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AbstratWe establish that the relevant geometri data for the target spae desription of worldsheet topologial defets are submanifolds � whih we all bi-branes � in the produt
M1 × M2 of the two target spaes involved. Very muh like branes, they are equippedwith a vetor bundle, whih in bakgrounds with non-trivial B-�eld is atually a twistedvetor bundle. We explain how to de�ne Wess--Zumino terms in the presene of bi-branesand disuss the fusion of bi-branes.In the ase of WZW theories, symmetry preserving bi-branes are shown to be bionjugaylasses. The algebra of funtions on a bionjugay lass is shown to be related, in thelimit of large level, to the partition funtion for defet �elds. We �nally indiate how theVerlinde algebra arises in the fusion of WZW bi-branes.
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1 IntrodutionSigma models have been one signi�ant soure of examples for two-dimensional onformal�eld theories. They allow one to relate geometri struture on target spae to �eld theoretiquantities in the onformal �eld theory. This has has provided muh insight, not least for theinterpretation of string theory. A partiularly important observation has been the relationshipbetween (onformal) world sheet boundary onditions and D-branes, whih are, in their simplestinarnation, submanifolds of the target spae equipped with a vetor bundle.The target spae of a sigma model has, at least, the struture of a (pseudo-)Riemannianmanifold. Further struture on the target spae is introdued by the presene of the tahyonand of the antisymmetri Kalb-Ramond B-�eld. While we will ignore the tahyon in thepresent artile, we do take the B-�eld into aount, wherever this is possible without renderingthe exposition too tehnial. The appropriate geometri struture on target spae needed todesribe a non-trivial B-�eld bakground is a hermitian bundle gerbe, and for a D-brane thevetor bundle gets replaed by a twisted vetor bundle, i.e. by a gerbe module for the restritionof the gerbe to the world volume of the brane.Apart from onformally invariant boundary onditions, two-dimensional onformal �eldtheories admit another, equally natural, struture: topologial defet lines. These objetsare familiar from statistial mehanis. Take, for example, the lattie version of the Isingmodel: hanging the oupling along all bonds that ross a spei�ed line from ferromagneti toantiferromagneti, produes a defet. Due to the Z2-gauge invariane of the Ising model, theposition of this defet an be moved around, as long as we do not ross the site of a spin thatappears in the orrelator of interest. If we do ross suh a site, we are fored to hange thesign of the spin variable. The defet thus omes with a well-de�ned rule for passing insertionsin the bulk through the defet line.Moreover, in the Ising model a pair of two suh defet lines whih run lose to eah other anbe eliminated by a gauge transformation; more generally, two defets an be joined to a singledefet, whih gives rise to fusion rules between topologial defets. A similar phenomenon ariseswhen we take boundary onditions into aount: In the Ising model, a given boundary ondition,say �spin sup�, ombined with a parallel antiferromagneti defet line an be replaed by theboundary ondition �spin down�. More generally, there is a mixed fusion by whih topologialdefets at on onformal boundary onditions.Similarly as in the ase of boundary onditions, in the CFT that is obtained in the ontinuumlimit this struture an be expeted to result in defet lines along whih orrelation funtions ofbulk �elds an have a branh-ut like behaviour. At least for rational onformal �eld theories,suh defet lines appear naturally in algebrai approahes to CFT [PZ, FRS1℄; in the TFTapproah to RCFT orrelators [FRS1℄ a omplete desription of suh defets is available [FFRS1,FFRS2℄. The TFT approah allows one, in partiular, to ompute the partition funtions ofbulk and boundary �elds, and of defet �elds (�elds living on a defet line that an hange thetype of defet), as well as the fusion of two defets and of a defet with a onformal boundaryondition.More spei�ally, suppose a olletion of onformal �eld theories is ompatible in the sensethat they share a hiral symmetry algebra, inluding at least the Virasoro algebra. Note that inorder for two onformal �eld theories to be ompatible, they must in partiular have the sameVirasoro anomaly. A standard example of ompatible theories are the WZW models based on
SU(2) and on SO(3) with the same value of the level. We label the members of a ompatible1



family of onformal �eld theories by indies {A1, A2, ... }. There then exist (oriented) defetswhih separate the onformal �eld theory of type A1 present on a region of world sheet to theirleft from a onformal �eld theory of type A2 to their right hand side. Suh a topologial defetwill be denoted by A1
BA2

. Then the fusion of defets assoiates to two defets A1
BA2

and A2
BA3a defet of type A1

BA3
:

A1
BA3

= A1
BA2

⋆A2 A2
BA3

. (1.1)The seond type of fusion assoiates to a defet A1
BA2

and boundary ondition A2
N for thetheory of type A2 a boundary ondition A1

N for the theory of type A1,
A1

N = A1
BA2

⋆A2 A2
N . (1.2)In the framework of [FRS1, FFRS2℄, the labels {A1, A2, ... } orrespond to ertain algebras in therepresentation ategory of the hiral symmetry algebra. These algebras enode in partiularthe partition funtions, inluding a modular invariant bulk partition funtion and partitionfuntions for boundary and defet �elds. Branes are desribed by modules, and defets bybimodules, of these algebras; the fusion operation ⋆A is realized as the tensor produt over A.It has also been understood [FFRS1, FFRS2℄ that topologial defets enode informationboth on internal symmetries and on dualities of a onformal �eld theory; this inludes inpartiular T-dualities.In view of the relevane of target spae strutures for string theoreti interpretations, itis natural to ask whether a target spae desription exists for onformal defets as well. Theanswer to this question is the primary result of the present paper.Suppose we are given two ompatible onformal �eld theories, orresponding to target spaes

M1 and M2, respetively. We show that onformal defets orrespond to submanifolds of theprodut M1 ×M2. Furthermore, very muh in the same way as for a brane, this submanifoldhas to be endowed with a vetor bundle (again, in the presene of a non-trivial B-�eld this is atwisted vetor bundle). For theories based on urrent algebras � ompati�ed free bosons andWess--Zumino--Witten theories � we study the relevant submanifolds in detail. For simpliity,in this paper we restrit our attention to the ases of a single ompati�ed free boson andof the WZW model based on a ompat, onneted and simply onneted Lie group. It islear, however, that when ombined with standard tehniques developed for D-branes, theonepts presented here allow one to extend our results to more general lasses of onformal�eld theories, in partiular to WZW theories on non-simply onneted groups, oset theories,theories of several free bosons ompati�ed on a torus, and orbifolds of suh theories.In the rest of this paper we will proeed as follows. Inspired by the alulation of thesattering of losed string states in the presene of D-branes [DFPSLR, FFFS℄, in Setion 2 weanalyze sattering proesses in the presene of defet lines, onsidering theories with urrentsymmetries and defets of type ABA. In these ases we have M1 = M2 =M , and the target spae
M is a ompat onneted Lie group. In the simply onneted ase the relevant submanifoldof M ×M turns out to be a bionjugay lass, i.e. is of the form

Bh1,h2
:=

{
(g1, g2)∈G×G | ∃x, y ∈G: g1 =xh1y

−1, g2 = xh2y
−1

}
. (1.3)This is analogous to the role played by onjugay lasses [AS, FFFS, St℄ in the desription ofboundary onditions. Correspondingly, the so-alled 2-haraters

χ(2)
λ : G×G → C

(g1, g2) 7→ trHλ
(g1g2)

(1.4)2



take the role that haraters play in the theory of branes. We will therefore refer to the targetspae objets that desribe defets as bi-branes.It should be appreiated that while the multipliation of the Lie group G enters in thespei� form of bi-branes for WZW theories, the desription of defets in general does notrequire a multipliation on target spae. Rather, the relevant struture for bi-branes separatingtheories with target spaes M1 and M2 are suitable submanifolds of M1 ×M2.In Setion 3 we disuss the intrinsi geometry of bionjugay lasses and relate the algebraof funtions on a bionjugay lass to the algebra of defet �elds; we an then exhibit a two-form on the bionjugay lass that trivializes the di�erene of the three-form �eld strengthson the two bakgrounds involved. In Setion 4 we show how these data an be employed toonstrut a Wess--Zumino term in situations in whih the topology of both the target spaeand the bi-brane are partiularly simple; a proof that the so onstruted Wess--Zumino term iswell-de�ned, as well as the desription of the Wess--Zumino term for more general target spaesand/or bi-branes, are relegated to appendies. Finally, Setion 5 is devoted to aspets of thefusion of two bi-branes and of the fusion of a bi-brane to a brane; we provide in partiularan argument for how the Verlinde algebra arises as the fusion algebra of symmetry preservingbi-branes on simply onneted Lie groups. A short outlook is supplied in Setion 6.2 Sattering of bulk �elds in the bakgrounds of defetsOne rationale for assigning a target spae geometry to a onformal �eld theory is to study thesattering of bulk �elds. This is based on the general idea (see e.g. [FG℄) that (a subspae of)the spae of bulk �elds an be identi�ed with a trunation and deformation of the algebra offuntions on the target spae. In the ase of branes this amounts, in tree level approximationto string theory sattering amplitudes, to omputing the two-point funtions of bulk �elds ona disk with given boundary ondition. By fatorization to a three-point funtion on the sphereand a one-point funtion on the disk, this an be redued [DFPSLR, FFFS℄ to the omputationof one-point funtions of bulk �elds on the disk.Here we are interested in probing the target spae geometry for a topologial defet Bon the world sheet, again using the sattering of bulk �elds. In tree-level approximation wehave to onsider the two-point funtions of bulk �elds on a world sheet that is a sphere S2ontaining a losed defet line B. Without loss of generality, we an take the defet line tobe along the equator of the sphere. If both bulk �eld insertions are on the same hemisphere,then by fatorization we just obtain the orrelator in the absene of a defet, multiplied bythe quantum dimension of the defet [FjFRS℄. To get information on the relevant geometry ofthe target spae, we must thus onsider the situation with the two bulk insertions on di�erenthemispheres, i.e. on di�erent sides of the defet line.For theories with urrent symmetry we will use the following notation. By g we denote a�nite-dimensional redutive omplex Lie algebra. Speial ases of partiular interest are thosewhere g is simple, and the abelian Lie algebra u(1)⊕· · ·⊕ u(1). By G we denote the simplestompat Lie group with Lie algebra (the ompat real form of) g. Thus for semisimple g, G isthe onneted simply onneted ompat Lie group with Lie algebra g, while for redutive Liealgebras we take in addition the diret produt with d opies of U(1), with d the dimension ofthe enter of g. For onreteness, the reader might wish to keep in mind the two speial ases3



g = u(1) and g = su(2), with G =U(1) and G =SU(2), respetively.By g we denote the nontrivial entral extension of the loop algebra of g; if g is simple, g isan untwisted a�ne Lie algebra, while for g abelian we have a diret sum of Heisenberg algebraswith identi�ed enters. We �x the value of the level k for eah simple ideal of g; the irreduiblehighest weight representations are then lassi�ed by the set Pk of dominant integral weights λat level k. Analogously the irreduible �nite-dimensional representations of g are labeled bythe set P of dominant integral g-weights. In partiular, for g= u(1), Fok spaes are labeledby momentum, so that Pk = P =R, while for g = su(2), at positive integral level k the relevantsets are Pk = {0, 1, ... , k} and P = Z≥0.Thus for any λ∈P we have a �nite-dimensional g-module Hλ (for g = su(2) its dimensionis λ+1). We may as well regard Hλ as a G-module; its harater is
χλ : G → C×

g 7→ trHλ
Rλ(g) .

(2.1)Via taking the horizontal part of an a�ne weight, we an regard Pk as a subset of P . The irre-duible g-module with highest weight λ∈Pk is in�nite-dimensional, with �nite-dimensional ho-mogeneous subspaes; we identify its zero-grade subspae with the �nite-dimensional g-module
Hλ. Finally, by λ+ we denote the highest weight of the representation that is onjugate to
Hλ. For g= u(1), this is the representation with opposite u(1)-harge; for g = su(2), everyrepresentation is self-onjugate.Returning to our preeding disussion, we now onsider the orrelation funtion on S2 oftwo bulk �elds labeled by g⊕ g-modules Hλ ⊠Hλ+ and Hµ ⊠Hµ+ inserted, respetively, atthe north and south pole of S2, with a defet B along the equator. Further, we restrit ourattention to the the so-alled Cardy ase, in whih the bulk partition funtion is given by hargeonjugation, boundary onditions are labeled by primary �elds and the annulus oe�ients arefusion rules [Ca℄. In the Cardy ase also the topologial defets are labeled by the same set Pkas the left- and right-moving parts of the bulk �elds. In the sequel we abbreviate the defet
B = Bα with α∈Pk by α.By holomorphi fatorization, any orrelator on S2 is an element of the spae of onformalbloks on the double over of S2, whih onsists of the disjoint union of two opies of CP

1 withopposite orientation. For the orrelator Dα;λµ of two bulk �elds on S2 with a defet line α, wethus deal with a four-point blok Dλµ on CP
1 ⊔CP

1, whih is an element of the algebrai dualof the tensor produt vetor spae Hλ ⊗Hλ+ ⊗Hµ ⊗Hµ+ . Similarly as in [FFFS℄ we onsiderthe partiular orrelator
Gabcd

α;λµ(v⊗ ṽ⊗w⊗ w̃) := Dα;λµ(Ja
−1v⊗ J b

−1ṽ⊗ Jc
−1w⊗ Jd

−1w̃) , (2.2)where by Ja
n, with a a labeling a basis of g, we denote the modes of the urrents Ja(z) (for theorresponding basis elements of g we write J̄a).In order for the orrelator (2.2) to be non-zero we need µ =λ+. The states v and w̃ arethen vetors in the g-module Hλ, while ṽ and w are states in the g-module Hλ+ , with these

g-modules regarded as the zero-grade subspaes of the orresponding g-modules.To determine the orrelation funtion (2.2), we �rst study the four-point onformal bloks
Dλλ+ on CP

1 ⊔CP
1. They deompose into a tensor produt of two-point bloks on the two4



opies of CP
1, Dλλ+ =Fλ ⊗Fλ+ . The hiral Ward identities for left and right movers read

Dλλ+ ◦
(
Ja
−n ⊗1⊗1⊗1 + 1⊗1⊗Ja

n ⊗1
)

= 0 (2.3)and
Dλλ+ ◦

(
1⊗ Ja

−n ⊗1⊗1 + 1⊗1⊗1⊗Ja
n

)
= 0 , (2.4)respetively, for all a =1, 2, ... , dim(g) and all n∈Z. Together with the highest weight propertiesof w and w̃ and with the ommutation relations of g, the Ward identities imply

Dλλ+(Ja
−1v ⊗ J b

−1ṽ⊗ Jc
−1w⊗ Jd

−1w̃) = Dλλ+(v ⊗ ṽ⊗ Ja
1 Jc

−1w⊗ J b
1J

d
−1w̃)

= Fλ(v⊗ [Ja
1 , Jc

−1]w) Fλ+(ṽ⊗ [J b
1 , J

d
−1]w̃)

=
[
Fλ(v⊗ [J̄a, J̄c]w) + k κacFλ(v⊗w)

]

·
[
Fλ+(ṽ⊗ [J̄ b, J̄d]w̃) + k κbdFλ+(ṽ⊗ w̃)

]
.

(2.5)We expet that a diret ontat to the geometry of ompat Lie groups exists in the weakoupling limit, i.e. in the limit of large level k. Aordingly we only keep those terms in (2.5)whih are of leading order in k; they are proportional to the Killing form of g and orrespondto graviton and dilaton sattering; if g is abelian, they are the only terms present. In this limitwe obtain the expression
k2κacκbd Fλ(v⊗w) Fλ+(ṽ⊗ w̃) =: k2κacκbd D∞

λλ+(v⊗ ṽ⊗w⊗ w̃) . (2.6)As in [FFFS℄, at this point we invoke the Peter--Weyl theorem, so as to identify the spae⊕
λ∈Pk

Hλ ⊠Hλ+ with a subspae of the spae F(G) of funtions on the Lie group G. This way,equation (2.6) allows us to assoiate to a defet a linear funtion on F(G), i.e. a distribution.Before omputing this distribution, whih essentially amounts to a Fourier transformation, wenotie that while boundary onditions give a distribution on G, defets give a distribution onthe produt manifold G×G. As a onsequene, defets will be assoiated to submanifolds of
G×G. This also �ts niely with the philosophy behind the so-alled folding trik [WoA℄, bywhih a onformal defet separating two onformal �eld theories CA1

and CA2
with the sameonformal anomaly is related to a onformally invariant boundary ondition in the produttheory CA1

×CA2
. It should be kept in mind, however, that in this artile we are only onernedwith topologial defets, whih onstitute a spei� sublass of onformal defets.Let us now Fourier transform the result (2.6) aording to the rules of [FFFS℄, to obtain adistribution on G×G. We �rst note that the Fourier transformation of a linear form D on thespae ⊕

λ,µ∈P Hλ ⊠Hλ+ ⊠Hµ ⊠Hµ+ reads
D(v⊗ ṽ⊗w⊗ w̃) =

∫

G×G

dg dg′ D̃(g, g′)∗
∑

λ,µ∈P

〈ṽ⊗ w̃|Rλ(g)⊗Rµ(g
′) |v⊗w〉

=

∫

G

dg
∑

λ∈P

〈ṽ|Rλ(g) |v〉
∫

G

dg′
∑

µ∈P

〈w̃|Rµ(g′) |w〉 D̃(g, g′)∗, (2.7)and that its inverse is given by
D̃(g, g′) =

∑

µ1;i,j

∑

µ2;k,l

Nµ1
Nµ2

D(vi ⊗ ṽj ⊗wk ⊗ w̃l) 〈ṽj|Rµ1
(g) |vi〉 〈w̃l|Rµ2

(g′) |wk〉 , (2.8)5



with {vi} a basis of Hµ1
and {ṽi} the dual basis of Hµ+

1
, and analogously for for wk and w̃k.Here the normalization fators Nµi

are given by Nµ =
√
|Hµ|/|G| with |Hµ| the dimension of

Hµ and |G| the volume of G. 1For the funtions (2.6) of our interest this presription yields
D̃∞

λλ+(g, g′) =
∑

µ
1
,µ

2
∈P

Nµ
1
Nµ

2

∑

i,j,k,l

〈ṽj |Rµ
1
(g) |vi〉Fλ(vi ⊗ vk) 〈ṽl|Rµ

2
(g′) |vk〉Fλ+(ṽj ⊗ ṽl)

= N2
λ

∑

i,j,k,l

〈ṽj |Rλ(g) |vi〉Fλ(vi ⊗ vk) 〈ṽl|Rλ+(g′) |vk〉Fλ+(ṽj ⊗ ṽl). (2.9)By the identities Rλ+(g) = (Rλ(g
−1))t, where the supersript indiates the transpose matrix,and Fλ(vi ⊗ vk) = δi,k, this redues to

D̃∞

λλ+(g, g′) = N2
λ

∑

i,j

(
Rλ(g)

)j

i

(
Rλ(g

′−1)
)i

j
= N2

λ
χ

λ(gg′−1) . (2.10)Here 2-haraters of G pop up. 2-haraters are funtions on the Cartesian produt G×Gof a group with itself. They �rst appeared in [Fr℄ in the expansion of group determinants.As ompared to haraters, they ontain more information about the group than haraters;e.g. in ontrast to haraters, they allow one to determine whether a representation is real orpseudo-real. (Still, 2-haraters and haraters do not determine a group up to isomorphism. Asurprisingly reent result [HJ℄ states that a group is determined by its 1-, 2- and 3-haraters.)Next we use the results of the TFT approah (following the lines of Setion 4 of [FRS2℄) toexpress the orrelation funtions in terms of onformal bloks: we have
Dα;λµ =

Sλ,α

S0,λ

Dλλ+ = χ
α(hλ)

∗Dλλ+ =
S0,α

S0,λ

χ
λ(hα)∗Dλλ+ , (2.11)where similarly as in [FFFS℄ we introdued the group element

hα := exp(2πi ŷα) , (2.12)with ŷα the Cartan subalgebra element dual to the weight
yα :=

α + ρ

k + g∨
∈ g∗

0 . (2.13)(ρ denotes the Weyl vetor and g∨ the dual Coxeter number of g.) For the sum
Gabcd

α :=
∑

λ∈Pk

Gabcd

α;λλ+ (2.14)of two-point orrelators, whih is the analogue of a boundary state, we thus obtain, at large k,
G̃abcd

α (g, g′) = k2κacκbd
∑

λ∈Pk

N2
λ

S0,α

S0,λ

χ
λ(hα)∗ χ

λ(gg′−1) . (2.15)1 Note that, like e.g. in [BDS, FW℄, we do not take the volume of G to be normalized to 1. Rather, the`physial' radius of G should be √
kα′, i.e. |G| is proportional to (kα′)dim(G)/2.6



Furthermore, using that at large k the quantum dimension S0,λ/S0,0 approahes the ordinarydimension |Hλ| and Pk an be replaed by P , this redues to
G̃abcd

α (g, g′) = k2κacκbd |Hα|
|G|

∑

λ∈P

χ
λ(hα)∗ χ

λ(gg′−1) . (2.16)Up to normalization this is a delta distribution on the onjugay lass Cα ≡Chα
of G:

∑

λ∈P

χ
λ(hα)∗χλ(gg′−1) =

|G|
|Cα| δCα

(gg′−1) . (2.17)Thus we �nally arrive at
G̃abcd

α (g, g′)
k→∞

−−→ k2κacκbd |Hα|
|Cα| δCα

(gg′−1) . (2.18)In short, for given topologial defet α, in the large level limit the analogue (2.14) of theboundary state is onentrated on those pairs (g, g′)∈G×G whose produt gg′−1 lies in Cα.3 The world volume of WZW bi-branes3.1 Bionjugay lassesAording to the sattering alulation in the previous setion, the geometri objet in G×Gthat is relevant for the desription of a defet α is the set of those points points (g1, g2) of
G×G suh that g1g

−1
2 lies in the onjugay lass Cα of G. These subsets of G×G are atuallysubmanifolds; we wish to desribe them in more detail. To this end we introdue the followingnotion: For a ompat onneted Lie group G and elements h1, h2 ∈G we all the submanifold

Bh1,h2
:=

{
(g1, g2)∈G×G | ∃x1, x2 ∈G: g1 = x1h1x

−1
2 , g2 = x1h2x

−1
2

}
⊂ G×G (3.1)the bionjugay lass of the pair (h1, h2).Bionjugay lasses inherit from the diagonal left and diagonal right ations of G on G×Gtwo ommuting ations of G. For the defets we are desribing here, these two G-ationsorrespond to the two independent preserved urrent symmetries.Obviously, 2-haraters are onstant on bionjugay lasses. In fat, very muh like theharaters of irreduible G-representations form a natural basis for the funtions on the spaeof onjugay lasses, the 2-haraters of irreduible representations form a basis for the spaeof funtions on bionjugay lasses.Next we observe that the smooth map

µ̃ : G×G → G
(g1, g2) 7→ g1g

−1
2

(3.2)intertwines the diagonal left and diagonal right ation of G on G×G and the adjoint and trivialations of G on itself, respetively. Put di�erently, µ̃ de�nes the struture of a trivializable
G-equivariant prinipal G-bundle over G. Indeed, the G-ation on the �bers is by diagonalright multipliation, so that the G-equivariant di�eomorphism t: (g1, g2) 7→ (g1g2, g2) furnishes7



a global trivialization, where the trivial G-bundle p1: G×G→G over G projets on the �rstomponent.It now follows that a bionjugay lass in G×G is the preimage of a onjugay lass in Gunder the projetion µ̃ de�ned in (3.2):
Bh1,h2

= µ̃−1(Ch
1
h−1
2

) =
{
(g1, g2)∈G×G | g1g

−1
2 ∈Ch

1
h−1
2

} ; (3.3)in partiular,
Bh1,h2

= Bh
1
h−1
2

,e . (3.4)To establish the relation (3.3), we observe that for every element (g1, g2)∈Bh1,h2
we have

g1 = x1h1x
−1
2 and g2 = x1h2x

−1
2 for some x1.x2 ∈G, and hene g1g

−1
2 = x1h1h

−1
2 x−1

1 ∈Ch
1
h−1
2
. Con-versely, given (g1, g2)∈G×G suh that there exists some x∈G with xg1g

−1
2 x−1 = h1h

−1
2 , weset x1 := x−1 and x2 := g−1

2 x−1h2 and obtain g1 = x1h1x
−1
2 and g2 = x1h2x

−1
2 , whih shows that

(g1, g2)∈Bh1,h2
.To onlude, bionjugay lasses have the topology of a diret produt of G with a onju-gay lass. Thus for simply onneted groups, they are in partiular simply onneted. Thesattering of losed string states in WZW theories detets bi-branes orresponding to bion-jugay lasses for whih h1h

−1
2 is a regular element of G; this losely parallels the �ndings of[FFFS℄ for branes.3.2 World volume quantizationAs further evidene for the relation between bionjugay lasses and WZW defets, we will nowestablish that the defet �elds assoiated to a topologial defet furnish a quantization of thespae of funtions on a bionjugay lass. Note that besides bulk �elds there also exist othertypes of �elds in the presene of defets [FFRS2℄: disorder �elds, at whih defet lines start orend, and defet �elds, whih live on a defet line and an hange the type of the defet. Thereis a distinguished type of defet, ating as a unit with respet to fusion, alled the invisibledefet. Aross this defet, every bulk �elds is smooth. Disorder �elds are in fat speial defet�elds: those hanging the invisible defet to some other defet or vie versa. Similarly, bulk�elds an be regarded as defet �elds preserving the invisible defet and thus as speial disorder�elds.Sine there are two ommuting ations of G on the world volume of a bionjugay lass, thespae F(Bh1,h2

) has the struture of a G×G-module. This an be ompared with the situationfor onjugay lasses, whih desribe WZW branes. A onjugay lass C arries a natural G-ation, the adjoint ation, whih turns the spae of F(C) of funtions on C into a G-module.As pointed out in [FFFS℄, only regular onjugay lasses are relevant to the situation of ourinterest. A regular onjugay lass is isomorphi to G/T , with T a maximal torus of G, andthere is an isomorphism
F(G/T ) ∼=

⊕

λ∈P

multλ(0) Hλ (3.5)of G-modules, where multλ(0) denotes the multipliity of the weight 0 in the highest weight
g-module Hλ.This G-module struture is related, in the large-level limit, to the G-module struture ofa subset of the spae of boundary �elds for the orresponding WZW brane. Note that in the8



present ontext we should perform the large-k limit in a way suh that the geometri onjugaylass is kept �xed. As a onsequene, the weight labeling the boundary ondition depends onthe level. More spei�ally, just like in [FFFS℄ we must onsider weights α =α(k) suh that
α0 :=

α(k) + ρ

k + g∨
(3.6)is onstant. The large-k limit of the WZW annulus oe�ients Aβ

λα for the ase of simplyonneted G reads [FFFS℄
lim
k→∞

(k)A
β(k)

λ α(k) = δα0,β0
multλ(0) . (3.7)This result an be interpreted as follows. In the large-level limit, only open strings startingand ending at the same brane survive. As a G-module, they have the algebra of funtions onthe brane as a limit; this substantiates the idea that the spae of open strings onstitutes aquantization of the world volume of the brane.For bi-branes, we an obtain an analogous result by using G×G-modules in plae of G-modules. To desribe the intrinsi geometry of the bi-brane Bh1,h2

, with h1 and h2 regularelements of G, we �rst note that the bijetion
(p1 × µ̃) : Bh1,h2

→ G×Ch
1
h−1
2

(g1, g2) 7→ (g1, g1g
−1
2 )

(3.8)intertwines two pairs of G-ations: �rst, the diagonal left ation of G on Bh1,h2
, i.e.

ρ(h)((g1, g2)) = (hg1, hg2), is intertwined with G ating from the left on itself and by the adjointation on Ch
1
h−1
2
; and seond, the diagonal right ation on Bh1,h2

is intertwined with the rightation on G and the trivial ation on Ch
1
h−1
2
. The G×G-module struture of the spae offuntions on Bh1,h2

now follows easily; we have
F(Bh1,h2

) ∼= F(G×Ch
1
h−1
2

) ∼= F(G) ⊗ F(Ch
1
h−1
2

) . (3.9)Further, by the Peter--Weyl theorem we have F(G)∼=
⊕

µ∈P Hµ ⊠Hµ+ , while the G-modulestruture of F(Ch
1
h−1
2

) is given by (3.5). Thus after deomposing the tensor produt we obtain
F(B) ∼=

⊕

λ,µ∈P

(∑

ν∈P

N λ

νµ+ multν(0)
)

Hλ ⊠Hµ , (3.10)where N λ

νµ+ is the multipliity of the irreduible g-module Hλ in the tensor produt Hν ⊗Hµ+ .The deomposition (3.10) has to be ompared with the multipliities Zαβ
µν for defet �eldswith hiral labels µ, ν that hange a defet α to a defet β. A simple alulation in the TFTapproah to rational onformal �eld theories (ompare Setion 5.10 of [FRS1℄) shows that, inthe Cardy ase, this multipliity is an ordinary fusion rule. Aordingly, we have at level k

(k)Z
α(k) β(k)
λµ = (k)N β(k)

λµ α(k) ≡
∑

ν∈Pk

(k)N ν
λµ

(k)N β(k)
ν α(k) . (3.11)The large-k limit of the two fators in this result follows easily: the fusion rules (k)N ν

λµ tendto tensor produt multipliities, while the limit of the seond fator is the same as the one9



omputed above for the annulus oe�ients (whih for the Cardy ase oinide with ordinaryfusion rules). Thus we �nd
lim
k→∞

(k)Z
α(k) β(k)
λµ = δα0,β0

∑

ν∈P

N ν

λµ multν(0) = δα0,β0

∑

ν∈P

N λ

νµ+ multν(0) , (3.12)where in the seond equality the harge onjugation properties of the tensor produt multipli-ities are used. This is in full agreement with the G×G-module struture (3.10) of the spae
F(B) of funtions on the bi-brane. Analogously as for branes, this substantiates the idea thatthe algebra of defet �elds an be regarded as a quantization of the spae of funtions on thebi-brane.3.3 Trivialization of the H-�eldAs is well-known [Wi℄, onformal invariane for theories with non-abelian urrents requires anon-trivial B-�eld bakground. While the B-�eld is de�ned only loally, its urvature H is aglobally de�ned three-form. One important property of branes is the fat that the restritionof H to the orresponding submanifolds is exat. For symmetri branes in the WZW modelbased on g at level k, the urvature is the three-form

H = k

6 〈θ ∧ [θ ∧ θ] 〉 , (3.13)where we have denoted by θ the left-invariant Maurer--Cartan form on G, whih is a g-valuedone-form, and by 〈· , ·〉 the Killing form on g. Restrited to a onjugay lass Ch, the three-form
H an be written as the derivative of a G-invariant two-form ωh,

H|Ch
= dωh . (3.14)We will now see that bi-branes have properties that generalize this behaviour.Consider again the map µ̃ whose restrition maps the bi-brane Bh1,h2

to the onjugay lass
Ch

1
h−1
2
. We introdue the two-form

̟h
1
,h

2
:= µ̃∗ωh

1
h−1
2

− k

2 〈p∗1θ ∧ p∗2θ〉 (3.15)on Bh1,h2
, where pi, i =1, 2, is the projetion from G×G → G on its ith fator, and bothsummands are restrited to the submanifold Bh1,h2

of G×G. From the intertwining propertiesof µ̃ it follows that the two-form ̟ is bi-invariant. Analogously to the equality (3.14) on theworld volume of a brane, on the world volume Bh1,h2
of the bi-brane the identity

p∗1H = p∗2H + d̟h1,h2
(3.16)holds; in other words: on Bh1,h2

, the di�erene of the H-�elds of the two target spaes involvedis exat and equals the derivative of the two-form ̟h1,h2
.To establish the identity (3.16), we �rst reall the relation

µ̃∗H = p∗1H − p∗2H + k

2
d〈p∗1θ ∧ p∗2θ〉 (3.17)10



(ompare e.g. the proof of proposition 3.2 of [AMM℄) whih in the derivation of the Polyakov--Wiegmann formula aounts for the orret behaviour of the Wess--Zumino term. On the otherhand, we �nd
(µ̃∗H)|Bh1,h2

= µ̃∗(H|C
h
1

h
−1
2

) = µ̃∗(dωh
1
h−1
2

) = dµ̃∗ωh
1
h−1
2

; (3.18)together with the de�nition of ̟h1,h2
the last two equations imply (3.16).At this point it is worth mentioning the notion of a quasi-Hamiltonian G-spae whih hasbeen introdued in [AMM℄. As shown in [AMM℄, both onjugay lasses and the �double�

G×G are examples of suh spaes. However, the reader should be warned that, while the aseof onjugay lasses is diretly relevant for the disussion of branes, the double as onsideredin [AMM℄ is endowed with a G×G-ation that does not restrit to the bi-brane submanifolds.4 The Wess--Zumino term in the presene of defetsHaving identi�ed a two-form ̟ on the bi-brane that trivializes the restrition of the di�erene ofthe H-�elds, we are in a position to study the Wess--Zumino term for situations with partiularlysimple topology. The analysis losely parallels the one in [FiS℄. As in the ase of branes, ageneral and more satisfatory analysis must be based on the notion of hermitian bundle gerbes.A �rst disussion of these issues an be found in Appendix B.To attain a situation with su�iently simple topology, we restrit our attention in the sequelto 2-onneted target spaes M1 and M2, i.e. besides being onneted and simply onneted, themanifolds Mi also satisfy π2(Mi) = 0 (this inludes in partiular ompat onneted and simplyonneted simple Lie groups). Beause a bundle gerbe over a 2-onneted spae is ompletelydetermined by its urvature, whih is a losed three-form with integral periods, we may thenonsider target spaes M1 and M2 with losed integral three-forms H1 and H2.A similar phenomenon ours for bi-branes if we make the additional assumption that theworld volume of a bi-brane is onneted and simply onneted: the two-form ̟ that trivializesthe di�erene of the three-forms is a su�ient substitute for the struture that is needed in thegeneral ase as desribed in Appendix B. Note that all these assumptions are in partiular metfor WZW bi-branes of simply onneted ompat Lie groups.Under these assumptions, we arrive at the following simpli�ed de�nition of a bi-brane: Asimply onneted M1-M2-bi-brane between 2-onneted target spaes M1 and M2 with three-forms Hi ∈Ω3(Mi), i =1, 2, is a simply onneted submanifold Q of M1 ×M2 together with atwo-form ̟∈Ω2(Q) suh that
p∗1H|Q = p∗2H|Q + d̟ . (4.1)The lassial Wess--Zumino--Witten model is a theory of maps from a two-dimensional worldsheet to a target spae. The spae of maps has to be hosen in a way onforming with theorrelator of interest. For example, for world sheets with non-empty boundary it is requiredthat the boundary of the world sheet is mapped into the world volume of a WZW brane. Hereour aim is to desribe orrelators with defet lines. We merely onsider the simplest situation: alosed oriented world sheet Σ with an embedded oriented irle S ⊂Σ that separates the worldsheet into two omponents, Σ =Σ1 ∪S Σ2, whih we assume to inherit the orientation of Σ.Without loss of generality we assume ∂Σ1 = S and ∂Σ2 =S as equalities of oriented manifolds,where S is the manifold S with opposite orientation.11



We assume that the defet separates regions that support onformally invariant sigma mod-els with target spaes M1 and M2 and onsider pairs of maps
φi : Σi → Mi (4.2)suh that the image of the ombined map

φS : S → M1 ×M2

s 7→ (φ1(s), φ2(s))
(4.3)takes its values in the submanifold Q.We next wish to �nd the Wess--Zumino part of the ation. First, sine Q is simply on-neted, there exists a two-dimensional oriented submanifold D of Q with ∂D = φS(S). We anglue the images of this disk under the projetions pi: M1 ×M2 → Mi along their boundaries onthe images φi(Σi) of the the world sheets, and obtain two-dimensional oriented losed subman-ifolds. Beause we have required π2(Mi) = 0, we an �ll those to three-dimensional orientedsubmanifolds Bi ⊂Mi suh that

∂B1 = φ1(Σ1)∪ p1(D) and ∂B2 = φ2(Σ2)∪ p2(D) . (4.4)Equipped with suh hoies of submanifolds, we de�ne
S[φ1, φ2] :=

∫

B1

H1 +

∫

B2

H2 +

∫

D

̟ . (4.5)Note that super�ially the expression (4.5) depends on the hoies of the manifolds B1, B2and D. However, the ambiguities are integers, so that the exponential of (4.5) is atuallywell-de�ned. This an be shown with the help of a homology theory based on two manifolds
M1 and M2 and a submanifold Q⊂M1 ×M2, whih we set up in Appendix A. For the dualohomology theory a theorem of de Rham type holds; it allows us to express a ohomologylass with values in R as a triple of di�erential forms. The triple (H1, H2, ̟) then furnishes anexample of a oyle in this ohomology theory. As we show in Appendix A, the ambiguitiesof (4.5) arise as the pairing of the ohomology lass of (H1, H2, ̟) with a yle in homologythat results from di�erent hoies of the submanifolds D, B1 and B2. We then show that if theoyle (H1, H2, ̟) orresponds to a ohomology lass with values in Z � we shall all suh atriple integral � the ambiguities of (4.5) are integers.This is analogous to the disussion of the Wess--Zumino term in the presene of branes[FiS℄: in that ase the relative ohomology of the pair (M, Q) is relevant, where Q is theworld volume of the brane. The three-form H and the 2-form ω on Q de�ne a oyle in therelative ohomology with values in R, and the Wess--Zumino term is the pairing of (H, ω) witha ertain yle. Its well-de�nedness imposes the ondition that (H, ω) is integral, i.e. lies in theohomology with values in Z. As in the ase of branes, the integrality ondition desribed aboveimposes severe restritions on the bionjugay lasses that an desribe defet lines. In fat,only those bionjugay lasses qualify whih are of the form µ̃−1(C), where C ⊂G is a suitableonjugay lass, namely one that supports a gerbe module whih leads to a boundary onditionpreserving all hiral urrents at level k. It should be appreiated, though, that the two-form onthe bionjugay lass di�ers from the pull-bak of the two-form on the onjugay lass, and in12



fat there is no sensible way in whih a gerbe bimodule an be seen as the pull-bak of a gerbemodule.In Appendix B we show how one an drop the restritions π2(Mi) = π1(Mi) = 0 on thetopology of the bakground and π1(Q) = 0 on the topology of the bi-brane world volume. Inthe absene of these onditions, it is not enough any longer to work with the two-form ̟ on thebi-brane and the urvature three-forms Hi on the bakgrounds. Rather, onnetion-type datamust be taken into aount. This an be ahieved using hermitian bundle gerbes, together witha new notion to be introdued in Appendix B: gerbe bimodules. We refer to the same appendixfor the de�nition of a Wess--Zumino term in this general situation. To show that the proposedWess--Zumino term restores the onformal symmetry of orrelators with defets is beyond thesope of this artile.5 Fusion of bi-branesAs pointed out in the introdution, there are two natural notions of fusion involving bi-branes:the fusion of two bi-branes, and the fusion of a bi-brane and a brane to a brane. In bothases, the fusion of elementary (bi-)branes yields, in general, a superposition of elementary(bi-)branes.As has been seen in the algebrai approah, for WZW defets that preserve all urrentsymmetries there exists a natural notion of duality. It an be haraterized by the propertythat the fusion of a bi-brane and its dual ontains the speial bi-brane whih with respet tofusion ats as the identity. Ignoring the shift in the loation of bi-branes by the Weyl vetor, thisis the bi-brane whose world volume is the bionjugay lass B(e,e), i.e. the diagonal G⊂G×G.Upon quantization, the funtions on this speial bi-brane are related to ordinary bulk �elds,rather than general defet �elds.By invoking this duality, instead of working with the fusion rules
Bα ⋆ Bβ =

∑

γ

N γ
αβ Bγ (5.1)of bi-branes we sometimes onsider the multipliities

Nαβγ := N γ∨

αβ . (5.2)These struture onstants are, in general, not symmetri; from the results of the algebraiapproah, however, we expet them to be invariant under yli permutations. The algebraiapproah also predits that in the ase of ompat onneted and simply onneted Lie groups,the onstants N γ
αβ are just the ordinary fusion multipliities arising in the hiral theory, whihsatisfy the Verlinde formula.5.1 World volume fusionWe �rst onsider the e�et of fusion on world volumes. In this ontext, the notation beomesmore transparent when onsidering at one bi-branes desribing defets that separate di�erenttarget spaes M1 and M2. 13



The ation of orrespondenes on sheaves suggests to onsider the following presription:For the fusion of an M1-M2-bi-brane with world volume B ⊆M1 ×M2 and an M2-brane withworld volume V ⊆M2 one should onsider
B ⋆ V := p1

(
B ∩ p−1

2 (V )
) (5.3)with pi the ith projetion M1 ×M2 → Mi. In general B ⋆ V is only a subset, rather than a sub-manifold, of M1. On a heuristi level one would expet, however, that the quantization of thebranes [BDS℄ selets a �nite superposition of branes, whih then should reprodue the resultsobtained in the TFT approah. The quantization onditions on the positions of branes requireadditional geometri struture on the branes, namely twisted vetor bundles, and involve asubtle interplay of this struture with the bakground B-�eld. We will exhibit in examples howthe required �nite superposition of branes or bi-branes arises after geometri quantization.Similarly, the fusion of an M1-M2-bi-brane B with an M2-M3-bi-brane B′ uses projetions

pij from the triple produt M1 ×M2 ×M3 to the two-fold produts Mi ×Mj :
B ⋆ B′ := p13

(
p−1

12 (B)∩ p−1
23 (B′)

)
. (5.4)Again the question of quantization should be addressed. This issue turns out to be largelyparallel to what happens in the mixed fusion of bi-branes to branes, and aordingly we willonentrate on the ase of mixed fusion.5.2 Bi-branes of the ompati�ed free boson at �xed radiusWe onsider a free boson ompati�ed on a irle S1

R of radius R and restrit ourselves, for themoment, to defets separating two world sheet regions that support one and the same theory. Inthis situation, it does not harm to identify the irle with the Lie group U(1)∼= {z ∈C | |z|=1}.We onsider two types of branes: D0-branes V
(0)
x are loalized at the position x∈R mod

2πRZ. D1-branes, in ontrast, wrap the whole irle. The D1-brane haraterized by a Wilsonline α∈R mod 1
2πR

Z will be denoted by V
(1)
α ; the Wilson line desribes a �at onnetion on

S1
R.The world volume of a bi-brane on S1

R is a submanifold of S1
R ×S1

R of the form
Bx := {(y, y−x) | y∈R mod 2πRZ} (5.5)with x∈R mod 2πRZ. Bx has the topology of a irle, and aording to our general onsid-erations in Appendix B it must be endowed with a �at onnetion, i.e. with a Wilson line α.As a onsequene, the natural parameters for bi-branes of a ompati�ed free boson are a pair

(x, α) taking values in two dual irles desribing a position on S1 and a Wilson line. We willwrite B(x,α) ≡ (Bx, α) for suh bi-branes.For the fusion of a bi-brane B(x,α) and a D0-brane V
(0)
y we have

p−1
2 (V

(0)
y ) = {(y′, y) | y′∈ [0, 2πR)} , Bx ∩ p−1

2 (V
(0)
y ) = {(x+y, y)}

and p1

(
Bx ∩ p−1

2 (V
(0)
y )

)
= {x+y} ,

(5.6)so that the presription (5.3) yields
B(x,α) ⋆ V (0)

y = V
(0)
x+y . (5.7)14



Thus the fusion with a defet of type B(x,α) ats on D0-branes as a translation by x in positionspae.For the fusion of a bi-brane B(x,α) and a D1-brane V
(1)
β , we need to take the �at line bundleon the bi-brane into aount. We �rst pull bak the line bundle on V

(1)
β along the projetion

p2 to a line bundle on S1
R ×S1

R; then we restrit it to the world volume Bx of B(x,α) and tensorthis restrition with the line bundle on B(x,α) desribed by the Wilson line α. This gives a linebundle with Wilson line α+β on the world volume of the bi-brane that an be pushed downalong the projetion p1 to a line bundle with the same Wilson line on S1
R. We onlude that

B(x,α) ⋆ V
(1)
β = V

(1)
α+β . (5.8)Thus the fusion with a defet of type B(x,α) ats on D1-branes as a translation by α in the spaeof Wilson lines.We an similarly ompute the fusion of two bi-branes B(x,α) and B(x′,α′): we have

p−1
12 (Bx) = {(y, y−x, y′) | y, y′∈ [0, 2πR)} ,

p−1
23 (Bx′) = {(y, y′, y′−x′) | y, y′∈ [0, 2πR)} ,

p13

(
p−1

12 (Bx)∩ p−1
23 (Bx′)

)
= {(y, y−x−x′) | y∈ [0, 2πR)} ,

(5.9)so that the position variables of bi-branes add up under fusion. To understand the behaviour ofWilson lines, we take into aount the �at line bundles by pulling them bak to S1
R ×S1

R ×S1
Rand tensoring them. Then as in the ase of mixed fusion, the Wilson lines add up. We thusobtain

B(x1,α1) ⋆ B(x2,α2) = B(x1+x2,α1+α2) . (5.10)Hene we �nd that both the position and Wilson line variable of bi-branes add up under fusion.This result exatly mathes the fusion of the �rst set of defets that are derived algebraiallyin [FGRS℄; for these both the left- and right-moving urrents are preserved, J1(z) = J2(z) and
J̄1(z̄) = J̄2(z̄), for z a point on the defet line. One an also onsider the ase that one or bothof the urrents are only preserved up to a non-trivial automorphism; the u(1) urrent algebrahas only a single non-trivial automorphism, ating as J 7→−J . The simplest ase then turnsout to be that both J1(z) =−J2(z) and J̄1(z̄) =−J̄2(z̄); in this ase one obtains submanifoldsof the form B = {(y mod 2πRZ, h−y mod 2πRZ) | y∈R}. The ase of di�erent automorphismsfor left movers and right movers is more subtle; we expet the orresponding bi-branes to �ll thewhole produt spae. Also, formula (3.15) suggests that the two-form on the bi-brane should beproportional to ± dθ1 ∧ dθ2, with the sign depending on the hirality on whih the non-trivialautomorphism ats. These issues will not be addressed in the present paper.5.3 Bi-branes for the ompati�ed free boson at di�erent radiiWe next turn our attention to bi-branes whih desribe topologial defets that separate aregion whih supports a boson ompati�ed on a irle of radius R1 from a region supportinga boson ompati�ed at radius R2. We desribe the produt spae by two oordinates x1 and
x2, with xi to be taken modulo 2πRiZ. The bi-brane world volumes are

Bh := {(y mod 2πR1Z , y−h mod 2πR2Z) | y∈R} . (5.11)15



If the ratio R1/R2 is not rational, this set is isomorphi to R and �lls S1
R1

×S1
R2

densely.Aordingly there are no Wilson line variables. The algebrai approah shows that in thissituation there is a single defet that preserves all urrent symmetries [FGRS℄; in partiular, his not a physial parameter.We thus assume that the ratio of the two radii is rational,
R1/R2 = r/s (5.12)with r, s oprime positive integers. The bi-brane world volume then has length 2πsR1 =2πrR2and admits a Wilson line variable, to be taken modulo 1/(2πsR1) = 1/(2πrR2). It wraps s timesin R1-diretion; hene the geometri parameter, when measured on the x2-axis, is redued to

2πR2/s. Equivalently, it wraps r times in R1-diretion; hene the geometri parameter, ifmeasured on the x1-axis is redued to 2πR1/r. Thus the position parameter is to be takenmodulo 2πR1/r = 2πR2/s.This should again be ompared to the analysis of [FGRS℄. In the ase at hand two param-eters have been found: the �rst ouples to the sum of left- and right-moving momenta, whihby the ompatibility of the two radii is required to be quantized in units of r/R1. This niely�ts the position parameter found above. Similarly, there is a parameter oupling to winding,i.e. to the di�erene of left- and right-moving momenta. The latter is quantized in units of sR1,�tting the quantization of the Wilson lines derived above.Again one an generalize the analysis to bi-branes that preserve the hiral urrents only upto automorphisms. If the non-trivial automorphism is taken for both hiralities, one expets o�-diagonal bi-branes; the disussion of the parameters largely parallels the one in the preedingparagraphs. In the ase of di�erent automorphisms, one expets bi-branes �lling S1
R1

×S1
R2
,provided that the area of the produt spae is rational in suitable units. For the spei� ase

R2 =2/R1 these bi-branes should be related to defets whih implement T-duality. In thisontext, the fat [Ho℄ that the urvature ± dθ1 ∧ dθ2 is of the same form as the urvature ofthe Poinaré line bundle is highly intriguing. A areful disussion of this relationship is, again,beyond the sope of the present paper.5.4 WZW bi-branesWe now turn our attention to bi-branes of WZW models on simply onneted ompat Liegroups. Here several new phenomena arise: the position of possible branes and bi-branes isquantized, and multipliities other than zero or one are expeted from the algebrai approah.In fat, from that approah it is known that for these theories the multipliities appearing inthe fusion of bi-branes as well as the mixed fusion of bi-branes and branes are the same as thehiral fusion multipliities whih are given by the Verlinde formula.To analyze this issue, it turns out to be onvenient to work with fusion oe�ients oftype Nαβγ ; here α and γ are group elements haraterizing onjugay lasses Cα and Cγ of
G, respetively, whih support a brane, while β is a group element haraterizing a bi-brane
µ̃−1(Cβ) with µ̃ as in (3.2). In the sequel we assume that all group elements are regular, i.e.ontained in just a single maximal torus of G. We are thus lead to onsider the subset

Mαβγ := p−1
1 (Cα) ∩ µ̃−1(Cβ) ∩ p−1

2 (Cγ)

= {(g1, g2)∈G×G | g1 ∈Cα, g2 ∈Cγ, g1g
−1
2 ∈Cβ}

(5.13)16



of G×G. This set is equipped with a natural G-ation, obtained by ombining the adjoint a-tion on g1 and on g2. Both branes and bi-branes are equipped with two-forms; as a onsequene,
Mαβγ omes with a natural two-form, namely the sum

ωαβγ := p∗1ωα|Mαβγ
+ p∗2ωγ|Mαβγ

+ ̟β|Mαβγ
(5.14)of the restritions of the three two-forms p∗1ωα, p∗2ωγ and ̟β.Aording to the results obtained in the algebrai approah, this spae should be linked tothe fusion rules of the hiral WZW theory at level k. To see how suh a relation an exist, wereall that fusion rules are dimensions of spaes of onformal bloks. The latter an be obtainedby geometri quantization from suitable moduli spaes of �at onnetions; as suh they arisein the quantization of Chern--Simons theories.The situation relevant for Verlinde multipliities is given by the three-puntured sphere S2

(3),also known as the `pair of pants' or trinion. In lassial Chern--Simons theory one onsidersthe moduli spae of �at onnetions on S2 whose monodromy around the three insertion pointstakes values in onjugay lasses Cα, Cβ and Cγ , respetively. Taking the monodromies gα ∈Cα,
gβ ∈Cβ and gγ ∈Cγ along irles of the same orientation around all three insertions, the relationsin the fundamental group of the trinion impose that gαgβgγ = 1. Sine monodromies are de�nedonly up to simultaneous onjugation, the moduli spae that matters in lassial Chern--Simonstheory is isomorphi to the quotient Mαβγ/G.Note that the bounds on the range of bi-branes that appear in the fusion are already presentbefore geometri quantization. Indeed, the relevant produt

Ch ∗ Ch′ := {gg′ | g∈Ch, g′∈Ch′} (5.15)of onjugay lasses has already been onsidered, for G =SU(2), in [JW℄. It is onvenient toharaterize a onjugay lass of SU(2) by its trae or, equivalently, by the angle θ with
cos θ = 1

2 tr(g) , (5.16)whih takes values θ∈ [0, π]. One �nds (see Proposition 3.1 of [JW℄) that the (lassial) produt(5.15) of the two onjugay lasses with angles θ, θ′ is the union of all onjugay lasses withangle θ′′ in the range
|θ− θ′| ≤ θ′′ ≤ min{θ+θ′, 2π− (θ+θ′)} . (5.17)This already yields the orret upper and lower bounds that appear in the SU(2) fusion rules.A full understanding of fusion an only be expeted after applying geometri quantization tothe so obtained moduli spae: this spae must be endowed with a two-form, whih is interpretedas the urvature of a line bundle, and the holomorphi setions of this bundle are what resultsfrom geometri quantization. In view of this need for quantization it is a highly non-trivialobservation that the two-form (5.14) furnished by the two branes and the bi-brane is exatlythe same as the one whih arises 2 from lassial Chern--Simons theory.6 OutlookOur �ndings naturally admit various extensions and generalizations. For instane, one animpose onservation of the urrents only up to an automorphism of the horizontal Lie algebra,2 We are grateful to Anton Alekseev for information about this two-form.17



whih may be hosen independently for left- and right-moving degrees of freedom. Also, ourmethods an be learly extended to more general lasses of onformal �eld theories, in partiularto WZW models on non-simply onneted groups, oset models, as well as to theories of severalfree bosons ompati�ed on a torus and to orbifolds thereof, inluding asymmetri orbifoldssuh as lens spaes. Another generalization onerns defets whih separate sigma models ontwo di�erent Lie groups that share the same Lie algebra.Furthermore, our results provide independent evidene for the idea that there is an intimaterelation between defets and orrespondenes. This idea has played a role in a �eld theoretirealization of the geometri Langlands program (see Setion 6.4 of [KW℄). It is therefore notunreasonable to expet that defets and, more generally, the algebrai and ategorial struturebehind RCFT orrelators, will enter in a CFT-inspired approah to the Langlands program.Finally it ould be rewarding to unravel similar strutures in lattie models.
Aknowledgements.We thank Birgit Rihter for a helpful disussion and Anton Alekseev for a helpful orrespon-dene. J.F. is partially supported by VR under projet no. 621-2006-3343. C.S. and K.W.are supported by the Sonderforshungsbereih �Partiles, Strings and the Early Universe - theStruture of Matter and Spae-Time�.
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A Birelative (o-)homologyIn this Appendix we disuss the well-de�nedness of the Wess--Zumino term (4.5) in the preseneof a defet line. To this end we set up a homology theory based on singular homology, whihan be understood as a generalization of relative homology, and whih we will aordingly allbirelative homology. The assoiated ohomology theory with real oe�ients an be identi�edwith a ohomology theory based on di�erential forms, whih we all birelative de Rham o-homology. These strutures enable us to formulate preise onditions under whih the Wess--Zumino term (4.5) is well-de�ned up to integers.Reall that the (singular) homology Hk(M) of a smooth manifold M is the homology ofthe singular hain omplex with hain groups ∆k(M), onsisting of (smooth) k-simplies in Mand boundary operator ∂: ∆k(M)→∆k−1(M) (we suppress the index of the boundary operator
∂, as it an be inferred from the index of the simplex on whih it ats). If Q⊂M1 ×M2 is asubmanifold, we de�ne the kth birelative hain group of the triple (M1, M2, Q) to be

∆k(M1, M2, Q) := ∆k(M1) ⊕ ∆k(M2) ⊕ ∆k−1(Q) . (A.1)Using the projetions pi: M1 ×M2 →Mi and the inlusion map ι: Q →֒M1 ×M2, and the in-dued hain maps (pi)∗ and ι∗, we de�ne the homomorphism
∂ : ∆k(M1, M2, Q) → ∆k−1(M1, M2, Q)

(σ1, σ2, τ) 7→ (∂σ1 +(p1)∗ι∗τ, ∂σ2 − (p2)∗ι∗τ,−∂τ) . (A.2)It is easy to verify that this map satis�es ∂2 =0, i.e. we have endowed the birelative hain groupswith the struture of a omplex. We all its homology groups the birelative homology groups anddenote them by Hk(M1, M2, Q). Expliitly, an element of Hk(M1, M2, Q) is represented by atriple (σ1, σ2, τ) of hains σi ∈∆k(Mi), i =1, 2, and a yle τ ∈∆k−1(Q), suh that ∂σ1 =(p1)∗ι∗τand ∂σ2 =−(p2)∗ι∗τ . For eah degree k, the birelative hain group �ts, by de�nition, into theshort exat sequene
0 // ∆k(M1)⊕∆k(M2)

α
// ∆k(M1, M2, Q)

β
// ∆k−1(Q) // 0 , (A.3)in whih α is the inlusion and β is the projetion. These indue a long exat sequene

... // Hk(M1)⊕Hk(M2) // Hk(M1, M2, Q) // Hk−1(Q) // Hk−1(M1)⊕Hk−1(M2) // ... (A.4)in homology.To explain the term birelative homology we observe that we have generalized relative ho-mology in the following sense: if we take M2 = pt, so that we an identify Q with a submanifoldof M1, then there is a anonial isomorphism Hk(M1, pt, Q)→Hk(M1, Q). Here Hk(M1, Q),the relative homology group of M1 with respet to the submanifold Q, is onstruted as thehomomorphism [(σ1, σ2, τ)] 7→ [σ1] whih an be shown to be an isomorphism by using the 5-lemma (see e.g. [Br℄, Lemma IV.5.10) applied to the exat sequene (A.4) and the orrespondingsequene in relative homology.Dual to the singular homology groups there are singular ohomology groups, de�ned to bethe ohomology of a omplex whose ohain groups are
∆k(M, R) := Hom(∆k(M), R) (A.5)19



for a oe�ient ring R, and whose oboundary operator
δ : ∆k(M, R) → ∆k+1(M, R) (A.6)is given by δϕ(σ) :=ϕ(∂σ) for any (k+1)-simplex σ in M . There is a anonial pairing

Hk(M, R)×Hk(M) → R with ([ϕ], [σ]) 7→ ϕ(σ) , (A.7)whih is easily seen to be well de�ned. It is often onvenient to reover the ohomology groupswith values in the real numbers in a geometri way, for instane through di�erential forms.Let us reall how this works. The integrals of k-forms ϕ∈Ωk(M) over k-simplies σ∈∆k(M)de�ne homomorphisms Ψk: Ωk(M)→∆k(M,R) whih, by Stokes' theorem, �t together to ahain map. The indued homomorphism
Ψ∗ : Hk

dR(M) → Hk(M,R) (A.8)from de Rham ohomology to singular ohomology is an isomorphism, whih is known as thede Rham isomorphism (see e.g. Theorem V.9.1 of [Br℄).Analogously as for ordinary singular ohomology, we an also de�ne birelative ohomol-ogy. Thus there are birelative ohain groups ∆k(M1, M2, Q, R), birelative ohomology groups
Hk(M1, M2, Q, R), and a anonial pairing

Hk(M1, M2, Q, R) × Hk(M1, M2, Q) → R . (A.9)Note that beause the exat sequene (A.3) splits, the dual sequene
0 // ∆k−1(Q, R) // ∆k(M1, M2, R) // ∆k(M1)⊕∆k(M2) // 0 (A.10)is exat, too, and indues a long exat sequene in ohomology. We would like be able toexpress the birelative ohomology groups with real oe�ients by di�erential forms in a similarway as the de Rham isomorphism does it for ordinary ohomology. To this end we onsider thevetor spaes

Ωk(M1, M2, Q) := Ωk(M1) ⊕ Ωk(M2) ⊕ Ωk−1(Q) (A.11)together with the linear maps
d : Ωk(M1, M2, Q) → Ωk+1(M1, M2, Q)

(H1, H2, ̟) 7→ (dH1, dH2, ι
∗(p∗1H1−p∗2H2)− d̟) . (A.12)This indeed de�nes a omplex:

d2(H1, H2, ̟) = d (dH1, dH2, ι∗(p∗1H1 − p∗2H2) − d̟)

= (d2H1, d2H2, ι∗(p∗1dH1 − p∗2dH2) − dι∗(p∗1H1 − p∗2H2) + d2̟)

= (0, 0, 0) .

(A.13)We all the ohomology of this omplex the birelative de Rham ohomology and denote it by
HkdR(M1, M2, Q). By putting M2 = pt, this is nothing but the relative de Rham ohomology ofthe map ι: Q→M , see e.g. I §6 of [BT℄. 20



Notie that a simply onneted M1-M2-bi-brane (Q, ̟) provides us with an element
(H1, H2, ̟) of Ω3(M1, M2, Q). The ondition (4.1) on the two-form ̟ on the bi-brane showsthat (H1, H2, ̟) is losed and thus de�nes a lass in the birelative de Rham ohomology.Similarly to the de�nition of the homomorphism Ψ: Ωk(M)→∆k(M,R) mentioned abovewe obtain a natural homomorphism

Ψbi : Ωk(M1, M2, Q) → ∆k(M1, M2, Q,R) (A.14)whih by de�nition assoiates to a triple (H1, H2, ̟)∈Ωk(M1, M2, Q) evaluated on an element
(σ1, σ2, τ)∈∆k(M1, M2, Q) the real number

Ψbi(H1, H2, ̟)(σ1, σ2, τ) :=

∫

σ1

H1 +

∫

σ2

H2 +

∫

τ

̟ . (A.15)The homomorphisms Ψbi �t together to a hain map:
(δΨbi(H1, H2, ̟))(σ1, σ2, τ) = Ψbi(H1, H2, ̟)(∂σ1+(p1)∗ι∗τ, ∂σ2−(p2)∗ι∗τ,−∂τ)

=

∫

∂σ1 +(p1)∗ι∗τ

H1 +

∫

∂σ2−(p2)∗ι∗τ

H2 +

∫

−∂τ

̟

=

∫

σ1

dH1 +

∫

σ2

dH2 +

∫

τ

ι∗(p∗1H1−p∗2H2)− d̟

= Ψbi(dH1, dH2, ι
∗(p∗1H1−p∗2H2)− d̟)(σ1, σ2, τ)

= Ψbi(d(H1, H2, ̟))(σ1, σ2, τ) . (A.16)We infer that the indued homomorphism
Ψ∗

bi : Hk
dR(M1, M2, Q) → Hk(M1, M2, Q,R) (A.17)is an isomorphism, analogously as the de Rham isomorphism. To prove this laim, note thatby de�nition we have an exat sequene

0 // Ωk−1(Q)
α

// Ωk(M1, M2, Q)
β

// Ωk(M1)⊕Ωk(M2) // 0 , (A.18)where α(̟) := (0, 0, ̟) and β(H1, H2, ̟) := (H1, H2). It indues a long exat sequene
... // Hk−1

dR (Q)
α∗

// Hk
dR(M1, M2, Q)

β∗

// Hk
dR(M1)⊕Hk

dR(M2)
δ

// Hk
dR(Q) // ... (A.19)in (birelative) de Rham ohomology. Together with the long exat sequene in birelative oho-mology with values in R, indued by the exat sequene (A.10), we have the following diagramwith exat rows:

Hk−1
dR (M1)⊕Hk−1

dR (M2)

Ψ∗⊕Ψ∗

��

// Hk−1
dR (Q)

Ψ∗

��

// Hk
dR(M1, M2, Q)

Ψ∗

bi

��

// Hk
dR(M1)⊕Hk

dR(M2)

Ψ∗⊕Ψ∗

��

// Hk
dR(Q)

Ψ∗

��Hk−1(M1,R)

⊕Hk−1(M2,R)
// Hk−1(Q,R) // Hk(M1, M2, Q,R) //

Hk(M1,R)

⊕Hk(M2,R)
// Hk(Q,R)21



It is easy to hek that all subdiagrams ommute, so that the 5-lemma implies that Ψ∗
bi is anisomorphism.In the same way as for ordinary ohomology, we say that a oyle in Ωk(M1, M2, Q) isintegral i� its lass � identi�ed by Ψ∗

bi with a lass in Hk(M1, M2, Q,R) � lies in the image ofthe indued homomorphism
Hk(M1, M2, Q, Z) → Hk(M1, M2, Q,R) . (A.20)In this ase the anonial pairing (A.9) of Ψ∗

bi([H1, H2, ̟]) with any birelative homology lass
[(σ1, σ2, τ)], whih is given by ∫

σ1

H1 +

∫

σ2

H2 +

∫

τ

̟ , (A.21)is an integer. Analogously as for WZW models in the bulk and on the boundary of a worldsheet, this notion of integral lasses is essential to ahieve the well-de�nedness of Wess--Zuminoterms. We infer the following result:The Wess--Zumino term S[φ1, φ2] (4.5) of a simply onneted M1-M2-bi-brane (Q, ̟) iswell-de�ned up to integers, provided that the lass of (H1, H2, ̟) in the birelative de Rhamohomology group H3dR(M1, M2, Q) is integral.To prove this laim, reall that the de�nition of S[φ1, φ2] involves hoies of submanifolds
D of Q and Bi of Mi. If we represent these submanifolds as singular hains, then

∂D = φS(S) , ∂B1 = φ1(Σ1) − (p1)∗D and ∂B2 = φ2(Σ2) + (p2)∗D . (A.22)Consider now di�erent hoies D′, B′
1 and B′

2, and let τ := D−D′ be a hain in ∆2(Q) and
σi :=Bi −B′

i be hains in ∆3(Mi). We �nd
∂τ = 0 , ∂σ1 = −(p1)∗τ and ∂σ2 = (p2)∗τ , (A.23)so that (σ1, σ2, τ) is a yle in the birelative homology H3(M1, M2, Q). The ambiguities of theWess--Zumino term S[φ1, φ2] are thus of the form

( ∫

B1

H1 +

∫

B2

H2 +

∫

D

̟
)
−

(∫

B′

1

H1 −
∫

B′

2

H2 +

∫

D′

̟
)

=

∫

σ1

H1 +

∫

σ2

H2 +

∫

τ

̟ . (A.24)In view of (A.15) the ambiguities (A.24) are nothing but the pairing of the yle (σ1, σ2, τ) with
(H1, H2, ̟). If (H1, H2, ̟) is integral, this gives an integer.B Bundle gerbes and defetsAs we have explained in setion 4 it is perfetly aurate to haraterize bundle gerbes on2-onneted target spaes M1 and M2 by their urvature three-forms H1 and H2. Under thisondition, we have de�ned an M1-M2-bi-brane to be a simply onneted submanifold Q of
M1 ×M2 together with a two-form ̟ on Q that obeys

p∗1H|Q = p∗2H|Q + d̟ . (B.1)22



In this Appendix we generalize this de�nition to bi-branes between target spaes with are not2-onneted. This makes it neessary to work with the full struture of a hermitian bundlegerbe. Examples of non-2-onneted target spaes are provided by non-simply onneted Liegroups, suh as the group SO(4n)/Z2, whih admits two non-isomorphi bundle gerbes withthe same urvature three-form H . At the same time, we drop the restrition on the bi-brane Qto be simply onneted. Examples of non-simply onneted bi-branes are provided by ertainbionjugay lasses of non-simply onneted Lie groups.B.1 Gerbe modulesLet us �rst reall how branes have been understood using bundle gerbes [Ga℄. Let G be abundle gerbe on the target spae M with urvature H . The geometri struture related to aonformal boundary ondition onsists of a pair 3 (Q, E), with Q a submanifold of M and E agerbe module for the restrition of G to Q. Suh gerbe modules are vetor bundles twisted bythe bundle gerbe G. We an view them as bundle gerbe morphisms
E : G|Q → Iω (B.2)from G|Q to a trivial bundle gerbe Iω given by a two-form ω on Q [Wa℄. The two-form ωis alled the urvature of the gerbe module. A neessary ondition for the existene of themorphism E is the equality

H|Q = dω (B.3)on Q. If the submanifold Q is not simply onneted, then non-trivial �at line bundles exist.Sine gerbe modules (of equal rank) with the same urvature ω form a torsor over the groupof �at line bundles, in this situation non-isomorphi gerbe modules with the same urvatureexist. This happens, for example, for the equatorial onjugay lass of SO(3), whih has thetopology of RP
2 and thus admits two non-isomorphi �at line bundles, whose ation relatestwo non-isomorphi gerbe modules.The arguably most diret way to understand (hermitian) bundle gerbes (with onnetivestruture) is in terms of their loal data: with respet to a good open over U = {Ui}i∈Iof M , a bundle gerbe G an be desribed by a olletion (gijk, Aij , Bi) of smooth funtions

gijk: Ui ∩Uj ∩Uk →U(1), 1-forms Aij ∈Ω1(Ui ∩Uj) and two-forms Bi ∈Ω2(Ui), satisfying theoyle onditions
g−1

jkl · gikl · g−1
ijl · gijk = 1 on Ui ∩ Uj ∩ Uk ∩ Ul ,

−i g−1
ijkdgijk + Ajk − Aik + Aij = 0 on Ui ∩ Uj ∩ Uk ,

dAij − Bj + Bi = 0 on Ui ∩ Uj . (B.4)The urvature of G is the globally de�ned three-form H with H|Ui
:= dBi. For example, theloal data of the trivial bundle gerbe Iω are (1, 0, ω|Ui∩Q). A rank-n bundle gerbe mod-ule E : G|Q →Iω is in this formalism desribed by a olletion (Gij, Πi) of smooth funtions3 But not every suh pair orresponds to a onformal boundary ondition; there are far more suh pairs thanonformal boundary onditions. 23



Gij : Ui ∩Uj ∩Q→U(n) and u(n)-valued 1-forms Πi ∈Ω1(Ui ∩Q)⊗ u(n) whih relate the loaldata of the bundle gerbes G|Q and Iω in the following way:
1 = gijk · Gik G−1

jk G−1
ij on Q ∩ Ui ∩ Uj ∩ Uk ,

0 = Aij + Πj − G−1
ij Πi Gij − i G−1

ij dGij on Q ∩ Ui ∩ Uj ,

ω = Bi + 1
n

tr(dΠi) on Q ∩ Ui . (B.5)Note that the derivative of the last equality reprodues the relation (B.3). Also note that ifthe bundle gerbe G is itself trivial, i.e. has loal data (1, 0, B|Ui
) for a globally de�ned Kalb--Ramond �eld B ∈Ω2(M), then (Gij, Πi) are the loal data of a rank-n vetor bundle over Qwith urvature of trae n (ω−B). This explains the terminology �twisted� vetor bundle in thenon-trivial ase. Finally, notie that if one hanges (Gij , Πi) by loal data of a non-trivializable�at vetor bundle over the world volume Q of the bi-brane, then one obtains a new bundle gerbemodule with the same urvature. In this way the existene of non-trivial �at vetor bundlesover Q makes the use of bundle gerbe modules unavoidable.In the ase of WZW onformal �eld theories with M = G one onsiders in partiularso-alled symmetri branes, whih preserve the urrent algebra in the presene of boundaries,and thus in partiular onformal invariane. Symmetri D-Branes (Q, E) an be haraterizedby three onditions [Ga℄:1. the world volume Q of the brane is a onjugay lass Ch of G;2. the loal two-forms dΠi take their values only in the enter of the Lie algebra u(n) and anthus be identi�ed with real two-forms;3. the two-form ω is �xed to

ω =
〈
θ|Ch

∧ Ad−1 + 1

Ad−1 − 1
θ|Ch

〉
. (B.6)The onditions 2 and 3 restrit the hoie of the onjugay lass to onjugay lasses thatorrespond to integrable highest weights. This amounts in partiular to having a �nite numberof non-interseting brane world volumes.B.2 Gerbe bimodulesThat bundle gerbe modules are the appropriate struture for branes in the ase of non-2-onneted target spaes or non-simply onneted supports, together with the folding triksuggests the orresponding struture as the appropriate generalization for bi-branes: for bundlegerbes G1 and G2 over M1 and M2, an M1-M2-bi-brane is a submanifold Q⊂M1 ×M2 togetherwith a (p∗1G1)|Q-(p∗2G2)|Q-bimodule: a bundle gerbe morphism

D : (p∗1G1)|Q → (p∗2G2)|Q ⊗ I̟ (B.7)with ̟ as in (B.1). Here we shall all the two-form ̟ the urvature of the bimodule. Thisde�nition is related to the folding trik in the sense, that � using the appropriate notion ofduality for bundle gerbes (see setion 1.4 of [Wa℄) � a G1-G2-bimodule is the same as a (G1⊗G∗
2)-module. 24



To onsider a bundle gerbe bimodule D in the loal data formalism, let U be a good overingof M1 ×M2, let (gijk, Aij, Bi) be loal data of p∗1G1, and (g′
ijk, A

′
ij, B

′
i) loal data of p∗2G2. Thenthe bimodule has loal data (Gij, Πi) similar to a bundle gerbe module, but now satisfying

g′
ijk = gijk · Gik G−1

jk G−1
ij on Q ∩ Ui ∩ Uj ∩ Uk ,

A′
ij = Aij + Πj − G−1

ij Πi Gij − i G−1
ij dGij on Q ∩ Ui ∩ Uj ,

B′
i + ̟ = Bi + 1

n
tr(dΠi) on Q ∩ Ui . (B.8)Again we make three observations: First, the derivative of the third equality gives equation(B.1); seond, if both bundle gerbes p∗1G1 and p∗2G2 are trivial, then a bimodule is just a rank-nvetor bundle over Q with urvature of trae n (B′−B+̟); and third, we an still hange theloal data (Gij , Πi) by loal data of a �at vetor bundle over Q and obtain another bimodulewith the same urvature. Suh phenomena arise, in partiular, for bi-branes for WZW theorieson non-simply onneted Lie groups.B.3 Holonomy in the presene of defetsWe have generalized the de�nition of bi-branes from simply onneted bi-branes between 2-onneted target spaes with three-forms to arbitrary bi-branes between arbitrary target spaeswith bundle gerbes. Now we shall generalize the Wess--Zumino term for bi-branes as given in(4.5) to the general ase as well.Let M1 and M2 be smooth manifolds with bundle gerbes G1 and G2 respetively, and let

(Q, E) be a bi-brane, i.e. a submanifold Q of M1 ×M2 together with a (p∗1G1)|Q-(p∗2G2)|Q-bimo-dule
D : (p∗1G1)|Q → (p∗2G2)|Q ⊗ I̟ (B.9)with urvature ̟. Reall that we de�ned the Wess--Zumino term for the following situation:a losed oriented world sheet Σ with an embedded oriented irle S ⊂Σ, whih separates theworld sheet into two omponents, Σ =Σ1 ∪S Σ2, together with maps φi: Σi →Mi for i = 1, 2suh that the image of the ombined map

φS : S → M1 ×M2

s 7→ (φ1(s), φ2(s))
(B.10)is ontained in Q. The orientation of Σi is the one inherited from the orientation of Σ, andwithout loss of generality we take ∂Σ1 =S and ∂Σ2 =S.To de�ne the Wess--Zumino term we use the formalism introdued in [Wa℄, whih emphasizesthe role of morphisms between bundle gerbes, in partiular between trivial bundle gerbes.Aording to [Wa℄, equivalene lasses of morphisms A: Iρ1

→Iρ2
are in natural bijetion withequivalene lasses of hermitian vetor bundles E with onnetion whose urvature satis�es

1
n

tr(curv(E)) = ρ2 − ρ1 , (B.11)with n the rank of E. We write Bun(A) for the vetor bundle orresponding to the morphism
A. This assignment has three important properties (Proposition 4 in [Wa℄):25



• if the morphism A is invertible, then the vetor bundle Bun(A) is of rank one, i.e. a linebundle; furthermore
Bun(A−1) = Bun(A)∗ ; (B.12)

• it is ompatible with the omposition of morphisms,
Bun(A′ ◦A) = Bun(A) ⊗ Bun(A′) and Bun(idIρ

) = 1 ; (B.13)
• it is ompatible with tensor produts,

Bun(A′⊗A) = Bun(A) ⊗ Bun(A′) . (B.14)As an illustration, onsider a manifold M with two bundle gerbes G1 and G2, and a G1-G2-bi-module D: G1 →G2 ⊗Iω. Suppose we have trivializations of eah of the bundle gerbes G1 and
G2, i.e. bundle gerbe isomorphisms Ti: Gi →Iρi

. By omposition, we obtain a bundle gerbemorphism
D̃ := (T2 ⊗ idIω

) ◦ D ◦ T −1
1 : Iρ1

→ Iρ2+ω . (B.15)It orresponds to a vetor bundle E :=Bun(D̃) over M . Summarizing, a gerbe bimodule to-gether with trivializations gives a hermitian vetor bundle on M with onnetion. Let us disusshow the vetor bundle E depends on the hoie of the trivializations. If T ′
1 and T ′

2 are twodi�erent hoies of trivializations and D̃′ is the orresponding morphism (B.15), we obtain theline bundles
Ti := Bun(T ′

i ◦ T −1
i ) (B.16)over M , of urvature curv(Ti) = ρ′

i − ρi. Then we have
D̃ = (T2 ⊗ idI̟

) ◦ D ◦ T −1
1

∼= (T2 ◦ (T ′
2 )−1 ⊗ idI̟

) ◦ (T ′
2 ⊗ idI̟

) ◦ D ◦ (T ′
1 )−1 ◦ T ′

1 ◦ T −1
1

= (T2 ◦ (T ′
2 )−1 ⊗ idI̟

) ◦ D̃′ ◦ T ′
1 ◦ T −1

1 .

(B.17)Using the identi�ation Bun of bundle gerbe morphisms with vetor bundles and its properties(B.13) and (B.14) we obtain
E ∼= T ∗

2 ⊗ E ′ ⊗ T1 . (B.18)We an apply this result in the following way to the bi-brane (Q,D). The pullbak of thebimodule D along the map φS: S →Q gives a (φ∗
1G1)|S-(φ∗

2G2)|S-bimodule
φ∗

SD : (φ∗
1G1)|S → (φ∗

2G2)|S ⊗ Iφ∗

S
̟ . (B.19)The pullbak bundle gerbes φ∗

iGi over Σi are trivializable by dimensional reasons. A hoie
Ti: φ∗

iGi →Iρ of trivializations for two-forms ρi on Σi produes a vetor bundle over S. Withthis vetor bundle E we de�ne
holG1,G2,D(Σ, S) := exp

(
i

∫

Σ1

ρ1

)
exp

(
i

∫

Σ2

ρ2

)
tr(holE(S)) ∈ C (B.20)

26



to be the holonomy in the presene of the bi-brane (Q, E). This holonomy is the appropriategeneralization of the Wess--Zumino (4.5) term in situations where the simplifying assumptionson the topology of the bakground and the bi-brane do not hold any longer.This de�nition does not depend on the hoie of the trivializations T1 and T2, as we shallnow establish. For di�erent hoies T ′
1 and T ′

2 we obtain the line bundles Ti introdued in(B.16). Sine by onstrution we have ∂Σ1 = S and ∂Σ2 = S, and sine the urvature of thebundles Ti is curv(Ti) = ρ′
i − ρi, the holonomies of T1 and T2 around S are given by

holT1
(S) = exp

(
i

∫

Σ1

ρ′
1 − ρ1

) and (holT2
(S))−1 = exp

(
i

∫

Σ2

ρ′
2 − ρ2

)
, (B.21)respetively. From (B.18) we obtain

tr(holE(S)) = tr(holT ∗

2
⊗E′⊗T1

(S)) = (holT2
(S))−1 tr(holE′(S)) holT1

(S) . (B.22)Together with (B.21) this shows the independene of number (B.20) of the hoie of the trivi-alizations.To disuss the relation between the holonomy (B.20) and the form of the Wess--Zuminoterm given in Setion 4, suppose there exist 3-dimensional oriented submanifolds B1 and B2 in
M1 and M2, respetively, and a 2-dimensional oriented submanifold D of Q suh that

∂D = φS(S) , ∂B1 = φ1(Σ1)∪ p1(D) and ∂B2 = φ2(Σ2)∪ p2(D) . (B.23)By dimensional reasons we an hoose trivializations Ti: Gi|∂Bi
→Iρi

of the two bundle gerbesover ∂Bi, thus produing a vetor bundle E over D of urvature
1
n

tr(curv(E)) = ̟|D + p∗2ρ2|D − p∗1ρ1|D . (B.24)The pullbaks φ∗
iTi: φ∗

iGi →Iφ∗ρi
are trivializations as used in the de�nition of the holonomy(B.20), whih hene beomes

holG1,G2,D(Σ, S) = exp
(
i

∫

φ1(Σ1)

ρ1

)
exp

(
i

∫

φ(Σ2)

ρ2

)
tr(holE(φS(S))) . (B.25)Here the holonomy of the vetor bundle E around the boundary φS(S) of D beomes by (B.24)

tr(holE(φS(S))) = tr(holE(∂D)) = exp
(
i

∫

D

̟ + p∗2ρ2 − p∗1ρ1

) . (B.26)The holonomy of the bundle gerbe Gi|∂Bi
around the losed surfae ∂Bi is, by de�nition,

holGi
(∂Bi) = exp

(
i

∫

∂Bi

ρi

)
= exp

(
i

∫

φi(Σi)

ρi ± i

∫

D

p∗i ρi

) (B.27)with a minus sign for i = 1 and a plus sign for i =2, aording to the relative orientations of Dand ∂Bi in (B.23). On the other hand, we have
holGi

(∂Bi) = exp
(
i

∫

Bi

Hi

) (B.28)with Hi the urvature of Gi. Taking the last four equalities together, we obtain
exp

(
i

∫

B1

H1 + i

∫

B2

H2 + i

∫

D

̟
)

= holG1,G2,D(Σ, S) . (B.29)We onlude that the holonomy of the bi-brane indeed speializes to the exponential of theWess--Zumino term in the form given in Setion 4.27
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