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1. IntrodutionAmong the many quantities that haraterize a Conformal Field Theory, a speial role isplayed by the haraters χµ (τ) of the primary �elds. By determining the degeneraies of theVirasoro generator L0 in the di�erent setors, they onvey information about how the hiralalgebra of the theory is represented on the spae of states. As suh, they are the basi buildingbloks of the torus partition funtion, and from their knowledge one an read o� at one theonformal weights hµ and the entral harge c of the theory. Even more, they determinealmost uniquely the modular S-matrix of the theory, and thus the fusion rules via Verlinde'sformula.Reversing the logi, one may ask to what extent an the haraters be reovered fromthe knowledge of the onformal weights, entral harge and fusion rules. This paper aims toanswer that question. An elementary observation is that the fusion rules uniquely determine
S, up to at most a permutation of its olumns and a multipliation of eah olumn by ±1 [4℄.Together, hµ, c and S uniquely determine a representation ρ of the modular group SL2(Z).The haraters χµ may be grouped into a harater vetor X that is holomorphi in theupper half-plane, transforms aording to ρ, and - in a suitable sense, to be explained inSetion 2 - has only �nite order poles at τ = i∞. Thus the real question is: to what extentdoes the modular representation ρ determine the haraters? We explain that the haratersof an RCFT are uniquely determined by its modular representation and the singular terms1



∑

s<0 asq
s of eah harater, up to perhaps some onstant terms. We show how to onstrutall harater vetors ompatible with a representation ρ that satis�es some simple onditionsholding in any RCFT.This paper ollets our basi results, illustrating them with examples. The follow-uppaper [3℄ will give more details and push our analysis muh further. Setion 2 introdues thenotation and establishes the extent to whih the haraters are determined by ρ. Setions3 to 5 desribe how to expliitly build the harater vetors term-by-term, starting from ρ.We onlude the paper with two onrete examples: the Yang-Lee and Ising models. In theexpliit omputations, we made heavy use of the Computer Algebra Systems GAP [8℄ (for theomputations of invariants and ovariants), PARI/GP [18℄ (for the omputations involvingmodular forms) and Singular [9℄ (for the solution of polynomial systems).2. Admissible representations and the anonial basisLet's onsider a �nite dimensional (unitary) representation ρ : SL2(Z) → GL(r, C) of themodular group SL2(Z). It is known that suh a representation is ompletely haraterized bythe pair of matries T = ρ

(

1 1

0 1

) and S = ρ
(

0 −1

1 0

), whih satisfy the relations S4 = 1 and
STS = T−1ST−1. As usual, Γ (N) will denote the prinipal ongruene subgroup of level N ,i.e.

Γ (N) =
{(

a b

c d

)

∈ SL2(Z) | a, d ≡ 1 (mod N) and b, c ≡ 0 (mod N)
}

. (2.1)We'll denote by Wρ the subspae of Cr onsisting of those vetors that are invariant under ρ,i.e. Wρ = {v ∈ Cr |Tv = Sv = v}, by 〈., .〉 the standard salar produt on Cr, and by eµ the
µ-th element of the standard basis of Cr, whose µ-th entry is 1, and all others 0.We'll all a representation ρ : SL2(Z) → GL(r, C) admissible if it satis�es the followingonditions:1 ker ρ is a ongruene subgroup, i.e. it ontains Γ (N) for some integer N ;2 T is diagonal and S2 is a permutation matrix (with respet to the standard basis e1, . . . , erof Cr).Note that the permutation assoiated to S2 (harge onjugation) is an involution µ 7→ µ, sine
S4 = 1. Also, T has �nite order dividing N beause of Γ (N) < ker ρ, and so is of the form
T = exp (2πiΛ) for some diagonal matrix

Λ =







λ1 . . .
λr






, (2.2)where 0 ≤ λ1, . . . , λr < 1 are rational numbers - the exponents of ρ - whose denominator dividesthe level N . Beause S2 ommutes with T , one also has λµ = λµ. This means, denoting by Othe orbits of harge onjugation, that the exponent is the same for eah element of an orbit2



ξ ∈ O: we'll denote by λξ this ommon value. We'll also use the notation eξ =
∑

µ∈ξ eµ foran orbit ξ ∈ O.It is known that the above admissibility onditions are always satis�ed by the modularrepresentation assoiated to a Rational Conformal Field Theory. Indeed, the primary �eldsof the RCFT provide a distinguished basis in whih T is diagonal and S2 is a permutationmatrix, while the �rst admissibility ondition follows from the results of [2℄. More generally,an analogue will hold for ertain (as yet undetermined) lasses of Vertex Operator Algebrasand Modular Tensor Categories.For an admissible representation ρ : SL2(Z) → GL(r, C), we'll denote by M(ρ) the spaeof vetor-valued omplex funtions X : H → Cr whih are holomorphi in the upper half-plane
H = {τ | Im τ > 0}, satisfy the transformation rule

X

(

aτ + b

cτ + d

)

= ρ

(

a b

c d

)

X (τ) (2.3)for all ( a b

c d

)

∈ SL2(Z), and have only �nite order poles at the usps. To explain this lastondition, note that Eqs.(2.3) and (2.2) imply that q−ΛX (τ) is invariant under τ 7→ τ + 1,and so may be expanded into a power series in q = exp (2πiτ):
q−ΛX =

∑

n∈Z

X [n] qn , (2.4)where X [n]∈Cr for all n. We de�ne
PX =

∑

n<0

X [n] qn (2.5)to denote the sum of the negative powers of q in Eq.(2.4), i.e. the singular (or prinipal)part of X. Then the requirement of having only �nite order poles at the usps means thateah omponent of PX is a polynomial in q−1 for X ∈ M(ρ), i.e. we get a linear map
P : M(ρ) → V , where V = ⊕r

µ=1meµ, for the set m of all polynomials in q−1 with vanishingonstant term. It follows from the basi priniples of Rational Conformal Field Theory, thatthe haraters χµ(τ) of the primary �elds form a vetor that belongs to the spae M(ρ),where ρ is the modular representation assoiated to the given model (see [21℄ for a moregeneral statement). 1Let's note that Eq.(2.3) implies
X (τ) = ρ

(

−1 0

0 −1

)

X (τ) ,in other words any X (τ) ∈ M(ρ) is invariant under harge onjugation S2. This means thatthe image of P lies in the subspae V+ of V whose elements are left invariant by S2. Atually,1We note that a losely related theory of vetor-valued modular forms had been developed in [11, 12℄.3



it follows from the Riemann-Roh theorem for vetor bundles [16℄ (or the arguments on p.15�16 of [10℄), that im P = V+, sine the (ompati�ed) quotient of the upper half-plane H by
SL2(Z) is a sphere (see [3℄ for details). A basis of V+ is provided by the vetors q−m

eξ, forany positive integer m and S2-orbit ξ ∈ O.The kernel of the map P is also easy to desribe. Indeed, suppose that X ∈ M(ρ)has vanishing singular part: then all of its vetor omponents are holomorphi on the upperhalf-plane, inluding the usps (sine SL2(Z) an map any usp to i∞). Sine the kernel of
ρ is a ongruene subgroup, the omponents of X are holomorphi funtions on the ompatRiemann surfae H/ ker ρ uniformized by ker ρ, hene they are all onstant. But this onstantvetor X should also satisfy Eq.(2.3), and thus it should belong to Wρ, the invariant subspaeof ρ. This shows that ker P = Wρ, and is then �nite dimensional (over C). Thus, the induedmap M(ρ) /Wρ → V+ is a bijetion.The outome of the above onsiderations is that any element v ∈ V+ determines a uniqueoset X ∈ M(ρ) /Wρ suh that PX = v. We'll denote by X(ξ;m) the oset for whih PX(ξ;m) =

q−m
eξ. Sine the q−m

eξ form a basis of V+, the osets X(ξ;m) form a basis of the linearspae M(ρ) /Wρ, whih we'll all the anonial basis. Our main onern will be to determineexpliitly the X(ξ;m) for a given representation ρ.Stritly speaking, the anonial basis vetors X(ξ;m) are not elements of M(ρ), althoughthey ome lose to it, sine their Laurent expansions are ompletely determined up to additionof a onstant term from Wρ. To simplify the ensuing presentation, we'll make the assumptionthat Wρ = 0: this small loss of generality is amply ompensated by the gain in larity andbrevity. The general ase an be worked out without too muh e�ort. Indeed, Wρ = 0 willgenerially hold, sine Wρ 6= 0 an only our when some λµ = 0 in Eq.(2.2). A familiarexample when Wρ 6= 0 is provided by the trivial one-dimensional ρ - e.g. the c = 24 theorieswith only 1 primary �eld have idential harater, up to an additive onstant (whih ountsthe number of spin-1 �elds) running from 0 to 1128 [20℄.3. The Hauptmodul and the reursion relationsAording to the results of the previous setion, the spae M(ρ) is an in�nite dimensionallinear spae over C. In partiular, the elements X(ξ;m) of the anonial basis are linearlyindependent, and thus one needs seemingly an in�nite amount of data to desribe the strutureof M(ρ). As it turns out, the situation is muh better, and this is related to the existene ofthe Hauptmodul J (or absolute invariant) for SL2(Z).Indeed, when ρ is the trivial one-dimensional representation of SL2(Z), the spae M(ρ)is known [1, 13℄ to be the polynomial algebra C [J ], where J is the Hauptmodul of SL2(Z),i.e. the unique holomorphi funtion on H that is invariant under the ation of SL2(Z), i.e.satis�es the funtional equation
J

(

aτ + b

cτ + d

)

= J (τ) (3.1)
4



for all ( a b

c d

)

∈ SL2(Z), and whose Laurent series around q = 0 reads
J (τ) = q−1 +

∞
∑

n=1

c (n) qn . (3.2)We note that the oe�ients c (n) of the Laurent expansion are all positive integers (sine Jis the harater of the Moonshine module), equal to the dimensions of spei� representationsof the Monster, the largest sporadi simple group [7℄.The importane of the Hauptmodul J for our onsiderations stems from the fat thatfor an admissible representation ρ and any X ∈ M(ρ), the produt JX is still an element of
M(ρ). In other words, the linear spae M(ρ) is a module over the polynomial algebra C [J ].The all-important result is that this module is �nitely generated by the X(ξ;1)-s. To see this,let's onsider the produt JX(ξ;m). Sine the map P is linear, the knowledge of the Laurentexpansions of J and X(ξ;m) determines the singular part of the produt, and this is enoughto determine JX(ξ;m) uniquely as a ombination of the anonial basis vetors. In partiular,from Eq.(3.2) and the Laurent expansion

q−ΛX(ξ;m) = q−m
eξ +

∞
∑

n=0

X(ξ;m) [n] qn (3.3)one gets
P

(

JX(ξ;m)
)

=

(

q−(m+1) +
m−1
∑

n=1

c (n) qn−m

)

eξ + q−1X(ξ;m) [0] , (3.4)from whih one reads o� the following reursion relation
JX(ξ;m) = X(ξ;m+1) +

m−1
∑

n=1

c (n) X(ξ;m−n) +
∑

η∈O

1

|η|
〈

X(ξ;m) [0] , eη

〉

X(η;1) , (3.5)where |η| denotes the length of the orbit η ∈ O (whih is either 1 or 2, beause hargeonjugation is an involution). This may be rearranged as
X(ξ;m+1) = JX(ξ;m) −

m−1
∑

n=1

c (n) X(ξ;m−n) −
∑

η∈O
X (ξ;m)

η X(η;1) , (3.6)where we have introdued the notation
X (ξ;m)

η =
1

|η|
〈

X(ξ;m) [0] , eη

〉

. (3.7)Clearly, Eq.(3.6) and the knowledge of the X(η;1)-s for all η ∈ O allows to ompute theanonial basis elements X(ξ;2), and indutively all X(ξ;m)-s for m > 1, as linear ombinationsof the X(η;1)-s, with oe�ients whih are polynomials in J , proving the laim that M(ρ) isa �nitely generated C [J ]-module. Note that the form of the reursion relations Eq.(3.6) doesnot depend expliitly on the representation ρ, only impliitly, through the values X (ξ;m)
η (ofourse, the latter are determined by ρ). 5



4. Eisenstein series and the di�erential relationsIt is a well known result of the theory of modular forms that some di�erential operatorsmap modular forms to modular forms. In the present ontext, appropriate linear di�erentialoperators may be found that map the spae M(ρ) to itself, providing us with di�erentialrelations between the di�erent elements of the anonial basis.To begin with, let's reall the de�nition of the (normalized) Eisenstein series and thedisriminant form [1, 5, 13℄. For a positive integer k let σk (n) denote the sum of the k-thpowers of the divisors of the integer n, i.e.
σk (n) =

∑

d|n
dk . (4.1)The Eisenstein series of weight 2k is

E2k(τ) = 1 − 2k

Bk

∞
∑

n=1

σ2k−1 (n) qn , (4.2)where Bk denotes the k-th Bernoulli number, and q = exp (2πiτ) as usual. For 1 ≤ k ≤ 5 theoe�ient −2k/Bk equals −24,+240,−504,+480,−264, respetively.The Eisenstein series are holomorphi in the upper half-plane and at the usps, and for
k > 1 they are modular forms of weight 2k, i.e. they satisfy the transformation rule

E2k

(

aτ + b

cτ + d

)

= (cτ + d)2k E2k (τ) (4.3)for all ( a b

c d

)

∈ SL2(Z). There are many relations among the Eisenstein series, e.g.
E8 = E2

4 (4.4a)
E10 = E4E6 . (4.4b)The disriminant form ∆ is de�ned by the in�nite produt

∆(τ) = q

∞
∏

n=1

(1 − qn)24 . (4.5)It is a usp form of weight 12, i.e. it is holomorphi in the upper half-plane, has a (�rst order)zero at the usp τ = i∞, and satis�es
∆

(

aτ + b

cτ + d

)

= (cτ + d)12 ∆ (τ) (4.6)for all ( a b

c d

)

∈ SL2(Z). It is related to the Eisenstein series E4 and E6 by the formula
1728∆ = E3

4 − E2
6 . (4.7)6



An important property of ∆ is that it doesn't vanish on the upper half-plane H.Finally, let's note that the Hauptmodul J may be expressed through the above quantitiesas
J =

E3
4

∆
− 744 . (4.8)Let's onsider the linear di�erential operator

∇ =
E10

2πi∆

d

dτ
. (4.9)This operator maps the spae M(ρ) to itself. Indeed, sine the ratio E10/∆ is holomorphiin H, with a �rst order pole at τ = i∞, it follows that ∇X is also holomorphi in H and hasonly �nite order poles at τ = i∞ for X ∈ M(ρ). On the other hand, di�erentiating both sidesof Eq.(2.3), and taking into aount the transformation rules Eqs.(4.3) and (4.6), one gets

∇X

(

aτ + b

cτ + d

)

= ρ

(

a b

c d

)

∇X (τ) ,showing that ∇X ∈ M(ρ), as laimed.This result allows to derive (�rst order) di�erential relations between the anonial basisvetors X(ξ;m). To illustrate this point, let's apply ∇ to the Laurent expansion Eq.(3.3) of theanonial basis vetor X(ξ;m). A straightforward omputation shows that
P

(

∇X(ξ;m)
)

= (λξ − m)

m−1
∑

n=−1

Enqn−m
eξ + q−1

∑

η∈O
ληX (ξ;m)

η eη , (4.10)where X (ξ;m)
η is the onstant matrix introdued in Eq.(3.7), and the integers En are the Laurentoe�ients of E10/∆:

E10

∆
=

∞
∑

n=−1

Enqn = q−1 − 240 − 141444q − 8529280q2 + . . . . (4.11)Sine the singular part determines the whole series, it follows from Eq.(4.10) that
∇X(ξ;m) = (λξ − m)

m−1
∑

n=−1

EnX(ξ;m−n) +
∑

η∈O
ληX (ξ;m)

η X(η;1) . (4.12)In partiular, for m = 1 Eq.(4.12) redues to
∇X(ξ;1) = (λξ − 1)

(

X(ξ;2) − 240X(ξ;1)
)

+
∑

η∈O
ληX (ξ;1)

η X(η;1) . (4.13)But X(ξ;2) is determined by the reursion relation Eq.(3.6), as a linear ombination of the
X(η;1)-s. Substituting its expression into Eq.(4.13) leads to

∇X(ξ;1) = (λξ − 1) (J − 240) X(ξ;1) +
∑

η∈O
(1 + λη − λξ)X (ξ;1)

η X(η;1) . (4.14)
7



Thus we get a system of �rst order linear di�erential equations satis�ed by the anonial basisvetors X(ξ;1), whih may be rewritten as
1

2πi

dX(ξ;1)

dτ
=
∑

η

Dξ
η (q) X(η;1) (4.15)upon introduing the square matrix

Dξ
η (q) =

∆

E10

{

(J − 240) (λξ − 1) δξ
η + (1 + λη − λξ)X (ξ;1)

η

}

. (4.16)Note that this matrix is meromorphi in the upper half-plane (it has �rst order poles at
τ = exp (2πi/3) and τ = i), and holomorphi at the usp τ = i∞, i.e. it has a Laurentexpansion

Dξ
η (q) =

∞
∑

n=0

Dξ
η [n] qn (4.17)without negative powers of q. The �rst few oe�ients of the above expansion read

Dξ
η [0] = (λξ − 1) δξ

η

Dξ
η [1] = (1 + λη − λξ)X (ξ;1)

η (4.18)
Dξ

η [2] = 338328 (λξ − 1) δξ
η + 240 (1 + λη − λξ)X (ξ;1)

η .Di�erential equations obeyed by the haraters of Rational Conformal Field Theories havebeen studied elsewhere, where they have been used for e.g. lassi�ation purposes and studyingmodularity (see [15, 21℄, resp.).The di�erential equation Eq.(4.15), supplemented with the boundary onditions P
(

X(ξ;1)
)

=

q−1
eξ and X(ξ;1) [0] =

∑

η X
(ξ;1)
η eη, allows in priniple to determine reursively the oe�ients

X(ξ;1) [n] for n > 0. Indeed, substituting into Eq.(4.15) the expansions Eqs.(4.17) and (3.3),and taking into aount that 1
2πi

d
dτ = q d

dq , one gets, after omparing powers of q, the relation
(n + 1 − λξ + Λ) X(ξ;1) [n] =

∑

η∈O

(

Dξ
η [n + 1] eη +

n
∑

m=1

Dξ
η [m] X(η;1) [n − m]

)

. (4.19)For example, after some rearrangements the above formula gives for n = 1

X(ξ;1) [1] =
∑

η

Dξ
η [2] +

∑

ν (1 + λν − λξ)X (ξ;1)
ν X (ν;1)

η

2 + λη − λξ
eη ,and similar expressions may be obtained for the higher terms. This means that the knowledgeof the exponents and of the matrix X (ξ;1)

η of Eq.(3.7) allows the expliit omputation of theanonial basis vetors X(ξ;1), and hene - via the reursion relations Eq.(3.6) - of all theelements of the anonial basis. 8



5. Invariants and ovariantsThe notion of invariants and ovariants (aka. equivariant polynomial maps) will play animportant role in what follows, so let's sketh their de�nition. Consider the polynomial algebrain r variables R = C [x1, . . . , xr]: to eah matrix A∈GL(r, C) is assoiated the algebra map
Â : R → R (5.1)

xi 7→
∑

j

Aijxj .If G is a subgroup of GL(r, C), an invariant of G is a polynomial I∈R left �xed by Â forall A∈G. The invariants of G form a subring
Inv (G) =

{

I ∈ R | Â (I) = I for all A ∈ G
} (5.2)of the algebra R, whih inherits the natural grading from R. It is known that under mildonditions (e.g. if G is linearly redutive) the algebra Inv (G) is �nitely generated [16℄.A ovariant of the subgroup G < GL(r, C) is an algebra map φ : R → R suh that

Â ◦ φ = φ ◦ Â for all A∈G. The set of ovariants of G is graded by degree (as algebra maps)and, besides forming a linear spae over C, is a (graded) Inv (G) module, sine for a ovariant
φ and an invariant I the map Iφ : xi 7→ Iφ (xi) is again a ovariant of G.Covariants of degree 0 are related to the ommutant of G: indeed, if φ is a ovariant ofdegree 0, then there exists an r-by-r matrix M suh that φ (xi) =

∑

j Mijxj (beause φ hasdegree 0), and AM = MA for all A∈G (beause φ is a ovariant). Conversely, for a matrix
M in the ommutant of G, the map φ : xi 7→

∑

j Mijxj is a ovariant of degree 0.By an invariant (ovariant) of a �nite dimensional matrix representation ρ of SL2(Z), we'llmean an invariant (resp. ovariant) of the image of ρ. The importane of ovariants stemsfrom the fat that for X∈M(ρ) and φ a ovariant of ρ, one has φ (X)∈M(ρ), sine φ (X) isholomorphi - being a polynomial expression in holomorphi funtions -, has only �nite orderpoles at the usps, and transforms aording to the representation ρ. Similarly, if I is aninvariant and X∈M(ρ), then I (X)∈ C [J ], beause it is holomorphi, has only �nite orderpoles at the usps, and is invariant under all modular transformations.6. A worked-out example: the Yang-Lee modelIn the present setion we'll illustrate, on the example of the Yang-Lee model, how the results ofthe previous setions may be used to determine expliitly the elements X(ξ;m) of the anonialbasis of M(ρ) /Wρ, and hene all solutions to Eq.(2.3) holomorphi in H and meromorphiat the usps.The Yang-Lee model is the Virasoro minimal model M (5, 2) of entral harge c = −22
5 .Its exponents are

(

λ1

λ2

)

=
1

60

(

11

59

)

,

9



while its S matrix reads
S =

√

2

5 +
√

5

(

1 1+
√

5
2

1+
√

5
2 −1

)

.The orresponding representation ρ is admissible (sine it omes from an RCFT), has trivialharge onjugation, and trivial invariant subspae Wρ = 0.The map
φ : C [x1, x2] → C [x1, x2] (6.1)

(

x1

x2

)

7→
(

p (x1, x2)

p (x2,−x1)

)is a ovariant of degree 48, where
p (x1, x2) = x49

2 − 114464x10
1 x39

2 − 1586424x15
1 x34

2 − 4273878x20
1 x29

2

+ 3491397x25
1 x24

2 − 559580x30x19
2 + 952812x35

1 x14
2 − 14063x40

1 x9
2 + 294x45

1 x4
2, (6.2)while

I = x1x2

(

x10
1 + 11x5

1x
5
2 − x10

2

) (6.3)is an invariant of degree 12.Let's turn to the omputation of the anonial basis. By de�nition, X(2;1) has a Laurentexpansion of the form
X(2;1)(τ) = qΛ

(

a0 + a1q + . . .

q−1 + b0 + b1q + . . .

)

, (6.4)where the oe�ients a0, b0, . . . have to be determined. Inserting this expression into Eq.(6.3),we have
I
(

X(2;1)
)

= −a0 +
(

11a6
0 − 11b0a0 − a1

)

q + . . . (6.5)This means that I
(

X(2;1)
) is holomorphi at q = 0, hene it should be a onstant, i.e. theoe�ients of the positive powers of q in the expansion Eq.(6.5) should vanish2. In partiular,one has
a1 = 11a0

(

a5
0 − b0

)

, (6.6)
a2 = 727a11

0 − 781b0a
6
0 + (66b2

0 − 11b1)a0 . (6.7)On the other hand, beause φ is a ovariant, we know that φ
(

X(2;1)
) belongs to M(ρ).Inserting Eq.(6.4) into φ, one gets

φ
(

X(2;1)
)

= qΛ

(

q−1 + 49b0 + (1176b2
0 + 49b1 − 114464a10

0 )q + . . .

294a4
0q

−1 + 26999a9
0 + 294b0a

4
0 + . . .

)

, (6.8)2Note that a0 = 0 is not possible, sine Eq.(6.3) would then imply that the �rst omponent of X(2;1) vanishesidentially, whih is inompatible with Eq.(2.3). 10



from whih one reads o�
φ
(

X(2;1)
)

= X(1;1) + 294a4
0X(2;1) (6.9)by omparing the singular parts. This leads at one to the following q-expansion, taking intoaount Eq.(6.6)

X(1;1)(τ) = qΛ

(

q−1 + 49b0 − 294a5
0 +

(

1176b2
0 + 49b1 − 117698a10

0 + 3234b0a
5
0

)

q + . . .

26999a9
0 +

(

3413445a14
0 − 1592941b0a

9
0

)

q + . . .

)

.(6.10)Note that from the above we an read o� the entries of the matrix of Eq.(3.7):
X (ξ;1)

η =

(

49(b0 − 6a5
0) 26999a9

0

a0 b0

)

. (6.11)This shows that, should we know the values of a0 and b0, we ould ompute the q-expansion of the X(ξ;1)-s reursively via Eq.(4.19). To determine these parameters, let's plugthe expression Eq.(6.4) into Eq.(4.14), and equate the oe�ients of the onstant terms oneah side (the oe�ients of the negative q powers are equal by onstrution), whih gives
72a6

0 − (24b0 + 48)a0 = 0 , (6.12a)
−26999

5
a10

0 − b2
0 − 240b0 + 2b1 +

28194

5
= 0 , (6.12b)whih an be solved to give (reall that a0 6= 0)

b0 = 3a5
0 − 2 , (6.13a)

b1 =
1

5

(

13522a10
0 + 3540a5

0 − 15287
)

. (6.13b)Equating the oe�ients of the terms linear in q, and taking into aount Eqs.(6.13a) and(6.13b), one gets
−373248

5
a11

0 +
373248

5
a0 = 0 , (6.14)

1324812

5
a15

0 − 9654708

5
a10

0 − 2837277

5
a5

0 + 3b2 +
11167158

5
= 0 , (6.15)from whih follows that a10

0 = 1, i.e. a0 is a tenth root of unity. The other expansionoe�ients may be expressed in terms of a0:
b0 = 3a5

0 − 2

a1 = 22a0(1 − a5
0)

b1 = 354a5
0 − 353 (6.16)

a2 = a0(3125 − 3124a5
0)

b2 = 100831a5
0 − 10083011



and so on.All in all, we got 10 di�erent possibilities for X(2;1), aording to the preise value of a0.Only one of these does solve our original problem, i.e. only one of them transforms aordingto the representation ρ: it an be seleted by e.g. determining the orresponding solution ofthe di�erential equation Eq.(4.15), and heking its transformation law under τ 7→ − 1
τ . But inour ase there is a shortut: the harater vetor of the Yang-Lee model has a �rst order polein its seond omponent, i.e. it equals X(2;1), and being a harater vetor, its q-expansionoe�ients are all non-negative integers (being eigenvalue multipliities). In partiular, a0should be a non-negative integer: the only 10-th root of unity that satis�es this is a0 = 1.Indeed, with this value of a0 we get the following q-expansion

X(2;1)(τ) = qΛ

(

1 + q2 + . . .

q−1 + 1 + q + q2 + . . .

)

, (6.17)reovering the well-known result for the harater vetor of the Yang-Lee model (see e.g. [19℄).From this and Eq.(6.10) one gets
X(1;1)(τ) = qΛ

(

q−1 − 245 − 113239q − 6029989q2 + . . .

26999 + 1820504q + . . .

)

. (6.18)Note that this annot be the harater vetor of a RCFT, sine some of its expansion oe�-ients are negative (though still integers). This shows that the modular representation in anRCFT does onstrain the singular part PX of harater vetors (e.g. the onformal weights
hµ) in a nontrivial way. These onstraints go far beyond the inequality ∑µ(hµ − c/24) ≤
r(r − 1)/12 of [15℄, whih is satis�ed by Eq.(6.18) and indeed by any X ∈ M(ρ).This arbitrariness up to a 10-th root of unity is not surprising in hindsight, and ertainlydoes not ontradit our earlier laim that ker P = Wρ (whih vanishes here). The onlyingredients whih went into Eqs.(6.16) and the onstraint a10

0 = 1 were the exponents λµ, theovariant φ in Eq.(6.1), and invariant I in Eq.(6.3). Of ourse these are all determined bythe modular representation ρ, but it is easy to �nd other modular representations having thesame λµ, φ,I whih orrespond to the 9 other values of a0.7. A seond example: the Ising modelThe Ising model is the Virasoro minimal model M(4, 3) of entral harge c = 1
2 . It has 3primary �elds, and the modular representation ρ assoiated to it is haraterized by

S =
1

2







1 1
√

2

1 1 −
√

2√
2 −

√
2 0





and the exponents






λ1

λ2

λ3






=

1

48







47

23

2






.
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Note that ρ - besides being admissible - is irreduible, has trivial harge onjugation, and
Wρ = 0.The map

φn : C [x1, x2, x3] → C [x1, x2, x3]






x1

x2

x3






7→ 1

2







(x1 + x2)
24n+1 + (−1)n (x1 − x2)

24n+1

(x1 + x2)
24n+1 − (−1)n (x1 − x2)

24n+1

(−1)n 212n+1x24n+1
3






(7.1)is a ovariant (of degree 24n) for any non-negative integer n.The above information is already enough to determine the anonial basis of M(ρ) alongthe lines presented in the previous setion. Instead of going through this lengthy alulation,whih doesn't present any di�ulties, we'll exploit the fat that the harater vetor of theIsing model is known (see e.g. [19℄):

XIsing =
1

2







f + f1

f − f1√
2f2






, (7.2)where

f(τ) = q−1/48
∞
∏

n=0

(

1 + qn+ 1
2

)

,

f1(τ) = q−1/48
∞
∏

n=0

(

1 − qn+ 1
2

)

, (7.3)
f2(τ) =

√
2q1/24

∞
∏

n=1

(1 + qn)are the Weber funtions. Note that, while linearly independent, the Weber funtions are notalgebraially independent, for they satisfy the identities
f81 + f82 = f8 , (7.4a)

ff1f2 =
√

2 . (7.4b)Moreover, they are related to the Hauptmodul through
J + 744 =

(

f24 − 16
)3

f24
=

(

f241 + 16
)3

f241
=

(

f242 + 16
)3

f242
. (7.5)

XIsing has a pole of order 1 in its �rst omponent, whih means that XIsing = X(1;1), i.e.
X(1;1) =

1

2







f + f1

f − f1√
2f2






. (7.6)
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Applying φ1 and φ2 to XIsing, and omparing the singular parts, one gets the relations
φ1 (XIsing) = 25X(1;1) + X(2;1) , (7.7)
φ2 (XIsing) = X(1;2) + 1176X(1;1) + 49X(2;1) , (7.8)from whih one dedues

X(2;1) =
1

2















f25 − f251 − 25f − 25f1

f25 + f251 − 25f + 25f1

−
√

2f2
(

25 + f242
)















(7.9)and
X(1;2) =

1

2















f49 − 49f25 + 49f + f491 + 49f251 + 49f1

f49 − 49f25 + 49f − f491 − 49f251 − 49f1

√
2f2
(

49 + 49f242 + f482
)















. (7.10)Finally, from the reursion relation
JX(1;1) = X(1;2) + X(2;1) + X(3;1) , (7.11)taking into aount the relations Eqs.(7.4a), (7.4b) and (7.5), one omputes

X(3;1) =

















8f17f81 − 8f24f1 − 128f +
f72√
2

(

f39 − f391 − 16f15 − 32f151
)

8f17f81 + 8f24f1 − 128f − f72√
2

(

f39 + f391 − 16f15 + 32f151
)

f15f71
(

f24 − 16
)

− 8
√

2f2f
24

















. (7.12)Thus, we have been able to determine expliitly the elements X(ξ;1) of the anonial basis.Note that from these one may derive expliit expressions for the X(ξ;m) with m > 1 by usingthe reursion relation Eq.(3.6).Finally, from the above expliit expressions one gets the q-expansions
X(1;1)(τ) = qΛ







q−1 + q + q2 + 2q3 + . . .

1 + q + q2 + q3 + . . .

1 + q + q2 + 2q3 + . . .






, (7.13)

X(2;1)(τ) = qΛ







2325 + 60630q + 811950q2 + 7502125q3 + . . .

q−1 + 275 + 13250q + 235500q2 + 2558550q3+

−25 − 4121q − 102425q2 − 1331250q3 + . . .

. . .






, (7.14)
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and
X(3;1)(τ) = qΛ







94208 + 9515008q + 356765696q2 + 7853461504q3 + . . .

−4096 − 1130496q − 63401984q2 − 1763102720q3 + . . .

q−1 − 23 + 253q − 1794q2 + 9384q3 + . . .






. (7.15)Of these, only X(1;1) may be the harater vetor of a RCFT, sine it is the only one whose

q-expansion oe�ients are all non-negative integers, illustrating again that the singular partsof harater vetors are heavily onstrained.8. Further questions and developmentsThis paper explains to what extent the SL2(Z) representation ρ determines the vetor-valuedomplex funtion X, and how in pratise to onstrut it. This study suggests a number ofadditional questions.We illustrate with examples how to onstrut the anonial basis vetors X(η;1) oe�ientby oe�ient, and in priniple the di�erential equation Eq.(4.15) tells us the full series. But isit possible to express these X(η;1) using known transendental funtions, muh as we did withthe Ising model (and more generally has been done with all the minimal and Wess-Zumino-Witten models)? A reason to think we an is that eah omponent of X(η;1) will be a modularfuntion for some Γ(N), and all of these an be expressed in terms of the J funtion and N2Frike funtions fr,s (see e.g. [14℄). An alternate approah was followed in [6℄, who in �vespei� Conformal Field Theoreti models explained how to write the haraters using thetafuntions, by relating ρ to Weil representations; their method should be quite general.We are most interested in the modular representation ρ and harater vetor X omingfrom Rational Conformal Field Theory. In this ase the omponents χµ(τ) of X have a q-expansion whose oe�ients are non-negative integers. This is quite speial; what are theproperties of ρ whih makes this possible? Given suh a ρ, whih vetors in V+ will be theprinipal parts of suh non-negative integer X? Integrality is easy to understand, using Galoismethods. In partiular, for any admissible ρ, some positive integer multiple of eah anonialbasis vetor X(η;m) (translating by a vetor in Wρ if neessary) will have integer q-expansions,provided all entries of the matries ρ(A), for all A ∈ SL2(Z), lie in the ylotomi �eld
Q[e2πi/N ], and in addition the ℓ-th Galois automorphism, for all ℓ oprime to N , applied entryby entry to the matrix S, equals ρ

(

ℓ 0

0 ℓ−1

)

S (see [3℄ for more details and the proof). Theseonditions are automatially satis�ed in any Rational Conformal Field Theory [2℄. Positivityof those q-expansions seems more di�ult to understand, although it is easy to verify that,unless S has a stritly positive eigenvetor with eigenvalue 1, no X ∈ M(ρ) an have a non-negative q-expansion. As the examples in setions 6 and 7 illustrate, non-negativity is subtleand would be very interesting to understand.15



Curiously, in all examples we've seen, the q-expansions of the anonial basis vetors
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