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THE COLLAPSE OF THE PERIODICITY SEQUENCE IN THE

STABLE RANGE

BIRGIT RICHTER

Abstract. The stabilization of Hochschild homology of commutative algebras
is Gamma homology. We describe a cyclic variant of Gamma homology and
prove that the associated analogue of Connes’ periodicity sequence becomes
almost trivial, because the cyclic version coincides with the ordinary version
from homological degree two on. We offer an alternative explanation for this
by proving that the B-operator followed by the stabilization map is trivial

from degree one on.

1. Introduction

Given a commutative algebra A there are several homology theories available
that can help to understand A. Hochschild homology and cyclic homology of A are
related by Connes’ periodicity sequence

. . .→ HH n(A)
I
−→ HCn(A)

S
−→ HCn−2(A)

B
−→ HH n−1(A)→ . . .

which is a good means for comparing Hochschild homology with its cyclic variant.
Using the commutativity of A we could consider André-Quillen homology as well.

Viewing A as an E∞-algebra with trivial homotopies for commutativity allows us
to consider André-Quillen homology in the category of differential graded E∞-
algebras as defined by Mike Mandell [M]. This homology theory coincides with
Alan Robinson’s Gamma homology [Ro, BR] which in turn can be interpreted as
stabilization of Hochschild homology of A by [PR, Theorem 1].

This homology theory has the feature that it coincides with André-Quillen ho-
mology for Q-algebras [RoWh, Theorem 6.4].

The Hodge decomposition for Hochschild homology for commutative algebras
whose base ring contain the rationals splits André-Quillen homology off as the

first summand HH (1)
∗
∼= AQ∗−1 in the decomposition (see [GS, L2, NS]). Cyclic

homology splits similarly and from degree three on the first summand HC (1)
∗ of

that decomposition is again André-Quillen homology, AQ∗−1. It is known that the
periodicity sequence passes to a sequence for the decomposition summands [L2, NS],

. . .→ HH (i)
n (A)

I
−→ HC (i)

n (A)
S
−→ HC

(i−1)
n−2 (A)

B
−→ HH

(i)
n−1(A)→ . . .

Therefore rationally the periodicity sequence collapses in higher degrees for the
first decomposition summand, because there the map I becomes an isomorphism.
One could guess that this is a defect of working over the rationals, but we will show
in the course of this paper that this is not the case.

Robinson and Whitehouse proposed a cyclic variant of Gamma homology of
differential graded E∞-algebras over a cyclic E∞-operad in [RoWh].
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2 BIRGIT RICHTER

Motivated by the application of Gamma homology to obstruction theories for E∞

ring structures on ring spectra (see [Ro]) we construct a cyclic variant of Gamma
homology in the restricted case of commutative algebras which arises naturally from
the interpretation of Gamma homology as stable homotopy of certain Γ-modules.

The aim of this paper is to deduce a periodicity sequence for Gamma homology
and its cyclic version. It turns out, however, (cf. 4.4) that cyclic Gamma homology
coincides with usual Gamma homology from homological degree two on; hence
this sequence collapses. We can explicitly describe (see Propositions 5.4 and 5.5)
cyclic Gamma homology in small degrees in terms of ordinary cyclic homology and
deRham cohomology.

As one explanation for this behavior we show (Theorem 6.6) that the composition
of the stabilization map with the B-operator is trivial in degrees bigger than zero.
For large enough degrees the stable and unstable periodicity sequence are related
as follows:

. . . // HCn+2(A)
S // HCn(A)

0

&&M
M

M
M

M
M

M
M

M
M

B // HHn+1(A)
I //

stab

��

HCn+1(A)
S // . . .

. . . // HΓCn+1(A) // 0 // HΓn(A)
∼= // HΓCn(A) // . . .

Our results must disappoint everybody who hoped that a cyclic version of Gamma
homology would help to calculate Gamma homology and probably identify obstruc-
tion classes in the setting of [Ro]. However, we clarify the rôle Gamma homology
plays as a stabilization of Hochschild homology.

The proofs use the extension of the definitions of cyclic, Hochschild and Gamma
homology to functor categories. We recall the necessary prerequisites from [L, P,
PR].

Lars Hesselholt proved an analogous phenomenon in the setting of topological
Hochschild homology. Fix an arbitrary prime p. In [H] he showed that the equiva-
lence between stable K-theory and topological Hochschild homology is reflected in
an equivalence between the p-completions of the stabilization of topological cyclic
homology and p-completed topological Hochschild homology.

2. The category F and F-modules

We recall the definition of cyclic homology from [L, §6] (see also [P, §3]). Let F
denote the skeleton of the category of finite unpointed sets and let n be the object
{0, . . . , n} in F . We call functors from F to the category of k-modules F -modules.
Here k is an arbitrary commutative ring with unit. For a set S we denote by k[S]
the free k-module generated by S.

The projective generators for the category of F -modules are the functors Fn

given by

Fn(m) := k[F(n, m)];

whereas the category of contravariant functors from F to k-modules has the family
Fn with

Fn(m) := k[F(m, n)]

as generators.
For two F -modules F and F ′ let F ⊗ F ′ be the pointwise tensor product of F

and F ′, i.e., F ⊗ F ′(n) = F (n) ⊗ F ′(n). As a map in F from the object 0 to an
object m just picks an arbitrary element, one obtains that (F0)⊗n ∼= Fn−1. The
functor F0 is an analog of the functor L from [PR] in the unpointed setting and
the tensor powers (F0)⊗n ∼= Fn−1 for n > 1 correspond to L⊗n.
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Given a unital commutative k-algebra A, the F -module which gives rise to cyclic
homology of A is the functor L(A) that sends n to A⊗n+1. A map f : n→ m induces
f∗ : L(A)(n)→ L(A)(m) via

f∗(a0 ⊗ . . .⊗ an) = b0 ⊗ . . .⊗ bm, with bi =
∏

j∈f−1(i)

aj .

Here we set bi = 1 if the preimage of i is empty.
For any F -module F , cyclic homology of F , HC ∗(F ), can be defined [P, 3.4] as

the homology of the total complex associated to the bicomplex

...

b

��

...

b

��

...

b

��

F (2)

b

��

F (1)
B

oo

b

��

F (0)
B

oo

F (1)

b

��

F (0)
B

oo

F (0)

In particular, cyclic homology of A, HC ∗(A), is the homology of this total complex
applied to the functor L(A). We recall the definition of b in (1) and the one of B
in Definition 5.1.

3. The relationship to the category Γ

Let Γ be the skeleton of the category of pointed finite sets and let [n] be the object
[n] = {0, . . . , n} with 0 as basepoint. The projective generators of the category of
Γ-modules are the functors Γn given by

Γn[m] = k[Γ([n], [m])].

There is a natural forgetful functor µ : Γ→ F and the left adjoint to µ, ν : F → Γ,
which adds an extra basepoint ν(m) = [m + 1]. Pulling back with these functors
transforms Γ-modules into F -modules and vice versa:

µ∗ : F −modules // Γ−modules : ν∗oo

In [P, Proposition 3.3] Pirashvili shows that

Tor
F
∗ (ν∗F, G) ∼= Tor

Γ
∗ (F, µ∗G).

Lemma 3.1. The functor Fn pulled back along µ is isomorphic to Γn+1.

Proof. We first show that the Γ-module µ∗(F0) is isomorphic to Γ1: On every
object [n] we obtain that

µ∗(F0)[n] = F0(n) = k[F(0, n)] ∼= kn+1

because the value of a function f ∈ F(0, n) on 0 can be an arbitrary element i ∈ n.
The Γ-module Γ1 has the same value on [n], because a function g ∈ Γ([1], [n]) has
an arbitrary value on 1 but sends zero to zero. As we just allow pointed maps, the
two functors are isomorphic.

The general case easily follows by direct considerations or by using the decom-
positions of Fn and Γn+1 as (n + 1)-fold tensor products Fn ∼= (F0)⊗n+1 and
Γn+1 ∼= (Γ1)⊗n+1. �
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Recall, that Hochschild homology of a Γ-module G, HH ∗(G), can be defined as
the homology of the complex

(1) G[0]
b
←− G[1]

b
←− · · ·

where b =
∑n

i=0 G(di) and di is the map of pointed sets that for i < n sends i and
i + 1 to i and is bijective and order preserving on the other values in [n]. The last
map, dn, maps 0 and n to 0 and is the identity for all other elements of [n].

Later, we will need the following auxiliary result.

Lemma 3.2. Hochschild homology of a Gamma module G is isomorphic to the
homology of the normalized complex which consist of G[n]/Dn in chain degree n
where Dn ⊂ G[n] consists of all elements of the form (si)∗F [n− 1] where si is the
order preserving injection from [n− 1] to [n] which misses i.

Proof. This result just uses the standard fact that the Hochschild complex is the
chain complex associated to a simplicial k-module and the elements in Dn corre-
spond to the degenerate elements; therefore the complex D∗ is acyclic. �

A similar result applies to cyclic homology of F -modules.
Let S1 = ∆1/∂∆1 denote the standard model of the simplicial 1-sphere. Re-

call from [L, P] that Hochschild homology of a commutative unital k-algebra A,
HH ∗(A), coincides with the homotopy groups of the simplicial k-module µ∗L(A)(S1).
Here, we evaluate µ∗L(A) degreewise. More general, Hochschild homology of any
Γ-module G coincides with π∗G(S1).

4. Gamma homology and its cyclic version

Let t be the contravariant functor from Γ to k-modules which is defined as

t[n] = HomSets∗([n], k)

where Sets∗ denotes the category of pointed sets. Pirashvili and the author proved
in [PR] that Gamma homology of any Γ-module G, HΓ∗(G), is isomorphic to

Tor
Γ
∗ (t, G). In particular, Gamma homology of the algebra A, HΓ∗(A) is isomorphic

to Tor
Γ
∗ (t, µ∗L(A)).

For a cyclic variant of Gamma homology, we have to transform the functor t into
a contravariantF -module. Choosing ν∗t does this, but it inserts an extra basepoint.
Killing the value on an additional point amounts to define the F -module t by the
following exact sequence:

0 −→ F0 −→ ν∗(t) −→ t −→ 0.

The transformation from F0 to ν∗t is given by sending a scalar multiple λf of a map
f : n→ 0 to the function in HomSets∗([n +1], k) which sends the points 1, . . . , n +1
to λ.

Proposition 4.1. On the family of projective generators (Fn)n≥0 the torsion

groups with respect to t are as follows:

Tor
F
∗ (t,Fn) ∼=

{
0 for ∗ > 0

kn for ∗ = 0

Proof. It is clear that the torsion groups vanish in positive degrees because the
functors Fn are projective. We have to prove the claim in degree zero, but the
tensor products in question are easy to calculate:

t⊗F F
n ∼= t(n) ∼= kn.

�
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Definition 4.2. We call the group Tor
F
n (t, F ) the nth cyclic Gamma homology

group of the F -module F and denote it by HΓCn(F ).

Remark 4.3. We will see in 5.4 that cyclic Gamma homology of an algebra A in
degree zero behaves analogously to usual Gamma homology whose value in homo-
logical degree zero gives Hochschild homology of degree one.

As the functor F0 is projective, the calculation in proposition 4.1 allows us to
draw the following conclusion.

Corollary 4.4. Cyclic Gamma homology of any F-module F coincides with Gamma
homology of the induced Gamma module µ∗(F ) in degrees higher than 1, i.e.,

HΓC∗(F ) = Tor
F
∗ (t, F ) ∼= Tor

Γ
∗ (t, µ∗F ) ∼= HΓ∗(µ

∗(F )) ∀∗ > 1.

In low degrees the difference between cyclic and ordinary Gamma homology is
measured by the following exact sequence:

0→ Tor
F
1 (ν∗t, F )→ Tor

F
1 (t, F )

δ
−→ F (0)→ ν∗t⊗F F → t⊗F F → 0

which is nothing but

0→ HΓ1(µ
∗F )→ HΓC1(F )→ µ∗F (0)

δ
−→ HΓ0(µ

∗F )→ HΓC0(F )→ 0.

We will obtain more explicit descriptions in the algebraic case in the next section.

5. The B operator

In the unstable situation there is a map B which connects cyclic homology and
Hochschild homology and which gives rise to Connes’ important periodicity se-
quence

· · · −→ HH n(A)
I
−→ HCn(A)

S
−→ HCn−2(A)

B
−→ HH n−1(A) −→ · · ·

In low degrees the map B sends the zeroth cyclic homology of a k-algebra A which
is nothing but A again to the first Hochschild homology group of A which consists
of the module of Kähler differentials Ω1

A|k and the map is given by B(a) = da. If

we consider the first nontrivial parts in the long exact sequence of Tor-groups as
above, arising from the short exact sequence 0→ F0 → ν∗t → t → 0 then, for the
functor L(A), we obtain

· · · → A→ ν∗t⊗F L(A)→ t⊗F L(A)→ 0

and ν∗t ⊗F L(A) is isomorphic to the zeroth Gamma homology group of A which
is the module of Kähler differentials. The map is induced by the natural transfor-
mation from F0 to ν∗t. The aim of this section is to prove that this map is given
by the B-map.

Let us recall the general definition of the B-map for cyclic and Hochschild ho-
mology of functors. The B-map from cyclic homology to Hochschild homology can
be viewed as a map from the nth generator Fn to the (n + 1)st in the following
manner:

Definition 5.1. Let τ be the generator of the cyclic group on n + 1 (resp n + 2)
elements and let s be the map of finite sets which sends i to i + 1. Then the
B-map is defined as a map B : Fn → Fn+1. On a generator f : m → n it is

B(f) := (−1)n(1− τ) ◦ s ◦N ◦ f where N is the norm map N =
∑n+1

i=1 (−1)iτ i.

On the part F (n) ∼= Fn⊗FF of the complex for cyclic homology of F this induces
the usual B-map known from the algebraic case F = L(A), for a commutative
algebra A. By the very definition of the map it is clear that it is well-defined on
the tensor product.
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In our situation we apply the B-map to the first column of the double complex
for cyclic homology of F

...

b

��

...

b

��

...

b

��

F (2)

b

��

F (1)
B

oo

b

��

F (0)
B

oo

F (1)

b

��

F (0)
B

oo

F (0)

and send all other columns to zero. In [P, 3.2] it is shown that ν∗Γn
∼= Fn. Using

this we obtain an isomorphism F (n) ∼= Fn ⊗F F ∼= ν∗Γn ⊗F F ∼= Γn ⊗Γ µ∗F and
see that B gives rise to a map from the total complex for cyclic homology of F to
the complex for Hochschild homology of µ∗(F ).

A verbatim translation of the proof for ([L, 2.5.10, 2.1]) in the case of a cyclic
module to our setting gives the following result:

Lemma 5.2. The map B is a map of chain complexes and therefore induces a map
from HC ∗(F ) to HH ∗+1(µ

∗F ).

Remark 5.3. In degree zero, the B-map from F0 to F1 applied to an f ∈ F0(n)
reduces to (1 − τ) ◦ s ◦ f

We should first make sure that cyclic Gamma homology has the right value in
homological dimension zero.

Proposition 5.4. Cyclic Gamma homology in degree zero is isomorphic to cyclic
homology in degree one. In particular, HΓC0(A) ∼= HC 1(A).

Proof. The cokernel of the map F (0) → ν∗(t) ⊗F F can be determined by a map
from F (0) to F (1): similar to the beginning of the resolution . . .→ Γ2 → Γ1 of t, the
exactness of ν∗ turns this into a resolution . . .→ F1 → F0 of ν∗t. The projectivity
of F0 therefore gives us a lift F (0) → F (1). In this lift only one summand of the
B-map arises: instead of the sum (1 − τ) ◦ s ◦ f a generator f ∈ F0(n) is sent to
s ◦ f . But Hochschild and cyclic homology coincide with their normalized version
(see Lemma 3.2) and the second summand τ ◦ s ◦ f has an image in the degenerate
part.

In the algebraic case, this lift induces a map from A to A ⊗ A which sends a
to 1 ⊗ a. The projection to the Kähler differentials is then just the map a 7→ d(a)
which is the same as the B-map in this dimension. �

Cyclic Gamma homology in dimension one can be explicitly described as well.
In small degrees our Tor-exact sequence looks as follows:

0→ HΓ1(µ
∗F )→ HΓC1(F )

δ
−→ F (0)

B
−→ HH 1(F ).

Therefore we obtain the following.

Proposition 5.5. The difference between cyclic Gamma homology and ordinary
Gamma homology in degree one is measured by the kernel of the B-map.

In the case of the functor L(A) the exact sequence is

0→ HΓ1(A)→ HΓC1(A)
δ
−→ A

d
−→ Ω1

A|k.
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Thus in degree one the difference between Gamma homology and its cyclic version
is measured be the zeroth deRham cohomology of A. For instance, if A is étale,
then HΓ1(A) = 0 = Ω1

A|k and therefore HΓC1(A) ∼= A.

The above calculations in small dimensions suggest that one should view the
sequence of Tor-groups coming from the sequence 0 → F0 → ν∗t → t → 0 as the
stable version of the periodicity sequence. In the algebraic case the two sequences
are nicely related in the following way.

HC1(A)
B // HH2(A)

I //

stab

��

HC2(A)
S // HC0(A)

B // HH1(A) //

stab∼=

��

HC1(A) //

∼=

��

0

0 // HΓ1(A) // HΓC1(A)
δ // A

B // HΓ0(A) // HΓC0(A) // 0

But in higher dimensions the transformation I from the periodicity sequence
becomes an isomorphism. The term F0 ⊗F F ∼= F (0) plays the role of cyclic
Gamma homology in dimension −1.

6. Triviality of the B-map after stabilization

We will prove a result which we like to think of as an explanation of the collapsing
of the periodicity sequence in the stable world: of course one could say that the
isomorphism of cyclic and ordinary Gamma homology in dimensions different from
zero and one explains this phenomenon, but we would like to relate the unstable
periodicity sequence to the stable one by an explicit stabilization process.

Similar to the B-map, we define a stabilization map stab : HH n+1(G)→ HΓn(G)
for a Γ-module G on the corresponding generator Γn+1. A Gamma module G is
called reduced if G[0] = 0. As we have a unique pair of maps [0] → [n] → [0] for
every [n] we can split any Gamma module G as G ∼= G[0] ⊕ G′ such that G′ is
reduced.

Gamma homology of a reduced functor G′ has a description as the homology of
the cubical construction Q∗(G

′) of the functor G (see [Ri, Theorem 4.5] and [PR,
Theorem 1]) and Q∗(G

′) is a tensor product SQ∗ ⊗Γ G′ where SQ∗ is an analog
of the cubical construction of Eilenberg and MacLane on pointed sets. Gamma
homology of an unreduced functor G, e.g., L(A), is then just given as

HΓ∗(G) =

{

G[0] if ∗ = 0

H∗(Q∗(G
′)) if ∗ > 0.

This particular cubical model for a chain complex for Gamma homology will give
us an explicit way of describing the stabilization map.

For each finite pointed set X+ the chain-complex SQ′
∗(X+) in degree n is the

free k-module generated by all families χ(ε1, . . . , εn) of pairwise disjoint subsets of
X indexed by n-tupels of elements εi ∈ {0, 1}. We divide out all elements that map
a face or a diagonal of the cube to the empty set. The result of this normalization
process is SQ∗(X+). The boundary is δ :=

∑n

i=1(−1)i(Pi −Ri − Si). Here

Ri(χ)(ε1, . . . , εn−1) = χ(ε1, . . . , εi−1, 0, εi, . . . , εn−1),
Si(χ)(ε1, . . . , εn−1) = χ(ε1, . . . , εi−1, 1, εi, . . . , εn−1)

and Pi(χ) is given by the pointwise union of Ri(χ) and Si(χ).

Definition 6.1. On a generator f : [m] → [n + 1] with n > 1 the stabilization
map stab : Γn+1 → SQn is defined as stab(f) := χ(f) where χ(f)(ε1, . . . , εn) is the
empty set for all n-tuples which are not of the form (0, . . . , 0, 1, . . . , 1

︸ ︷︷ ︸

i

) for 0 6 i 6 n.
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On these tuples the value of χ(f) is the preimage of i + 1 under the map f :

χ(f)(0, . . . , 0, 1, . . . , 1
︸ ︷︷ ︸

i

) := f−1(i + 1).

For n = 0 we use the convention that χ(f)() = f−1(1).

Example 6.2. Let f be the following map of pointed sets

6

((P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

5

&&M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M

4

))T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T

3 // 3

2
--[[[[[[[[[[[[[[[[[[[[[[[[ 2

1

33ffffffffffffffffffffffff 1

0 // 0.

Then χ(f) ∈ SQ2 is the cube
(
{2, 4} {6}

∅ {1, 3}

)

.

We have to justify that the map stab deserves the name ‘stabilization’. First we
will show that its image is a subcomplex in the cubical construction.

Lemma 6.3. The stabilization induces a map of chain complexes from G(S1)∗ to
Q∗−1(G).

Proof. The boundary of stab(f) with f : [m] → [n + 1] is given as δ(χ(f)) =
∑n

i=1(−1)i(Pi − Ri − Si)(χ(f)) As χ(f) gives the empty set on every n-tuple
(ε1, . . . , εn) which is not of the form (0, . . . , 0, 1, . . . , 1), the summands Ri(χ(f)) and
Si(χ(f)) are degenerate except for R0(χ(f)) which equals χ(dn+1(f)) and Snχ(f)
which corresponds to χ(d0(f)). The summands Piχ(f) evaluated on an n-tuple
(0, . . . , 0, 1, . . . , 1

︸ ︷︷ ︸

j

) give χ(f)(0, . . . , 0, 1, . . . , 1
︸ ︷︷ ︸

j

) for i ≤ n− j, χ(f)(0, . . . , 0, 1, . . . , 1
︸ ︷︷ ︸

j+1

)

for i > n− j +1 and the union of χ(f)(0, . . . , 0, 1, . . . , 1
︸ ︷︷ ︸

j

) and χ(f)(0, . . . , 0, 1, . . . , 1
︸ ︷︷ ︸

j+1

)

for i = n − j + 1. and these are exactly the values of the face maps dn−i+1 for
i = 1, . . . , n. �

Thus the stabilization induces a well-defined map stab : HH n+1(G) → HΓn(G)
for all n greater or equal to zero and for all Γ-modules G. The construction of
stab is analogous to the one in [EM], where Eilenberg and MacLane considered the
stabilization map from the homology of Eilenberg-MacLane spaces to the homology
of the corresponding spectrum. Their result gives one concrete example for the
connection of Hochschild homology and Gamma homology via the stabilization
map.

Example 6.4. Let C be an abelian group. The (n + 1)st Hochschild homology
of the group algebra k[C] with coefficients in the ground ring k is nothing but the
group homology of C with coefficients in k, i.e., the k-homology of the Eilenberg-
MacLane space K(C, 1). The stabilization map has Gamma homology of k[C] as
its target and this is the k-homology of the Eilenberg-MacLane spectrum HC (see
[RiRo]). In this case the stabilization map stab : Hn+1(K(C, 1); k) → HknHC
coincides with the one from [EM, p.547].
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As in [EM, p.546] we denote the subcomplex generated by the image of the

stabilization map by SQ
(0)
∗ ⊗Γ G = Q

(0)
∗ (G). In the following, we will assume that

G is reduced.

Lemma 6.5. Assume that G is reduced. The homology of the subcomplex Q
(0)
∗ (G)

is precisely Hochschild homology of G shifted by one.

Proof. For reduced functors G, we have that G[n] ∼= Γn ⊗Γ G coincides with
G[n]/G[0] which is the cokernel of

Γ0 ⊗Γ G −→ Γn ⊗Γ G.

On the surjective generators of Γn[m]/Γ0[m] the stabilization map is injective and
the surjective maps in Γn[m] correspond to the normalized chains for Hochschild
homology.

Assume that the image of an element y ∈ G[n + 1] in Q
(0)
n (G) is a boundary,

stab(y) = δ(ρ) for one ρ in Q
(0)
n+1(G). The proof of Lemma 6.3 shows that the terms

in the boundary of ρ are in one-to-one correspondence with boundary terms in the
preimage of the stabilization map. Therefore there is an element y′ ∈ G[n+2] with
stab(y′) = ρ and with boundary exactly y. �

With the help of the explicit shape of the stabilization map we can now indicate
one reason why the periodicity sequence collapses after stabilization. Note that
stab : HH 1 → HΓ0 is an isomorphisms.

Theorem 6.6. For every F-module F the composition of the B-map with the
stabilization map is trivial for all n > 1

HCn(F )

0
''O

O
O

O
O

O
O

O
O

O
O

B // HH n+1(µ
∗F )

stab

��

HΓn(µ∗F )

Proof. In order to prove the claim we will actually show more. We claim that every
element x ∈ Fn ⊗F F is sent to a linear combination of degenerate elements in
SQn ⊗Γ µ∗F for n > 1. Without loss of generality we may assume that x is a
generator, i.e., x = f ⊗ y with f ∈ Fn(m). By definition

stab ◦B(x) = stab((1 − τ) ◦ s ◦N)(f ⊗ y).

The terms stab ◦ s ◦ τ i(f) ⊗ y are degenerate, because the composition stab ◦ s ◦
τ i(f)(ε1, . . . , εn−1, 0) is empty for all (ε1, . . . , εn−1) 6= (0, . . . , 0) by definition. As
precomposition with ν causes a shift by one, the map s causes a trivial preimage
of 0 and therefore we obtain ∅ as a value on the n-tuple (0, . . . , 0) as well.

The other terms τ ◦ s ◦ τ i(f) are degenerate because they give the empty set on
n-tuples (ε1, . . . , εn) with εn−1 6= εn: if εn−1 is 1 and εn = 0 then this element gives
the empty set by definition of the stabilization map. In the other case, the map
τ ◦ s has an empty preimage of 1 and thus ν∗ causes ∅ as a value on (0, . . . , 0, 1).
In particular we obtain a degenerate element in the case n = 1. �

Remark 6.7. As the cubical complex SQ∗ is a resolution of the functor t and as we
know that ν∗ is exact, we obtain a resolution ν∗SQ∗ → ν∗t. As we have an isomor-
phism between Tor

F
∗ (ν∗t, F ) and cyclic Gamma homology from degrees bigger than

one, it suffices to construct a stabilization map from HCn(F ) to HΓn−1(µ
∗F ) for n

bigger than 2. As the stabilization map vanishes on the image of B and as the first
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column of the bicomplex for cyclic homology gives rise to HH n(µ∗F )/B(F (n− 1))
we define the cyclic stabilization map, stabC , as

stabC : HCn(F ) −→ HΓCn−1(F ), stabC = stab ◦ π, for n > 2

where π is the projection from HCn(F ) to HH n(µ∗F )/B(F (n− 1)).
Note, that this does not give rise to a well-defined map from HC 2(F ) to HΓC1(F )

that is compatible with both periodicity sequences: we would have to compose
stab ◦ π with the map from HΓ1(µ

∗F ) to HΓC1(F ), but then δ composed with that
map has to be trivial, but the S-map from HC 2(F ) to HC 0(F ) is non-trivial in
general.
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