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manhe meinenlehts und rinkskann man niht velwehsernwerh ein illtumErnst Jandl [Jan95℄
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1 IntrodutionWess-Zumino-Witten (WZW) models are one of the most important lassesof (two-dimensional) rational onformal �eld theories. They desribe physi-al systems with (non-abelian) urrent symmetries, provide gauge setors inheteroti string ompati�ations and are the starting point for other on-strutions of onformal �eld theories, e.g. the oset onstrution. Moreover,they have played a ruial role as a bridge between Lie theory and onformal�eld theory.It is well-known that for the Lagrangian desription of suh a model, aWess-Zumino term is needed to get a onformally invariant theory [Wit84℄.Later, the relation of this term to Deligne hyperohomology has been re-alized [Gaw88℄ and its nature as a surfae holonomy has been identi�ed[Gaw88, Alv85℄. More reently, the appropriate di�erential-geometri ob-jet for the holonomy has been identi�ed as a hermitian U(1) bundle gerbewith onnetion and urving [CJM02℄.Already the ase of non-simply onneted Lie groups with non�yli fun-damental group, suh as G := Spin(4n)/Z2×Z2 shows that gerbes and theirholonomy are really indispensable, even when one restrits one's attentionto oriented surfaes without boundary. The original de�nition of the Wess-Zumino term as the integral of a three form H over a suitable three-manifoldannot be applied to suh groups; moreover, it ould not explain the well-established fat that to suh a group two di�erent rational onformal �eldtheories that di�er by �disrete torsion� an be assoiated.Bundle gerbes will be entral for the problem we address in this paper. Along series of algebrai results indiate that the WZW model an be onsis-tently onsidered on unorientable surfaes. Early results inlude a detailedstudy of the abelian ase [BPS92℄ and of SU(2) [PSS95b, PSS95a℄. Sewingonstraints for unoriented surfaes have been derived in [FPS94℄.Already the abelian ase [BPS92℄ shows that not every rational onformal�eld theory that is well-de�ned on oriented surfaes an be onsidered onunoriented surfaes. A neessary ondition is that the bulk partition funtionis symmetri under exhange of left and right movers. This restrits, forexample, the values of the Kalb-Ramond �eld in toroidal ompati�ations[BPS92℄. Moreover, if the theory an be extended to unoriented surfaes,there an be di�erent extensions that yield inequivalent orrelation funtions.This has been studied in detail for WZW theories based on SU(2) in [PSS95b,PSS95a℄; later on, this has been systematially desribed with simple urrenttehniques [HS00, HSS99℄. Unifying general formulae have been proposed in[FHS+00℄; the struture has been studied at the level of NIMreps in [SS03℄.Aspets of these results have been proven in [FRS04℄ ombining topologial3



�eld theory in three-dimensions with algebra and representation theory inmodular tensor ategories. As a ruial ingredient, a generalization of thenotion of an algebra with involution, i.e. an algebra together with an algebra-isomorphism to the opposed algebra, has been identi�ed in [FRS04℄; theisomorphism is not an involution any longer, but squares to the twist on thealgebra. An algebra with suh an isomorphism has been alled Jandl algebra.A similar struture, in a geometri setting, will be the subjet of the presentartile.The suess of the algebrai theory leads, in the Lagrangian desription,to the quest for orresponding geometri strutures on the target spae. Fromprevious work [BCW01, HSS02, Bru02℄ it is lear that a map k : M → Mon the target spae with the additional property that k∗H = −H will beone ingredient. Examples like the Lie group SO(3), for whih two di�erentunoriented WZW models with the same map k are known, already show thatthis struture does not su�e.We are thus looking for an additional struture on a hermitian bundlegerbe whih allows to de�ne a Wess-Zumino term, i.e. whih allows to de-�ne holonomy for unoriented surfaes. For a general bundle gerbe, suh astruture need not exist; if it exists, it will not be unique.In the present artile, we make a proposal for suh a struture. It existswhenever there are su�iently well-behaved stable isomorphisms between thepullbak gerbe k∗G and the dual gerbe G∗. If one thinks about a gerbe as asheaf of groupoids, the formal similarity to the Jandl strutures in [FRS04℄beomes apparent, if one realizes that the dual gerbe plays the role of theopposed algebra. For this reason, we term the relevant struture a Jandlstruture on the gerbe. We show that the Jandl strutures on a gerbe onthe target spae M , if they exist at all, form a torsor over the group of �atequivariant hermitian line bundles on M . As explained in setion 4.3, thisgroup always ontains an element Lk
−1 of order two. We show that two Jandlstrutures that are related by the ation of Lk

−1 provide amplitudes thatjust di�er by a sign that depends only on the topology of the worldsheet.Suh Jandl strutures are onsidered to be essentially equivalent. We �nallyshow that a Jandl struture allows to extend the de�nition of the usualgerbe holonomy from oriented surfaes to unoriented surfaes. We deriveformulae for these holonomies in loal data that generalize the formulae of[GR02, Alv85℄ for oriented surfaes.To give a onrete impression of a Jandl struture, we write out the loaldata of a Jandl struture for a given gerbe G on the target spae M . To thisend, we �rst reall the loal data of a hermitian bundle gerbe in a good openover {Vi}i∈I of M : we have a 2-form Bi for eah open set Vi, a 1-form Aij4



on eah intersetion Vi ∩ Vj and a U(1)-valued funtion gijk on eah tripleintersetion Vi∩Vj∩Vk. They are required to satisfy the following onstraints:
gjkl · g

−1
ikl · gijl · g

−1
ijk = 1

Ajk − Aik + Aij + dlog (gijk) = 0

−dAij + Bj − Bi = 0.To write down the loal data of a Jandl struture for a given involution
k : M → M in a suint manner, we make the simplifying assumption thatwe have a over {Vi}i∈I that is invariant under k, k(Vi) = Vi, and that isstill good enough to provide loal data. The loal data of a Jandl struturethen onsist of a U(1)-valued funtion ji : Vi → U(1) for eah open subset,a U(1)-valued funtion tij : Vi ∩ Vj → U(1) on two-fold intersetions and a1-form Wi ∈ Ω1(Vi).They relate the pullbaks of the gerbe data under k to the loal data ofthe dual gerbe as follows:

k∗Bi = −Bi + dWi

k∗Aij = −Aij − dlog(tij) + Wj − Wi

k∗gijk = g−1
ijk · tjk · t

−1
ik · tijThe loal data of a Jandl struture are required to be equivariant under k inthe sense that

k∗Wi = Wi − dlog(ji)

k∗tij = tij · j
−1
j · ji

k∗ji = j−1
i .It should be appreiated that the funtions tij are not transition funtionsof some line bundle; as we will explain in setion 2.4, they are rather theloal data desribing an isomorphism of line bundles appearing in the Jandlstruture.The notion of a Jandl struture naturally explains algebrai results forspei� lasses of rational onformal �eld theories. It is well-known that boththe Lie group SU(2) and its quotient SO(3) admit two Jandl strutures thatare essentially di�erent (i.e. that do not just di�er by a sign depending on thetopology of the surfae). In the ase of SU(2), this is explained by the fatthat two di�erent involutions are relevant: g 7→ g−1 and g 7→ zg−1, where

z is the non-trivial element in the enter of SU(2). Indeed, sine SU(2)is simply-onneted, we have a single �at line bundle and hene for eahinvolution only two Jandl strutures whih are essentially the same.5



The two involutions of SU(2) desend to the same involution of the quo-tient SO(3). The latter manifold, however, has fundamental group Z2 andthus twie as many equivariant �at line bundles as SU(2). The di�erentJandl strutures of SO(3) are therefore not explained by di�erent involu-tions on the target spae but rather by the fat that one involution admitstwo essentially di�erent Jandl strutures.Needless to say, there remain many open questions. A disussion of sur-faes with boundaries is beyond the sope of this artile. The results of[FRS04℄ suggest, however, that a Jandl struture leads to an involution ongerbe modules. Most importantly, it remains to be shown that, in the Wess-Zumino-Witten path integral for a surfae Σ, the holonomy we introduedyields amplitudes that take their values in the spae of onformal bloks as-soiated to the omplex double of Σ, whih ensures that the relevant hiralWard identities are obeyed. To this end, it will be important to have a suit-able reformulation of Jandl strutures at our disposal. Indeed, the holonomywe propose in this artile also arises as the surfae holonomy of a 2-vetorbundle with a ertain 2-group; this issue will be the subjet of a separatepubliation.2 Bundle Gerbes with Jandl Strutures2.1 Bundle Gerbes and stable IsomorphismsIn preparation of the following setions, in this setion we de�ne an equiv-alene relation on the set of stable isomorphisms between two �xed bundlegerbes. To this end, we �rst set up the notation onerning bundle gerbesand stable isomorphisms. We mainly adopt the formalism used by Murrayand ollaborators, see [CJM02℄ for example, as well as by Gaw�edzki and Reis[GR02℄.De�nition 1. A hermitian U(1) bundle gerbe G with onnetion and urvingover a smooth manifold M onsists of the following data: a surjetive sub-mersion π : Y → M , a hermitian line bundle p : L → Y [2] with onnetion,an assoiative isomorphism
µ : π∗

12L ⊗ π∗
23L −→ π∗

13L (1)of hermitian line bundles with onnetion over Y [3], and a 2-form C ∈ Ω2(Y )whih satis�es
π∗

2C − π∗
1C = curv(L). (2)6



Here Y [p] denotes the p-fold �ber produt of π : Y → M , whih is asmooth manifold sine π is a surjetive submersion. For example π12 : Y [3] →
Y [2] is the projetion on the �rst two fators.Remark 1. From now we will use the following onventions: the term linebundle refers to a hermitian line bundle with onnetion, and an isomorphismof line bundles refers to an isomorphism of hermitian line bundles with on-netion. Aordingly, we refer to De�nition 1 by the term gerbe. The 2-form
C is alled urving, and the isomorphism µ is alled multipliation.One an show that there is a unique 3-form H ∈ Ω3(M) with π∗H = dC;this 3-form is alled the urvature of the gerbe and is denoted by H =
curv(G).To eah gerbe G, we assoiate the dual gerbe G∗. It has the same sur-jetive submersion π : Y → M , but the dual line bundle L∗ → Y [2] withmultipliation

(µ∗)−1 : π∗
12L

∗ ⊗ π∗
23L

∗ −→ π∗
13L

∗, (3)and the negative urving −C. Aordingly, the urvature of the dual gerbesatis�es
curv(G∗) = −curv(G). (4)Even more, the lasses of G and the one of G∗ in Deligne hyperohomologyare inverses.For a smooth map f : N → M and a pullbak diagram

Yf

πf

��

f̃
// Y

π

��

N
f

// M

, (5)
πf : Yf → N is a surjetive submersion, and together with the line bundle
f̃

∗

L over Y
[2]
f , the multipliation f̃ ∗µ and the urving f̃ ∗C, we have de�ned agerbe f ∗G. If f : M → M is a di�eomorphism, Yf is anonially isomorphito Y , suh that f̃ = idY and πf = f−1 ◦ π. The urvature of the pullbakgerbe is

curv(f ∗G) = f ∗curv(G). (6)Remark 2. As we did in the last paragraph, whenever there is a map f̃ :
Yf → Y , we will use the same letter for the indued map on higher �berproduts. 7



De�nition 2. A trivialization T = (T, τ) of a gerbe G is a line bundle
T → Y , together with an isomorphism

τ : L ⊗ π∗
2T −→ π∗

1T (7)of line bundles over Y [2], whih is ompatible with the isomorphism µ of thegerbe.We all a gerbe G trivial, if it admits a trivialization. A hoie of atrivialization T gives the 2-form C − curv(T ) ∈ Ω2(Y ), whih desends toa unique 2-form ρ ∈ Ω2(M) with π∗ρ = C − curv(T ). This 2-form satis�es
dρ = H , so the urvature H of a trivial gerbe is an exat form.If there are two trivializations T1 = (T1, τ1) and T2 = (T2, τ2) of the samegerbe G, one obtains an isomorphism

α := τ−1
1 ⊗ τ ∗

2 : π∗
1(T1 ⊗ T ∗

2 ) −→ π∗
2(T1 ⊗ T ∗

2 ), (8)of line bundles over Y [2]. From the ompatibility ondition between themultipliation µ and both τ1 and τ2 the oyle ondition
π∗

23α ◦ π∗
12α = π∗

13α (9)follows. Suh an isomorphism determines a unique desent line bundle N →
M with onnetion together with an isomorphism ν : π∗N → T1⊗T ∗

2 [Bry93℄.The two 2-forms ρ1 and ρ2 oming from the two trivializations are related by
ρ2 = ρ1 + curv(N). (10)De�nition 3. Let G and G′ be two gerbes. A stable isomorphism
A : G −→ G′ (11)onsists of a line bundle A → Z over the �ber produt Z := Y ′ ×M Y withurvature

curv(A) = p′∗C ′ − p∗C, (12)and an isomorphism
α : p∗L ⊗ p′∗L′∗ ⊗ π∗

2A −→ π∗
1A (13)of line bundles over Z [2], whih is ompatible with the multipliations µ and

µ′ of both gerbes.Here p and p′ denote the projetions from Z to Y and to Y ′ respetively.Sine the pullbaks of the urvings C and C ′ to Z di�er by a losed 2-form,the urvatures of stably isomorphi gerbes, de�ned by the di�erential of C,are equal. 8



De�nition 4. Let G and G′ be two gerbes, and A1 and A2 two stable iso-morphisms from G to G′. A morphism
β : A1 =⇒ A2 (14)is an isomorphism β : A1 → A2 of line bundles over Z, whih is ompatiblewith α1 and α2 in the sense that the diagram

p∗L ⊗ p′∗L′∗ ⊗ π∗
2A1

α1
//

1⊗1⊗π∗

2β

��

π∗
1A1

π∗

1β

��

p∗L ⊗ p′∗L′∗ ⊗ π∗
2A2

α2
// π∗

1A2

(15)of isomorphisms of line bundles over Z [2] ommutes.The de�nition of suh a morphism of stable isomorphisms already ap-peared in [Ste00℄. We all two stable isomorphisms equivalent, if there is amorphism between them. This de�nes an equivalene relation on the set ofstable isomorphisms between two �xed gerbes G and G′.2.2 Jandl StruturesReall that for a group K ating on a manifold M by di�eomorphisms k :
M → M , a K-equivariant struture on a line bundle L → M is a family
{

ϕk
}

k∈K
of isomorphisms

ϕk : k∗L −→ L (16)of line bundles, whih respet the group struture of K in the sense that
ϕ1 : L → L is the identity, and the multipliation law

ϕk1k2 = ϕk2 ◦ k∗
2ϕ

k1 (17)is satis�ed. Remember that aording to our onvention in Remark 1 allline bundles have onnetions, and all isomorphisms of line bundles preservethem. In this artile, we only onsider the group K = Z2 for the sake ofsimpliity.Let G be a gerbe over M and let K = Z2 at on M . Denote the ationof the non-trivial element k by k : M → M . Assume that there is a stableisomorphism A = (A, α) : k∗G → G∗. Reall that in this partiular situation,
A is a line bundle over the spae Z = Yk ×M Y , where Yk := Y and πk :=
k−1 ◦ π as in our disussion of the pullbak of G by a di�eomorphism k. Westill denote the projetions from Z to Y and to Yk by p and p′ respetively.9



De�ne the surjetive submersion πZ := π ◦ p : Z → M . As k2 = idM , thepermutation map
k̃ : Z −→ Z : (yk, y) 7−→ (y, yk) (18)gives the following ommuting diagram:

Z
k̃

//

πZ

��

Z

πZ

��

M
k

// M

(19)Furthermore, sine also k̃2 = idZ , we even have a lift of the ation of K into
Z.De�nition 5. A Jandl struture on G is a olletion J = (k,A, ϕ) onsistingof

• a smooth ation of K = Z2 on M , where we denote the non-trivialelement and the di�eomorphism assoiated to that non-trivial elementby k : M → M .
• a stable isomorphism of gerbes A = (A, α) : k∗G → G∗.
• a K-equivariant struture ϕ := ϕk on the line bundle A, whih is om-patible with the stable isomorphism A in the sense that the diagram

p′∗L ⊗ p∗L ⊗ π∗
2A

α
//

1⊗1⊗π∗

2ϕ

��

π∗
1A

π∗

1ϕ

��

p′∗L ⊗ p∗L ⊗ k∗π∗
2A

k∗α
// k∗π∗

1A

(20)of isomorphisms of line bundles over Z [2] ommutes.We an immediately dedue a neessary ondition for the existene of aJandl struture for a given gerbe G, namely the ondition, that the gerbes
k∗G and G∗ are stably isomorphi. Sine the urvatures of stably isomorphigerbes are equal, this in turn demands

k∗H = −H (21)for the urvature H = curv(G) of G. In partiular, there will be gerbes onmanifolds with involution whih do not admit a Jandl struture.10



De�nition 6. Two Jandl strutures J and J ′ on the same gerbe G areequivalent, if the following onditions are satis�ed:
• the ations are the same, i.e. k and k′ are the same di�eomorphisms,
• there is a morphism β : A ⇒ A′ of stable isomorphisms in the sense ofDe�nition 4 suh that
• β : A → A′ is even an isomorphism of K-equivariant line bundles on

Z.Next, we show that Jandl strutures behave well under the pullbak ofgerbes along a smooth map f : N → M . Let J = (k,A, ϕ) be a Jandlstruture on G. Assume, that there is an ation of K = Z2 on N by adi�eomorphism g, suh that the diagram
N

f
//

g

��

M

k
��

N
f

// M

(22)ommutes. Consider the pullbak of G by f as disussed before, and de�ne
Zf := (Yf)g ×N Yf (23)and the permutation map g̃ : Zf → Zf . Then

Zf

πZf

��

g̃

~~~
~
~
~
~
~
~

f̃
// Z

k̃

��~~
~
~
~
~
~
~

πZ

��

Zf

πZf

��

f̃
// Z

πZ

��

N
f

//

g

}}{{
{
{
{
{
{
{

M

k
}}||

|
|
|
|
|
|

N
f

// M

(24)
is a ube with ommuting faes. It follows that f ∗A := (f̃ ∗A, f̃ ∗α) is astable isomorphism from g∗f ∗G to f ∗G∗. Furthermore, f̃ ∗ϕ is a K-equivariantstruture on f̃ ∗A, where K ats by g̃. In summary,

f ∗J := (g, f̃ ∗A, f̃ ∗ϕ) (25)de�nes a pullbak Jandl struture on f ∗G.11



2.3 Classi�ation of Jandl StruturesIf a gerbe G admits a Jandl struture, it is natural to ask, how many inequiv-alent hoies exist. So we are interested in the set Jdl(G, k) of equivalenelasses of Jandl strutures J = (k,−,−) with a �xed ation of K = Z2 via
k. This will be ruial in the disussion of the unoriented WZW model insetion 4.To approah this task, we �rst investigate the set Hom(G,G′) of equiva-lene lasses of stable isomorphisms between G and G′. We start by reallingthe followingLemma 1 ([CJM02℄).(i) If N → M is a �at line bundle and A = (A, α) is a stable isomorphism,then N.A := (A ⊗ π∗

ZN, α ⊗ 1) is also a stable isomorphism.(ii) If A1 = (A1, α1) and A2 = (A2, α2) are two stable isomorphisms, thenthere is a unique �at line bundle N → M suh that A1 and N.A2 areequivalent as stable isomorphisms.Proof. For the �rst part we note that beause N is �at, A and A⊗ π∗
ZNhave the same urvature, so that (12) is satis�ed. For the seond part, weuse the isomorphism

α−1
1 ⊗ α∗

2 : π∗
1(A1 ⊗ A∗

2) −→ π∗
2(A1 ⊗ A∗

2) (26)whih satis�es the oyle ondition beause of the ompatibility of α1 and α2with µ and µ′. This determines a unique line bundle N → M with onnetiontogether with an isomorphism ν : π∗
ZN → A1 ⊗ A∗

2. Beause (12) requiresthe urvatures of both A1 and A2 to be the same, N is �at. Now ν deter-mines an isomorphism A1 → A2⊗π∗
ZN , whih is a morphism A1 ⇒ N.A2. �We denote the group of isomorphism lasses of �at line bundles over Mby Pic0(M). It is a subgroup of the Piard group Pic(M) of isomorphismlasses of hermitian line bundles with onnetion over M .Lemma 2. The set Hom(G,G′) of equivalene lasses of stable isomorphismsis a torsor over the �at Piard group Pic0(M).Proof. We will (a) de�ne the ation and show, that it is (b) transitiveand () free.(a) We at [N ].[A] := [N.A], where the right hand side was de�ned inLemma 1 (i). This de�nition is independent of the hoie of repre-sentatives N and A: an isomorphism N → N ′ gives an isomorphism12



N.A → N ′.A, whih in fat is a morphism of stable isomorphisms
N.A ⇒ N ′.A. On the other hand, a morphism A ⇒ A′ of stableisomorphisms indues a morphism N.A ⇒ N.A′.Beause N.A is de�ned using the group struture on the group of iso-morphism lasses of line bundles with onnetion, it respets the groupstruture on Pic0(M), and hene de�nes an ation.(b) The transitivity follows diretly from Lemma 1 (ii).() Let [A] be an element in Hom(G,G′), let N be a �at line bundle andlet us assume that N.A and A are equivalent, in partiular A ⊗ π∗

ZNis isomorphi to A. Sine N is unique by Lemma 1 (ii), it is the trivialline bundle. Hene the ation is free. �This lemma allows us to make use of the �at Piard group Pic0(M).Remember that line bundles are, aording to our onvention in Remark1, line bundles with onnetion. It is well understood [Bry93℄, that thePiard group Pic(M) of isomorphism lasses of line bundles �ts into theexat sequene
0 // H1(M, U(1)) // Pic(M) curv

// Ω2(M) . (27)In partiular this means Pic0(M) ∼= H1(M, U(1)). This ohomology groupan be omputed using the universal oe�ient theorem
0 // Ext(H0(M), U(1)) // H1(M, U(1)) // Hom(H1(M), U(1)) // 0 (28)If M is onneted, the Ext-group is trivial and we obtain

Pic0(M) ∼= Hom(π1(M), U(1)). (29)An equivariant version of Lemma 2 applies to Jandl strutures. We de-note the group of isomorphism lasses of �at K-equivariant line bundles by
PicK

0 (M) and all it the �at K-equivariant Piard group. In this equivalenerelation isomorphisms are isomorphisms of equivariant line bundles with on-netion.Theorem 1. The set Jdl(G, k) of equivalene lasses of Jandl strutureson G with involution k is a torsor over the �at K-equivariant Piard group
PicK

0 (M). 13



Proof.(a) We �rst desribe the ation of a �at line bundle N over M with equiv-ariant struture ν on a Jandl struture J = (k,A, ϕ). Aording to di-agram (19), π∗
Zν : π∗

ZN → k̃∗π∗
ZN is a K-equivariant struture on π∗

ZN .Now, by taking the tensor produt of A and π∗
ZN as K-equivariant linebundles, we obtain an equivariant struture ϕ⊗π∗

Zν on the line bundleof N.A. So we de�ne
N.J := (k, N.A, ϕ ⊗ π∗

Zν). (30)Sine
Z [2]

π1
//

π2

��

Z

πZ

��

Z πZ

// M

(31)ommutes, we have π∗
1π

∗
Zν = π∗

2π
∗
Zν. This shows that ondition (20)for Jandl strutures is satis�ed for N.J . The arguments in the proofof Lemma 2 (a) apply here too and show that this de�nes an ation onequivalene lasses.(b) Let two equivalene lasses of Jandl strutures be represented by J1and J2. We already know from Lemma 1 (ii) that there is a �at linebundle N → M together with an isomorphism β : A1 → A2 ⊗ π∗

ZN ,whih is a morphism of stable isomorphism β : N.A1 ⇒ A2. We haveto show that there is an equivariant struture on N suh that β is anisomorphism of equivariant line bundles. Remember that we de�ned
N by a desent isomorphism α−1

1 ⊗α∗
2 in (26). Beause the equivariantstrutures on A1 and A2 are ompatible with α1 and α2 respetivelydue to the property (20) of Jandl strutures, the desent isomorphismis an isomorphism of equivariant line bundles. Thus N is an equivariantline bundle, and β is an isomorphism of equivariant line bundles.() Let J = (k,A, ϕ) represent a Jandl struture on G, and let N bea �at line bundle over M with equivariant struture ν, suh that

N.J and J are equivalent. It follows from Lemma 2 that N isthe trivial line bundle. Furthermore, π∗
Zν is the trivial equivariantstruture on π∗

ZN , so that ν is the trivial equivariant struture on N . �For an ation of a disrete group K on M , an equivariant version of thesequene (27) is derived in [Gom03℄, namely
0 // H1

K(M, U(1)) // PicK(M)
curv

// Ω2(M)K . (32)14



Here, H1
K(M, U(1)) is the equivariant ohomology of M , i.e. the ohomologyof the assoiated Borel spae. In partiular, we get for �at equivariant linebundles

PicK
0 (M) ∼= H1

K(M, U(1)). (33)2.4 Loal DataLet G be a gerbe over M and V = {Vi}i∈I be a good open over of M . Let
MV be the disjoint union of all the Vi's. The p-fold �ber produt of MV over
M is just the disjoint union of all p-fold intersetions of the Vi's. Reall from[CJM02℄ how to extrat loal data from G:A hoie of loal setions si : Vi → Y gives a �ber preserving map s :
MV → Y by (x, i) 7→ si(x). Pull bak the line bundle L → Y [2] with itsonnetion ∇ along s to a line bundle on the double intersetions, and hooseloal setions σij : Vi ∩ Vj → s∗L. Pull bak the isomorphism µ of the gerbe,too. Then de�ne loal data, namely smooth funtions gijk : Vi ∩ Vj ∩ Vk →
U(1), real-valued 1-forms Aij ∈ Ω1(Vi ∩ Vj) and 2-forms Bi ∈ Ω2(Vi) by thefollowing relations

s∗µ (π∗
12σij ⊗ π∗

23σjk) = gijk · π
∗
13σik (34)

s∗∇(σij) =
1

i
Aij ⊗ σij (35)

Bi = s∗i C. (36)These loal data give elements g, A, B in the �eh-Deligne double om-plex for the over V, and the ohain (g, A, B) satis�es the Deligne oyleondition
D (g, A, B) = (1, 0, 0) , (37)or equivalently in omponents

gjkl · g
−1
ikl · gijl · g

−1
ijk = 1 (38)

Ajk − Aik + Aij + dlog (gijk) = 0 (39)
−dAij + Bj − Bi = 0. (40)Furthermore, it satis�es
dBi = H|Vi

, (41)where the 3-form H is the urvature of the gerbe.The dual gerbe and the pullbak gerbe f ∗G along some map f : N →
M an be onveniently expressed in loal data as follows: by hoosing thesame si and the dual setions σ∗

ij , one gets (g−1,−A,−B) = −(g, A, B) as15



loal data of G∗. Furthermore, if we indue a over {f−1Vi}i∈I of N , andhoose the pullbak setions f ∗si and f̃ ∗σij , then we obtain (f ∗g, f ∗A, f ∗B) =
f ∗(g, A, B) as loal data of f ∗G.We next need to derive loal data of trivializations and stable isomor-phisms. So, let T = (T, τ) be a trivialization of G. Sine T is a line bundleover Y , we an pull it bak with s : MV → Y to a line bundle over theopen subsets, and hoose loal setions σi : Vi → s∗T . We also pull bak theisomorphism τ to an isomorphism

s∗τ : s∗L ⊗ π∗
2s

∗T −→ π∗
1s

∗T . (42)Then we obtain smooth funtions hij : Vi ∩ Vj → U(1) by
s∗τ (σij ⊗ π∗

2σj) = hij · π
∗
1σi. (43)Let H be the onnetion of T . It de�nes onnetion 1-forms Mi ∈ Ω1(Vi) by

s∗H (σi) =
1

i
Mi ⊗ σi. (44)The loal data h and M are again elements in the �eh-Deligne doubleomplex. Now the ompatibility of τ and µ in De�nition 2 is equivalent to

gijk = hij · h
−1
ik · hjk, (45)and the ondition, that the isomorphism τ respet onnetions, is equivalentto

Aij = −dlog (hij) + Mj − Mi. (46)Furthermore, the loal 2-form ρ = Bi + dMi oinides with the 2-form ρ ob-tained from De�nition 2. The last three properties of h and M are equivalentto the Deligne oboundary equation
(g, A, B) = (1, 0, ρ) + D (h, M) . (47)Now onsider a stable isomorphism A : G → G′ of gerbes over M . Withrespet to the good open over {Vi}i∈I we may have hosen loal setions

si, σij and s′i, σ′
ij to get loal data (g, A, B) and (g′, A′, B′) of G and G′respetively. We onstrut a map

s̃ : MV −→ Y ×M Y ′ : (x, i) 7−→ (si(x), s′i(x)), (48)and pull the line bundle A → Y ×M Y ′ of the stable isomorphism togetherwith its onnetion H bak to MV. We also pull bak the isomorphism α andget an isomorphism
s̃∗α : s∗L ⊗ s′∗L′∗ ⊗ π∗

2 s̃
∗A −→ π∗

1 s̃
∗A. (49)16



Then we hoose loal setions σi : Vi → s̃∗A. We obtain loal data in formof smooth funtions tij : Vi ∩Vj → U(1) and onnetion 1-forms Wi ∈ Ω1(Vi)by the following relations:
s̃∗α

(

σij ⊗ σ′∗
ij ⊗ π∗

2σ
∗
j

)

= tij · π
∗
1σi (50)

s̃∗H(σi) =
1

i
Wi ⊗ σi. (51)Note that the funtions tij are not transition funtions of some bundle butare de�ned by the isomorphism α.These loal data t and W are elements in the �eh-Deligne double om-plex. The ompatibility of α with the isomorphisms µ and µ′ of both gerbesas isomorphisms of hermitian line bundles with onnetion aording to Def-inition 3 is equivalent to

gijk · g
′−1
ijk = tjk · t

−1
ik · tij (52)

Aij − A′
ij = −dlog(tij) + Wj − Wi (53)while the ondition (12) on the urvature of A is equivalent to

Bi − B′
i = dWi. (54)The three last equations are in turn equivalent to the Deligne oboundaryequation

(g, A, B) − (g′, A′, B′) = D (t, W ) . (55)This formalism of loal data reprodues results on bundle gerbes and theirstable isomorphisms, for example Lemma 1 (ii). Consider again two gerbes
G and G′, and now two stable isomorphisms A1 and A2 both from G to G′.We may have extrated loal data (t1, W1) of A1 and (t2, W2) of A2 suh thatequation (55) holds for both. It follows

D(t · t′−1, W − W ′) = (1, 0, 0), (56)whih is the Deligne oyle ondition for a �at hermitian line bundle over
M . This is the bundle N onstruted in Lemma 1 (ii).We are now in a position to derive the loal data of a Jandl struture
J = (k,A, ϕ) on a gerbe G. Reall that k : M → M is the ation of thenon-trivial element of K = Z2 ating on M , in partiular k2 = idM . Wesimplify the situation by onsidering an open over V = {Vi}i∈I of M , whihis invariant under k, i.e. k(Vi) = Vi, and whih is still good enough to enableus to extrat loal data. The generalization other overs is straightforward,but makes the notation somewhat more umbersome.17



Reall further that A is a stable isomorphism from k∗G → G∗. Let (t, W )be loal data of A, obtained by pulling bak the line bundle A → Z by
s̃ : MV → Z from equation (48) and hoosing loal setions σi : Vi → s̃∗A.As we derived for the loal data of the dual gerbe and the pullbak gerbe,equation (55) here appears as

k∗(g, A, B) = −(g, A, B) + D(t, W ), (57)or equivalently:
k∗Bi = −Bi + dWi (58)
k∗Aij = −Aij − dlog(tij) + Wj − Wi (59)
k∗gijk = g−1

ijk · tjk · t
−1
ik · tij (60)Now reall that a part of a Jandl struture is a K-equivariant struture

ϕ : k∗A → A on A. By pullbak with s̃, we obtain
s̃∗ϕ : k∗s̃∗A −→ s̃∗A. (61)Now, beause σi is a setion of s̃∗A, k∗σi = σi ◦k is a setion of k∗s̃∗A on thesame path Vi, sine the latter is invariant under k. This allows us to extrata loal U(1)-valued funtions ji : Vi → U(1), de�ned by

s̃∗ϕ(σi) = ji · σi ◦ k. (62)The ompatibility of ϕ with α in the sense of diagram (20) is equivalent to
k∗ (t, W ) = (t, W ) − D (j) , (63)or in turn equivalently
k∗Wi = Wi − dlog(ji) (64)
k∗tij = tij · j

−1
j · ji. (65)By de�nition of an equivariant struture, the K = Z2 group law (17) issatis�ed. In terms of loal data, this is equivalent to

k∗ji = j−1
i . (66)In summary, the Jandl struture J = (k,A, ϕ) gives rise to loal data

(t, W ) and j whih satisfy the following three onditions:
k∗(g, A, B) = −(g, A, B) + D(t, W ) (67)

k∗ (t, W ) = (t, W ) − D (j) (68)
k∗ji = j−1

i (69)18



Again, using loal data, we an reprodue results on Jandl strutureslike Theorem 1. In detail, let J be a Jandl struture on G with loal data
(t, W ) and j. Let N be a �at K-equivariant hermitian line bundle over Mwith transition funtions nij : Vi ∩ Vj → U(1) and loal onnetion 1-forms
Ni ∈ Ω1(Vi) with

D(n, N) = (1, 0, 0). (70)The equivariant struture on N determines smooth funtions νi : Vi → U(1)with
k∗(n, N) = (n, N) − D(ν) (71)and k∗ν = ν−1. Then,

(t′, W ′) := (t, W ) + (n, N) (72)
j′ := j · ν (73)are loal data of the Jandl struture N.J . Indeed, equation (67) is satis�edbeause of the Deligne oyle ondition (70). Compute

k∗(t′, W ′) = k∗(t, W ) + k∗(n, N)

= (t, W ) − D (j) + (n, N) − D(ν)

= (t′, W ′) − D(j′), (74)this is equation (68), and the last equation (69) for j′ is just a onsequenefrom the onditions on j and ν.Let now J and J ′ be two Jandl strutures on G with loal data (t, W ), jand (t′, W ′), j′ respetively.
(n, N) := (t, W ) − (t′, W ′) (75)are the loal data of the �at desent line bundle N , and using equation (67),we get its oyle ondition

D(n, N) = (1, 0, 0). (76)Now ompute
k∗(n, N) = k∗(t, W ) − k∗(t′, W ′)

= (t, W ) − D(j) − (t′, W ′) + D(j′)

= (n, N) − D(ν), (77)where we de�ned ν := j · j′−1. Hene, N and k∗N are isomorphi as her-mitian line bundles with onnetion via an isomorphism represented by ν.By de�nition, we have k∗ν = ν−1, this means, that ν is a K-equivariantstruture. 19



3 Holonomy of Gerbes with Jandl Struture3.1 Double Coverings, Fundamental Domains and Ori-entationsLet us �rst reall the setup that allows to de�ne holonomy around losedoriented surfaes. This is a gerbe G over M and a losed oriented surfae Σtogether with a smooth map φ : Σ → M . Following [CJM02℄, we pull bak
G along φ to a gerbe over Σ. For dimensional reasons, φ∗G is trivial. Asexplained in setion 2.1, a trivialization T determines a 2-form ρ ∈ Ω2(Σ),while another trivialization T ′ determines a 2-form ρ′ = ρ + curv(N). Sine
curv(N) de�nes an integral lass in ohomology, we have

∫

Σ

ρ′ =

∫

Σ

ρ mod 2πZ. (78)So the integral is independent of the hoie of a trivialization up to 2πZ, andadmits therefore the followingDe�nition 7. The holonomy of G around the losed oriented surfae φ :
Σ → M is de�ned as

holG(φ, Σ) := exp

(

i

∫

Σ

ρ

)

∈ U(1). (79)We state three important properties of this de�nition:
• The dual gerbe has inverse holonomy,

holG(φ, Σ) = holG∗(φ, Σ)−1. (80)
• If A : G → G′ is a stable isomorphism, we have

holG(φ, Σ) = holG′(φ, Σ). (81)
• By Σ̄ we denote the same manifold Σ with the opposite orientation;then we obtain

holG(φ, Σ) = holG(φ, Σ̄)−1. (82)Obviously, the orientation on Σ is essential for this de�nition. In thissetion we will de�ne the holonomy around unoriented or even unorientablesurfaes. The most important property of this de�nition will be, that itredues to De�nition 7 if Σ is orientable and an orientation is hosen. Oneof the main tools will be an orientation overing.Let Σ be a smooth manifold (without orientation).20



De�nition 8. An orientation overing of Σ is a double overing pr : Σ̂ → Σwith an oriented manifold Σ̂, suh that the anonial involution σ : Σ̂ → Σ̂is orientation-reversing.Reall three basi properties of orientation overings (some of them anbe found for example in [BG88℄):
• it is unique up to orientation-preserving di�eomorphisms of overingspaes.
• the anonial involution σ : Σ̂ → Σ̂ preserves �bers and permutes thethe sheets.
• under the assumption that Σ is onneted, Σ̂ is onneted if and onlyif Σ is not orientable.Due to the �rst point, by Σ̂ we will from now refer to this unique orien-tation over. Let k : M → M be an involution on M . By C∞(Σ̂, M)σ,k wedenote the spae of smooth maps φ̂ : Σ̂ → M for whih the diagram

Σ̂
φ̂

//

σ

��

M

k

��

Σ̂
φ̂

// M

(83)ommutes in the ategory of smooth manifolds (negleting orientations).Let Σ be orientable.Lemma 3. An orientation on Σ de�nes a bijetion
C∞(Σ̂, M)σ,k −→ C∞(Σ, M). (84)Proof. Sine Σ is orientable, Σ̂ onsists of two disjoint opies of Σ withopposite orientations. An orientation on Σ is a global setion or : Σ → Σ̂in the overing pr : Σ̂ → Σ. Now let φ̂ : Σ̂ → M be a map. De�ne itsimage as φ := φ̂ ◦ or. On the other hand, given a map φ : Σ → M , wede�ne the preimage φ̂ on the two sheets of Σ̂ separately as φ̂|or(Σ) := φ and

φ̂|σor(Σ) := k ◦ φ respetively. �If Σ is not orientable or no orientation of Σ is hosen, we will make useof the following generalization of an orientation.De�nition 9. A fundamental domain for Σ in Σ̂ is a submanifold F ⊂
Σ̂ possibly with (pieewise smooth) boundary, satisfying the following twoonditions as sets: 21



(i) F ∩ σ(F ) = ∂F(ii) F ∪ σ(F ) = Σ̂This is a generalization of an orientation on Σ in the sense, that anyorientation on Σ gives a global setion or : Σ → Σ̂ whih in turn de�nes afundamental domain, namely F := or(Σ), one of the two opies of Σ in Σ̂.We show the existene of suh a fundamental domain for an arbitrarylosed surfae Σ by an expliit onstrution, whih we will also use in setion3.3. Let U = {Ui}i∈I be an open over of Σ, whih admits loal setions
ori : Ui → Σ̂. One an think of suh setions as loal orientations. Choosea dual triangulation T of Σ, subordinate to the over U, together with asubordinating map i : T → I. So, for eah fae f ∈ T there is an index i(f)with f ⊂ Ui(f), as well as for eah edge e ∈ T and for eah vertex v ∈ T .Beause we have a dual triangulation, eah vertex is trivalent.Consider a ommon edge e = f1 ∩ f2 of two faes f1 and f2. We all theedge e orientation-preserving, if

ori(f1)(e) = ori(f2)(e), (85)otherwise we all it orientation-reversing. So the set of edges splits in a set
E of orientation-preserving, and a set Ē of orientation-reversing edges. If vis a vertex, the number of orientation-reversing edges ending in v must beeven, and sine we started with a dual triangulation, it is either zero or two.Hene, the edges in Ē form non-interseting losed lines in Σ.

Σ̂

F

F

Σ

Σ̂∂F

∂F

Figure 1: The onstrution of a fundamental domain byloal orientations for a dual triangulation.De�ne the subset
F :=

⋃

f∈T

ori(f)(f). (86)22



of Σ̂ and endow it with the subspae topology. The boundary of F is exatlythe union of the preimages of orientation-reversing edges under the overingmap,
∂F =

⋃

e∈Ē

pr−1(e), (87)and hene a disjoint union of pieewise smooth irles. This shows that Fis a submanifold of Σ̂ with pieewise smooth boundary. It satis�es the twoproperties of a fundamental domain, and hene shows the existene of suha fundamental domain.Let now F be any fundamental domain for Σ in Σ̂. The following obser-vation will be essential.Lemma 4. The quotient ∂F := ∂F/σ is a 1-dimensional oriented losedsubmanifold of Σ.Proof. We at with σ on property (i) of the fundamental domain F :
σ(∂F ) = σ(F ∩ σ(F )) = F ∩ σ(F ) = ∂F (88)This shows that σ restrits to an involution on ∂F . Sine σ ats on Σ̂without �xed points, the quotient ∂F/σ is a submanifold of Σ, and as ∂Fis losed, so is the quotient. The orientation of Σ̂ indues an orientation on

F . Beause σ is orientation-reversing, the orientation of σ(F ) is opposite tothe one indued on σ(F ) as a submanifold of Σ̂. Hene, ∂F and ∂(σ(F ))are equal as sets as well as as oriented submanifolds. Thus σ preserves theorientation on ∂F . �

Σ̂

Σ

Σ̂F

F

∂F

∂F

∂F

Figure 2: The orientation on ∂F .
23



3.2 Unoriented Surfae HolonomyThe setup for the de�nition of holonomy around losed unoriented surfaesis
• a gerbe G over a smooth manifoldM with Jandl struture J = (k,A, ϕ)

• a losed surfae Σ

• a map φ̂ ∈ C∞(Σ̂, M)σ,kThe idea of the de�nition is the following: Pull bak the gerbe G to Σ̂along φ̂, hoose a trivialization and determine the 2-form ρ̂ ∈ Ω2(Σ̂) as inDe�nition 7. Choose a fundamental domain F for Σ in Σ̂. The integral
exp i

∫

F

ρ̂ (89)is independent neither of the hoie of the trivialization � whih enters in
ρ̂ � nor of the hoie of the fundamental domain F . The Jandl struture,however, allows to orret (89) by a boundary term in suh a way that theholonomy beomes well-de�ned.We will now give a detailed de�nition of this boundary term, and thenshow that it gives rise to a well-de�ned holonomy.Reall that a gerbe G onsist of the following data: a surjetive submersion
π : Y → M , a line bundle L → Y [2], an isomorphism µ, and a 2-form
C ∈ Ω2(Y ). Reall that the pullbak gerbe φ̂∗G onsists of a pullbak

Yφ
φ̃

//

πφ

��

Y

π

��

Σ̂
φ̂

// M

, (90)the pullbak line bundle φ̃∗L, isomorphism φ̃∗µ and 2-form φ̃∗C. Aord-ingly, a trivialization T of φ̂∗G is a line bundle T → Yφ together with anisomorphism
τ : φ̃∗L ⊗ πφ

∗

2T −→ πφ
∗

1T (91)of line bundles over Y
[2]
φ . It determines a 2-form ρ̂ ∈ Ω2(Σ̂) with

π∗
φρ̂ = φ̃∗C − curv(T ). (92)24



Due to the ommutativity of diagram (83), φ̂∗J = (σ, φ̃∗A, φ̃∗ϕ) is a Jandlstruture on φ̂∗G. Reall that part of the data are a line bundle φ̃∗A → Zφover the spae Zφ := (Yφ)σ ×Σ̂ Yφ, and an isomorphism
φ̃∗α : p′∗φ̃∗L ⊗ p∗φ̃∗L∗ ⊗ πφ

∗

2φ̃
∗A −→ πφ

∗

1φ̃
∗A (93)of line bundles over Z

[2]
φ , where p and p′ are the projetions in

Zφ
p

//

p′

��

Yφ

πφ

��

Yφσ σ◦πφ

// Σ̂

. (94)Further, the ation of K by σ lifts to Zφ via the permutation map σ̃, and
φ̂∗J ontains an K-equivariant struture φ̃∗ϕ on φ̃∗A.Combining the trivialization with the Jandl struture, we de�ne a linebundle

R := φ̃∗A ⊗ p′∗T ∗ ⊗ p∗T ∗ (95)over Zφ. In addition, we de�ne an isomorphism
r := φ̃∗α−1 ⊗ p′∗τ ∗ ⊗ p∗τ ∗ : πφ

∗

1R −→ πφ
∗

2R (96)of line bundles over Z
[2]
φ . The ompatibility of τ and α with the isomorphism

µ of G guarantees the oyle ondition
πφ

∗

23r ◦ πφ
∗

12r = πφ
∗

13r (97)over Z
[3]
φ , hene R determines a unique desent line bundle R̂ → Σ̂, togetherwith an isomorphism πZ

∗
φR̂ → R. We shall ompute the urvature of thesebundles, namely

curv (R)
(95)
= φ̃∗curv (A) − p′∗curv (T ) − p∗curv (T ) (98)

(12)
= p′∗(φ̃∗C − curv(T )) + p∗(φ̃∗C − curv(T )) (99)

(92)
= p′∗π∗

φρ̂ + p∗π∗
φρ̂ (100)

(94)
= π∗

Zφ
(σ∗ρ̂ + ρ̂). (101)Hene the urvature of R̂ is
curv(R̂) = σ∗ρ̂ + ρ̂. (102)25



The next step is to de�ne σ-equivariant struture on R̂. Note thatthe anonial permutation of tensor produts is an equivariant struture on
p′∗T ∗⊗p∗T ∗, sine the permutation map σ̃ exhanges p and p′. Together withthe equivariant struture φ̃∗ϕ on φ̃∗A, the tensor produt (95) is the tensorprodut of two equivariant line bundles. By de�nition of a Jandl struture
ϕ is ompatible with α, whih means that the desent isomorphism r is anisomorphism of equivariant line bundles. Hene, also the desent bundle R̂over Σ̂ is endowed with an equivariant struture.It is a standard fat [Gom03, Bry00℄, that if K is disrete and ats freely,a K-equivariant line bundle R̂ → Σ̂ de�nes a unique line bundle Q on thequotient Σ̂/K = Σ.Now hoose a fundamental domain F of Σ in Σ̂.De�nition 10. The holonomy of the gerbe G with Jandl struture J aroundthe unoriented losed surfae Σ is de�ned as

holG,J (φ̂, Σ) := exp

(

i

∫

F

ρ̂

)

· holQ(∂F )−1. (103)In this de�nition, the ompensating term holQ(∂F ) is the holonomy ofthe line bundle Q around the one-dimensional losed oriented submanifold
∂F .Theorem 2. The holonomy de�ned in De�nition 10 depends neither on thehoie of the fundamental domain F nor on the hoie of the trivialization
T . Proof. Let F ′ be another fundamental domain. We de�ne the set

B := Int(F ) ∩ σ(Int(F ′)), (104)where Int denotes the interior. As the intersetion of two open sets, B isopen and hene a submanifold of Σ̂. It ontains those parts of F , whih arenot ontained in F ′ (f. Figure 3). Beause we exluded the boundaries of
F and F ′, we have

B ∩ σ(B) = ∅, (105)suh that there is a unique setion orB : pr(B) → Σ̂ with image B.From Figure 3, we have
∫

F ′

ρ̂ =

∫

F

ρ̂ −

∫

B

ρ̂ +

∫

σ(B)

ρ̂ =

∫

F

ρ̂ −

∫

B

curv(R̂), (106)26



pr(B)

F F ′

B

orB

Figure 3: The di�erene between two fundamental do-mains.sine σ is orientation-reversing. By Stoke's theorem, the exponential of theintegral of the urvature of R̂ over B is nothing but the holonomy of thatline bundle around ∂B. Thus,
exp

(

−i

∫

B

curv(R̂)

)

= holR̂(∂B)−1 = holQ(pr(∂B))−1.This is the term whih is ompensated by the boundary term, whih is
holQ(∂F ′)−1 = holQ(∂F )−1 · holQ(pr(∂B)). (107)In summary

exp

(

i

∫

F ′

ρ̂

)

· holQ(∂F ′)−1 = exp

(

i

∫

F

ρ̂

)

· holQ(∂F )−1, (108)i.e. the holonomy is independent of the hoie of the fundamental domain.Now let T ′ = (τ ′, T ′) be another trivialization of φ̂∗G. As disussed insetion 2.1, there is a line bundle N → Σ̂ together with an isomorphism
ν : π∗

φN ⊗ T ′ → T , suh that the 2-forms ρ̂ and ρ̂′ are related by
ρ̂′ = ρ̂ + curv(N). (109)For the line bundle R̂ de�ned in (95) this means

R′ = R ⊗ π∗
Zσ∗N ⊗ π∗

ZN , (110)27



and its desent line bundle R̂′ is
R̂′ = R̂ ⊗ σ∗N ⊗ N . (111)This is an equation of σ-equivariant line bundles, where R̂ and R̂′ obtainequivariant strutures from the Jandl struture as desribed before, and K :=

σ∗N ⊗ N arries the anonial σ-equivariant struture by permuting theorder in the tensor produt. Hene, equation (111) pushes into the quotient,namely
Q′ = Q ⊗ K̄. (112)The holonomy of the desent bundle K̄ satis�es

holK̄(∂F ) = holN(∂F ) = holσ∗N (∂F ). (113)This �nally means
exp

(

i

∫

F

ρ̂′

)

· holQ′(∂F )−1

(109)
= exp

(

i

∫

F

ρ̂ + curv(N)

)

· holQ⊗K̄(∂F )−1 (114)
(113)

= exp

(

i

∫

F

ρ̂

)

· holN(∂F ) · holN(∂F )−1 · holQ(∂F )−1 (115)
= exp

(

i

∫

F

ρ̂

)

· holQ(∂F )−1, (116)thus the holonomy is independent of the hoie of the trivialization. �The following Lemma asserts that the de�nition of holonomy is ompat-ible with the de�nition of equivalene of Jandl strutures.Lemma 5. The holonomy of a gerbe G with Jandl struture J only dependson the equivalene lass of J .Proof. Let J = (k,A, ϕ) and J ′ = (k,A′, ϕ′) be two equivalent Jandlstrutures on G. It is shown in Theorem 1 that there is a unique �at equiv-ariant line bundle N on M , suh that N.A ∼= A′ as equivariant line bundles.Beause the ation of PicK
0 (M) is free, and A and A′ are isomorphi, N isthe trivial equivariant line bundle. Remember the de�nition of the bundle

R → Z in equation (95). For the two Jandl strutures we get R′ = R⊗π∗
ZN ,and hene the desent bundles R̂′ = R̂ ⊗ N over Σ̂. Sine N is the trivialequivariant line bundle, R̂′ and R̂ are isomorphi as equivariant line bundles,and thus de�ne isomorphi line bundles Q′ and Q over Σ. Isomorphi line28



bundles have the same holonomies, so De�nition 10 is independent of theequivalene lass of J . �An important ondition for any notion of unoriented surfae holonomy isits ompatibility with ordinary surfae holonomy for oriented surfaes:Theorem 3. If Σ is orientable, for any hoie of an orientation, the holon-omy de�ned in De�nition 10 redues to the ordinary holonomy de�ned inDe�nition 7,
holG,J (φ̂, Σ) = holG(φ, Σ), (117)where φ and φ̂ are related by the bijetion of Lemma 3. In partiular, if Gadmits a Jandl struture, the holonomy of G does not depend on the orien-tation.Proof. Let or : Σ → Σ̂ be a hoie of an orientation on Σ. Then

F := or(Σ) is a fundamental domain with empty boundary ∂F = ∅.Choose a trivialization T of φ̂∗G to obtain the 2-form ρ̂ ∈ Ω2(Σ̂). Thenthe left hand side is equal to exp i
∫

or(Σ)
ρ̂, beause of Theorem 2. Be-ause φ̂ and φ orrespond to eah other, or∗φ̂∗G is the same gerbe as

φ∗G, and or∗T is a trivialization with 2-form ρ = or∗ρ̂. Thus, the righthand side is equal to exp i
∫

Σ
ρ and therefore equals the ordinary holonomy. �3.3 Holonomy in Loal DataLet {Vi}i∈I be an open over of M . To avoid notation, we assume that itis invariant under k and still good enough to admit all the loal setionsneessary to extrat loal data (g, A, B) of the gerbe G and (t, W, j) of theJandl struture J , as we explained in setion 2.4. We pull bak the over

{Vi}i∈I along φ̂ : Σ̂ → M and obtain a over {Ûi}i∈I with Ûi := φ̂−1(Vi),together with pullbak loal data. Next, hoose loal data (h, M) of thetrivialization T of the pullbak gerbe and a 2-form ρ̂ ∈ Ω2(Σ̂), so that
(

φ̂∗g, φ̂∗A, φ̂∗B
)

= (1, 0, ρ̂) + D (h, M) (118)holds. Following the de�nition of the bundle R → Z in equation (95), thebundle R̂ → Σ̂ has loal data
(r, R) := φ̂∗(t, W ) − σ∗(h, M) − (h, M); (119)the ondition that R̂ desends is equivalent to the Deligne oyle ondition

D(r, R) = (1, 0), (120)29



whih follows from equations (118) and (67).Beause φ̂ is an element of C∞(Σ̂, M)σ,k, the pullbak over is invariantunder σ. Hene it projets to a over ofΣ with open sets Ui := pr(Ûi). Chooseloal setions ori : Ui → Σ̂ and a dual triangulation T of Σ, subordinate tothe over {Ui}i∈I , together with a subordinating map i : T → I. As we didin setion 3.1 we hoose the fundamental domain
F :=

⋃

f∈T

ori(f)(f), (121)where the f 's are the faes of the triangulation.We now introdue three abbreviations. Let ω2
i ∈ Ω2(Ûi), ω1

ij ∈ Ω1(Ûi∩Ûj)and ωijk : Ûi∩Ûj∩Ûk → U(1) be some loal data. First we denote the integralover a fae f by
If (ω, ω1, ω2) := exp

(

i

∫

ori(f)(f)

ω2
i(f) + i

∑

e∈∂f

∫

ori(f)(e)

ω1
i(f)i(e)

)

·
∏

v∈∂e

ω
ε(f,e,v)
i(f)i(e)i(v)(ori(f)(v)), (122)where ε(f, e, v) ∈ {1,−1} indiates, whether v is the end or the startingpoint of the edge e with respet to the orientation ori(f).Seond, we denote the integral of some loal data ω1

i ∈ Ω1(Ûi) and ωij :

Ûi ∩ Ûj → U(1) along an edge e of a fae f by
Ie,f(ω, ω1) := exp

(

i

∫

ori(f)(e)

ω1
i(e)

)

·
∏

v∈∂e

ω
ε(f,e,v)
i(e)i(v) (ori(f)(v)). (123)Reall that the set of edges in T splits into the set E of orientation-preservingedges and the set Ē of orientation-reversing edges. For an orientation-preserving edge e ∈ f1 ∩ f2 we have

Ie,f1(ω, ω1) = Ie,f2(ω, ω1)−1, (124)while for an orientation-reversing edge
Ie,f1(ω, ω1) = Ie,f2(σ

∗ω, σ∗ω1) (125)holds. In the latter ase, sine e is orientation-reversing, we have either
ori(e)(e) = ori(f1)(e) or ori(e)(e) = ori(f2)(e), so that we an write just Ie(ω, ω1),where the for f the hoie of the fae with the oiniding orientation isunderstood. 30



Third, if v is a vertex of an edge e, we de�ne for some smooth funtion
ωi : Ûi → U(1)

Iv,e,f(ω) := ω
ε(f,e,v)
i(v) (ori(f)(v)). (126)Now if v is the ommon vertex of two orientation-reversing edges e1, e2 ∈

Ē, we all v orientation-preserving, if ori(e1)(v) = ori(e2)(v) and orientation-reversing otherwise. Let us denote the set of orientation-reversing verties by
V̄ . If v is suh a vertex, we just write Iv(ω) instead of Iv,e,f(ω), where for ethe hoie of the edge as well as for f the fae with the oiniding orientationis understood.Now the �rst fator in the holonomy formula (103) is

exp

(

i

∫

F

ρ̂

)

= exp

(

i
∑

f∈T

∫

ori(f)(f)

φ̂∗Bi(f) + dMi(f)

) . (127)Following [CJM02℄, by using Stoke's theorem, equation (118) and our abbre-viations, we end up with
exp

(

i

∫

F

ρ̂

)

=
∏

f∈T

If(φ̂
∗g, φ̂∗A, φ̂∗B) ·

∏

f∈T

∏

e∈∂f

Ie,f(h, M)−1. (128)Here the seond fator ollets the boundary ontributions that appear inthe appliation of Stoke's theorem.Let us assume for the moment that Σ the oriented, and all setions orioinide with the global orientation restrited to Ui. In this situation, wehave only orientation preserving edges, and eah of them appears twie inthe seond fator. Sine the ontributions are inverse by (124), the seondfator vanishes. We obtain the loal holonomy formula expressed only by theloal data of the gerbe, as it appeared originally in [Alv85℄.If Σ is not oriented, the seond fator still onsists of two ontributionsfor eah orientation-reversing edge e ∈ Ē, whih are
Ie,f1(h, M) · Ie,f2(h, M) = Ie(h · σ∗h, M + σ∗M). (129)Hene, in the general ase, the seond fator of (128) is
∏

f∈T

∏

e∈∂f

Ie,f(h, M)−1 =
∏

e∈Ē

Ie(h · σ∗h, M + σ∗M)−1. (130)For the seond fator of the holonomy formula (103) we have to omputethe holonomy of the desent line bundle Q around ∂F . Note that
ˆ̄E :=

⋃

e∈Ē

ori(e)(e) (131)31



is a fundamental domain of ∂F in ∂F with boundary onsisting of the preim-ages of the orientation-reversing verties v ∈ V̄ . Now the holonomy of Qaround ∂F is equal to the the holonomy of R̂ around ˆ̄E, where at the bound-ary points the equivariant struture of R̂ is used, this is
holQ(∂F ) =

∏

e∈Ē

Ie(r, R) ·
∏

v∈V̄

Iv(φ̂
∗j). (132)Sine e is orientation-reversing,

Ie(r, R) = Ie(φ̂
∗t · σ∗h−1 · h−1, φ̂∗W − σ∗M − M) (133)

= Ie(φ̂
∗t, φ̂∗W ) · Ie(h · σ∗h, M + σ∗M)−1. (134)The seond fator of (134) anels (130) so that all the loal data omingfrom the trivialization drops out. It remains

holG,J (Σ, φ̂) =
∏

f∈T

If(φ̂
∗g, φ̂∗A, φ̂∗B) ·

∏

e∈Ē

Ie(φ̂
∗t, φ̂∗W )−1 ·

∏

v∈V̄

Iv(φ̂
∗j), (135)depending only on the loal data of the gerbe and of the Jandl struture. Wevisualize this formula in Figure 4.3.4 ExamplesIn the next two subsetions we will apply the general formula (135) to someexamples of surfaes Σ, and we will simplify the situation onsiderably bystarting with the pullbak gerbe φ̂∗G whih allows us to hoose a triangulationadapted to Σ.3.4.1 Klein BottleThink of the Klein bottle as a retangle with the identi�ations of the bound-ary indiated by arrows as in Figure 5. The identi�ation by the vertialarrows is orientation-preserving, while the one by the horizontal arrows isorientation-reversing. A dual triangulation is shown in Figure 6. Note thatthis is a triangulation with only one fae. We hoose a loal setion fromthat fae into the double over, and de�ne the fundamental domain F asits image, as indiated in Figure 7. Here we dropped the arrows, but theidenti�ations are still to be understood, so that both points labelled by vare identi�ed. This means, that we an hoose the loal orientations of theedges suh that the orientation-reversing edges form a losed line, as indi-ated by the thik line. So there is no orientation-reversing vertex, and theloal datum j of the Jandl struture is not relevant for the holonomy aroundthe Klein bottle. 32
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Figure 4: Assignment of loal data. The middle layer shows
Σ and the subordinated indies; the top and lower layer showparts of the two sheets of Σ̂.

Figure 5: Klein Bottle.
Figure 6: Klein Bottle with a dual triangulation.
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F
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v v

Figure 7: A fundamental domain for the Klein Bottle inits double overing.
3.4.2 The real projetive PlaneWe proeed in the same way as for the Klein bottle, so think of the realprojetive plane RP 2 as a two-gon with the identi�ation on the boundary

Figure 8: The real projetive plane.indiated by arrows in Figure 8. The identi�ation is orientation-reversing.An example of a dual triangulation is for example shown in Figure 9. Now we
i
i

jjFigure 9: A dual triangulation of the real projetive planewith two faes.hoose loal setions from these two faes into the double over, for exampleas shown in Figure 10. Note that here the thik line is not a losed line in
Σ̂, and v is an orientation-reversing vertex. Aording to the loal holonomyformula (135) here the loal datum j of the Jandl struture enters in theholonomy.
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Figure 10: A fundamental domain of the real projetiveplane in its double overing.4 Gerbes and Jandl Strutures in WZW Mod-els4.1 Oriented and orientable WZW ModelsIn the following we are onerned with Lie groups M , and we will use thefollowing notation. The left multipliation with a group element h is denotedby lh : M → M , and the map whih assigns to h the inverse group element
h−1 is denoted by Inv : M → M . The left invariant Maurer-Cartan form isdenoted by θ, and the right invariant form by θ̄. We all a gerbe G over Mleft invariant, if it is stably isomorphi to the gerbe l∗hG for eah h ∈ M , andsimilar for right and bi-invariane.A WZW model is a theory of maps φ : Σ → M from a worldsheet Σ intoa target spae M , whih is a Lie group together with additional struture,alled the bakground �elds. It assigns to eah map φ an amplitude, i.e. anumber in U(1), as the weight of this map in a path integral. To be morepreise:De�nition 11. An oriented WZW model onsists of a ompat onnetedLie group M , whih is equipped with an Ad-invariant metri g = 〈−,−〉 onits Lie algebra and a bi-invariant gerbe G. It assigns an amplitude

Aortd
g,G (φ, Σ) := exp (iSkin(φ)) · holG(Σ, φ) (136)to a map φ : Σ → M from a losed oriented onformal worldsheet Σ to M ,where the kineti term is

Skin(φ) :=
1

2

∫

Σ

〈φ∗θ ∧ ⋆φ∗θ〉 . (137)Note that the onformal struture and the orientation on Σ determinethe Hodge star. 35



In [Wit84℄ Witten disussed this theory for M = SU(2), whih is anexample for a ompat, simple, onneted and simply-onneted Lie group.In this partiular situation, the holonomy an be written as the exponentialof the Wess-Zumino term,
holG(Σ, φ) = exp

(

i

∫

B

φ̃∗H

) , (138)so that we an express the amplitudes as
Aortd

g,G (φ, Σ) = exp(iSWZW(φ)) (139)with the ation funtional
SWZW(φ) := Skin(φ) +

∫

B

φ̃∗H . (140)Here B is a 3-dimensional manifold with boundary Σ, φ̃ is an extension of φon B, and H is the urvature of the gerbe G.Witten observed two symmetries of the WZW model on the type of Liegroups he onsidered. The �rst is translation symmetry: the ation funtional
SWZW(φ) is invariant under the translation φ 7→ lh ◦ φ. The assoiatedonserved Noether urrent is given by

J(φ) := −(1 + ⋆)φ∗θ, (141)whih is a 1-form on Σ with values in the Lie algebra of M . To obtain thisonserved, non-abelian urrent, Witten derived a spei� relative normal-ization of the kineti and the Wess-Zumino term, whih was also adaptedhere.The seond symmetry Witten observed is the invariane of the ationfuntional SWZW(φ) under what he alled parity transformation: reverse theorientation on Σ and replae φ by φ̄ := Inv ◦ φ. Aordingly, the onservedurrent J(φ) for Σ and the one for Σ̄, the manifold Σ with reversed orienta-tion, namely
J̄(φ̄) = (1 − ⋆)φ∗θ̄, (142)are often alled equivalent. Note that here the right invariant Maurer-Cartanform appears. In that sense, the parity transformation exhanges left andright movers.We now want to generalize this equivalene to any ompat onnetedLie group M . It is a simple onsequene of the properties of the holonomyof G, that the parity symmetry

Aortd
g,G (φ, Σ) = Aortd

g,G (Inv ◦ φ, Σ̄) (143)36



holds, if the gerbes Inv∗G and G∗ are stably isomorphi. Note that this is aondition on the gerbe G. It should not ome as a surprise that in Witten'sdisussion there is no suh ondition:Lemma 6. If G is a bi-invariant gerbe over a ompat, simple, onnetedand simply onneted Lie group, then Inv∗G and G∗ are stably isomorphi.Proof. Beause stably isomorphi gerbes have the same urvatures, theurvature H of the bi-invariant gerbe G is a bi-invariant 3-form. It is atheorem by Cartan, that on ompat, simple, onneted, simply onnetedLie groups M the spae of bi-invariant 3-forms is the span of the anonial3-form ν, whih satis�es Inv∗ν = −ν. Hene Inv∗G and G∗ have the sameurvature. Beause the set of stable isomorphism lasses of gerbes of sameurvature form a torsor over H2(M, U(1)) [GR02℄, whih here is the trivialgroup, the gerbes Inv∗G and G∗ are stably isomorphi. �We now give an even more general de�nition of parity transformations ofa target spae M with metri g and gerbe G.De�nition 12. A parity transformation map is an isometry k : M → M ofthe metri g of order two, suh that k∗G and G∗ are stably isomorphi. Wedenote the set of parity transformation maps by P (M, g,G).Consider an oriented WZW model with target spae M , Ad-invariantmetri g and bi-invariant gerbe G. If k ∈ P (M, g,G) is a parity transforma-tion map, we obtain the parity symmetry
Aortd

g,G (φ, Σ) = Aortd
g,G (k ◦ φ, Σ̄). (144)We already disussed that k = Inv is a parity transformation map inthe sense of De�nition 12, if the gerbes Inv∗G and G∗ are stably isomorphi.However, for oriented WZW models on ompat onneted Lie groups thereare more suh parity transformation maps. Beause the gerbe G is supposedto be bi-invariant, we try an ansatz k := lh ◦ Inv for some group element

h ∈ M . The ondition k2 = idM restrits h to be an element of the enter
Z(M). So, the set P (M, g,G) of parity transformation maps for a ompatonneted Lie group M and a bi-invariant gerbe G, suh that G∗ is stablyisomorphi to Inv∗G, ontains at least

{lz ◦ Inv | z ∈ Z(M)} ⊂ P (M, g,G). (145)In partiular, P (M, g,G) is not empty in the situation we are interested in.37



As a preparation for the unoriented ase, we now relate parity symmetryto the orientation over Σ̂: Start with an oriented WZW model on Σ togetherwith a parity transformation map k. Let φ : Σ → M be a map. By Lemma 3,there is a unique map φ̂ ∈ C∞(Σ̂, M)k,σ. One we have the orientation over
Σ̂ and the map φ̂, we may forget their origin, in partiular the orientationon Σ. Then we may give the followingDe�nition 13. An orientable WZW model onsists of a ompat onnetedLie group M , whih is equipped with an Ad-invariant metri g on its Lie alge-bra, a bi-invariant gerbe G and a parity transformation map k ∈ P (M, g,G).To a losed orientable onformal surfae Σ and a map φ̂ ∈ C∞(Σ̂, M)k,σ, thefollowing amplitude Aorble

g,G (φ̂, Σ) is assigned. Choose any orientation on Σ,and obtain a map φ : Σ → M by Lemma 3. De�ne
Aorble

g,G (φ̂, Σ) := Aortd
g,G (φ, Σ). (146)The amplitude is well-de�ned: if we had hosen the other orientation, wewould get the same amplitudes, due to the fat that k is a parity transfor-mation map and satis�es equation (144).4.2 Unoriented WZW ModelsIn the last setion we gave the de�nition of an orientable WZW model. Thederivation of the amplitude of a map φ̂ ∈ C∞(Σ̂, M)k,σ makes use of theexistene of an orientation on Σ both in the kineti term and in the holonomyterm. In this setion, we want to overome this obstrution.Let us �rst disuss the kineti term. We want to de�ne the kineti term

Skin(φ̂) for a map φ̂ ∈ C∞(Σ̂, M)k,σ in suh a way that if Σ is orientable, itredues to the kineti term Skin(φ) of the orresponding map φ. Note that
L(φ̂) :=

1

2

〈

φ̂∗θ ∧ ⋆φ̂∗θ
〉 (147)is a 2-form on Σ̂, whih satis�es

σ∗L(φ̂) = −L(φ̂). (148)This property tells us that L(φ̂) de�nes a 2-density Lden(φ̂) [BT82, BG88℄on Σ. The integral of a 2-density over a surfae is de�ned without respet tothe orientability of this surfae, so we de�ne
Skin(φ̂) :=

∫

Σ

Lden(φ̂). (149)38



To make the integral (149) more expliit, hoose a triangulation T of Σ,and for eah fae f ∈ T a loal setion orf : Uf → Σ̂, where Uf is some openneighborhood of f in Σ. By de�nition of the integral of a density,
Skin(φ̂) =

∑

f∈T

∫

orf (f)

L(φ̂). (150)One immediately heks that this de�nition is independent of the hoie ofthe loal setions: if one hooses for one fae f the other orientation, namely
σ(orf), the orresponding term in the sum (150),

∫

σ(orf (f))

L(φ̂) = −

∫

orf (f)

σ∗L(φ̂) =

∫

orf (f)

L(φ̂), (151)gives the same ontribution. It is also independent of the hoie of thetriangulation. Furthermore, if Σ is orientable, we an hoose a triangulationwith a single fae f = Σ and get Skin(φ̂) = Skin(φ), whih was preisely ourrequirement on Skin(φ̂).We have already disussed in setion 3 how to de�ne surfae holonomiesfor an arbitrary losed surfae Σ with a map φ̂ ∈ C∞(Σ̂, M)k,σ: we have tohoose a Jandl struture J on G. Then holG,J (φ̂, Σ) is de�ned in De�nition10 in suh a way that if Σ is orientable, it oinides by Theorem 3 with
holG(φ, Σ). Remember that a neessary ondition on the existene of a Jandlstruture J = (k,−,−) was that the gerbes k∗G and G∗ are stably isomor-phi. We already have enountered this ondition for the orientable WZWmodel, so that it does not ome as an additional restrition. This leads usto the followingDe�nition 14. An unoriented WZW model onsists of a ompat onnetedLie group M , whih is equipped with an Ad-invariant metri g on its Lie-algebra and a bi-invariant gerbe G with Jandl struture J , whose ation of Z2on M is a parity transformation map k ∈ P (M, g,G). To a losed onformalsurfae Σ and a map φ̂ ∈ C∞(Σ̂, M)k,σ the amplitude

Aunor
g,G,J (φ̂, Σ) := exp

(

iSkin(φ̂)
)

· holG,J (φ̂, Σ). (152)is assigned.Aording to the de�nition of both fators, if Σ is orientable, we have
Aunor

g,G,J (φ̂, Σ) = Aorble
g,G (φ̂, Σ). (153)If Σ is even oriented, by equation (146) we have

Aunor
g,G,J (φ̂, Σ) = Aortd

g,G (φ, Σ). (154)39



4.3 Crossaps and the trivial line bundleIn the following two setions we use the lassi�ation of Jandl strutures tolassify unoriented WZW models with a �xed gerbe G and a �xed paritytransformation map k ∈ P (M, g,G). By Theorem 1, the set of equivalenelasses of Jandl strutures of G with the ation of K = Z2 on M de�ned by kis a torsor over the �at K-equivariant Piard group PicK
0 (M). In this setionwe disuss a speial element of this group.On any manifold, there is the trivial line bundle L1 := M × C with thetrivial hermitian metri and the trivial onnetion, whih is �at. It representsthe unit element of the �at Piard group Pic0(M).Reall the following fats onerning equivariant line bundles [Gom03℄.There are two obstrutions for a given line bundle to admit equivariant stru-tures: the �rst depends on the bundle and the group ation, namely that

k∗L ⊗ L∗ ∼= L1, (155)whih is still to be understood as an equation of hermitian line bundles withonnetion. The seond obstrution is a lass in the group ohomology group
H2Grp(K, U(1)). Now, if both obstrutions are absent, the possible equivariantstrutures are parameterized by the group ohomology group H1Grp(K, U(1))whih is just the group of one-dimensional haraters of K. In our ase
K = Z2 we have

H1Grp(K, U(1)) = Z2 (156)
H2Grp(K, U(1)) = 0 (157)so that the seond obstrution vanishes, and every line bundle L, whihsatis�es the remaining obstrution (155) admits exatly two K-equivariantstrutures.In partiular L1 itself satis�es (155). We exhibit its two equivariant stru-tures expliitly. Remember from setion 2.2, that we have to hoose an iso-morphism

ϕ : k∗L1 → L1 (158)of line bundles, suh that ϕ ◦ k∗ϕ = idL1 . So the both hoies are either
ϕ1 = idM×C or ϕ−1 : (x, z) 7→ (x,−z). We denote L1 together with theequivariant struture ϕ1 by LK

1 . It represents the unit element of PicK
0 (M).We denote L1 together with the equivariant struture ϕ−1 by LK

−1. Note that
LK
−1⊗LK

−1 = LK
1 as equivariant line bundles. Hene it represents a non-trivialelement of order two in PicK

0 (M).The whole onstrution is ompletely independent of M , so PicK
0 (M) al-ways ontains at least these two elements. As a onsequene, if a gerbe G40



admits a Jandl struture J , then LK
−1.J is another, inequivalent Jandl stru-ture on G. We will now investigate the di�erene between the orrespondingunoriented WZW models.We work with loal data, so let {Vi}i∈I be a good open over of M . Chooseall the setions that have been introdued in setion 2.4, and extrat loaldata (t, W ), j of the Jandl struture J . We also explained how to extrat aloal datum νi : Vi → U(1) from an equivariant struture on a line bundleover M . The loal datum of LK

1 is the onstant global funtion ν1 = 1, andthe loal datum of LK
−1 is the onstant global funtion ν1 = −1.Aording to the de�nition of the ation of PicK

0 (M) on Jdl(G, k), theloal data of LK
−1.J are (t, W ) and −j. Now observe the ourrenes ofthe loal datum j in the loal holonomy formula (135): it appears for eahorientation-reversing vertex v ∈ V̄ . Following our example in setion 3.4.2,this happens in the presene of a rossap. We onlude that the amplitudesof both unoriented WZW models with Jandl strutures J and LK

−1.J di�erby a sign for eah rossap in Σ.4.4 Examples of target spaesWe would like to disuss three examples of target spaes, namely the Liegroups SU(2), SO(3), where the Ad-invariant metri on their Lie algebras isgiven by their Killing forms, and the two-dimensional torus T 2 = S1×S1 withthe eulidean salar produt. The gerbes are supposed to be bi-invariant.4.4.1 The Lie group SU(2)Following our general disussion, the ations of Z2 on SU(2) we have toonsider are given by k : g 7→ g−1 and k : g 7→ −g−1, where −1 ∈ Z(SU(2))is the non-trivial element in the enter. The same maps were onsidered in[HSS02, Bru02, BCW01℄.Fix a bi-invariant gerbe G over SU(2). Up to stable isomorphism, thisis G = G⊗n
0 , where G0 is the basi gerbe over SU(2) [Mei02℄. By Lemma 6,both k's are parity transformation maps.The set Jdl(G, k) is a torsor over PicK

0 (SU(2)) by Theorem 1. In orderto ompute the group of equivariant �at line bundles, we �rst observe
Pic0(M) = Hom(π1(M), U(1)) = 0, (159)sine SU(2) is simply onneted. So up to isomorphism there is only one �atline bundle, the trivial one. Hene there are exatly two inequivalent Jandlstrutures for eah map k and eah bi-invariant gerbe G; this is in agreementwith the results of [PSS95a, PSS95b℄41



4.4.2 The Lie group SO(3)The enter of SO(3) is trivial, so that we have only one ation to onsider,namely by k : g 7→ g−1. Let G be a bi-invariant gerbe over SO(3), suhthat k∗G and G∗ are stably isomorphi. Suh gerbes for example are on-struted up to stable isomorphism in [GR03℄. We have to investigate thegroup PicK
0 (SO(3)) of �at equivariant line bundles. Again we �rst onsiderthe group Pic0(SO(3)) of �at line bundles and lassify equivariant strutureson them.By π1(SO(3)) = Z2 we have

Hom(π1(SO(3)), U(1)) = Hom(Z2, U(1)) = Z2, (160)so there are - up to isomorphism - two �at line bundles. We will give themexpliitly: As SO(3) is the quotient of SU(2) by q : g 7→ −g, the two �atline bundles over SO(3) orrespond to the two equivariant �at line bundlesover SU(2), namely LK
1 and LK

−1 .Clearly, LK
1 desends to the trivial �at line bundle L̃1 → SO(3), whihadmits equivariant strutures, more preisely, aording to the disussion insetion 4.3, there are two of them. LK

−1 desends to a non-trivial �at linebundle L̃−1 → SO(3), and we have to ask whether it admits equivariantstrutures, whih is equivalent to the ondition, that
dL̃−1 := k∗L̃−1 ⊗ L̃∗

−1
∼= L̃1. (161)Now dL̃−1 is a �at line bundle, and hene either isomorphi to L̃−1 or to

L̃1. Beause Pic0(SO(3)) is a group of order two, we have L̃−1 ⊗ L̃−1 = L̃1.The assumption dL̃−1
∼= L̃−1 would therefore mean k∗L̃−1

∼= L̃1 whih is aontradition sine L̃1 is the trivial bundle and k∗L̃−1 is not. Hene (161) istrue, and L̃∗
−1 admits two equivariant strutures.All together, there are four equivariant �at line bundles over SO(3) andhene four Jandl strutures on G; again, this is in agreement with [PSS95a,PSS95b℄.4.4.3 The two-dimensional Torus T 2For dimensional reasons, all gerbes over T 2 are trivial and have urvature

H = 0. This allows us to disuss an example with a parity transformationmap k, whih is not of the form k = lz ◦ Inv but simply the identity map
k = id. This allows us to make ontat with [BPS92℄.Now let G be a bi-invariant gerbe over T 2. The set Jdl(G, id) is atorsor over PicK

0 (T 2) by Theorem 1, whih is isomorphi to H1
K(T 2, U(1))42



by equation (33). The Borel spae assoiated to the trivial K-ation is
T 2

K = EZ2 × T 2. With EZ2 = RP∞ we have
H1

K(T 2, U(1)) = H1(T 2
K , U(1))

= H1(RP∞, U(1)) ⊕ H1(T 2, U(1))

= Z2 ⊕ U(1) ⊕ U(1)

= Z2 ⊕ T 2.We now assume that the gerbe G admits a Jandl struture J = (id,A, ϕ).In partiular, A = (A, α) is a stable isomorphism from G to G∗. Reall thata gerbe G onsist of the following data: a surjetive submersion π : Y → M ,a line bundle L → Y [2], an isomorphism µ, and a 2-form C ∈ Ω2(Y ). Reallfurther that here A is a line bundle over Z = Y [2], and both projetions pand p′ from Z to Y oinide with π2, π1 : Y [2] → Y .The ondition on the urvature of A in De�nition 3 now reads
curv(A) = π∗

1C + π∗
2C. (162)Furthermore, sine for all gerbes the urving C satis�es −π∗

2C + π∗
1C =

curv(L), we have
2π∗

2C = curv(A) − curv(L), (163)whih is an equation of 2-forms on Y [2]. On the right hand side we have alosed 2-form whih de�nes an integral lass in ohomology. Sine π2 is asurjetive submersion, also 2C de�nes a lass in H2(Y, Z).Beause the gerbe G is trivial, we an hoose a trivialization T and obtainthe 2-form B ∈ Ω2(M) as in De�nition 7, whih satis�es π∗B = C +curv(T )and dB = H = 0. Usually one hooses T suh that B is onstant, then itis nothing but the Kalb-Ramond �B-Field�. Beause π is also a surjetivesubmersion it follows that 2B de�nes a lass in H2(M, Z). Thus we havederived the quantization ondition that the B-Field has half integer valuedperiods. This ondition was originally found in [BPS92℄ by an analysis of thebulk spetrum of right and left movers.Referenes[Alv85℄ O. Alvarez, Topologial Quantization and Cohomology, Commun.Math. Phys. 100, 279�309 (1985).[BCW01℄ C. Bahas, N. Couhoud and P. Windey, Orientifolds of the 3-Sphere, JHEP 12, 003 (2001), hep-th/0111002.43
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