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Abstra
tThe Wess-Zumino term in two-dimensional 
onformal �eld theory isbest understood as a surfa
e holonomy of a bundle gerbe. We de�neadditional stru
ture for a bundle gerbe that allows to extend the notionof surfa
e holonomy to unoriented surfa
es. This provides a 
andidatefor the Wess-Zumino term for WZW models on unoriented surfa
es.Our ansatz reprodu
es some results known from the algebrai
 approa
hto WZW models.
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man
he meinenle
hts und rinkskann man ni
ht velwe
hsernwer
h ein illtumErnst Jandl [Jan95℄
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1 Introdu
tionWess-Zumino-Witten (WZW) models are one of the most important 
lassesof (two-dimensional) rational 
onformal �eld theories. They des
ribe physi-
al systems with (non-abelian) 
urrent symmetries, provide gauge se
tors inheteroti
 string 
ompa
ti�
ations and are the starting point for other 
on-stru
tions of 
onformal �eld theories, e.g. the 
oset 
onstru
tion. Moreover,they have played a 
ru
ial role as a bridge between Lie theory and 
onformal�eld theory.It is well-known that for the Lagrangian des
ription of su
h a model, aWess-Zumino term is needed to get a 
onformally invariant theory [Wit84℄.Later, the relation of this term to Deligne hyper
ohomology has been re-alized [Gaw88℄ and its nature as a surfa
e holonomy has been identi�ed[Gaw88, Alv85℄. More re
ently, the appropriate di�erential-geometri
 ob-je
t for the holonomy has been identi�ed as a hermitian U(1) bundle gerbewith 
onne
tion and 
urving [CJM02℄.Already the 
ase of non-simply 
onne
ted Lie groups with non�
y
li
 fun-damental group, su
h as G := Spin(4n)/Z2×Z2 shows that gerbes and theirholonomy are really indispensable, even when one restri
ts one's attentionto oriented surfa
es without boundary. The original de�nition of the Wess-Zumino term as the integral of a three form H over a suitable three-manifold
annot be applied to su
h groups; moreover, it 
ould not explain the well-established fa
t that to su
h a group two di�erent rational 
onformal �eldtheories that di�er by �dis
rete torsion� 
an be asso
iated.Bundle gerbes will be 
entral for the problem we address in this paper. Along series of algebrai
 results indi
ate that the WZW model 
an be 
onsis-tently 
onsidered on unorientable surfa
es. Early results in
lude a detailedstudy of the abelian 
ase [BPS92℄ and of SU(2) [PSS95b, PSS95a℄. Sewing
onstraints for unoriented surfa
es have been derived in [FPS94℄.Already the abelian 
ase [BPS92℄ shows that not every rational 
onformal�eld theory that is well-de�ned on oriented surfa
es 
an be 
onsidered onunoriented surfa
es. A ne
essary 
ondition is that the bulk partition fun
tionis symmetri
 under ex
hange of left and right movers. This restri
ts, forexample, the values of the Kalb-Ramond �eld in toroidal 
ompa
ti�
ations[BPS92℄. Moreover, if the theory 
an be extended to unoriented surfa
es,there 
an be di�erent extensions that yield inequivalent 
orrelation fun
tions.This has been studied in detail for WZW theories based on SU(2) in [PSS95b,PSS95a℄; later on, this has been systemati
ally des
ribed with simple 
urrentte
hniques [HS00, HSS99℄. Unifying general formulae have been proposed in[FHS+00℄; the stru
ture has been studied at the level of NIMreps in [SS03℄.Aspe
ts of these results have been proven in [FRS04℄ 
ombining topologi
al3



�eld theory in three-dimensions with algebra and representation theory inmodular tensor 
ategories. As a 
ru
ial ingredient, a generalization of thenotion of an algebra with involution, i.e. an algebra together with an algebra-isomorphism to the opposed algebra, has been identi�ed in [FRS04℄; theisomorphism is not an involution any longer, but squares to the twist on thealgebra. An algebra with su
h an isomorphism has been 
alled Jandl algebra.A similar stru
ture, in a geometri
 setting, will be the subje
t of the presentarti
le.The su

ess of the algebrai
 theory leads, in the Lagrangian des
ription,to the quest for 
orresponding geometri
 stru
tures on the target spa
e. Fromprevious work [BCW01, HSS02, Bru02℄ it is 
lear that a map k : M → Mon the target spa
e with the additional property that k∗H = −H will beone ingredient. Examples like the Lie group SO(3), for whi
h two di�erentunoriented WZW models with the same map k are known, already show thatthis stru
ture does not su�
e.We are thus looking for an additional stru
ture on a hermitian bundlegerbe whi
h allows to de�ne a Wess-Zumino term, i.e. whi
h allows to de-�ne holonomy for unoriented surfa
es. For a general bundle gerbe, su
h astru
ture need not exist; if it exists, it will not be unique.In the present arti
le, we make a proposal for su
h a stru
ture. It existswhenever there are su�
iently well-behaved stable isomorphisms between thepullba
k gerbe k∗G and the dual gerbe G∗. If one thinks about a gerbe as asheaf of groupoids, the formal similarity to the Jandl stru
tures in [FRS04℄be
omes apparent, if one realizes that the dual gerbe plays the role of theopposed algebra. For this reason, we term the relevant stru
ture a Jandlstru
ture on the gerbe. We show that the Jandl stru
tures on a gerbe onthe target spa
e M , if they exist at all, form a torsor over the group of �atequivariant hermitian line bundles on M . As explained in se
tion 4.3, thisgroup always 
ontains an element Lk
−1 of order two. We show that two Jandlstru
tures that are related by the a
tion of Lk

−1 provide amplitudes thatjust di�er by a sign that depends only on the topology of the worldsheet.Su
h Jandl stru
tures are 
onsidered to be essentially equivalent. We �nallyshow that a Jandl stru
ture allows to extend the de�nition of the usualgerbe holonomy from oriented surfa
es to unoriented surfa
es. We deriveformulae for these holonomies in lo
al data that generalize the formulae of[GR02, Alv85℄ for oriented surfa
es.To give a 
on
rete impression of a Jandl stru
ture, we write out the lo
aldata of a Jandl stru
ture for a given gerbe G on the target spa
e M . To thisend, we �rst re
all the lo
al data of a hermitian bundle gerbe in a good open
over {Vi}i∈I of M : we have a 2-form Bi for ea
h open set Vi, a 1-form Aij4



on ea
h interse
tion Vi ∩ Vj and a U(1)-valued fun
tion gijk on ea
h tripleinterse
tion Vi∩Vj∩Vk. They are required to satisfy the following 
onstraints:
gjkl · g

−1
ikl · gijl · g

−1
ijk = 1

Ajk − Aik + Aij + dlog (gijk) = 0

−dAij + Bj − Bi = 0.To write down the lo
al data of a Jandl stru
ture for a given involution
k : M → M in a su

in
t manner, we make the simplifying assumption thatwe have a 
over {Vi}i∈I that is invariant under k, k(Vi) = Vi, and that isstill good enough to provide lo
al data. The lo
al data of a Jandl stru
turethen 
onsist of a U(1)-valued fun
tion ji : Vi → U(1) for ea
h open subset,a U(1)-valued fun
tion tij : Vi ∩ Vj → U(1) on two-fold interse
tions and a1-form Wi ∈ Ω1(Vi).They relate the pullba
ks of the gerbe data under k to the lo
al data ofthe dual gerbe as follows:

k∗Bi = −Bi + dWi

k∗Aij = −Aij − dlog(tij) + Wj − Wi

k∗gijk = g−1
ijk · tjk · t

−1
ik · tijThe lo
al data of a Jandl stru
ture are required to be equivariant under k inthe sense that

k∗Wi = Wi − dlog(ji)

k∗tij = tij · j
−1
j · ji

k∗ji = j−1
i .It should be appre
iated that the fun
tions tij are not transition fun
tionsof some line bundle; as we will explain in se
tion 2.4, they are rather thelo
al data des
ribing an isomorphism of line bundles appearing in the Jandlstru
ture.The notion of a Jandl stru
ture naturally explains algebrai
 results forspe
i�
 
lasses of rational 
onformal �eld theories. It is well-known that boththe Lie group SU(2) and its quotient SO(3) admit two Jandl stru
tures thatare essentially di�erent (i.e. that do not just di�er by a sign depending on thetopology of the surfa
e). In the 
ase of SU(2), this is explained by the fa
tthat two di�erent involutions are relevant: g 7→ g−1 and g 7→ zg−1, where

z is the non-trivial element in the 
enter of SU(2). Indeed, sin
e SU(2)is simply-
onne
ted, we have a single �at line bundle and hen
e for ea
hinvolution only two Jandl stru
tures whi
h are essentially the same.5



The two involutions of SU(2) des
end to the same involution of the quo-tient SO(3). The latter manifold, however, has fundamental group Z2 andthus twi
e as many equivariant �at line bundles as SU(2). The di�erentJandl stru
tures of SO(3) are therefore not explained by di�erent involu-tions on the target spa
e but rather by the fa
t that one involution admitstwo essentially di�erent Jandl stru
tures.Needless to say, there remain many open questions. A dis
ussion of sur-fa
es with boundaries is beyond the s
ope of this arti
le. The results of[FRS04℄ suggest, however, that a Jandl stru
ture leads to an involution ongerbe modules. Most importantly, it remains to be shown that, in the Wess-Zumino-Witten path integral for a surfa
e Σ, the holonomy we introdu
edyields amplitudes that take their values in the spa
e of 
onformal blo
ks as-so
iated to the 
omplex double of Σ, whi
h ensures that the relevant 
hiralWard identities are obeyed. To this end, it will be important to have a suit-able reformulation of Jandl stru
tures at our disposal. Indeed, the holonomywe propose in this arti
le also arises as the surfa
e holonomy of a 2-ve
torbundle with a 
ertain 2-group; this issue will be the subje
t of a separatepubli
ation.2 Bundle Gerbes with Jandl Stru
tures2.1 Bundle Gerbes and stable IsomorphismsIn preparation of the following se
tions, in this se
tion we de�ne an equiv-alen
e relation on the set of stable isomorphisms between two �xed bundlegerbes. To this end, we �rst set up the notation 
on
erning bundle gerbesand stable isomorphisms. We mainly adopt the formalism used by Murrayand 
ollaborators, see [CJM02℄ for example, as well as by Gaw�edzki and Reis[GR02℄.De�nition 1. A hermitian U(1) bundle gerbe G with 
onne
tion and 
urvingover a smooth manifold M 
onsists of the following data: a surje
tive sub-mersion π : Y → M , a hermitian line bundle p : L → Y [2] with 
onne
tion,an asso
iative isomorphism
µ : π∗

12L ⊗ π∗
23L −→ π∗

13L (1)of hermitian line bundles with 
onne
tion over Y [3], and a 2-form C ∈ Ω2(Y )whi
h satis�es
π∗

2C − π∗
1C = curv(L). (2)6



Here Y [p] denotes the p-fold �ber produ
t of π : Y → M , whi
h is asmooth manifold sin
e π is a surje
tive submersion. For example π12 : Y [3] →
Y [2] is the proje
tion on the �rst two fa
tors.Remark 1. From now we will use the following 
onventions: the term linebundle refers to a hermitian line bundle with 
onne
tion, and an isomorphismof line bundles refers to an isomorphism of hermitian line bundles with 
on-ne
tion. A

ordingly, we refer to De�nition 1 by the term gerbe. The 2-form
C is 
alled 
urving, and the isomorphism µ is 
alled multipli
ation.One 
an show that there is a unique 3-form H ∈ Ω3(M) with π∗H = dC;this 3-form is 
alled the 
urvature of the gerbe and is denoted by H =
curv(G).To ea
h gerbe G, we asso
iate the dual gerbe G∗. It has the same sur-je
tive submersion π : Y → M , but the dual line bundle L∗ → Y [2] withmultipli
ation

(µ∗)−1 : π∗
12L

∗ ⊗ π∗
23L

∗ −→ π∗
13L

∗, (3)and the negative 
urving −C. A

ordingly, the 
urvature of the dual gerbesatis�es
curv(G∗) = −curv(G). (4)Even more, the 
lasses of G and the one of G∗ in Deligne hyper
ohomologyare inverses.For a smooth map f : N → M and a pullba
k diagram

Yf

πf

��

f̃
// Y

π

��

N
f

// M

, (5)
πf : Yf → N is a surje
tive submersion, and together with the line bundle
f̃

∗

L over Y
[2]
f , the multipli
ation f̃ ∗µ and the 
urving f̃ ∗C, we have de�ned agerbe f ∗G. If f : M → M is a di�eomorphism, Yf is 
anoni
ally isomorphi
to Y , su
h that f̃ = idY and πf = f−1 ◦ π. The 
urvature of the pullba
kgerbe is

curv(f ∗G) = f ∗curv(G). (6)Remark 2. As we did in the last paragraph, whenever there is a map f̃ :
Yf → Y , we will use the same letter for the indu
ed map on higher �berprodu
ts. 7



De�nition 2. A trivialization T = (T, τ) of a gerbe G is a line bundle
T → Y , together with an isomorphism

τ : L ⊗ π∗
2T −→ π∗

1T (7)of line bundles over Y [2], whi
h is 
ompatible with the isomorphism µ of thegerbe.We 
all a gerbe G trivial, if it admits a trivialization. A 
hoi
e of atrivialization T gives the 2-form C − curv(T ) ∈ Ω2(Y ), whi
h des
ends toa unique 2-form ρ ∈ Ω2(M) with π∗ρ = C − curv(T ). This 2-form satis�es
dρ = H , so the 
urvature H of a trivial gerbe is an exa
t form.If there are two trivializations T1 = (T1, τ1) and T2 = (T2, τ2) of the samegerbe G, one obtains an isomorphism

α := τ−1
1 ⊗ τ ∗

2 : π∗
1(T1 ⊗ T ∗

2 ) −→ π∗
2(T1 ⊗ T ∗

2 ), (8)of line bundles over Y [2]. From the 
ompatibility 
ondition between themultipli
ation µ and both τ1 and τ2 the 
o
y
le 
ondition
π∗

23α ◦ π∗
12α = π∗

13α (9)follows. Su
h an isomorphism determines a unique des
ent line bundle N →
M with 
onne
tion together with an isomorphism ν : π∗N → T1⊗T ∗

2 [Bry93℄.The two 2-forms ρ1 and ρ2 
oming from the two trivializations are related by
ρ2 = ρ1 + curv(N). (10)De�nition 3. Let G and G′ be two gerbes. A stable isomorphism
A : G −→ G′ (11)
onsists of a line bundle A → Z over the �ber produ
t Z := Y ′ ×M Y with
urvature

curv(A) = p′∗C ′ − p∗C, (12)and an isomorphism
α : p∗L ⊗ p′∗L′∗ ⊗ π∗

2A −→ π∗
1A (13)of line bundles over Z [2], whi
h is 
ompatible with the multipli
ations µ and

µ′ of both gerbes.Here p and p′ denote the proje
tions from Z to Y and to Y ′ respe
tively.Sin
e the pullba
ks of the 
urvings C and C ′ to Z di�er by a 
losed 2-form,the 
urvatures of stably isomorphi
 gerbes, de�ned by the di�erential of C,are equal. 8



De�nition 4. Let G and G′ be two gerbes, and A1 and A2 two stable iso-morphisms from G to G′. A morphism
β : A1 =⇒ A2 (14)is an isomorphism β : A1 → A2 of line bundles over Z, whi
h is 
ompatiblewith α1 and α2 in the sense that the diagram

p∗L ⊗ p′∗L′∗ ⊗ π∗
2A1

α1
//

1⊗1⊗π∗

2β

��

π∗
1A1

π∗

1β

��

p∗L ⊗ p′∗L′∗ ⊗ π∗
2A2

α2
// π∗

1A2

(15)of isomorphisms of line bundles over Z [2] 
ommutes.The de�nition of su
h a morphism of stable isomorphisms already ap-peared in [Ste00℄. We 
all two stable isomorphisms equivalent, if there is amorphism between them. This de�nes an equivalen
e relation on the set ofstable isomorphisms between two �xed gerbes G and G′.2.2 Jandl Stru
turesRe
all that for a group K a
ting on a manifold M by di�eomorphisms k :
M → M , a K-equivariant stru
ture on a line bundle L → M is a family
{

ϕk
}

k∈K
of isomorphisms

ϕk : k∗L −→ L (16)of line bundles, whi
h respe
t the group stru
ture of K in the sense that
ϕ1 : L → L is the identity, and the multipli
ation law

ϕk1k2 = ϕk2 ◦ k∗
2ϕ

k1 (17)is satis�ed. Remember that a

ording to our 
onvention in Remark 1 allline bundles have 
onne
tions, and all isomorphisms of line bundles preservethem. In this arti
le, we only 
onsider the group K = Z2 for the sake ofsimpli
ity.Let G be a gerbe over M and let K = Z2 a
t on M . Denote the a
tionof the non-trivial element k by k : M → M . Assume that there is a stableisomorphism A = (A, α) : k∗G → G∗. Re
all that in this parti
ular situation,
A is a line bundle over the spa
e Z = Yk ×M Y , where Yk := Y and πk :=
k−1 ◦ π as in our dis
ussion of the pullba
k of G by a di�eomorphism k. Westill denote the proje
tions from Z to Y and to Yk by p and p′ respe
tively.9



De�ne the surje
tive submersion πZ := π ◦ p : Z → M . As k2 = idM , thepermutation map
k̃ : Z −→ Z : (yk, y) 7−→ (y, yk) (18)gives the following 
ommuting diagram:

Z
k̃

//

πZ

��

Z

πZ

��

M
k

// M

(19)Furthermore, sin
e also k̃2 = idZ , we even have a lift of the a
tion of K into
Z.De�nition 5. A Jandl stru
ture on G is a 
olle
tion J = (k,A, ϕ) 
onsistingof

• a smooth a
tion of K = Z2 on M , where we denote the non-trivialelement and the di�eomorphism asso
iated to that non-trivial elementby k : M → M .
• a stable isomorphism of gerbes A = (A, α) : k∗G → G∗.
• a K-equivariant stru
ture ϕ := ϕk on the line bundle A, whi
h is 
om-patible with the stable isomorphism A in the sense that the diagram

p′∗L ⊗ p∗L ⊗ π∗
2A

α
//

1⊗1⊗π∗

2ϕ

��

π∗
1A

π∗

1ϕ

��

p′∗L ⊗ p∗L ⊗ k∗π∗
2A

k∗α
// k∗π∗

1A

(20)of isomorphisms of line bundles over Z [2] 
ommutes.We 
an immediately dedu
e a ne
essary 
ondition for the existen
e of aJandl stru
ture for a given gerbe G, namely the 
ondition, that the gerbes
k∗G and G∗ are stably isomorphi
. Sin
e the 
urvatures of stably isomorphi
gerbes are equal, this in turn demands

k∗H = −H (21)for the 
urvature H = curv(G) of G. In parti
ular, there will be gerbes onmanifolds with involution whi
h do not admit a Jandl stru
ture.10



De�nition 6. Two Jandl stru
tures J and J ′ on the same gerbe G areequivalent, if the following 
onditions are satis�ed:
• the a
tions are the same, i.e. k and k′ are the same di�eomorphisms,
• there is a morphism β : A ⇒ A′ of stable isomorphisms in the sense ofDe�nition 4 su
h that
• β : A → A′ is even an isomorphism of K-equivariant line bundles on

Z.Next, we show that Jandl stru
tures behave well under the pullba
k ofgerbes along a smooth map f : N → M . Let J = (k,A, ϕ) be a Jandlstru
ture on G. Assume, that there is an a
tion of K = Z2 on N by adi�eomorphism g, su
h that the diagram
N

f
//

g

��

M

k
��

N
f

// M

(22)
ommutes. Consider the pullba
k of G by f as dis
ussed before, and de�ne
Zf := (Yf)g ×N Yf (23)and the permutation map g̃ : Zf → Zf . Then

Zf

πZf

��

g̃

~~~
~
~
~
~
~
~

f̃
// Z

k̃

��~~
~
~
~
~
~
~

πZ

��

Zf

πZf

��

f̃
// Z

πZ

��

N
f

//

g

}}{{
{
{
{
{
{
{

M

k
}}||

|
|
|
|
|
|

N
f

// M

(24)
is a 
ube with 
ommuting fa
es. It follows that f ∗A := (f̃ ∗A, f̃ ∗α) is astable isomorphism from g∗f ∗G to f ∗G∗. Furthermore, f̃ ∗ϕ is a K-equivariantstru
ture on f̃ ∗A, where K a
ts by g̃. In summary,

f ∗J := (g, f̃ ∗A, f̃ ∗ϕ) (25)de�nes a pullba
k Jandl stru
ture on f ∗G.11



2.3 Classi�
ation of Jandl Stru
turesIf a gerbe G admits a Jandl stru
ture, it is natural to ask, how many inequiv-alent 
hoi
es exist. So we are interested in the set Jdl(G, k) of equivalen
e
lasses of Jandl stru
tures J = (k,−,−) with a �xed a
tion of K = Z2 via
k. This will be 
ru
ial in the dis
ussion of the unoriented WZW model inse
tion 4.To approa
h this task, we �rst investigate the set Hom(G,G′) of equiva-len
e 
lasses of stable isomorphisms between G and G′. We start by re
allingthe followingLemma 1 ([CJM02℄).(i) If N → M is a �at line bundle and A = (A, α) is a stable isomorphism,then N.A := (A ⊗ π∗

ZN, α ⊗ 1) is also a stable isomorphism.(ii) If A1 = (A1, α1) and A2 = (A2, α2) are two stable isomorphisms, thenthere is a unique �at line bundle N → M su
h that A1 and N.A2 areequivalent as stable isomorphisms.Proof. For the �rst part we note that be
ause N is �at, A and A⊗ π∗
ZNhave the same 
urvature, so that (12) is satis�ed. For the se
ond part, weuse the isomorphism

α−1
1 ⊗ α∗

2 : π∗
1(A1 ⊗ A∗

2) −→ π∗
2(A1 ⊗ A∗

2) (26)whi
h satis�es the 
o
y
le 
ondition be
ause of the 
ompatibility of α1 and α2with µ and µ′. This determines a unique line bundle N → M with 
onne
tiontogether with an isomorphism ν : π∗
ZN → A1 ⊗ A∗

2. Be
ause (12) requiresthe 
urvatures of both A1 and A2 to be the same, N is �at. Now ν deter-mines an isomorphism A1 → A2⊗π∗
ZN , whi
h is a morphism A1 ⇒ N.A2. �We denote the group of isomorphism 
lasses of �at line bundles over Mby Pic0(M). It is a subgroup of the Pi
ard group Pic(M) of isomorphism
lasses of hermitian line bundles with 
onne
tion over M .Lemma 2. The set Hom(G,G′) of equivalen
e 
lasses of stable isomorphismsis a torsor over the �at Pi
ard group Pic0(M).Proof. We will (a) de�ne the a
tion and show, that it is (b) transitiveand (
) free.(a) We a
t [N ].[A] := [N.A], where the right hand side was de�ned inLemma 1 (i). This de�nition is independent of the 
hoi
e of repre-sentatives N and A: an isomorphism N → N ′ gives an isomorphism12



N.A → N ′.A, whi
h in fa
t is a morphism of stable isomorphisms
N.A ⇒ N ′.A. On the other hand, a morphism A ⇒ A′ of stableisomorphisms indu
es a morphism N.A ⇒ N.A′.Be
ause N.A is de�ned using the group stru
ture on the group of iso-morphism 
lasses of line bundles with 
onne
tion, it respe
ts the groupstru
ture on Pic0(M), and hen
e de�nes an a
tion.(b) The transitivity follows dire
tly from Lemma 1 (ii).(
) Let [A] be an element in Hom(G,G′), let N be a �at line bundle andlet us assume that N.A and A are equivalent, in parti
ular A ⊗ π∗

ZNis isomorphi
 to A. Sin
e N is unique by Lemma 1 (ii), it is the trivialline bundle. Hen
e the a
tion is free. �This lemma allows us to make use of the �at Pi
ard group Pic0(M).Remember that line bundles are, a

ording to our 
onvention in Remark1, line bundles with 
onne
tion. It is well understood [Bry93℄, that thePi
ard group Pic(M) of isomorphism 
lasses of line bundles �ts into theexa
t sequen
e
0 // H1(M, U(1)) // Pic(M) curv

// Ω2(M) . (27)In parti
ular this means Pic0(M) ∼= H1(M, U(1)). This 
ohomology group
an be 
omputed using the universal 
oe�
ient theorem
0 // Ext(H0(M), U(1)) // H1(M, U(1)) // Hom(H1(M), U(1)) // 0 (28)If M is 
onne
ted, the Ext-group is trivial and we obtain

Pic0(M) ∼= Hom(π1(M), U(1)). (29)An equivariant version of Lemma 2 applies to Jandl stru
tures. We de-note the group of isomorphism 
lasses of �at K-equivariant line bundles by
PicK

0 (M) and 
all it the �at K-equivariant Pi
ard group. In this equivalen
erelation isomorphisms are isomorphisms of equivariant line bundles with 
on-ne
tion.Theorem 1. The set Jdl(G, k) of equivalen
e 
lasses of Jandl stru
tureson G with involution k is a torsor over the �at K-equivariant Pi
ard group
PicK

0 (M). 13



Proof.(a) We �rst des
ribe the a
tion of a �at line bundle N over M with equiv-ariant stru
ture ν on a Jandl stru
ture J = (k,A, ϕ). A

ording to di-agram (19), π∗
Zν : π∗

ZN → k̃∗π∗
ZN is a K-equivariant stru
ture on π∗

ZN .Now, by taking the tensor produ
t of A and π∗
ZN as K-equivariant linebundles, we obtain an equivariant stru
ture ϕ⊗π∗

Zν on the line bundleof N.A. So we de�ne
N.J := (k, N.A, ϕ ⊗ π∗

Zν). (30)Sin
e
Z [2]

π1
//

π2

��

Z

πZ

��

Z πZ

// M

(31)
ommutes, we have π∗
1π

∗
Zν = π∗

2π
∗
Zν. This shows that 
ondition (20)for Jandl stru
tures is satis�ed for N.J . The arguments in the proofof Lemma 2 (a) apply here too and show that this de�nes an a
tion onequivalen
e 
lasses.(b) Let two equivalen
e 
lasses of Jandl stru
tures be represented by J1and J2. We already know from Lemma 1 (ii) that there is a �at linebundle N → M together with an isomorphism β : A1 → A2 ⊗ π∗

ZN ,whi
h is a morphism of stable isomorphism β : N.A1 ⇒ A2. We haveto show that there is an equivariant stru
ture on N su
h that β is anisomorphism of equivariant line bundles. Remember that we de�ned
N by a des
ent isomorphism α−1

1 ⊗α∗
2 in (26). Be
ause the equivariantstru
tures on A1 and A2 are 
ompatible with α1 and α2 respe
tivelydue to the property (20) of Jandl stru
tures, the des
ent isomorphismis an isomorphism of equivariant line bundles. Thus N is an equivariantline bundle, and β is an isomorphism of equivariant line bundles.(
) Let J = (k,A, ϕ) represent a Jandl stru
ture on G, and let N bea �at line bundle over M with equivariant stru
ture ν, su
h that

N.J and J are equivalent. It follows from Lemma 2 that N isthe trivial line bundle. Furthermore, π∗
Zν is the trivial equivariantstru
ture on π∗

ZN , so that ν is the trivial equivariant stru
ture on N . �For an a
tion of a dis
rete group K on M , an equivariant version of thesequen
e (27) is derived in [Gom03℄, namely
0 // H1

K(M, U(1)) // PicK(M)
curv

// Ω2(M)K . (32)14



Here, H1
K(M, U(1)) is the equivariant 
ohomology of M , i.e. the 
ohomologyof the asso
iated Borel spa
e. In parti
ular, we get for �at equivariant linebundles

PicK
0 (M) ∼= H1

K(M, U(1)). (33)2.4 Lo
al DataLet G be a gerbe over M and V = {Vi}i∈I be a good open 
over of M . Let
MV be the disjoint union of all the Vi's. The p-fold �ber produ
t of MV over
M is just the disjoint union of all p-fold interse
tions of the Vi's. Re
all from[CJM02℄ how to extra
t lo
al data from G:A 
hoi
e of lo
al se
tions si : Vi → Y gives a �ber preserving map s :
MV → Y by (x, i) 7→ si(x). Pull ba
k the line bundle L → Y [2] with its
onne
tion ∇ along s to a line bundle on the double interse
tions, and 
hooselo
al se
tions σij : Vi ∩ Vj → s∗L. Pull ba
k the isomorphism µ of the gerbe,too. Then de�ne lo
al data, namely smooth fun
tions gijk : Vi ∩ Vj ∩ Vk →
U(1), real-valued 1-forms Aij ∈ Ω1(Vi ∩ Vj) and 2-forms Bi ∈ Ω2(Vi) by thefollowing relations

s∗µ (π∗
12σij ⊗ π∗

23σjk) = gijk · π
∗
13σik (34)

s∗∇(σij) =
1

i
Aij ⊗ σij (35)

Bi = s∗i C. (36)These lo
al data give elements g, A, B in the �e
h-Deligne double 
om-plex for the 
over V, and the 
o
hain (g, A, B) satis�es the Deligne 
o
y
le
ondition
D (g, A, B) = (1, 0, 0) , (37)or equivalently in 
omponents

gjkl · g
−1
ikl · gijl · g

−1
ijk = 1 (38)

Ajk − Aik + Aij + dlog (gijk) = 0 (39)
−dAij + Bj − Bi = 0. (40)Furthermore, it satis�es
dBi = H|Vi

, (41)where the 3-form H is the 
urvature of the gerbe.The dual gerbe and the pullba
k gerbe f ∗G along some map f : N →
M 
an be 
onveniently expressed in lo
al data as follows: by 
hoosing thesame si and the dual se
tions σ∗

ij , one gets (g−1,−A,−B) = −(g, A, B) as15



lo
al data of G∗. Furthermore, if we indu
e a 
over {f−1Vi}i∈I of N , and
hoose the pullba
k se
tions f ∗si and f̃ ∗σij , then we obtain (f ∗g, f ∗A, f ∗B) =
f ∗(g, A, B) as lo
al data of f ∗G.We next need to derive lo
al data of trivializations and stable isomor-phisms. So, let T = (T, τ) be a trivialization of G. Sin
e T is a line bundleover Y , we 
an pull it ba
k with s : MV → Y to a line bundle over theopen subsets, and 
hoose lo
al se
tions σi : Vi → s∗T . We also pull ba
k theisomorphism τ to an isomorphism

s∗τ : s∗L ⊗ π∗
2s

∗T −→ π∗
1s

∗T . (42)Then we obtain smooth fun
tions hij : Vi ∩ Vj → U(1) by
s∗τ (σij ⊗ π∗

2σj) = hij · π
∗
1σi. (43)Let H be the 
onne
tion of T . It de�nes 
onne
tion 1-forms Mi ∈ Ω1(Vi) by

s∗H (σi) =
1

i
Mi ⊗ σi. (44)The lo
al data h and M are again elements in the �e
h-Deligne double
omplex. Now the 
ompatibility of τ and µ in De�nition 2 is equivalent to

gijk = hij · h
−1
ik · hjk, (45)and the 
ondition, that the isomorphism τ respe
t 
onne
tions, is equivalentto

Aij = −dlog (hij) + Mj − Mi. (46)Furthermore, the lo
al 2-form ρ = Bi + dMi 
oin
ides with the 2-form ρ ob-tained from De�nition 2. The last three properties of h and M are equivalentto the Deligne 
oboundary equation
(g, A, B) = (1, 0, ρ) + D (h, M) . (47)Now 
onsider a stable isomorphism A : G → G′ of gerbes over M . Withrespe
t to the good open 
over {Vi}i∈I we may have 
hosen lo
al se
tions

si, σij and s′i, σ′
ij to get lo
al data (g, A, B) and (g′, A′, B′) of G and G′respe
tively. We 
onstru
t a map

s̃ : MV −→ Y ×M Y ′ : (x, i) 7−→ (si(x), s′i(x)), (48)and pull the line bundle A → Y ×M Y ′ of the stable isomorphism togetherwith its 
onne
tion H ba
k to MV. We also pull ba
k the isomorphism α andget an isomorphism
s̃∗α : s∗L ⊗ s′∗L′∗ ⊗ π∗

2 s̃
∗A −→ π∗

1 s̃
∗A. (49)16



Then we 
hoose lo
al se
tions σi : Vi → s̃∗A. We obtain lo
al data in formof smooth fun
tions tij : Vi ∩Vj → U(1) and 
onne
tion 1-forms Wi ∈ Ω1(Vi)by the following relations:
s̃∗α

(

σij ⊗ σ′∗
ij ⊗ π∗

2σ
∗
j

)

= tij · π
∗
1σi (50)

s̃∗H(σi) =
1

i
Wi ⊗ σi. (51)Note that the fun
tions tij are not transition fun
tions of some bundle butare de�ned by the isomorphism α.These lo
al data t and W are elements in the �e
h-Deligne double 
om-plex. The 
ompatibility of α with the isomorphisms µ and µ′ of both gerbesas isomorphisms of hermitian line bundles with 
onne
tion a

ording to Def-inition 3 is equivalent to

gijk · g
′−1
ijk = tjk · t

−1
ik · tij (52)

Aij − A′
ij = −dlog(tij) + Wj − Wi (53)while the 
ondition (12) on the 
urvature of A is equivalent to

Bi − B′
i = dWi. (54)The three last equations are in turn equivalent to the Deligne 
oboundaryequation

(g, A, B) − (g′, A′, B′) = D (t, W ) . (55)This formalism of lo
al data reprodu
es results on bundle gerbes and theirstable isomorphisms, for example Lemma 1 (ii). Consider again two gerbes
G and G′, and now two stable isomorphisms A1 and A2 both from G to G′.We may have extra
ted lo
al data (t1, W1) of A1 and (t2, W2) of A2 su
h thatequation (55) holds for both. It follows

D(t · t′−1, W − W ′) = (1, 0, 0), (56)whi
h is the Deligne 
o
y
le 
ondition for a �at hermitian line bundle over
M . This is the bundle N 
onstru
ted in Lemma 1 (ii).We are now in a position to derive the lo
al data of a Jandl stru
ture
J = (k,A, ϕ) on a gerbe G. Re
all that k : M → M is the a
tion of thenon-trivial element of K = Z2 a
ting on M , in parti
ular k2 = idM . Wesimplify the situation by 
onsidering an open 
over V = {Vi}i∈I of M , whi
his invariant under k, i.e. k(Vi) = Vi, and whi
h is still good enough to enableus to extra
t lo
al data. The generalization other 
overs is straightforward,but makes the notation somewhat more 
umbersome.17



Re
all further that A is a stable isomorphism from k∗G → G∗. Let (t, W )be lo
al data of A, obtained by pulling ba
k the line bundle A → Z by
s̃ : MV → Z from equation (48) and 
hoosing lo
al se
tions σi : Vi → s̃∗A.As we derived for the lo
al data of the dual gerbe and the pullba
k gerbe,equation (55) here appears as

k∗(g, A, B) = −(g, A, B) + D(t, W ), (57)or equivalently:
k∗Bi = −Bi + dWi (58)
k∗Aij = −Aij − dlog(tij) + Wj − Wi (59)
k∗gijk = g−1

ijk · tjk · t
−1
ik · tij (60)Now re
all that a part of a Jandl stru
ture is a K-equivariant stru
ture

ϕ : k∗A → A on A. By pullba
k with s̃, we obtain
s̃∗ϕ : k∗s̃∗A −→ s̃∗A. (61)Now, be
ause σi is a se
tion of s̃∗A, k∗σi = σi ◦k is a se
tion of k∗s̃∗A on thesame pat
h Vi, sin
e the latter is invariant under k. This allows us to extra
ta lo
al U(1)-valued fun
tions ji : Vi → U(1), de�ned by

s̃∗ϕ(σi) = ji · σi ◦ k. (62)The 
ompatibility of ϕ with α in the sense of diagram (20) is equivalent to
k∗ (t, W ) = (t, W ) − D (j) , (63)or in turn equivalently
k∗Wi = Wi − dlog(ji) (64)
k∗tij = tij · j

−1
j · ji. (65)By de�nition of an equivariant stru
ture, the K = Z2 group law (17) issatis�ed. In terms of lo
al data, this is equivalent to

k∗ji = j−1
i . (66)In summary, the Jandl stru
ture J = (k,A, ϕ) gives rise to lo
al data

(t, W ) and j whi
h satisfy the following three 
onditions:
k∗(g, A, B) = −(g, A, B) + D(t, W ) (67)

k∗ (t, W ) = (t, W ) − D (j) (68)
k∗ji = j−1

i (69)18



Again, using lo
al data, we 
an reprodu
e results on Jandl stru
tureslike Theorem 1. In detail, let J be a Jandl stru
ture on G with lo
al data
(t, W ) and j. Let N be a �at K-equivariant hermitian line bundle over Mwith transition fun
tions nij : Vi ∩ Vj → U(1) and lo
al 
onne
tion 1-forms
Ni ∈ Ω1(Vi) with

D(n, N) = (1, 0, 0). (70)The equivariant stru
ture on N determines smooth fun
tions νi : Vi → U(1)with
k∗(n, N) = (n, N) − D(ν) (71)and k∗ν = ν−1. Then,

(t′, W ′) := (t, W ) + (n, N) (72)
j′ := j · ν (73)are lo
al data of the Jandl stru
ture N.J . Indeed, equation (67) is satis�edbe
ause of the Deligne 
o
y
le 
ondition (70). Compute

k∗(t′, W ′) = k∗(t, W ) + k∗(n, N)

= (t, W ) − D (j) + (n, N) − D(ν)

= (t′, W ′) − D(j′), (74)this is equation (68), and the last equation (69) for j′ is just a 
onsequen
efrom the 
onditions on j and ν.Let now J and J ′ be two Jandl stru
tures on G with lo
al data (t, W ), jand (t′, W ′), j′ respe
tively.
(n, N) := (t, W ) − (t′, W ′) (75)are the lo
al data of the �at des
ent line bundle N , and using equation (67),we get its 
o
y
le 
ondition

D(n, N) = (1, 0, 0). (76)Now 
ompute
k∗(n, N) = k∗(t, W ) − k∗(t′, W ′)

= (t, W ) − D(j) − (t′, W ′) + D(j′)

= (n, N) − D(ν), (77)where we de�ned ν := j · j′−1. Hen
e, N and k∗N are isomorphi
 as her-mitian line bundles with 
onne
tion via an isomorphism represented by ν.By de�nition, we have k∗ν = ν−1, this means, that ν is a K-equivariantstru
ture. 19



3 Holonomy of Gerbes with Jandl Stru
ture3.1 Double Coverings, Fundamental Domains and Ori-entationsLet us �rst re
all the setup that allows to de�ne holonomy around 
losedoriented surfa
es. This is a gerbe G over M and a 
losed oriented surfa
e Σtogether with a smooth map φ : Σ → M . Following [CJM02℄, we pull ba
k
G along φ to a gerbe over Σ. For dimensional reasons, φ∗G is trivial. Asexplained in se
tion 2.1, a trivialization T determines a 2-form ρ ∈ Ω2(Σ),while another trivialization T ′ determines a 2-form ρ′ = ρ + curv(N). Sin
e
curv(N) de�nes an integral 
lass in 
ohomology, we have

∫

Σ

ρ′ =

∫

Σ

ρ mod 2πZ. (78)So the integral is independent of the 
hoi
e of a trivialization up to 2πZ, andadmits therefore the followingDe�nition 7. The holonomy of G around the 
losed oriented surfa
e φ :
Σ → M is de�ned as

holG(φ, Σ) := exp

(

i

∫

Σ

ρ

)

∈ U(1). (79)We state three important properties of this de�nition:
• The dual gerbe has inverse holonomy,

holG(φ, Σ) = holG∗(φ, Σ)−1. (80)
• If A : G → G′ is a stable isomorphism, we have

holG(φ, Σ) = holG′(φ, Σ). (81)
• By Σ̄ we denote the same manifold Σ with the opposite orientation;then we obtain

holG(φ, Σ) = holG(φ, Σ̄)−1. (82)Obviously, the orientation on Σ is essential for this de�nition. In thisse
tion we will de�ne the holonomy around unoriented or even unorientablesurfa
es. The most important property of this de�nition will be, that itredu
es to De�nition 7 if Σ is orientable and an orientation is 
hosen. Oneof the main tools will be an orientation 
overing.Let Σ be a smooth manifold (without orientation).20



De�nition 8. An orientation 
overing of Σ is a double 
overing pr : Σ̂ → Σwith an oriented manifold Σ̂, su
h that the 
anoni
al involution σ : Σ̂ → Σ̂is orientation-reversing.Re
all three basi
 properties of orientation 
overings (some of them 
anbe found for example in [BG88℄):
• it is unique up to orientation-preserving di�eomorphisms of 
overingspa
es.
• the 
anoni
al involution σ : Σ̂ → Σ̂ preserves �bers and permutes thethe sheets.
• under the assumption that Σ is 
onne
ted, Σ̂ is 
onne
ted if and onlyif Σ is not orientable.Due to the �rst point, by Σ̂ we will from now refer to this unique orien-tation 
over. Let k : M → M be an involution on M . By C∞(Σ̂, M)σ,k wedenote the spa
e of smooth maps φ̂ : Σ̂ → M for whi
h the diagram

Σ̂
φ̂

//

σ

��

M

k

��

Σ̂
φ̂

// M

(83)
ommutes in the 
ategory of smooth manifolds (negle
ting orientations).Let Σ be orientable.Lemma 3. An orientation on Σ de�nes a bije
tion
C∞(Σ̂, M)σ,k −→ C∞(Σ, M). (84)Proof. Sin
e Σ is orientable, Σ̂ 
onsists of two disjoint 
opies of Σ withopposite orientations. An orientation on Σ is a global se
tion or : Σ → Σ̂in the 
overing pr : Σ̂ → Σ. Now let φ̂ : Σ̂ → M be a map. De�ne itsimage as φ := φ̂ ◦ or. On the other hand, given a map φ : Σ → M , wede�ne the preimage φ̂ on the two sheets of Σ̂ separately as φ̂|or(Σ) := φ and

φ̂|σor(Σ) := k ◦ φ respe
tively. �If Σ is not orientable or no orientation of Σ is 
hosen, we will make useof the following generalization of an orientation.De�nition 9. A fundamental domain for Σ in Σ̂ is a submanifold F ⊂
Σ̂ possibly with (pie
ewise smooth) boundary, satisfying the following two
onditions as sets: 21



(i) F ∩ σ(F ) = ∂F(ii) F ∪ σ(F ) = Σ̂This is a generalization of an orientation on Σ in the sense, that anyorientation on Σ gives a global se
tion or : Σ → Σ̂ whi
h in turn de�nes afundamental domain, namely F := or(Σ), one of the two 
opies of Σ in Σ̂.We show the existen
e of su
h a fundamental domain for an arbitrary
losed surfa
e Σ by an expli
it 
onstru
tion, whi
h we will also use in se
tion3.3. Let U = {Ui}i∈I be an open 
over of Σ, whi
h admits lo
al se
tions
ori : Ui → Σ̂. One 
an think of su
h se
tions as lo
al orientations. Choosea dual triangulation T of Σ, subordinate to the 
over U, together with asubordinating map i : T → I. So, for ea
h fa
e f ∈ T there is an index i(f)with f ⊂ Ui(f), as well as for ea
h edge e ∈ T and for ea
h vertex v ∈ T .Be
ause we have a dual triangulation, ea
h vertex is trivalent.Consider a 
ommon edge e = f1 ∩ f2 of two fa
es f1 and f2. We 
all theedge e orientation-preserving, if

ori(f1)(e) = ori(f2)(e), (85)otherwise we 
all it orientation-reversing. So the set of edges splits in a set
E of orientation-preserving, and a set Ē of orientation-reversing edges. If vis a vertex, the number of orientation-reversing edges ending in v must beeven, and sin
e we started with a dual triangulation, it is either zero or two.Hen
e, the edges in Ē form non-interse
ting 
losed lines in Σ.

Σ̂

F

F

Σ

Σ̂∂F

∂F

Figure 1: The 
onstru
tion of a fundamental domain bylo
al orientations for a dual triangulation.De�ne the subset
F :=

⋃

f∈T

ori(f)(f). (86)22



of Σ̂ and endow it with the subspa
e topology. The boundary of F is exa
tlythe union of the preimages of orientation-reversing edges under the 
overingmap,
∂F =

⋃

e∈Ē

pr−1(e), (87)and hen
e a disjoint union of pie
ewise smooth 
ir
les. This shows that Fis a submanifold of Σ̂ with pie
ewise smooth boundary. It satis�es the twoproperties of a fundamental domain, and hen
e shows the existen
e of su
ha fundamental domain.Let now F be any fundamental domain for Σ in Σ̂. The following obser-vation will be essential.Lemma 4. The quotient ∂F := ∂F/σ is a 1-dimensional oriented 
losedsubmanifold of Σ.Proof. We a
t with σ on property (i) of the fundamental domain F :
σ(∂F ) = σ(F ∩ σ(F )) = F ∩ σ(F ) = ∂F (88)This shows that σ restri
ts to an involution on ∂F . Sin
e σ a
ts on Σ̂without �xed points, the quotient ∂F/σ is a submanifold of Σ, and as ∂Fis 
losed, so is the quotient. The orientation of Σ̂ indu
es an orientation on

F . Be
ause σ is orientation-reversing, the orientation of σ(F ) is opposite tothe one indu
ed on σ(F ) as a submanifold of Σ̂. Hen
e, ∂F and ∂(σ(F ))are equal as sets as well as as oriented submanifolds. Thus σ preserves theorientation on ∂F . �

Σ̂

Σ

Σ̂F

F

∂F

∂F

∂F

Figure 2: The orientation on ∂F .
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3.2 Unoriented Surfa
e HolonomyThe setup for the de�nition of holonomy around 
losed unoriented surfa
esis
• a gerbe G over a smooth manifoldM with Jandl stru
ture J = (k,A, ϕ)

• a 
losed surfa
e Σ

• a map φ̂ ∈ C∞(Σ̂, M)σ,kThe idea of the de�nition is the following: Pull ba
k the gerbe G to Σ̂along φ̂, 
hoose a trivialization and determine the 2-form ρ̂ ∈ Ω2(Σ̂) as inDe�nition 7. Choose a fundamental domain F for Σ in Σ̂. The integral
exp i

∫

F

ρ̂ (89)is independent neither of the 
hoi
e of the trivialization � whi
h enters in
ρ̂ � nor of the 
hoi
e of the fundamental domain F . The Jandl stru
ture,however, allows to 
orre
t (89) by a boundary term in su
h a way that theholonomy be
omes well-de�ned.We will now give a detailed de�nition of this boundary term, and thenshow that it gives rise to a well-de�ned holonomy.Re
all that a gerbe G 
onsist of the following data: a surje
tive submersion
π : Y → M , a line bundle L → Y [2], an isomorphism µ, and a 2-form
C ∈ Ω2(Y ). Re
all that the pullba
k gerbe φ̂∗G 
onsists of a pullba
k

Yφ
φ̃

//

πφ

��

Y

π

��

Σ̂
φ̂

// M

, (90)the pullba
k line bundle φ̃∗L, isomorphism φ̃∗µ and 2-form φ̃∗C. A

ord-ingly, a trivialization T of φ̂∗G is a line bundle T → Yφ together with anisomorphism
τ : φ̃∗L ⊗ πφ

∗

2T −→ πφ
∗

1T (91)of line bundles over Y
[2]
φ . It determines a 2-form ρ̂ ∈ Ω2(Σ̂) with

π∗
φρ̂ = φ̃∗C − curv(T ). (92)24



Due to the 
ommutativity of diagram (83), φ̂∗J = (σ, φ̃∗A, φ̃∗ϕ) is a Jandlstru
ture on φ̂∗G. Re
all that part of the data are a line bundle φ̃∗A → Zφover the spa
e Zφ := (Yφ)σ ×Σ̂ Yφ, and an isomorphism
φ̃∗α : p′∗φ̃∗L ⊗ p∗φ̃∗L∗ ⊗ πφ

∗

2φ̃
∗A −→ πφ

∗

1φ̃
∗A (93)of line bundles over Z

[2]
φ , where p and p′ are the proje
tions in

Zφ
p

//

p′

��

Yφ

πφ

��

Yφσ σ◦πφ

// Σ̂

. (94)Further, the a
tion of K by σ lifts to Zφ via the permutation map σ̃, and
φ̂∗J 
ontains an K-equivariant stru
ture φ̃∗ϕ on φ̃∗A.Combining the trivialization with the Jandl stru
ture, we de�ne a linebundle

R := φ̃∗A ⊗ p′∗T ∗ ⊗ p∗T ∗ (95)over Zφ. In addition, we de�ne an isomorphism
r := φ̃∗α−1 ⊗ p′∗τ ∗ ⊗ p∗τ ∗ : πφ

∗

1R −→ πφ
∗

2R (96)of line bundles over Z
[2]
φ . The 
ompatibility of τ and α with the isomorphism

µ of G guarantees the 
o
y
le 
ondition
πφ

∗

23r ◦ πφ
∗

12r = πφ
∗

13r (97)over Z
[3]
φ , hen
e R determines a unique des
ent line bundle R̂ → Σ̂, togetherwith an isomorphism πZ

∗
φR̂ → R. We shall 
ompute the 
urvature of thesebundles, namely

curv (R)
(95)
= φ̃∗curv (A) − p′∗curv (T ) − p∗curv (T ) (98)

(12)
= p′∗(φ̃∗C − curv(T )) + p∗(φ̃∗C − curv(T )) (99)

(92)
= p′∗π∗

φρ̂ + p∗π∗
φρ̂ (100)

(94)
= π∗

Zφ
(σ∗ρ̂ + ρ̂). (101)Hen
e the 
urvature of R̂ is
curv(R̂) = σ∗ρ̂ + ρ̂. (102)25



The next step is to de�ne σ-equivariant stru
ture on R̂. Note thatthe 
anoni
al permutation of tensor produ
ts is an equivariant stru
ture on
p′∗T ∗⊗p∗T ∗, sin
e the permutation map σ̃ ex
hanges p and p′. Together withthe equivariant stru
ture φ̃∗ϕ on φ̃∗A, the tensor produ
t (95) is the tensorprodu
t of two equivariant line bundles. By de�nition of a Jandl stru
ture
ϕ is 
ompatible with α, whi
h means that the des
ent isomorphism r is anisomorphism of equivariant line bundles. Hen
e, also the des
ent bundle R̂over Σ̂ is endowed with an equivariant stru
ture.It is a standard fa
t [Gom03, Bry00℄, that if K is dis
rete and a
ts freely,a K-equivariant line bundle R̂ → Σ̂ de�nes a unique line bundle Q on thequotient Σ̂/K = Σ.Now 
hoose a fundamental domain F of Σ in Σ̂.De�nition 10. The holonomy of the gerbe G with Jandl stru
ture J aroundthe unoriented 
losed surfa
e Σ is de�ned as

holG,J (φ̂, Σ) := exp

(

i

∫

F

ρ̂

)

· holQ(∂F )−1. (103)In this de�nition, the 
ompensating term holQ(∂F ) is the holonomy ofthe line bundle Q around the one-dimensional 
losed oriented submanifold
∂F .Theorem 2. The holonomy de�ned in De�nition 10 depends neither on the
hoi
e of the fundamental domain F nor on the 
hoi
e of the trivialization
T . Proof. Let F ′ be another fundamental domain. We de�ne the set

B := Int(F ) ∩ σ(Int(F ′)), (104)where Int denotes the interior. As the interse
tion of two open sets, B isopen and hen
e a submanifold of Σ̂. It 
ontains those parts of F , whi
h arenot 
ontained in F ′ (
f. Figure 3). Be
ause we ex
luded the boundaries of
F and F ′, we have

B ∩ σ(B) = ∅, (105)su
h that there is a unique se
tion orB : pr(B) → Σ̂ with image B.From Figure 3, we have
∫

F ′

ρ̂ =

∫

F

ρ̂ −

∫

B

ρ̂ +

∫

σ(B)

ρ̂ =

∫

F

ρ̂ −

∫

B

curv(R̂), (106)26



pr(B)

F F ′

B

orB

Figure 3: The di�eren
e between two fundamental do-mains.sin
e σ is orientation-reversing. By Stoke's theorem, the exponential of theintegral of the 
urvature of R̂ over B is nothing but the holonomy of thatline bundle around ∂B. Thus,
exp

(

−i

∫

B

curv(R̂)

)

= holR̂(∂B)−1 = holQ(pr(∂B))−1.This is the term whi
h is 
ompensated by the boundary term, whi
h is
holQ(∂F ′)−1 = holQ(∂F )−1 · holQ(pr(∂B)). (107)In summary

exp

(

i

∫

F ′

ρ̂

)

· holQ(∂F ′)−1 = exp

(

i

∫

F

ρ̂

)

· holQ(∂F )−1, (108)i.e. the holonomy is independent of the 
hoi
e of the fundamental domain.Now let T ′ = (τ ′, T ′) be another trivialization of φ̂∗G. As dis
ussed inse
tion 2.1, there is a line bundle N → Σ̂ together with an isomorphism
ν : π∗

φN ⊗ T ′ → T , su
h that the 2-forms ρ̂ and ρ̂′ are related by
ρ̂′ = ρ̂ + curv(N). (109)For the line bundle R̂ de�ned in (95) this means

R′ = R ⊗ π∗
Zσ∗N ⊗ π∗

ZN , (110)27



and its des
ent line bundle R̂′ is
R̂′ = R̂ ⊗ σ∗N ⊗ N . (111)This is an equation of σ-equivariant line bundles, where R̂ and R̂′ obtainequivariant stru
tures from the Jandl stru
ture as des
ribed before, and K :=

σ∗N ⊗ N 
arries the 
anoni
al σ-equivariant stru
ture by permuting theorder in the tensor produ
t. Hen
e, equation (111) pushes into the quotient,namely
Q′ = Q ⊗ K̄. (112)The holonomy of the des
ent bundle K̄ satis�es

holK̄(∂F ) = holN(∂F ) = holσ∗N (∂F ). (113)This �nally means
exp

(

i

∫

F

ρ̂′

)

· holQ′(∂F )−1

(109)
= exp

(

i

∫

F

ρ̂ + curv(N)

)

· holQ⊗K̄(∂F )−1 (114)
(113)

= exp

(

i

∫

F

ρ̂

)

· holN(∂F ) · holN(∂F )−1 · holQ(∂F )−1 (115)
= exp

(

i

∫

F

ρ̂

)

· holQ(∂F )−1, (116)thus the holonomy is independent of the 
hoi
e of the trivialization. �The following Lemma asserts that the de�nition of holonomy is 
ompat-ible with the de�nition of equivalen
e of Jandl stru
tures.Lemma 5. The holonomy of a gerbe G with Jandl stru
ture J only dependson the equivalen
e 
lass of J .Proof. Let J = (k,A, ϕ) and J ′ = (k,A′, ϕ′) be two equivalent Jandlstru
tures on G. It is shown in Theorem 1 that there is a unique �at equiv-ariant line bundle N on M , su
h that N.A ∼= A′ as equivariant line bundles.Be
ause the a
tion of PicK
0 (M) is free, and A and A′ are isomorphi
, N isthe trivial equivariant line bundle. Remember the de�nition of the bundle

R → Z in equation (95). For the two Jandl stru
tures we get R′ = R⊗π∗
ZN ,and hen
e the des
ent bundles R̂′ = R̂ ⊗ N over Σ̂. Sin
e N is the trivialequivariant line bundle, R̂′ and R̂ are isomorphi
 as equivariant line bundles,and thus de�ne isomorphi
 line bundles Q′ and Q over Σ. Isomorphi
 line28



bundles have the same holonomies, so De�nition 10 is independent of theequivalen
e 
lass of J . �An important 
ondition for any notion of unoriented surfa
e holonomy isits 
ompatibility with ordinary surfa
e holonomy for oriented surfa
es:Theorem 3. If Σ is orientable, for any 
hoi
e of an orientation, the holon-omy de�ned in De�nition 10 redu
es to the ordinary holonomy de�ned inDe�nition 7,
holG,J (φ̂, Σ) = holG(φ, Σ), (117)where φ and φ̂ are related by the bije
tion of Lemma 3. In parti
ular, if Gadmits a Jandl stru
ture, the holonomy of G does not depend on the orien-tation.Proof. Let or : Σ → Σ̂ be a 
hoi
e of an orientation on Σ. Then

F := or(Σ) is a fundamental domain with empty boundary ∂F = ∅.Choose a trivialization T of φ̂∗G to obtain the 2-form ρ̂ ∈ Ω2(Σ̂). Thenthe left hand side is equal to exp i
∫

or(Σ)
ρ̂, be
ause of Theorem 2. Be-
ause φ̂ and φ 
orrespond to ea
h other, or∗φ̂∗G is the same gerbe as

φ∗G, and or∗T is a trivialization with 2-form ρ = or∗ρ̂. Thus, the righthand side is equal to exp i
∫

Σ
ρ and therefore equals the ordinary holonomy. �3.3 Holonomy in Lo
al DataLet {Vi}i∈I be an open 
over of M . To avoid notation, we assume that itis invariant under k and still good enough to admit all the lo
al se
tionsne
essary to extra
t lo
al data (g, A, B) of the gerbe G and (t, W, j) of theJandl stru
ture J , as we explained in se
tion 2.4. We pull ba
k the 
over

{Vi}i∈I along φ̂ : Σ̂ → M and obtain a 
over {Ûi}i∈I with Ûi := φ̂−1(Vi),together with pullba
k lo
al data. Next, 
hoose lo
al data (h, M) of thetrivialization T of the pullba
k gerbe and a 2-form ρ̂ ∈ Ω2(Σ̂), so that
(

φ̂∗g, φ̂∗A, φ̂∗B
)

= (1, 0, ρ̂) + D (h, M) (118)holds. Following the de�nition of the bundle R → Z in equation (95), thebundle R̂ → Σ̂ has lo
al data
(r, R) := φ̂∗(t, W ) − σ∗(h, M) − (h, M); (119)the 
ondition that R̂ des
ends is equivalent to the Deligne 
o
y
le 
ondition

D(r, R) = (1, 0), (120)29



whi
h follows from equations (118) and (67).Be
ause φ̂ is an element of C∞(Σ̂, M)σ,k, the pullba
k 
over is invariantunder σ. Hen
e it proje
ts to a 
over ofΣ with open sets Ui := pr(Ûi). Chooselo
al se
tions ori : Ui → Σ̂ and a dual triangulation T of Σ, subordinate tothe 
over {Ui}i∈I , together with a subordinating map i : T → I. As we didin se
tion 3.1 we 
hoose the fundamental domain
F :=

⋃

f∈T

ori(f)(f), (121)where the f 's are the fa
es of the triangulation.We now introdu
e three abbreviations. Let ω2
i ∈ Ω2(Ûi), ω1

ij ∈ Ω1(Ûi∩Ûj)and ωijk : Ûi∩Ûj∩Ûk → U(1) be some lo
al data. First we denote the integralover a fa
e f by
If (ω, ω1, ω2) := exp

(

i

∫

ori(f)(f)

ω2
i(f) + i

∑

e∈∂f

∫

ori(f)(e)

ω1
i(f)i(e)

)

·
∏

v∈∂e

ω
ε(f,e,v)
i(f)i(e)i(v)(ori(f)(v)), (122)where ε(f, e, v) ∈ {1,−1} indi
ates, whether v is the end or the startingpoint of the edge e with respe
t to the orientation ori(f).Se
ond, we denote the integral of some lo
al data ω1

i ∈ Ω1(Ûi) and ωij :

Ûi ∩ Ûj → U(1) along an edge e of a fa
e f by
Ie,f(ω, ω1) := exp

(

i

∫

ori(f)(e)

ω1
i(e)

)

·
∏

v∈∂e

ω
ε(f,e,v)
i(e)i(v) (ori(f)(v)). (123)Re
all that the set of edges in T splits into the set E of orientation-preservingedges and the set Ē of orientation-reversing edges. For an orientation-preserving edge e ∈ f1 ∩ f2 we have

Ie,f1(ω, ω1) = Ie,f2(ω, ω1)−1, (124)while for an orientation-reversing edge
Ie,f1(ω, ω1) = Ie,f2(σ

∗ω, σ∗ω1) (125)holds. In the latter 
ase, sin
e e is orientation-reversing, we have either
ori(e)(e) = ori(f1)(e) or ori(e)(e) = ori(f2)(e), so that we 
an write just Ie(ω, ω1),where the for f the 
hoi
e of the fa
e with the 
oin
iding orientation isunderstood. 30



Third, if v is a vertex of an edge e, we de�ne for some smooth fun
tion
ωi : Ûi → U(1)

Iv,e,f(ω) := ω
ε(f,e,v)
i(v) (ori(f)(v)). (126)Now if v is the 
ommon vertex of two orientation-reversing edges e1, e2 ∈

Ē, we 
all v orientation-preserving, if ori(e1)(v) = ori(e2)(v) and orientation-reversing otherwise. Let us denote the set of orientation-reversing verti
es by
V̄ . If v is su
h a vertex, we just write Iv(ω) instead of Iv,e,f(ω), where for ethe 
hoi
e of the edge as well as for f the fa
e with the 
oin
iding orientationis understood.Now the �rst fa
tor in the holonomy formula (103) is

exp

(

i

∫

F

ρ̂

)

= exp

(

i
∑

f∈T

∫

ori(f)(f)

φ̂∗Bi(f) + dMi(f)

) . (127)Following [CJM02℄, by using Stoke's theorem, equation (118) and our abbre-viations, we end up with
exp

(

i

∫

F

ρ̂

)

=
∏

f∈T

If(φ̂
∗g, φ̂∗A, φ̂∗B) ·

∏

f∈T

∏

e∈∂f

Ie,f(h, M)−1. (128)Here the se
ond fa
tor 
olle
ts the boundary 
ontributions that appear inthe appli
ation of Stoke's theorem.Let us assume for the moment that Σ the oriented, and all se
tions ori
oin
ide with the global orientation restri
ted to Ui. In this situation, wehave only orientation preserving edges, and ea
h of them appears twi
e inthe se
ond fa
tor. Sin
e the 
ontributions are inverse by (124), the se
ondfa
tor vanishes. We obtain the lo
al holonomy formula expressed only by thelo
al data of the gerbe, as it appeared originally in [Alv85℄.If Σ is not oriented, the se
ond fa
tor still 
onsists of two 
ontributionsfor ea
h orientation-reversing edge e ∈ Ē, whi
h are
Ie,f1(h, M) · Ie,f2(h, M) = Ie(h · σ∗h, M + σ∗M). (129)Hen
e, in the general 
ase, the se
ond fa
tor of (128) is
∏

f∈T

∏

e∈∂f

Ie,f(h, M)−1 =
∏

e∈Ē

Ie(h · σ∗h, M + σ∗M)−1. (130)For the se
ond fa
tor of the holonomy formula (103) we have to 
omputethe holonomy of the des
ent line bundle Q around ∂F . Note that
ˆ̄E :=

⋃

e∈Ē

ori(e)(e) (131)31



is a fundamental domain of ∂F in ∂F with boundary 
onsisting of the preim-ages of the orientation-reversing verti
es v ∈ V̄ . Now the holonomy of Qaround ∂F is equal to the the holonomy of R̂ around ˆ̄E, where at the bound-ary points the equivariant stru
ture of R̂ is used, this is
holQ(∂F ) =

∏

e∈Ē

Ie(r, R) ·
∏

v∈V̄

Iv(φ̂
∗j). (132)Sin
e e is orientation-reversing,

Ie(r, R) = Ie(φ̂
∗t · σ∗h−1 · h−1, φ̂∗W − σ∗M − M) (133)

= Ie(φ̂
∗t, φ̂∗W ) · Ie(h · σ∗h, M + σ∗M)−1. (134)The se
ond fa
tor of (134) 
an
els (130) so that all the lo
al data 
omingfrom the trivialization drops out. It remains

holG,J (Σ, φ̂) =
∏

f∈T

If(φ̂
∗g, φ̂∗A, φ̂∗B) ·

∏

e∈Ē

Ie(φ̂
∗t, φ̂∗W )−1 ·

∏

v∈V̄

Iv(φ̂
∗j), (135)depending only on the lo
al data of the gerbe and of the Jandl stru
ture. Wevisualize this formula in Figure 4.3.4 ExamplesIn the next two subse
tions we will apply the general formula (135) to someexamples of surfa
es Σ, and we will simplify the situation 
onsiderably bystarting with the pullba
k gerbe φ̂∗G whi
h allows us to 
hoose a triangulationadapted to Σ.3.4.1 Klein BottleThink of the Klein bottle as a re
tangle with the identi�
ations of the bound-ary indi
ated by arrows as in Figure 5. The identi�
ation by the verti
alarrows is orientation-preserving, while the one by the horizontal arrows isorientation-reversing. A dual triangulation is shown in Figure 6. Note thatthis is a triangulation with only one fa
e. We 
hoose a lo
al se
tion fromthat fa
e into the double 
over, and de�ne the fundamental domain F asits image, as indi
ated in Figure 7. Here we dropped the arrows, but theidenti�
ations are still to be understood, so that both points labelled by vare identi�ed. This means, that we 
an 
hoose the lo
al orientations of theedges su
h that the orientation-reversing edges form a 
losed line, as indi-
ated by the thi
k line. So there is no orientation-reversing vertex, and thelo
al datum j of the Jandl stru
ture is not relevant for the holonomy aroundthe Klein bottle. 32
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φ̂∗Bi

φ̂∗Bj
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φ̂∗Bm
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Figure 4: Assignment of lo
al data. The middle layer shows
Σ and the subordinated indi
es; the top and lower layer showparts of the two sheets of Σ̂.

Figure 5: Klein Bottle.
Figure 6: Klein Bottle with a dual triangulation.
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F

F

v v

Figure 7: A fundamental domain for the Klein Bottle inits double 
overing.
3.4.2 The real proje
tive PlaneWe pro
eed in the same way as for the Klein bottle, so think of the realproje
tive plane RP 2 as a two-gon with the identi�
ation on the boundary

Figure 8: The real proje
tive plane.indi
ated by arrows in Figure 8. The identi�
ation is orientation-reversing.An example of a dual triangulation is for example shown in Figure 9. Now we
i
i

jjFigure 9: A dual triangulation of the real proje
tive planewith two fa
es.
hoose lo
al se
tions from these two fa
es into the double 
over, for exampleas shown in Figure 10. Note that here the thi
k line is not a 
losed line in
Σ̂, and v is an orientation-reversing vertex. A

ording to the lo
al holonomyformula (135) here the lo
al datum j of the Jandl stru
ture enters in theholonomy.
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F
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v

v

Figure 10: A fundamental domain of the real proje
tiveplane in its double 
overing.4 Gerbes and Jandl Stru
tures in WZW Mod-els4.1 Oriented and orientable WZW ModelsIn the following we are 
on
erned with Lie groups M , and we will use thefollowing notation. The left multipli
ation with a group element h is denotedby lh : M → M , and the map whi
h assigns to h the inverse group element
h−1 is denoted by Inv : M → M . The left invariant Maurer-Cartan form isdenoted by θ, and the right invariant form by θ̄. We 
all a gerbe G over Mleft invariant, if it is stably isomorphi
 to the gerbe l∗hG for ea
h h ∈ M , andsimilar for right and bi-invarian
e.A WZW model is a theory of maps φ : Σ → M from a worldsheet Σ intoa target spa
e M , whi
h is a Lie group together with additional stru
ture,
alled the ba
kground �elds. It assigns to ea
h map φ an amplitude, i.e. anumber in U(1), as the weight of this map in a path integral. To be morepre
ise:De�nition 11. An oriented WZW model 
onsists of a 
ompa
t 
onne
tedLie group M , whi
h is equipped with an Ad-invariant metri
 g = 〈−,−〉 onits Lie algebra and a bi-invariant gerbe G. It assigns an amplitude

Aortd
g,G (φ, Σ) := exp (iSkin(φ)) · holG(Σ, φ) (136)to a map φ : Σ → M from a 
losed oriented 
onformal worldsheet Σ to M ,where the kineti
 term is

Skin(φ) :=
1

2

∫

Σ

〈φ∗θ ∧ ⋆φ∗θ〉 . (137)Note that the 
onformal stru
ture and the orientation on Σ determinethe Hodge star. 35



In [Wit84℄ Witten dis
ussed this theory for M = SU(2), whi
h is anexample for a 
ompa
t, simple, 
onne
ted and simply-
onne
ted Lie group.In this parti
ular situation, the holonomy 
an be written as the exponentialof the Wess-Zumino term,
holG(Σ, φ) = exp

(

i

∫

B

φ̃∗H

) , (138)so that we 
an express the amplitudes as
Aortd

g,G (φ, Σ) = exp(iSWZW(φ)) (139)with the a
tion fun
tional
SWZW(φ) := Skin(φ) +

∫

B

φ̃∗H . (140)Here B is a 3-dimensional manifold with boundary Σ, φ̃ is an extension of φon B, and H is the 
urvature of the gerbe G.Witten observed two symmetries of the WZW model on the type of Liegroups he 
onsidered. The �rst is translation symmetry: the a
tion fun
tional
SWZW(φ) is invariant under the translation φ 7→ lh ◦ φ. The asso
iated
onserved Noether 
urrent is given by

J(φ) := −(1 + ⋆)φ∗θ, (141)whi
h is a 1-form on Σ with values in the Lie algebra of M . To obtain this
onserved, non-abelian 
urrent, Witten derived a spe
i�
 relative normal-ization of the kineti
 and the Wess-Zumino term, whi
h was also adaptedhere.The se
ond symmetry Witten observed is the invarian
e of the a
tionfun
tional SWZW(φ) under what he 
alled parity transformation: reverse theorientation on Σ and repla
e φ by φ̄ := Inv ◦ φ. A

ordingly, the 
onserved
urrent J(φ) for Σ and the one for Σ̄, the manifold Σ with reversed orienta-tion, namely
J̄(φ̄) = (1 − ⋆)φ∗θ̄, (142)are often 
alled equivalent. Note that here the right invariant Maurer-Cartanform appears. In that sense, the parity transformation ex
hanges left andright movers.We now want to generalize this equivalen
e to any 
ompa
t 
onne
tedLie group M . It is a simple 
onsequen
e of the properties of the holonomyof G, that the parity symmetry

Aortd
g,G (φ, Σ) = Aortd

g,G (Inv ◦ φ, Σ̄) (143)36



holds, if the gerbes Inv∗G and G∗ are stably isomorphi
. Note that this is a
ondition on the gerbe G. It should not 
ome as a surprise that in Witten'sdis
ussion there is no su
h 
ondition:Lemma 6. If G is a bi-invariant gerbe over a 
ompa
t, simple, 
onne
tedand simply 
onne
ted Lie group, then Inv∗G and G∗ are stably isomorphi
.Proof. Be
ause stably isomorphi
 gerbes have the same 
urvatures, the
urvature H of the bi-invariant gerbe G is a bi-invariant 3-form. It is atheorem by Cartan, that on 
ompa
t, simple, 
onne
ted, simply 
onne
tedLie groups M the spa
e of bi-invariant 3-forms is the span of the 
anoni
al3-form ν, whi
h satis�es Inv∗ν = −ν. Hen
e Inv∗G and G∗ have the same
urvature. Be
ause the set of stable isomorphism 
lasses of gerbes of same
urvature form a torsor over H2(M, U(1)) [GR02℄, whi
h here is the trivialgroup, the gerbes Inv∗G and G∗ are stably isomorphi
. �We now give an even more general de�nition of parity transformations ofa target spa
e M with metri
 g and gerbe G.De�nition 12. A parity transformation map is an isometry k : M → M ofthe metri
 g of order two, su
h that k∗G and G∗ are stably isomorphi
. Wedenote the set of parity transformation maps by P (M, g,G).Consider an oriented WZW model with target spa
e M , Ad-invariantmetri
 g and bi-invariant gerbe G. If k ∈ P (M, g,G) is a parity transforma-tion map, we obtain the parity symmetry
Aortd

g,G (φ, Σ) = Aortd
g,G (k ◦ φ, Σ̄). (144)We already dis
ussed that k = Inv is a parity transformation map inthe sense of De�nition 12, if the gerbes Inv∗G and G∗ are stably isomorphi
.However, for oriented WZW models on 
ompa
t 
onne
ted Lie groups thereare more su
h parity transformation maps. Be
ause the gerbe G is supposedto be bi-invariant, we try an ansatz k := lh ◦ Inv for some group element

h ∈ M . The 
ondition k2 = idM restri
ts h to be an element of the 
enter
Z(M). So, the set P (M, g,G) of parity transformation maps for a 
ompa
t
onne
ted Lie group M and a bi-invariant gerbe G, su
h that G∗ is stablyisomorphi
 to Inv∗G, 
ontains at least

{lz ◦ Inv | z ∈ Z(M)} ⊂ P (M, g,G). (145)In parti
ular, P (M, g,G) is not empty in the situation we are interested in.37



As a preparation for the unoriented 
ase, we now relate parity symmetryto the orientation 
over Σ̂: Start with an oriented WZW model on Σ togetherwith a parity transformation map k. Let φ : Σ → M be a map. By Lemma 3,there is a unique map φ̂ ∈ C∞(Σ̂, M)k,σ. On
e we have the orientation 
over
Σ̂ and the map φ̂, we may forget their origin, in parti
ular the orientationon Σ. Then we may give the followingDe�nition 13. An orientable WZW model 
onsists of a 
ompa
t 
onne
tedLie group M , whi
h is equipped with an Ad-invariant metri
 g on its Lie alge-bra, a bi-invariant gerbe G and a parity transformation map k ∈ P (M, g,G).To a 
losed orientable 
onformal surfa
e Σ and a map φ̂ ∈ C∞(Σ̂, M)k,σ, thefollowing amplitude Aorble

g,G (φ̂, Σ) is assigned. Choose any orientation on Σ,and obtain a map φ : Σ → M by Lemma 3. De�ne
Aorble

g,G (φ̂, Σ) := Aortd
g,G (φ, Σ). (146)The amplitude is well-de�ned: if we had 
hosen the other orientation, wewould get the same amplitudes, due to the fa
t that k is a parity transfor-mation map and satis�es equation (144).4.2 Unoriented WZW ModelsIn the last se
tion we gave the de�nition of an orientable WZW model. Thederivation of the amplitude of a map φ̂ ∈ C∞(Σ̂, M)k,σ makes use of theexisten
e of an orientation on Σ both in the kineti
 term and in the holonomyterm. In this se
tion, we want to over
ome this obstru
tion.Let us �rst dis
uss the kineti
 term. We want to de�ne the kineti
 term

Skin(φ̂) for a map φ̂ ∈ C∞(Σ̂, M)k,σ in su
h a way that if Σ is orientable, itredu
es to the kineti
 term Skin(φ) of the 
orresponding map φ. Note that
L(φ̂) :=

1

2

〈

φ̂∗θ ∧ ⋆φ̂∗θ
〉 (147)is a 2-form on Σ̂, whi
h satis�es

σ∗L(φ̂) = −L(φ̂). (148)This property tells us that L(φ̂) de�nes a 2-density Lden(φ̂) [BT82, BG88℄on Σ. The integral of a 2-density over a surfa
e is de�ned without respe
t tothe orientability of this surfa
e, so we de�ne
Skin(φ̂) :=

∫

Σ

Lden(φ̂). (149)38



To make the integral (149) more expli
it, 
hoose a triangulation T of Σ,and for ea
h fa
e f ∈ T a lo
al se
tion orf : Uf → Σ̂, where Uf is some openneighborhood of f in Σ. By de�nition of the integral of a density,
Skin(φ̂) =

∑

f∈T

∫

orf (f)

L(φ̂). (150)One immediately 
he
ks that this de�nition is independent of the 
hoi
e ofthe lo
al se
tions: if one 
hooses for one fa
e f the other orientation, namely
σ(orf), the 
orresponding term in the sum (150),

∫

σ(orf (f))

L(φ̂) = −

∫

orf (f)

σ∗L(φ̂) =

∫

orf (f)

L(φ̂), (151)gives the same 
ontribution. It is also independent of the 
hoi
e of thetriangulation. Furthermore, if Σ is orientable, we 
an 
hoose a triangulationwith a single fa
e f = Σ and get Skin(φ̂) = Skin(φ), whi
h was pre
isely ourrequirement on Skin(φ̂).We have already dis
ussed in se
tion 3 how to de�ne surfa
e holonomiesfor an arbitrary 
losed surfa
e Σ with a map φ̂ ∈ C∞(Σ̂, M)k,σ: we have to
hoose a Jandl stru
ture J on G. Then holG,J (φ̂, Σ) is de�ned in De�nition10 in su
h a way that if Σ is orientable, it 
oin
ides by Theorem 3 with
holG(φ, Σ). Remember that a ne
essary 
ondition on the existen
e of a Jandlstru
ture J = (k,−,−) was that the gerbes k∗G and G∗ are stably isomor-phi
. We already have en
ountered this 
ondition for the orientable WZWmodel, so that it does not 
ome as an additional restri
tion. This leads usto the followingDe�nition 14. An unoriented WZW model 
onsists of a 
ompa
t 
onne
tedLie group M , whi
h is equipped with an Ad-invariant metri
 g on its Lie-algebra and a bi-invariant gerbe G with Jandl stru
ture J , whose a
tion of Z2on M is a parity transformation map k ∈ P (M, g,G). To a 
losed 
onformalsurfa
e Σ and a map φ̂ ∈ C∞(Σ̂, M)k,σ the amplitude

Aunor
g,G,J (φ̂, Σ) := exp

(

iSkin(φ̂)
)

· holG,J (φ̂, Σ). (152)is assigned.A

ording to the de�nition of both fa
tors, if Σ is orientable, we have
Aunor

g,G,J (φ̂, Σ) = Aorble
g,G (φ̂, Σ). (153)If Σ is even oriented, by equation (146) we have

Aunor
g,G,J (φ̂, Σ) = Aortd

g,G (φ, Σ). (154)39



4.3 Cross
aps and the trivial line bundleIn the following two se
tions we use the 
lassi�
ation of Jandl stru
tures to
lassify unoriented WZW models with a �xed gerbe G and a �xed paritytransformation map k ∈ P (M, g,G). By Theorem 1, the set of equivalen
e
lasses of Jandl stru
tures of G with the a
tion of K = Z2 on M de�ned by kis a torsor over the �at K-equivariant Pi
ard group PicK
0 (M). In this se
tionwe dis
uss a spe
ial element of this group.On any manifold, there is the trivial line bundle L1 := M × C with thetrivial hermitian metri
 and the trivial 
onne
tion, whi
h is �at. It representsthe unit element of the �at Pi
ard group Pic0(M).Re
all the following fa
ts 
on
erning equivariant line bundles [Gom03℄.There are two obstru
tions for a given line bundle to admit equivariant stru
-tures: the �rst depends on the bundle and the group a
tion, namely that

k∗L ⊗ L∗ ∼= L1, (155)whi
h is still to be understood as an equation of hermitian line bundles with
onne
tion. The se
ond obstru
tion is a 
lass in the group 
ohomology group
H2Grp(K, U(1)). Now, if both obstru
tions are absent, the possible equivariantstru
tures are parameterized by the group 
ohomology group H1Grp(K, U(1))whi
h is just the group of one-dimensional 
hara
ters of K. In our 
ase
K = Z2 we have

H1Grp(K, U(1)) = Z2 (156)
H2Grp(K, U(1)) = 0 (157)so that the se
ond obstru
tion vanishes, and every line bundle L, whi
hsatis�es the remaining obstru
tion (155) admits exa
tly two K-equivariantstru
tures.In parti
ular L1 itself satis�es (155). We exhibit its two equivariant stru
-tures expli
itly. Remember from se
tion 2.2, that we have to 
hoose an iso-morphism

ϕ : k∗L1 → L1 (158)of line bundles, su
h that ϕ ◦ k∗ϕ = idL1 . So the both 
hoi
es are either
ϕ1 = idM×C or ϕ−1 : (x, z) 7→ (x,−z). We denote L1 together with theequivariant stru
ture ϕ1 by LK

1 . It represents the unit element of PicK
0 (M).We denote L1 together with the equivariant stru
ture ϕ−1 by LK

−1. Note that
LK
−1⊗LK

−1 = LK
1 as equivariant line bundles. Hen
e it represents a non-trivialelement of order two in PicK

0 (M).The whole 
onstru
tion is 
ompletely independent of M , so PicK
0 (M) al-ways 
ontains at least these two elements. As a 
onsequen
e, if a gerbe G40



admits a Jandl stru
ture J , then LK
−1.J is another, inequivalent Jandl stru
-ture on G. We will now investigate the di�eren
e between the 
orrespondingunoriented WZW models.We work with lo
al data, so let {Vi}i∈I be a good open 
over of M . Chooseall the se
tions that have been introdu
ed in se
tion 2.4, and extra
t lo
aldata (t, W ), j of the Jandl stru
ture J . We also explained how to extra
t alo
al datum νi : Vi → U(1) from an equivariant stru
ture on a line bundleover M . The lo
al datum of LK

1 is the 
onstant global fun
tion ν1 = 1, andthe lo
al datum of LK
−1 is the 
onstant global fun
tion ν1 = −1.A

ording to the de�nition of the a
tion of PicK

0 (M) on Jdl(G, k), thelo
al data of LK
−1.J are (t, W ) and −j. Now observe the o

urren
es ofthe lo
al datum j in the lo
al holonomy formula (135): it appears for ea
horientation-reversing vertex v ∈ V̄ . Following our example in se
tion 3.4.2,this happens in the presen
e of a 
ross
ap. We 
on
lude that the amplitudesof both unoriented WZW models with Jandl stru
tures J and LK

−1.J di�erby a sign for ea
h 
ross
ap in Σ.4.4 Examples of target spa
esWe would like to dis
uss three examples of target spa
es, namely the Liegroups SU(2), SO(3), where the Ad-invariant metri
 on their Lie algebras isgiven by their Killing forms, and the two-dimensional torus T 2 = S1×S1 withthe eu
lidean s
alar produ
t. The gerbes are supposed to be bi-invariant.4.4.1 The Lie group SU(2)Following our general dis
ussion, the a
tions of Z2 on SU(2) we have to
onsider are given by k : g 7→ g−1 and k : g 7→ −g−1, where −1 ∈ Z(SU(2))is the non-trivial element in the 
enter. The same maps were 
onsidered in[HSS02, Bru02, BCW01℄.Fix a bi-invariant gerbe G over SU(2). Up to stable isomorphism, thisis G = G⊗n
0 , where G0 is the basi
 gerbe over SU(2) [Mei02℄. By Lemma 6,both k's are parity transformation maps.The set Jdl(G, k) is a torsor over PicK

0 (SU(2)) by Theorem 1. In orderto 
ompute the group of equivariant �at line bundles, we �rst observe
Pic0(M) = Hom(π1(M), U(1)) = 0, (159)sin
e SU(2) is simply 
onne
ted. So up to isomorphism there is only one �atline bundle, the trivial one. Hen
e there are exa
tly two inequivalent Jandlstru
tures for ea
h map k and ea
h bi-invariant gerbe G; this is in agreementwith the results of [PSS95a, PSS95b℄41



4.4.2 The Lie group SO(3)The 
enter of SO(3) is trivial, so that we have only one a
tion to 
onsider,namely by k : g 7→ g−1. Let G be a bi-invariant gerbe over SO(3), su
hthat k∗G and G∗ are stably isomorphi
. Su
h gerbes for example are 
on-stru
ted up to stable isomorphism in [GR03℄. We have to investigate thegroup PicK
0 (SO(3)) of �at equivariant line bundles. Again we �rst 
onsiderthe group Pic0(SO(3)) of �at line bundles and 
lassify equivariant stru
tureson them.By π1(SO(3)) = Z2 we have

Hom(π1(SO(3)), U(1)) = Hom(Z2, U(1)) = Z2, (160)so there are - up to isomorphism - two �at line bundles. We will give themexpli
itly: As SO(3) is the quotient of SU(2) by q : g 7→ −g, the two �atline bundles over SO(3) 
orrespond to the two equivariant �at line bundlesover SU(2), namely LK
1 and LK

−1 .Clearly, LK
1 des
ends to the trivial �at line bundle L̃1 → SO(3), whi
hadmits equivariant stru
tures, more pre
isely, a

ording to the dis
ussion inse
tion 4.3, there are two of them. LK

−1 des
ends to a non-trivial �at linebundle L̃−1 → SO(3), and we have to ask whether it admits equivariantstru
tures, whi
h is equivalent to the 
ondition, that
dL̃−1 := k∗L̃−1 ⊗ L̃∗

−1
∼= L̃1. (161)Now dL̃−1 is a �at line bundle, and hen
e either isomorphi
 to L̃−1 or to

L̃1. Be
ause Pic0(SO(3)) is a group of order two, we have L̃−1 ⊗ L̃−1 = L̃1.The assumption dL̃−1
∼= L̃−1 would therefore mean k∗L̃−1

∼= L̃1 whi
h is a
ontradi
tion sin
e L̃1 is the trivial bundle and k∗L̃−1 is not. Hen
e (161) istrue, and L̃∗
−1 admits two equivariant stru
tures.All together, there are four equivariant �at line bundles over SO(3) andhen
e four Jandl stru
tures on G; again, this is in agreement with [PSS95a,PSS95b℄.4.4.3 The two-dimensional Torus T 2For dimensional reasons, all gerbes over T 2 are trivial and have 
urvature

H = 0. This allows us to dis
uss an example with a parity transformationmap k, whi
h is not of the form k = lz ◦ Inv but simply the identity map
k = id. This allows us to make 
onta
t with [BPS92℄.Now let G be a bi-invariant gerbe over T 2. The set Jdl(G, id) is atorsor over PicK

0 (T 2) by Theorem 1, whi
h is isomorphi
 to H1
K(T 2, U(1))42



by equation (33). The Borel spa
e asso
iated to the trivial K-a
tion is
T 2

K = EZ2 × T 2. With EZ2 = RP∞ we have
H1

K(T 2, U(1)) = H1(T 2
K , U(1))

= H1(RP∞, U(1)) ⊕ H1(T 2, U(1))

= Z2 ⊕ U(1) ⊕ U(1)

= Z2 ⊕ T 2.We now assume that the gerbe G admits a Jandl stru
ture J = (id,A, ϕ).In parti
ular, A = (A, α) is a stable isomorphism from G to G∗. Re
all thata gerbe G 
onsist of the following data: a surje
tive submersion π : Y → M ,a line bundle L → Y [2], an isomorphism µ, and a 2-form C ∈ Ω2(Y ). Re
allfurther that here A is a line bundle over Z = Y [2], and both proje
tions pand p′ from Z to Y 
oin
ide with π2, π1 : Y [2] → Y .The 
ondition on the 
urvature of A in De�nition 3 now reads
curv(A) = π∗

1C + π∗
2C. (162)Furthermore, sin
e for all gerbes the 
urving C satis�es −π∗

2C + π∗
1C =

curv(L), we have
2π∗

2C = curv(A) − curv(L), (163)whi
h is an equation of 2-forms on Y [2]. On the right hand side we have a
losed 2-form whi
h de�nes an integral 
lass in 
ohomology. Sin
e π2 is asurje
tive submersion, also 2C de�nes a 
lass in H2(Y, Z).Be
ause the gerbe G is trivial, we 
an 
hoose a trivialization T and obtainthe 2-form B ∈ Ω2(M) as in De�nition 7, whi
h satis�es π∗B = C +curv(T )and dB = H = 0. Usually one 
hooses T su
h that B is 
onstant, then itis nothing but the Kalb-Ramond �B-Field�. Be
ause π is also a surje
tivesubmersion it follows that 2B de�nes a 
lass in H2(M, Z). Thus we havederived the quantization 
ondition that the B-Field has half integer valuedperiods. This 
ondition was originally found in [BPS92℄ by an analysis of thebulk spe
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