that Rep(V) is a modular tensor category. In particular,
V has only finitely many inequivalent irreducible representations, and every V-representation
is fully reducible. We choose, once and for all, a set

{Si | i∈I} (5.4)

of representatives of isomorphism classes of irreducible V-modules. By Sk̄ we denote the element
in this list that is isomorphic to the dual module (Sk)

∨. We also take S0 = RΩ.
The morphisms of the tensor category V are intertwiners of V-modules. In particular,

HomV(Sj ⊗ Sk, Si) is the vector space of intertwiners Vi
jk(· ; z) between Sj , Sk and Si. As V is

rational, the dimension Njk
i of this space is finite.

Choice of basis for intertwining operators

We choose bases
{Vi,δ

jk (· ; z) | δ= 1, ... , Njk
i} ⊂ HomV(Sj ⊗ Sk, Si) (5.5)

in the spaces of intertwiners Vi
jk(· ; z). We do not restrict this choice, except when Sj or Sk

is the vacuum module. Take first j=0; then Njk
i = δki. Thus Vi

0i( · ; z): S0 →End(Si)[[z
±1]] is

unique up to multiplication by a scalar. As a basis, we take the representation morphism itself,
Vi

0i = ρi. Then in particular the field corresponding to the vacuum vΩ is the identity,

Vi
0i(vΩ; z) = idSi . (5.6)

Similarly, for k=0 we normalise Vi
i0( · ; z): Si→Hom(S0, Si)[[z

±1]] via the condition that

Vi
i0(u; z)vΩ = u+O(z) (5.7)

for all u∈Si.
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Two- and three-point conformal blocks

Let v∗Ω be the unique vector of weight zero in R∗
Ω satisfying v∗Ω(vΩ) = 1. For X a product of

intertwiners, we write 〈0|X |0〉 for the number v∗Ω(XvΩ).
For products of at most three intertwiners, the functional dependence of 〈0|X |0〉 on the

insertion points is fixed by conformal invariance. For the case of two intertwiners one finds
explicitly

〈0|V0
k̄k(v; z2) Vk

k0(u; z1) |0〉 = (z2−z1)
−2∆k(u)Bk̄k(v, u) ,

with Bk̄k(v, u) := 〈0|V0
k̄k(v; 2) Vk

k0(u; 1) |0〉 .
(5.8)

Here we take u∈ Sk and v ∈ Sk̄ to be homogeneous of conformal weight ∆k(u) and ∆k̄(v),
respectively. The two-point conformal block vanishes unless ∆k(u) =∆k̄(v).

For three intertwiners one gets

〈0|V0
kk̄

(w; z3) Vk̄,δ
ji (v; z2) Vi

i0(u; z1) |0〉

= (z3−z2)
∆i(u)−∆j(v)−∆k(w)(z3−z1)

∆j(v)−∆i(u)−∆k(w)(z2−z1)
∆k(w)−∆i(u)−∆j(v)Bδ

kji(w, v, u) ,

with Bδ
kji(w, v, u) := 2−∆j(v)+∆i(u)+∆k(w) 〈0|V0

kk̄(w; 3) Vk̄,δ
ji (v; 2) Vi

i0(u; 1) |0〉 ,
(5.9)

where u∈Si, v ∈ Sj and w∈ Sk and, as before, ∆i(u), ∆j(v) and ∆k(w) are the conformal
weights of the respective vectors.

Local coordinate changes

For discussing the relationship to three-dimensional topological field theory in the next section,
one needs to introduce the group AutO of local coordinate changes or, equivalently, locally
invertible function germs. We describe AutO briefly; for details see e.g. section 6.3.1 of [82].

The group AutO can be identified with a subset of the formal power series C[[z]] consisting
of those f ∈C[[z]] that are of the form f(z) = a1z + a2z

2 + . . . with a1 6=0. Since a V-module
R is in particular a Vir-module, there is an action R of (AutO)opp on the module R,

R : AutO → End(R) such that R(id) = id and R(f ◦ g) = R(g)R(f) . (5.10)

This action R is constructed as follows. For the coordinate change f ∈AutO that is given
by f(z) =

∑∞
k=1 akz

k, set D :=
∑∞

j=1vjt
j+1 ∂

∂t
, with the coefficients vj determined by solving

v0 exp(D)t= f(t) order by order in t. The first few coefficients are

v0 = a1 , v1 =
a2

a1
, v2 =

a3

a1
−

(a2

a1

)2

. (5.11)

The operator R is then given by R(f) := exp(−
∑∞

j=1 vjLj)v0
−L0. Actually we will later rather

need the inverse of R(f), which takes the form

R(f)−1 = v0
L0 exp

( ∞∑

j=1

vjLj

)
. (5.12)
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For example, if |∆〉 is a Vir-highest weight vector of L0-eigenvalue ∆, then for the first two
levels one finds

R(f)−1|∆〉 = (f ′)∆ |∆〉 and

R(f)−1L−1|∆〉 = (f ′)∆
(
f ′L−1 |∆〉 + ∆f ′′/f ′ |∆〉

)
,

(5.13)

with f ′ and f ′′ denoting derivatives of f at z= 0, i.e. f ′ = a1 and f ′′ = 2a2. Define a functional
κt via

κt(f)(z) := f(z+t) − f(t) . (5.14)

Then for vertex operators we have the identity [81, section 5.4]

Y (v; f(z)) = R(f)−1 Y (R(κz(f))v; z)R(f) , (5.15)

where again f satisfies f(0) =0 and f ′(0) 6= 0.

5.2 Spaces of conformal blocks

Extended Riemann surfaces

Recall from section 3.1 that the 3-d TFT assigns to every extended surface E a vector space
H(E). On the other hand, for the (chiral) 2-d CFT we need surfaces with a complex structure.
The appropriate objects here are extended Riemann surfaces . An extended Riemann surface
Ec is given by the following data:

A compact Riemann surface without boundary, also denoted by Ec.

A finite ordered set of marked points, i.e. triples (pi, [ϕi],Ri), where the pi ∈E
c are mutually

distinct points, [ϕi] is a germ of injective holomorphic functions from a small disk Dδ⊂C
around 0 to Ec such that ϕi(0) = pi, and Ri is a module of the vertex algebra V.

A Lagrangian submodule λc⊂H1(E
c,Z) – that is, a Z-submodule λc of H1(E

c,Z) such that
the intersection form 〈 · , · 〉 vanishes on λc and that any x∈H1(E

c,Z) obeying 〈x, y〉=0 for
all y ∈λc lies in λc.

Given extended Riemann surfaces Ec and Ẽc with marked points (pi, [ϕi],Ri) and (p̃i, [ϕ̃i],Ri),
respectively, an isomorphism f : Ec→ Ẽc of extended Riemann surfaces is a holomorphic bijec-
tion of the underlying Riemann surfaces that is compatible with the (ordered) marked points
in the sense that

(p̃i, [ϕ̃i],Ri) = (f(pi), [f◦ϕi],Ri) . (5.16)

Bundles of conformal blocks

Let Ec be an extended Riemann surface with marked points (pi, [ϕi],Ri), i=1, 2, ... , n. De-
note by (R1 ⊗ · · · ⊗Rn)

∗ the space of linear functions 16 R1 ⊗ · · · ⊗Rn→C. To an extended
Riemann surface Ec the chiral CFT assigns the space of conformal blocks on Ec, denoted by
Hc(Ec). It is defined as a subspace 17 of (R1 ⊗ · · · ⊗Rn)

∗. As mentioned at the beginning

16 Here ⊗ ≡ ⊗C denotes the tensor product of complex vector spaces, not the tensor product in Rep(V).
17 The subspace Hc(Ec)⊂ (R1 ⊗ · · · ⊗Rn)

∗
is described via a compatibility condition with the action of V.

For details we refer e.g. to [86, section 4] and [82, chapter 9].
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of section 5 we assume all Hc(Ec) to be finite-dimensional. One can show that if Ec and Ẽc

are isomorphic as extended Riemann surfaces, then Hc(Ec) =Hc(Ẽc). Note that this is an
equality of subspaces of (R1 ⊗ · · · ⊗Rn)

∗, not just an isomorphism. In other words, there ex-
ists a well-defined assignment [Ec] 7→Hc(Ec) on isomorphism classes [Ec] of extended Riemann
surfaces.

Denote by M̂g,n(R1, . . . ,Rn) the moduli space of extended Riemann surfaces of genus g
with n marked points, such that the kth point is labelled by the V-module Rk. If the choice of
representations is obvious from the context, or not important to the argument, we will write
M̂g,n in place of M̂g,n(R1, . . . ,Rn). The same convention will be applied to related objects
defined below. Consider the trivial vector bundle

M̂g,n(R1, . . . ,Rn) × (R1 ⊗ · · · ⊗Rn)
∗ → M̂g,n(R1, . . . ,Rn) . (5.17)

Each point in M̂g,n is an isomorphism class [Ec] of extended Riemann surfaces, to which we
can assign the subspace Hc(Ec)⊂ (R1 ⊗ · · · ⊗Rn)

∗. This defines a subbundle of (5.17), the

bundle of conformal blocks on M̂g,n(R1, . . . ,Rn); we denote it by

B̂g,n(R1, . . . ,Rn) → M̂g,n(R1, . . . ,Rn) . (5.18)

The bundle B̂g,n comes equipped with a projectively flat connection, the Knizhnik--Zamo-
lodchikov connection, see [87] and e.g. [82, chapter 17]. Via parallel transport, this connection
allows us to assign an isomorphism Uγ : H

c(Ec)→Hc(Ẽc) to every curve γ: [0, 1]→M̂g,n with
γ(0) = [Ec] and γ(1) = [Ẽc].

Two examples of the map Uγ

We will later use two instances of the map Uγ , the case that γ corresponds to a change of
local coordinates and the case that γ amounts to moving the insertion points. Restricting to
these two directions in M̂g,n – moving insertion points and changing local coordinates while
the complex structure of the underlying Riemann surface remains unaltered – results in a flat
(not only projectively flat) connection. Uγ then depends only on the homotopy class of γ.

In both examples considered below, Ec denotes an extended Riemann surface with marked
points (pi, [ϕi],Ri), i=1, 2, ... , n. We will consider curves with γ(0) = [Ec].

For the first example, define a family Ec(t) of extended Riemann surfaces by taking Ec(t)
to be given by Ec, with the local coordinate at the kth marked point replaced by [ϕk ◦ ηt]
with ηt: Dε→Dε such that ηt(0) =0 and η0 = id. This defines a curve in M̂g,n by setting
γ(t) := [Ec(t)]. For this curve the map Uγ takes the form, for β ∈Hc(Ec),

(Uγβ)(v1, ... , vn) = β(v1, ... , R̂(η)−1vk, ... , vn) ∈ Hc(Ẽc) , (5.19)

where Ẽc =Ec(1). Note that we cannot directly take the map R(η1)
−1 as defined in (5.12)

because if Rk has non-integral conformal weight, then the expression (η′1)
∆k in (5.13) is only

defined up to a phase. Instead, we set

R̂(η)−1 := r̂(1) , (5.20)
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where
r̂ : [0, 1] −→ End(Rk)

t 7−→ R(ηt)
−1 ,

(5.21)

and where now R(ηt)
−1 is the map defined in (5.12), with the phase ambiguity resolved by

demanding r̂ to be continuous and to obey r̂(0) = id.

For the second example consider the curves γδ(t) := [Ec(t)] with δ∈C. Here Ec(t) is again
equal to Ec, but with the kth marked point replaced this time by (ptk, [ϕk ◦ ηt],Rk), where
ηt(ζ) = ζ + tδ and ptk =ϕk(ηt(0)). If ϕk is defined on Dε, then ϕk ◦ ηt is a well-defined local
coordinate around ptk as long as δ < ε. With these definitions, in Ẽc =Ec(1) the point pk =ϕk(0)
has been moved to p̃k =ϕk(δ). The map Uγδ must obey, for each β ∈Hc(Ec),

d

dδ
(Uγδβ)(v1, ... , vn)

∣∣
δ=0

= β(v1, ... , L−1vk, ... , vn) . (5.22)

Renumbering marked points

Given an extended Riemann surface Ec with marked points (pi, [ϕi],Ri), i=1, 2, ... , n, and a
permutation π of {1, 2, ... , n}, one can define a new extended Riemann surface Ẽc =Pπ(E

c)
by taking the same underlying Riemann surface, but now ordering the marked points as
(p̃i, [ϕ̃i], R̃i) = (pπ−1(i), [ϕπ−1(i)],Rπ−1(i)).

In the same spirit, one can define an isomorphism Pπ: H
c(Ec)→Hc(Pπ(E

c)) of conformal
block spaces via (Pπβ)(ṽ1, ... , ṽn) :=β(ṽπ(1), ... , ṽπ(n)), where ṽk ∈ R̃k = Rπ−1(k). This extends to
a bundle isomorphism, which we will also denote by Pπ,

Pπ : B̂g,n(R1, ... ,Rn) −→ B̂g,n(Rπ−1(1), ... ,Rπ−1(n)) . (5.23)

Conformal blocks on the Riemann sphere

Let us describe the bundle B̂0,n more explicitly. Define the standard extended Riemann sur-
face Ec

0,n[i1, i2, ... , in] to be the Riemann sphere, realised as C∪{∞}, with marked points
{(k, [ϕk], Sik) | k= 1, 2, ... , n}, with ϕk given by ϕk(z) = z+k. When it is clear from the context
what representations occur at the marked points, we use again the shorthand notation Ec

0,n for
Ec

0,n[i1, i2, ... , in]. A basis for Hc(Ec
0,n) is provided by the conformal blocks

β0,n[i1, ... , in ; p1, ... , pn−3 ; δ1, ... , δn−2] ≡ β0,n , (5.24)

given by a product of intertwiners,

β0,n : v1⊗ · · ·⊗vn 7→ 〈0|V0
in,in

(
vn, n

)
· · ·Vp1,δ1

i2,i1

(
v2, 2

)
Vi1
i1,0

(
v1, 1

)
|0〉 , (5.25)

where i1, ... , pn−3 ∈I and δ1, ... , δn−2 are multiplicity labels.
The moduli space M̂0,n is connected, and the Knizhnik--Zamolodchikov connection on M̂0,n

is flat. To define the bundle B̂0,n, pick a curve γ from [Ec
0,n] to some [Ẽc]∈M̂0,n. Then we

have Hc(Ẽc) =Uγ(H
c(Ec

0,n)), as a subspace of (Si1 ⊗ · · · ⊗ Sin)
∗. (Note that while this defines

the subspace, it does not provide a canonical basis, since Uγ itself depends on the homotopy
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class of γ, whereas the image of Uγ does not.) In fact, if Ec is given by C∪{∞} with marked
points (zk, [ϕk], Sik), then a basis of Hc(Ec) can be given in terms of products of intertwiners,

βp1,... ,pn−3 ; δ1...δn−2 : v1⊗ · · ·⊗vn

7−→ 〈0|V0
in,in

(
R

(
κ0(ϕn)

)−1
vn , zn

)
V
in,δn−2

in−1,pn−3

(
R

(
κ0(ϕn−1)

)−1
vn−1 , zn−1

)
· · ·

· · · Vp1,δ1
i2,i1

(
R

(
κ0(ϕ2)

)−1
v2 , z2

)
Vi1
i1,0

(
R

(
κ0(ϕ1)

)−1
v1 , z1

)
|0〉 .

(5.26)

The choice of branch cuts that are required when evaluating (5.26) is related to the path in
M̂0,n(i1, ... , in) chosen to obtain (5.26) from (5.25).

5.3 Relation to TFT state spaces

In the three-dimensional topological field theory given by the Chern--Simons path integral, the
space of states on a component of the boundary of a three-manifold can be thought of as the
space of conformal blocks of the corresponding WZW model on that same surface [2]. One can
in fact extract the Knizhnik--Zamolodchikov equation for field insertions on the complex plane
from the Chern--Simons path integral [3].

In our approach to topological and conformal field theory the path integral does not play
any role. Instead, the space of states for the 3-d TFT and the space of conformal blocks for
the 2-d CFT are constructed independently, and it is a separate task to find an isomorphism
between the two spaces. In this section we make such an isomorphism explicit in the case that
the surface is the Riemann sphere. The TFT that is used in the present and the following
section is the one obtained from the modular tensor category C = Rep(V) of representations of
the chiral algebra V.

Extended surfaces from extended Riemann surfaces

To an extended Riemann surface Ec one can assign an extended surface

E = F(Ec) (5.27)

as follows. As a two-manifold, E coincides with Ec. Further, a marked point (p, [ϕ],R) on Ec

becomes the marked point (p, [γ],R,+) on E, where the arc-germ [γ] is defined by γ(t) :=ϕ(t),
that is, by the real axis of the local coordinate system around p. The Lagrangian subspace
of H1(E,R) is obtained as λ=λc⊗Z R from λc⊂H1(E

c,Z). The assignment F thus acts on
extended Riemann surfaces by forgetting the complex structure and by replacing germs of
local coordinates by germs of arcs. 18 For instance, recalling the definition of the standard
extended surfaces E0,n[i1, ... , in] in section 4.1 and of the standard extended Riemann surfaces
Ec

0,n[i1, ... , in] above, we see that
F(Ec

0,n) = E0,n . (5.28)

18 This also constitutes the main reason for using a slightly different definition of extended surface as compared
to section I:2.4. While there is no canonical way to associate an arc to a germ of local coordinates, there is no
problem in assigning a germ of arcs in the way described.
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The topological counterparts of Pπ and Uγ

Recall that for an extended Riemann surface Ec, Pπ(E
c) describes a permutation of the order

of the marked points on Ec. Since the set of marked points on an extended surface E is not
ordered, we simply have

F ◦Pπ = F . (5.29)

To be able to formulate the analogue of Uγ in the two examples discussed in section 5.2
above, we need the following concepts. By a family Ec(t) of extended Riemann surfaces over a
Riemann surface Σc we mean that each extended surface Ec(t) is given by Σc together with a
set of marked points (ptk, [ϕ

t
k],Rk) such that ptk and ϕtk depend smoothly on t. A family E(t)

of extended surfaces over a two-manifold Σ is defined in the same way. If Ec(t) is a family of
extended Riemann surfaces over Σc, then F(Ec(t)) is a family of extended surfaces over F(Σc).

To a family Ec(t) with t∈ [0, 1] we can assign a curve in the moduli space M̂g,n by setting
γEc(t) := [Ec(t)]. We then also get the isomorphism Uγ

Ec
: Hc(Ec(0))→Hc(Ec(1)).

On the topological side, from a family E(t) over Σ, with t∈ [0, 1], we can construct a
cobordism ME : E(0)→E(1). As a three-manifold, ME is given by the cylinder Σ× [0, 1]. The
ribbon graph in ME is fixed by demanding that the ribbons intersect the slice of ME at ‘time’
t as prescribed by the marked points on E(t). The topological counterpart of Uγ

Ec
is then the

linear map Z(ME): H(E(0))→H(E(1)) that is supplied by the TFT.

In this context the Riemann sphere with marked points is special: any curve in M̂0,n can
be obtained as γEc for a family of extended Riemann surfaces over a single fixed base Riemann
surface, which we take to be C∪{∞}. For surfaces of higher genus one needs to vary the
complex structure moduli of the underlying Riemann surfaces as well. From here on we restrict
our attention to the Riemann sphere with marked points.

The isomorphism in the case of the Riemann sphere

Let [Ec]∈M̂0,n. We would like to describe an isomorphism

ℵ : Hc(Ec) → H(F(Ec)) (5.30)

between the space of conformal blocks associated to the extended Riemann surface Ec and the
space of states of the TFT on the extended surface F(Ec).

The TFT encodes the monodromy data of the conformal blocks. This must be reflected in
the isomorphism ℵ. More precisely, we require ℵ to fulfill

ℵ ◦Pπ = ℵ and ℵ ◦Uγ
Ec

= Z(MF(Ec)) ◦ℵ (5.31)

for any permutation π and any family Ec(t) over C∪{∞}. In addition to (5.31), the iso-
morphism ℵ must be consistent with cutting and gluing of extended Riemann surfaces. For
extended surfaces of higher genus, there are further conditions arising from varying the complex
structure moduli of the underlying Riemann surface. We will not analyse the latter two types
of conditions in this paper. Instead we assume that ℵ does satisfy these conditions, and content
ourselves with describing ℵ for points in M̂0,n and illustrating its consistency with (5.31) in
some examples.
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For the Riemann sphere we fix the isomorphism ℵ by demanding that the standard conformal
block β0,n ∈H(Ec

0,n) from (5.25) gets mapped to the state described by the cobordism B0,n from
(4.2),

ℵ(β0,n[i1, ... , in ; p1, ... , pn−3 ; δ1, ... , δn−2])

= Z(B0,n[i1, ... , in ; p1, ... , pn−3 ; δ1, ... , δn−2], ∅, E0,n[i1, ... , in]) 1 .
(5.32)

Since M̂0,n is connected, relation (5.31) can be used to determine ℵ for all points in M̂0,n,
starting from its value at the point [Ec

0,n] as given by (5.32). This way of defining ℵ is consistent

iff (5.31) holds for every closed loop in M̂0,n. The first property in (5.31) just means that ℵ
is independent of the ordering of the marked points of the extended Riemann surface. The
second property in (5.31) can be reformulated as follows. Two representations ρc0,n and ρ0,n of

π1(M̂0,n) on Hc(Ec
0,n) and on H(E0,n), respectively, are given by

ρc0,n([γ
c]) := Uγc and ρ0,n([γ

c]) := Z(MF(Ec)) , (5.33)

were the γc are paths starting and ending on [Ec
0,n] and Ec is a family over C∪{∞} such that

γEc = γc. The isomorphism ℵ must intertwine these two representations,

ℵ ◦ ρc0,n = ρ0,n ◦ℵ . (5.34)

Below we will verify the intertwining property in two examples, and sketch an argument for it
to hold in general at the end of section 5.4.

Example: Closed path resulting in a twist

Define a family of extended Riemann surfaces Ec(t) over C∪{∞} by taking Ec(t) to be
equal to Ec

0,n[i1, ... , in], except that the kth marked point gets replaced by (k, ϕk ◦ ηt, Sik) with
ηt(z) = e2πitz. Using U to compute the transport of a block β0,n along the closed path γEc gives

(Uγ
Ec
β0,n)(v1, ... , vn) = e2πi∆ikβ0,n(v1, ... , vn) . (5.35)

To see this, start from formula (5.19) and use (5.13) and (5.21) so as to deduce first that
R(ηt)

−1vk =e2πit∆(vk)vk and then, also using that ∆ik =∆(vk) mod Z, that R̂(η)vk = e2πi∆ikvk.
We thus find

ρc0,n([γEc]) = θ−1
ik

idHc(Ec0,n) . (5.36)
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Further, let E(t) :=F(Ec(t)); then the cobordism ME : E(0)→E(1) is given by

x

y

z

x

y

Sik−1
Sik Sik+1

t=0

t=1

ME = (5.37)

with the orientations of three-manifold and ribbons as indicated. Once oriented by the inward
pointing normal, the boundary at t=0 is given by −E(0) =−E0,n and the boundary at t=1
by E(1) =E0,n, as it should be. By definition of the twist (see (I:2.9)), the middle ribbon in
(5.37) can be replaced by θ−1

ik
times a straight ribbon, so that

Z(ME) = θ−1
ik
Z(E0,n× [0, 1]) . (5.38)

Since Z applied to the cylinder over E0,n gives the identity on H(E0,n) we obtain

ρ0,n([γEc]) = θ−1
ik

idH(E0,n) . (5.39)

For the closed path considered in this example, the desired identity (5.34) thus even holds
independent of ℵ (and hence provides a consistency check of the conventions described in
section 3.1).

Example: Closed path resulting in a double braiding

In this example we deal again with a family Ec(t) over C∪{∞}. We consider the situa-
tion that each of the extended Riemann surfaces Ec(t) has three marked points, (1, ϕ1(z), Si),
(pt2, ϕ

t
2(z), Sj) and (3, ϕ3(z), Sk), with the functions ϕi given by ϕ1(z) = z+1, ϕt2(z) = z+1+e2πit,

ϕ3(z) = z+3 and pt2 =ϕt2(0). Note that Ec(0) =Ec(1) =Ec
0,3[i, j, k]. A basis βδ for the conformal

blocks in Hc(Ec
0,3) is given by (5.9) with z1 = 1, z2 = 2, z3 =3. Transporting βδ along γEc from

0 to t results in the conformal block βδt ∈H(Ec(t)) given by

βδt (u, v, w) = 〈0|V0
kk̄(w; 3) Vk̄

ji(v; 1+e2πit) Vi
i0(u; 1) |0〉

= Bδ
kji(w, v, u) (2−e2πit)∆(u)−∆(v)−∆(w)2∆(v)−∆(u)−∆(w)e2πit(∆(w)−∆(u)−∆(v)) .

(5.40)

This block is obtained by setting z1 = 1, z2 = 1+e2πit and z3 = 3 in (5.9), as follows from (5.22)
together with the property Vi

jk(L−1v; z) = d
dz

Vi
jk(v; z) of the intertwiners. Setting t= 1 we

obtain
βδ1(u, v, w) = e2πi(∆k−∆i−∆j) βδ(u, v, w) , (5.41)

78



where we also used ∆(u) =∆i mod Z etc. Thus

ρc0,3([γEc]) =
θiθj
θk

idHc(Ec0,3) . (5.42)

Regarding the topological side, the cobordism ME is easily found to be

x

y

z

x

y

x

y t=0

t=1

1 2 3

1 2 3

j i kME = (5.43)

Composing this cobordism with B0,3 results in

Z(ME) ◦Z(B0,3) = =
θiθj
θk

Z(B0,3) ,ij k

k

1 2 3

δ

z

y

x

(5.44)

where we applied (I:2.41) twice and then substituted (I:2.43) (or rather the corresponding
relations for R− instead of R). Thus for ρ0,3 we get

ρ0,3([γEc]) =
θiθj
θk

idH(E0,3) . (5.45)

This shows that also in this example the identity (5.34) holds independently of ℵ, giving another
consistency check of the conventions in section 3.1.

5.4 The braid matrices

It is common to express various quantities of interest in terms of matrices B (i j k) l≡ (B
(i j k) l
p q )

which are certain specific combinations of fusing matrices F and braiding matrices R [10, 9].
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Conversely, one can recover F and R from B. In terms of conformal blocks, the braid matrices B
can be deduced from the exchange of two insertion points in a four-point block on the sphere.
Using the map ℵ one then verifies that this definition of B is equivalent to the one used in the
3-d TFT context.

Braid matrices in modular tensor categories

Similarly to the definition of the fusing matrices in (I:2.36), for a modular tensor category C
one defines the braid matrices B (i j k) l to be the matrices whose entries appear as coefficients in
the relation

=
∑

q

∑

γ,δ

B
(i j k) l
αpβ,γqδ

i j k i j k

δ

γ

β

α

p

l

q

l

(5.46)

If instead the inverse braiding is used one obtains the inverse braid matrices B−(ijk)l.
The braid matrices can be expressed in terms of the fusing matrices F from (I:2.36) and the

braid matrices R from (I:2.41) as

B
(i j k) l
αpβ,γqδ =

∑

µ,ν

R
− (k i) p
β µ F

(j k i) l
αpµ,δqν R(i q) l

ν γ . (5.47)

This can be verified by first applying an inverse R-move to the morphism β ∈Hom(Ui⊗Uk, Up)
on the left hand side of (5.46), then performing an F-move, and finally an R-move applied to
the resulting morphism in Hom(Uq ⊗Ui, Ul).

Setting k=0 in (5.46) and comparing to (I:2.41), and recalling also convention (I:2.33), one
arrives at the relation

R
(i j) k
αβ = B

(i j 0) k
αi,βj . (5.48)

Note that by convention the couplings in the one-dimensional morphism spaces involving the
tensor unit U0 =1 are not spelt out explicitly.

Furthermore, using (I:2.42) the relation (5.47) is easily inverted:

F
(i j k) l
αpβ,γqδ =

∑

µ,ν

R
(k j)p
β µ B (k i j) l

αpµ,νqγ R
− (q k) l
ν δ . (5.49)

Thus one can obtain both R and F from the braid matrices B. One may wonder whether it is
possible to recover the twists θk and the quantum dimensions dim(Uk) as well. For this to be
the case, we need to assume that the quantum dimensions are all positive. Then we can take
the absolute value of (I:2.45) so as to find

dim(Uk) =
∣∣F (k k̄ k)k

0 0 R− (k̄ k) 0
∣∣−1

. (5.50)

80



The twist is then directly given by (I:2.45),

θk = dim(Uk) F
(k k̄ k) k
0 0 R− (k̄ k) 0. (5.51)

Up to equivalence, a modular tensor category is determined by the list of isomorphism classes
of simple objects {Uk | k∈I}, the dimensions Nij

k of the morphism spaces Hom(Ui⊗Uj , Uk), and
the numbers

dim(Uk) , θk , R
(i j) k
αβ , F

(i j k) l
αpβ,γqδ . (5.52)

The considerations above show that, upon the assumption that the quantum dimensions are
positive, instead of (5.52) it is sufficient to give the numbers

B
(i j k) l
αpβ,γqδ . (5.53)

Braid matrices from four-point conformal blocks

The braid matrices also appear upon analytic continuation of the standard four-point conformal
blocks. In short, one takes the standard four-point block and exchanges the field insertions at
the points 2 and 3 via analytic continuation. The result can be expanded in terms of standard
blocks, and the coefficients occurring in that expansion are the braid matrices. A more precise
description is as follows.

Define a family Ec(t) of extended Riemann surfaces over C∪{∞} by taking Ec(t) to have
field insertions

(1, [ϕ1], Si) , (wt, [ϕ
t
2], Sj) , (zt, [ϕ

t
3], Sk) , (4, [ϕ4], Sl̄)) , (5.54)

where ϕ1(ζ) = ζ+1, ϕ4(ζ) = ζ+4,

ϕt2(ζ) = ζ − 1
2
e−πit + 5

2
, ϕt3(ζ) = ζ + 1

2
e−πit + 5

2
, (5.55)

and wt =ϕt2(0), zt =ϕt3(0). It follows in particular that Ec(0) =Ec
0,4[i, j, k, l̄]. For Ec(1) we must

also take into account the ordering of the marked points, resulting in P(23)(E
c(1)) =Ec

0,4[i, k, j, l̄],
where (23) denotes the transposition that exchanges 2 and 3. Transporting the conformal block
βµν [i, j, k, l̄; p;µ, ν]∈Hc(Ec

0,4) along γEc from 0 to t results in the block βµνt ∈Hc(Ec(t)) given
by

βµνt (v1, v2, v3, v4) = 〈0|V0
l̄l(v4; 4) Vl,ν

kp(v3; zt) Vp,µ
ji (v2;wt) Vi

i0(v1; 1) |0〉 (5.56)

with zt =
1
2
e−πit + 5

2
and wt =−1

2
e−πitz + 5

2
. Since βµν1 is in the space Hc(Ec(1)) we can apply

to it the map P(23): H
c(Ec(1))→Hc(Ec

0,4[i, k, j, l̄]) and expand the result in the standard basis
for the latter space,

(P(23)β
µν
1 )(u1, u2, u3, u4) = βµν1 (u1, u3, u2, u4)

=
∑

q

∑

ρ,σ

B (jk i) l
νpµ,ρqσ β0,4[i, k, j, l̄; q; σρ](u1, u2, u3, u4) .

(5.57)

By definition of the braiding in the representation category C =Rep(V) of the chiral algebra,
the matrices B (i j k) l which appear in (5.57) are the same as those defined in (5.46) through a
relation between morphisms in C, see e.g. [88] for details.
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Compatibility of ℵ and braiding

Again one obtains a family E(t) of extended surfaces by applying F to the family Ec(t). For
the associated cobordism ME , composed with a cobordism B0,4 describing the standard basis
of H(E0,4), one finds

i j k l

p

l

µ

ν

1 2 3 4

Z(ME) ◦Z(B0,4[i, j, k, l̄; p;µ, ν]) =

=
∑

q

∑

ρ,σ

B (jk i) l
νpµ,ρqσ Z(B0,4[i, k, j, l̄; q; σ, ρ]) . (5.58)

We can now verify the relation (5.34) for the braiding on a basis β0,4[i, j, k, l̄; p;µ, ν] of the space
Hc(Ec

0,4[i, j, k, l̄]) as follows:

Z(ME) ◦ℵ(β0,4[i, j, k, l̄; p;µ, ν]) = Z(ME) ◦Z(B0,4[i, j, k, l̄; p;µ, ν])1

=
∑

q

∑

ρ,σ

B (jk i) l
νpµ,ρqσ Z(B0,4[i, k, j, l̄; q; σ, ρ])1

=
∑

q

∑

ρ,σ

B (jk i) l
νpµ,ρqσ ℵ(β0,4[i, k, j, l̄; q; σ, ρ])

= ℵ ◦P(23)(β
µν
1 ) = ℵ ◦Uγ

Ec
(β0,4[i, j, k, l̄; p;µ, ν]) .

(5.59)

Here the first and third step just use the definition of ℵ in (5.32), the second and fourth step
are the equalities in (5.58) and (5.57), respectively, and the final step amounts to the definition
βµν1 =Uγ

Ec
β0,4[i, j, k, l̄; p;µ, ν] together with the first of the properties (5.31).

Consistency of ℵ

Let us now sketch how compatibility with the braiding implies (5.34). Let γ be a closed path
in M̂0,n starting and ending at [Ec

0,n]. γc can always be written as the composition of two
paths γ1 and γ2, of which γ1 only changes the local coordinates but leaves the insertion points
fixed, while γ2 only moves the insertion points, with all local coordinates remaining of the form
ϕk(z) = z+pk.

The paths γ1 and γ2 are closed already by themselves, and hence can be treated separately.
For paths of type γ1 relation (5.34) holds by an argument similar to the one used in the first
example above. A path of type γ2 furnishes an element of the braid group with n strands,
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which has the special property that the strand starting at position k also ends at position
k. The braid group is generated by moves gk,k+1 that exchange two neighbouring strands. It
is thus sufficient to verify the relation ℵ ◦Uγ

Ec
=Z(ME) ◦ℵ for such elements. This in turn

follows by a similar argument as used for the four-point conformal block above, taking also into
account that the braid matrices B (i j k) l control the behaviour of the intertwiners themselves
under analytic continuation, not only that of the four-point block,

Vl,ν
kp (v3; z) Vp,µ

ji (v2;w) =
∑

q

∑

ρ,σ

B (j k i) l
νpµ,ρqσ Vl,ρ

jq (v2;w) Vq,σ
ki (v3; z) , (5.60)

where the left hand side is understood as analytic continuation from |w|< |z| to |w|> |z|, taking
w clockwise around z.

6 The fundamental correlation functions

Ultimately, we would like to obtain the correlators of a CFT as functions of the world sheet
moduli and of the field insertions. To this end we must combine the results from the previous
sections with additional information about the world sheet. In particular, for non-zero central
charge the correlators C do depend explicitly on the world sheet metric g and not only on the
conformal equivalence class of metrics, see e.g. [89]. Thus, to find the value of a correlator it
is not enough to know the conformal structure of the world sheet, but rather the metric itself
is relevant. In sections 6.2 – 6.7 we will treat certain ratios of correlators in which the Weyl
anomaly cancels. 19

6.1 Riemannian world sheets

In sections 3 and 4 we were concerned with the 3-d TFT, and accordingly only needed the
world sheet as a topological manifold. To obtain the correlator as a function, rather than as a
vector in the TFT state space, we need the world sheet metric. To distinguish the two settings,
we will use the terms topological world sheet and Riemannian world sheet .

Definition

By a Riemannian word sheet Xg we mean a compact, not necessarily orientable, two-manifold
with metric g which may have non-empty boundary, defects and field insertions.

In section 3 we found that on the topological world sheet the fields, boundaries and defects
are labelled by equivalence classes of certain tuples. The same holds true for insertions on the
Riemannian world sheet, but the quantities entering the tuples are slightly different. We will
only describe the tuples and refrain from giving the equivalence relations explicitly. They take
a similar form as in the topological case, and will not be needed for the applications below.

Define a local bulk coordinate germ [f ] to be a germ of injective functions f : Dδ→Xg

of an arbitrarily small disk Dδ = {z ∈C ∣∣ |z|<δ} to Xg such that f(0) lies in the interior of
Xg. On the disk Dδ we take the standard metric induced by C ∼= R

2. The maps f are

19 These ratios, in turn, are obtained from unnormalised correlators C( · · · ), as opposed to the (normalised)
expectation values 〈 · · · 〉 which obey 〈1 〉=1. It is the correlators C which appear in factorisation constraints,
and which give, e.g., the torus and annulus partition functions.
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required to be conformal, i.e. satisfy f ∗g= Ω(x, y)(dx2 +dy2). Define further a local boundary

coordinate germ [d] to be a germ of injective functions d: Hδ→Xg of an arbitrarily small
semidisk Hδ = {z ∈C ∣∣ |z|<δ and Im(z)≥ 0} to Xg such that d(x)∈ ∂Xg iff x∈R. Again on Hδ

we take the standard metric and require the map d to be conformal.
Since the definition of local coordinate germs depends only on the conformal structure on

Xg, we denote fields on Xg with a superscript c to distinguish them from their topological
counterparts in section 3. The possible field insertions on Xg are as follows.

A bulk field Φc is a tuple
Φc = (i, j, φ, [f ]) , (6.1)

where i, j ∈I label simple objects, φ is a morphism in HomA|A(Ui⊗
+A⊗− Uj , A), and [f ] is

a local bulk coordinate germ.

A boundary field Ψ c is a tuple

Ψ c = (M,N,R, ψ, [d]) , (6.2)

where M and N are left A-modules, R is an object of C, ψ ∈HomA(M⊗R, N), and [d] is a
local boundary coordinate germ.

A defect field Θc is a tuple

Θc = (X, or2(X), Y, or2(Y ), i, j, ϑ, [f ]) , (6.3)

where X, Y are A-bimodules, or2(X) is a local orientation of Xg around the defect segment
labelled by X, and similarly for or2(Y ). Further, i, j ∈I and ϑ∈HomA|A(Ui⊗

+ Z⊗− Uj , Z
′),

where Z,Z ′ are defined as in (3.38). [f ] is a local bulk coordinate germ which must fulfill
the condition that f(x) lies on the defect circle if x lies on the real axis.

As an additional datum, the boundary and bulk insertions are ordered, i.e. if there are m
boundary fields and altogether n bulk and defect fields, we have to pick maps from {1, 2, . . . , m}
to the set of boundary fields and from {1, 2, . . . , n} to the set of bulk/defect fields. Thinking
of bulk fields as a special type of defect fields, we write

Ψ ck = (Mk, Nk,Rk, ψk, [dk]) and Θc
k = (Xk, or2(X)k, Yk, or2(Y )k, ik, jk, ϑk, [fk]) (6.4)

for the kth boundary and defect field, respectively, and their defining data. The ordering is
needed because below we construct an extended Riemann surface from Xg, and in that situation
the marked points from an ordered set.

The complex double of Xg

From a Riemannian world sheet Xg we can obtain an extended Riemann surface X̂g, the complex

double of Xg. It is constructed as follows.
If there are no field insertions on Xg, then X̂g is simply the orientation bundle over Xg,

divided by the usual equivalence relation, i.e.

X̂g = Or(Xg)/∼ with (x, or2) ∼ (x,−or2) for x∈ ∂Xg . (6.5)
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Since a metric (or just a conformal structure) together with an orientation defines a complex
structure, we obtain a complex structure on Or(Xg). The equivalence relation leading from
Or(Xg) to X̂g respects this complex structure. In terms of charts it amounts to identifying a
subset of the upper half plane with the conjugate subset of the lower half plane along the real
axis. Thus X̂g is a compact Riemann surface without boundary.

If in addition there are field insertions on Xg, one obtains an ordered set of marked points
on X̂g as follows.

Each boundary field Ψ c =(M,N,R, ψ, [d]) gives rise to a single marked point (p, [ϕ],R) on
X̂g, where

ϕ(z) =

{
[d(z), or2(d)] for Im(z)≥ 0 ,

[d(z∗),−or2(d)] for Im(z)≤ 0 .
(6.6)

Here or2(d) denotes the local orientation of Xg obtained form the push-forward of the standard
orientation on C via d. One can verify that ϕ is an injective analytic function from a small
disk in C to X̂g. The insertion point p is equal to ϕ(0). Finally, if Ψ c has label k from the
ordering of fields, we also assign the number k to the marked point (6.6).

Each bulk field Φc =(i, j, φ, [f ]) or defect field Θc =(X, or2(X), Y, or2(Y ), i, j, ϑ, [f ]) gives rise
to two marked points (pi, [ϕi], Si) and (pj, [ϕj], Sj) on X̂g. Here

ϕi(z) = [f(z), or2(f)] and ϕj(z) = [f(z∗),−or2(f)] (6.7)

are analytic functions, and pi,j =ϕi,j(0). If the bulk / defect field has label k from the order-
ing on Xg, the two marked points (6.7) are assigned the numbers m+2k− 1 and m+2k,
respectively, with m the number of boundary fields.

We also need to fix a Lagrangian submodule λc⊂H1(X̂
g,Z). This is again done via the inclusion

ι: Xg→MX (here MX is the connecting manifold for Xg, considered as a topological manifold),
which gives rise to a map ι∗: H1(X̂

g,Z)→H1(MX,Z). We take λc to be the unique Lagrangian
submodule that contains ker(ι∗).

Holomorphic factorisation

Given a Riemannian world sheet Xg, the correlation function C(Xg) of the CFT for that world
sheet is a linear function

C(Xg) :
m⊗

k=1

Rk ⊗
n⊗

l=1

(Sil ⊗ Sjl) −→ C . (6.8)

Any correlation function must solve the chiral Ward identities coming from the holomorphic
(and anti-holomorphic) fields in the theory, in particular those coming from fields in the chiral
algebra. This leads to the principle of holomorphic factorisation [8], which can be simply
formulated as the statement that

C(Xg) ∈ Hc(X̂g) , (6.9)

i.e. that the correlator for Xg is an element of the space of conformal blocks on the complex
double of Xg.
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Metric dependence

Consider a Riemannian world sheet Xg. Under a Weyl transformation g 7→ g′ = eγg for some
γ: Xg→R, the correlator changes by a factor:

C(Xg′) = ecS[γ]C(Xg) , (6.10)

where c is the central charge and S[γ] is the (suitably normalised) Liouville action, see e.g. [89]
for details.

If one works with ratios of correlators, the prefactor can be cancelled in the following
manner. Let Ẋg be the Riemannian world sheet obtained from Xg by removing all field insertions
and labelling all boundaries and defects by the algebra A. Then C(Ẋg) is just a complex
number, rather than a function as in (6.8), but it shows the same behaviour (6.10) under Weyl
transformations of the metric as C(Xg). It follows that the ratio

C(Xg)/C(Ẋg) (6.11)

only depends on the conformal equivalence class of the metric g. It is these ratios, rather than
the correlators themselves, that we will present below for the fundamental correlators.

The topological world sheet and its double

Let us define an operation F̃ which assigns to a Riemannian world sheet Xg a topological world
sheet X = F̃(Xg) as follows.

If there are no field insertions on Xg, then X is obtained from Xg by just forgetting the
metric. If in addition there are field insertions on Xg, then the corresponding insertions on the
topological world sheet X are obtained as follows.

A boundary field Ψ c =(M,N, V, ψ, [d]) on Xg gives an insertion Ψ = (M,N, V, ψ, p, [γ]) on X,
where p= d(0) and γ(t) = d(t).

A bulk field Φc = (i, j, φ, [f ]) on Xg gives an insertion Φ=(i, j, φ, p, [γ], or2(p)) on X, where
p= f(0) and γ(t) = f(t). The local orientation or2(p) of Xg is given by or2(f), i.e. the push-
forward of the standard orientation of C via f .

Similarly, for a defect field Θc =(X, or2(X), Y, or2(Y ), i, j, ϑ, [f ]) on Xg one gets an insertion
Θc= (X, or2(X), Y, or2(Y ), i, j, ϑ, p, [γ], or2(p)) on X.

With these definitions one can verify that the diagram

Xg F̃
7−→ X

⊤ ⊤
↓ ↓

X̂g F
7−→ X̂

(6.12)

with F the map from extended Riemann surfaces to extended surfaces defined in section 5.3,
commutes.

The TFT construction describes the correlator as a state of the TFT, C(X)∈H(X̂). In
order to obtain the correlator C(Xg)∈Hc(X̂g) we thus need an isomorphism

ℵ : Hc(X̂g)
∼=
→ H(X̂) . (6.13)
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Since the metric g does not appear in the topological construction, ℵ should have some depen-
dence on g. Here we are interested in correlators (or rather, the ratios (6.11)) on the upper
half plane and on the complex plane (together with the point at infinity). In both cases we
consider the standard metric 20 dx2 +dy2. For this metric we take the isomorphism ℵ to be the
one defined in section 5.3.

6.2 Boundary three-point function on the upper half plane

Let A be a symmetric special Frobenius algebra in C. Take the Riemannian world sheet Xg to
be the upper half plane together with three field insertions

Ψ1 = (N,M, Si, ψ1, [d1]) , Ψ2 = (K,N, Sj, ψ2, [d2]) , Ψ3 = (M,K, Sk, ψ3, [d3]) (6.14)

on its boundary. Here M,N,K are left A-modules, the three fields are inserted at positions xi
satisfying 0<x1<x2<x3, and the local boundary coordinate germs [dn] around these points
are given by arcs dn(z) =xn+z. Note that F̃(Xg) gives precisely the topological world sheet
displayed in figure (4.3).

The complex double of Xg is the extended Riemann surface consisting of the Riemann sphere
X̂g = P

1, parametrised as C∪{∞}, and the three marked points (x1, [ϕ1], Si), (x2, [ϕ2], Sj) and
(x3, [ϕ3], Sk), with the local coordinates given by ϕn(z) = xn+z, n= 1, 2, 3. The correlator C(Xg)
is an element of the space of conformal blocks Hc(X̂g). A basis of this space is provided by the
three-point blocks (5.9). One can thus write the correlator as a linear combination

C(Xg)(u, v, w) =

Nij
k̄∑

δ=1

c(MΨ1NΨ2KΨ3M)δ 〈0|V
0
kk̄(w; x3) Vk̄,δ

ji (v; x2) Vi
i0(u; x1) |0〉 , (6.15)

where u∈Si, v∈ Sj and w∈ Sk. The constants c(MΨ1NΨ2KΨ3M)δ are precisely those deter-
mined by the TFT-analysis in (4.8). This follows from applying the map ℵ to both sides of
(6.15), which results in (4.7). Altogether, for the ratio (6.11) we find, using the explicit form
(5.9) of the three-point block,

C(Xg)(u, v, w)

C(Ẋg)
=

( Nij
k̄∑

δ=1

c(MΨ1NΨ2KΨ3M)δ
dim(A)

Bδ
kji(w, v, u)

)
(x3−x2)

∆i(u)−∆j(v)−∆k(w)

(x3−x1)
∆j(v)−∆i(u)−∆k(w) (x2−x1)

∆k(w)−∆i(u)−∆j(v).

(6.16)

The vectors u∈Si, v∈ Sj and w∈ Sk tell us which fields of the infinite-dimensional represen-
tation spaces of the chiral algebra are inserted at the points x3>x2>x1, and ∆i(u), ∆j(v),
∆k(w) are their conformal weights. Note also that C(Ẋg) = dim(A). The constants cδ have
been expressed in a basis in (4.12); for the Cardy case they are given by (4.67).

20 This makes both world sheets non-compact, but they are still conformally equivalent to compact world
sheets. We could have chosen a compact metric instead, but since the ratios (6.11) are invariant under Weyl-
transformations this makes no difference.
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Remark 6.1 :

Even though the correlator of three boundary fields is built directly from a single conformal
block, rather than from a bilinear combination of blocks like the correlator of three bulk fields,
it is not , in general, an analytic function of the insertion points. As an example, take the
correlator of two equal boundary fields 21 Ψ c, which for x2 >x1 is given by

C = c(MΨMΨM)Bii(u, u) (x2 −x1)
−2∆i(u). (6.17)

For x1 >x2 one finds the same answer up to an exchange x1 ↔x2, so that for all values of x1, x2

we can write
C = c(MΨMΨM)Bii(u, u)

∣∣x2 −x1

∣∣−2∆i(u)
, (6.18)

which is not analytic in x1 and x2 (unless ∆i ∈Z, which is a very special case). It is thus not
quite appropriate to say that the theory on the boundary is chiral.

Remark 6.2 :

Consider the case M =N =K =A, i.e. on each boundary segment the boundary condition is
given by A, regarded as a left module over itself. Using the Frobenius reciprocity relation
HomA(A⊗U,A)∼= Hom(U,A) (see e.g. proposition I:4.12), the elements of HomA(A⊗Sk, A)
can be expressed as

ψ = m ◦ (idA⊗ bAk,α) , (6.19)

where m is the multiplication morphism of A and bAk,α denotes the basis (2.38) of Hom(Sk, A).
The ribbon graph (4.8) then takes the form

A

A

A

ij

k̄
k

δ

αβ

γ

A

A A

A

αβγ

ij

k̄
k

δ

c(AΨ1AΨ2AΨ3A)δ = = (6.20)

In the second equality one uses associativity of the multiplication, the transformations (I:3.49),
as well as the specialness relation m ◦∆ = idA. One can now substitute the expression of the
multiplication in a basis as in (I:3.7) to evaluate the ribbon invariant (6.20). This yields

c(AΨ1AΨ2AΨ3A)δ =
∑

µ,ν

mk̄µ;δ
jβ,iαm

0ν
kγ,k̄µ

(
ε ◦ bA0,ν

)
. (6.21)

21 This is zero in general, in particular if i 6= ı̄. But there are many examples, like the Virasoro minimal
models, where it can be non-zero.
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Using the OPE of boundary fields as defined in (I:3.11) to evaluate the correlator 〈0|Ψ3Ψ2Ψ1|0〉
and comparing the result to (6.21) gives

mk̄µ;δ
jβ,iα = C k̄µ;δ

jβ,iα . (6.22)

This is nothing but the relation (I:3.14) that was already established in section I:3.2. In
words it says that the boundary OPE on the boundary condition labelled by A is equal to the
multiplication on the algebra A.

6.3 One bulk and one boundary field on the upper half plane

The next correlator we consider is that of one bulk field and one boundary field on the upper
half plane. Let Xg be the upper half plane with field insertions

Φc = (i, j, φ, [f ]) and Ψ c = (M,M, Sk, ψ, [d]) , (6.23)

where i, j, k ∈I label simple objects, φ∈HomA|A(Si⊗
+A⊗− Sj, A) and ψ ∈HomA(M ⊗ Sk,M).

Further, [f ] is a local bulk coordinate germ and [d] a local boundary coordinate germ, with
f(ζ) = z+ ζ and d(ζ) = s+ ζ for z in the upper half plane and s on the real axis. In fact we
take z= x+ iy and s>x> 0.

The complex double of Xg is the extended Riemann surface X̂g consisting of the Riemann
sphere C∪{∞} and the three marked points (s, [ϕ1], Sk), (x+iy, [ϕ2], Si) and (x−iy, [ϕ3], Sj),
with the local coordinates given by ϕ1(ζ) = s+ ζ , ϕ2(ζ) =x+iy+ ζ and ϕ3(ζ) =x−iy+ ζ . We
select a basis {βδ} in the space of conformal blocks Hc(X̂g) as

βδ := 〈0|V0
kk̄

(w; z3) Vk̄,δ
ij (u; z2) Vj

j0(v; z1) |0〉
∣∣∣
z1=x−iy,z2=x+iy,z3=s

= Bδ
kij(w, u, v) e

πi
2

(∆k(w)−∆i(u)−∆j(v))
(
s−x+iy

)2(∆i(u)−∆j(v))

×
(
(s−x)2 + y2

)−∆i(u)+∆j(v)−∆k(u)(
2y

)∆k(w)−∆i(u)−∆j(v),

(6.24)

where in the first line it is understood that the points z1,2,3 are taken to their present posi-
tion from the standard block (5.25) with zn =n via continuation along the contours indicated
in figure (4.17). In particular, the connection to Bδ in (4.17) is ℵ(βδ) =Z(B(x, y, s)δ, ∅, X̂).
Applying ℵ−1 to both sides of (4.18) thus yields

C(Xg) =
∑

δ

c(Φ;MΨ )δ βδ , (6.25)

where the constants c(Φ;MΨ )δ are given by the ribbon invariant (4.19).
We conclude that the correlator ratio for one bulk field and one boundary field on the upper

half plane is of the form

C(Xg)(w, u, v)

C(Ẋg)
=

( Nij
k̄∑

δ=1

c(φ;MΨ )δ
dim(A)

Bδ
kij(w, u, v) e

πi
2

(∆k(w)−∆i(u)−∆j(v))
)

(
s−x+iy

)2(∆i(u)−∆j(v))((s−x)2 + y2
)−∆i(u)+∆j(v)−∆k(u)(

2y
)∆k(w)−∆i(u)−∆j(v),

(6.26)

where u⊗ v ∈ Si⊗ Sj gives the bulk field and w∈ Sk the boundary field.
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Remark 6.3 :
The special case of one bulk field on the upper half plane without any boundary field insertion
(compare remark 4.1) is obtained by setting Ψ = (M,M, 1, idM , [g]) as well as w= |0〉 ∈S0. Then
(6.26) becomes

C(Xg)(u, v)

C(Ẋg)
=
c(φ;M)

dim(A)
Bij(u, v) e−πi∆i(u)

(
2y

)−2∆i(u)
. (6.27)

In (6.27) the two-point block (5.8) appears, which vanishes unless j= ı̄ and ∆i(u) =∆j(v).
Note that in the Cardy case, the phase in (6.27) combines with the factor ti in (4.74) to a sign
(−1)∆i(u)−∆i .

6.4 Three bulk fields on the complex plane

We now turn to the correlator of three bulk fields on the complex plane, i.e. Xg is C∪{∞}
together with three field insertions

Φc1 = (i, j, φ1, [f1]) , Φc2 = (k, l, φ2, [f2]) , Φc3 = (m,n, φ3, [f3]) . (6.28)

Here i, j, k, l,m, n∈I label simple objects; φ1 is an element of HomA|A(Si⊗
+A⊗− Sj , A), and

similarly one has φ2 ∈HomA|A(Sk ⊗
+A⊗− Sl, A) and φ3 ∈HomA|A(Sm⊗+A⊗− Sn, A). The three

fields are inserted at the positions z1, z2, z3 with local bulk coordinate germs [f1,2,3] given by
f1,2,3(ζ) = z1,2,3 + ζ .

The complex double of Xg is the extended Riemann surface X̂g given by two copies of the
Riemann sphere C∪{∞} together with six marked points, three on each connected compo-
nent. Recall that we have chosen an orientation of Xg from the outset. Let X̂g

+ be the connected

component of X̂g that has the same orientation as Xg, and X̂g
− be the component with opposite

orientation. We have X̂g
±
∼= P

1. The three marked points on the component X̂g
+ are (z1, [ϕ1],Ri),

(z2, [ϕ2],Rk) and (z3, [ϕ3],Rm), while on X̂g
− the marked points are (z∗1 , [ϕ̃1],Rj), (z∗2 , [ϕ̃2],Rl),

(z∗3 , [ϕ̃3],Rn). Here z∗ =x− iy is the point complex conjugate to z=x+ iy. The local coordi-
nates are given by ϕi(ζ) = zi + ζ and ϕ̃i(ζ) = z∗i + ζ , for i= 1, 2, 3. We select a basis {βµν} in

Hc(X̂g) via the cobordism (4.29),

ℵ(βµν) = Z(B(z1, z2, z3)µν , ∅, X̂) , (6.29)

i.e. βµν is a product of two three-point blocks (5.9). Applying ℵ−1 to both sides of (4.30) results
in

C(Xg) =
∑

µ,ν

c(Φ1Φ2Φ3)µν βµν , (6.30)

with c(Φ1Φ2Φ3)µν given by the ribbon invariant (4.31).
To find the explicit functional dependence of the correlator on the insertion points, we

use that the conformal block (6.29) is a product of two three-point blocks. Rearranging the
individual factors in a suitable way we arrive at the expression

C(Xg)(vi, ... , vn)

C(Ẋg)
=

Nik
m̄∑

µ=1

Njl
n̄∑

ν=1

S0,0 c(Φ1Φ2Φ3)µν
dim(A)

Bµ
mki(vm, vk, vi) B

ν
nlj(vn, vl, vj)

× |z3 − z2|
w1−w2−w3 |z3 − z1|

w2−w1−w3 |z2 − z1|
w3−w1−w2

× exp
(
iϕ32(s1−s2−s3) + iϕ31(s2−s1−s3) + iϕ21(s3−s1−s2)

)

(6.31)
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for the correlator ratio for three bulk fields. Here ϕij =arg(zi−zj), and we abbreviated

w1 = ∆i(vi) + ∆j(vj) , w2 = ∆k(vk) + ∆l(vl) , w3 = ∆m(vm) + ∆n(vn) ,

s1 = ∆i(vi) − ∆j(vj) , s2 = ∆k(vk) − ∆l(vl) , s3 = ∆m(vm) − ∆n(vn) .
(6.32)

The function (6.31) is a continuous (but not analytic) function of the insertion points z1, z2,
z3. It does not have branch cuts, because s1,2,3 ∈Z which, in turn, follows from the fact that a
bulk field transforming in the chiral/antichiral representation i, j exists only if Z(A)ij 6=0. The

matrix Z(A)ij commutes with the matrix T̂kl = δk,lθ
−1
k (this is part of modular invariance, see

theorem I:5.1), implying that Z(A)ij = (θi/θj)Z(A)ij, i.e. θi = θj for Z(A)ij 6= 0.

6.5 Three defect fields on the complex plane

As already seen in section 4.5, the calculation for three defect fields differs only slightly from
the one for three bulk fields. Xg is now the complex plane with field insertions

Θc
1 = (X, or2, Y, or2, i, j, ϑ1, [f1]) , Θc

2 = (Y, or2, Z, or2, k, l, ϑ2, [f2]) ,

Θc
3 = (Z, or2, X, or2, m, n, ϑ3, [f3]) .

(6.33)

Here or2 is the standard orientation of the complex plane, i, j, k, l,m, n∈I label simple objects,
and the morphisms ϑ1,2,3 are elements of the relevant spaces of bimodule morphisms:

ϑ1 ∈ HomA|A(Si⊗
+X ⊗− Sj, Y ) , ϑ2 ∈ HomA|A(Sk ⊗

+ Y ⊗− Sl, Z) ,

ϑ3 ∈ HomA|A(Sm⊗+Z⊗− Sn, X) .
(6.34)

The three fields are inserted at z1, z2 and z3, with local bulk coordinate germs [f1,2,3] given by
f1,2,3(ζ) = z1,2,3 + ζ .

Here it is important to note that in (4.35) we have chosen the defect circle to run parallel
to the real axis in a neighbourhood of the defect field insertions zi. Otherwise the local bulk
coordinate germs [fi] must be modified so as to assure the condition that fi(x) lies on the defect
if x lies on the real axis. We further take |z3|> |z2|> |z1| as indicated in figure (4.35).

The complex double of Xg is the same as for the case of three bulk fields. Correspondingly
the conformal blocks needed to express the correlator (4.35) are the same, too, and we can
expand

C(Xg) =
∑

µ,ν

c(X,Θ1, Y, Θ2, Z, Θ3, X)µν βµν , (6.35)

with blocks βµν as defined in (6.29). The ribbon invariant for the coefficient is given by (4.38),
as calculated in section 4.5. In the same manner as we arrived at the explicit form of the
correlator (6.31) of three bulk fields, for three defect fields we then find

C(Xg)(vi, ..., vn)

C(Ẋg)
=

Nik
m̄∑

µ=1

Njl
n̄∑

ν=1

S0,0 c(X,Θ1, Y, Θ2, Z, Θ3, X)µν
dim(A)

Bµ
mki(vm, vk, vi)B

ν
nlj(vn, vl, vj)

× |z3−z2|
w1−w2−w3 |z3−z1|

w2−w1−w3 |z2−z1|
w3−w1−w2

× exp
(
iϕ32(s1−s2−s3) + iϕ31(s2−s1−s3) + iϕ21(s3−s1−s2)

)
,

(6.36)
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where ϕij = arg(zi−zj) and

w1 = ∆i(vi) + ∆j(vj) , w2 = ∆k(vk) + ∆l(vl) , w3 = ∆m(vm) + ∆n(vn) ,

s1 = ∆i(vi) − ∆j(vj) , s2 = ∆k(vk) − ∆l(vl) , s3 = ∆m(vm) − ∆n(vn) .
(6.37)

In contrast to the correlator of three bulk fields, the expression (6.36) is not necessarily single
valued in the coordinates z1, z2, z3, since the numbers sk do not have to be integers. This is to
be expected. Indeed, if, for example, in the setup (4.35) we take the field at z2 around the field
at z1 we must deform the defect circle in order to avoid taking the field Θc

2 across the defect.
In this way we end up with an arrangement of defect lines different from the one we started
with.

6.6 One bulk field on the cross cap

Next we consider the correlator of one bulk field on the cross cap. This surface is non-orientable;
accordingly we take A to be a Jandl algebra. Analogously as in section 4.6 the world sheet
Xg is given by C/σ

RP
2 with σ

RP
2 the anti-holomorphic involution σ

RP
2(ζ) =−1/ζ∗. The bulk

insertion is Φc = (i, j, φ, [f ]) with f(ζ) = z+ ζ , i, j ∈I, and φ∈HomA|A(Si⊗
+A⊗− Sj, A). The

complex double of Xg is the Riemann sphere C ∪ {∞} together with the two marked points
(z, [ϕ],Ri) and (σ

RP
2(z), [ϕ̃],Rj). The holomorphic coordinate germs are given by ϕ(ζ) = z+ ζ

and ϕ̃(ζ) =σ
RP

2(ϕ(ζ∗)) =−(z∗+ζ)−1.
The space Hc(X̂g) is the space of two-point blocks on the Riemann sphere and hence one-

dimensional, provided j= ı̄. It is spanned by the block

β2 = 〈0|V0
i,̄ı

(
R

(
κ0(ϕ)

)−1
vi ; z

)
Vı̄
ı̄,0

(
R

(
κ0(ϕ̃)

)−1
vı̄ ; −

1
z∗

)
|0〉 , (6.38)

where we also made explicit the dependence on the local coordinates as in (5.26). In the
correlators treated in the previous sections, all operators R( · · · )−1 were just the identity, owing
to the local coordinates taking the simple form ζ 7→ p+ζ . In the present case this is only true

for R
(
κ0(ϕ)

)−1
. The correlator is thus given by

C(Xg)(vi, vı̄) = c(Φc) 〈0|V0
i,̄ı

(
vi ; z

)
Vı̄
ı̄,0

(
R

(
κ0(ϕ̃)

)−1
vı̄ ; −

1
z∗

)
|0〉 . (6.39)

The constant c(Φc) is given by the ribbon invariant (4.51), as follows from applying ℵ to both
sides of (6.39) and comparing with (4.50). This result also uses the equality ℵ(β2) =Z(B2, ∅, X̂)1,
with B2 given by (4.49).

We conclude that the correlator ratio for one bulk field on the cross cap is

C(Xg)(vi, vı̄)

C(Ẋg)
=
S0,0 c(Φ

c)

Γσ(1, ε)
Bīı(vi, R

(
κ0(ϕ̃)

)−1
vı̄)

(
z+ 1

z∗

)−2∆i(vi). (6.40)

Here vi⊗ vı̄ ∈ Si⊗ Sı̄ specifies the state representing the bulk field. Note that for the identity
bulk insertion, in (4.52) we have φ′ = ε, the counit of A, so that C(Ẋg) =Γ

σ
(1, ε)/S0,0. Using

(4.63) and (II:3.90) leads to the expression

Γσ(1, ε) =
∑

a≺A

taP0,a

σ(a)
. (6.41)
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Suppose now further that vı̄ is a Virasoro-primary state. Then R
(
κ0(ϕ̃)

)−1
vı̄ =(z∗)−2∆ı̄(vı̄)vı̄,

so that in this case

C(Xg)(vi, vı̄)

C(Ẋg)
=
S0,0 c(Φ

c)

Γσ(1, ε)
Bīı(vi, vı̄)

(
1 + |z|2

)−2∆i(vi). (6.42)

The constant c(Φc) is evaluated in (4.52) and (II:3.110); in the Cardy case it takes the from
(4.76).

6.7 One defect field on the cross cap

To obtain the correlator of a defect field on the cross cap one essentially repeats the calculation
in the previous section. Again, Xg =C/σ

RP
2 , this time with the insertion of a defect field, given

by Θc =(X,−or2, X, or2, i, j, ϑ, [f ]) with f(ζ) = z+ ζ and ϑ∈HomA|A(Si⊗
+Xs⊗− Sj, X). The

choice of f implies that the defect runs parallel to the real axis at the insertion point of the
defect field. The orientations ±or2 of the neighbourhood of X are obtained as follows. Let
or2 be the local orientation around f(0) induced by [f ]. The orientation of X is obtained by
transporting or2 along the defect to the right. When passing through the identification circle,
the orientation gets reversed, so that one arrives at the insertion point f(0) with −or2 from the
left, see figure (4.53).

The space Hc(X̂g) is again spanned by the single block (6.38); the correlator is

C(Xg) = c(X,Θc) 〈0|V0
i,̄ı

(
vi ; z

)
Vı̄
ı̄,0

(
R

(
κ0(ϕ̃)

)−1
vı̄ ; −

1
z∗

)
|0〉 , (6.43)

where c(X,Θc) is given by the ribbon invariant (4.55), as calculated in section 4.7. Taking
the states vi ∈ Si and vı̄ ∈ Sı̄ describing the defect field to be Virasoro-primaries, altogether the
ratio of correlators for one defect field on the cross cap becomes

C(Xg)(vi, vı̄)

C(Ẋg)
=
S0,0 c(X,Θ

c)

Γσ(1, ε)
Bīı(vi, vı̄)

(
1 + |z|2

)−2∆i(vi). (6.44)

In the Cardy case, the constant c(X,Θc) is given by (4.75).
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[37] G. Böhm and K. Szlachányi, A coassociative C∗-quantum group with non-integral dimensions,
Lett. Math. Phys. 38 (1996) 437 [q-alg/9509008]
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Boston 1997)

[82] E. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves, second edition (American
Mathematical Society, Providence, in press) [www.math.berkeley.edu/˜frenkel/BOOK]

[83] J. Lepowsky and H. Li, Introduction to Vertex Operator Algebras and their Representations
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