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Abstra
tWe establish that the relevant geometri
 data for the target spa
e des
ription of worldsheet topologi
al defe
ts are submanifolds � whi
h we 
all bi-branes � in the produ
t
M1 × M2 of the two target spa
es involved. Very mu
h like branes, they are equippedwith a ve
tor bundle, whi
h in ba
kgrounds with non-trivial B-�eld is a
tually a twistedve
tor bundle. We explain how to de�ne Wess--Zumino terms in the presen
e of bi-branesand dis
uss the fusion of bi-branes.In the 
ase of WZW theories, symmetry preserving bi-branes are shown to be bi
onjuga
y
lasses. The algebra of fun
tions on a bi
onjuga
y 
lass is shown to be related, in thelimit of large level, to the partition fun
tion for defe
t �elds. We �nally indi
ate how theVerlinde algebra arises in the fusion of WZW bi-branes.
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1 Introdu
tionSigma models have been one signi�
ant sour
e of examples for two-dimensional 
onformal�eld theories. They allow one to relate geometri
 stru
ture on target spa
e to �eld theoreti
quantities in the 
onformal �eld theory. This has has provided mu
h insight, not least for theinterpretation of string theory. A parti
ularly important observation has been the relationshipbetween (
onformal) world sheet boundary 
onditions and D-branes, whi
h are, in their simplestin
arnation, submanifolds of the target spa
e equipped with a ve
tor bundle.The target spa
e of a sigma model has, at least, the stru
ture of a (pseudo-)Riemannianmanifold. Further stru
ture on the target spa
e is introdu
ed by the presen
e of the ta
hyonand of the antisymmetri
 Kalb-Ramond B-�eld. While we will ignore the ta
hyon in thepresent arti
le, we do take the B-�eld into a

ount, wherever this is possible without renderingthe exposition too te
hni
al. The appropriate geometri
 stru
ture on target spa
e needed todes
ribe a non-trivial B-�eld ba
kground is a hermitian bundle gerbe, and for a D-brane theve
tor bundle gets repla
ed by a twisted ve
tor bundle, i.e. by a gerbe module for the restri
tionof the gerbe to the world volume of the brane.Apart from 
onformally invariant boundary 
onditions, two-dimensional 
onformal �eldtheories admit another, equally natural, stru
ture: topologi
al defe
t lines. These obje
tsare familiar from statisti
al me
hani
s. Take, for example, the latti
e version of the Isingmodel: 
hanging the 
oupling along all bonds that 
ross a spe
i�ed line from ferromagneti
 toantiferromagneti
, produ
es a defe
t. Due to the Z2-gauge invarian
e of the Ising model, theposition of this defe
t 
an be moved around, as long as we do not 
ross the site of a spin thatappears in the 
orrelator of interest. If we do 
ross su
h a site, we are for
ed to 
hange thesign of the spin variable. The defe
t thus 
omes with a well-de�ned rule for passing insertionsin the bulk through the defe
t line.Moreover, in the Ising model a pair of two su
h defe
t lines whi
h run 
lose to ea
h other 
anbe eliminated by a gauge transformation; more generally, two defe
ts 
an be joined to a singledefe
t, whi
h gives rise to fusion rules between topologi
al defe
ts. A similar phenomenon ariseswhen we take boundary 
onditions into a

ount: In the Ising model, a given boundary 
ondition,say �spin sup�, 
ombined with a parallel antiferromagneti
 defe
t line 
an be repla
ed by theboundary 
ondition �spin down�. More generally, there is a mixed fusion by whi
h topologi
aldefe
ts a
t on 
onformal boundary 
onditions.Similarly as in the 
ase of boundary 
onditions, in the CFT that is obtained in the 
ontinuumlimit this stru
ture 
an be expe
ted to result in defe
t lines along whi
h 
orrelation fun
tions ofbulk �elds 
an have a bran
h-
ut like behaviour. At least for rational 
onformal �eld theories,su
h defe
t lines appear naturally in algebrai
 approa
hes to CFT [PZ, FRS1℄; in the TFTapproa
h to RCFT 
orrelators [FRS1℄ a 
omplete des
ription of su
h defe
ts is available [FFRS1,FFRS2℄. The TFT approa
h allows one, in parti
ular, to 
ompute the partition fun
tions ofbulk and boundary �elds, and of defe
t �elds (�elds living on a defe
t line that 
an 
hange thetype of defe
t), as well as the fusion of two defe
ts and of a defe
t with a 
onformal boundary
ondition.More spe
i�
ally, suppose a 
olle
tion of 
onformal �eld theories is 
ompatible in the sensethat they share a 
hiral symmetry algebra, in
luding at least the Virasoro algebra. Note that inorder for two 
onformal �eld theories to be 
ompatible, they must in parti
ular have the sameVirasoro anomaly. A standard example of 
ompatible theories are the WZW models based on
SU(2) and on SO(3) with the same value of the level. We label the members of a 
ompatible1



family of 
onformal �eld theories by indi
es {A1, A2, ... }. There then exist (oriented) defe
tswhi
h separate the 
onformal �eld theory of type A1 present on a region of world sheet to theirleft from a 
onformal �eld theory of type A2 to their right hand side. Su
h a topologi
al defe
twill be denoted by A1
BA2

. Then the fusion of defe
ts asso
iates to two defe
ts A1
BA2

and A2
BA3a defe
t of type A1

BA3
:

A1
BA3

= A1
BA2

⋆A2 A2
BA3

. (1.1)The se
ond type of fusion asso
iates to a defe
t A1
BA2

and boundary 
ondition A2
N for thetheory of type A2 a boundary 
ondition A1

N for the theory of type A1,
A1

N = A1
BA2

⋆A2 A2
N . (1.2)In the framework of [FRS1, FFRS2℄, the labels {A1, A2, ... } 
orrespond to 
ertain algebras in therepresentation 
ategory of the 
hiral symmetry algebra. These algebras en
ode in parti
ularthe partition fun
tions, in
luding a modular invariant bulk partition fun
tion and partitionfun
tions for boundary and defe
t �elds. Branes are des
ribed by modules, and defe
ts bybimodules, of these algebras; the fusion operation ⋆A is realized as the tensor produ
t over A.It has also been understood [FFRS1, FFRS2℄ that topologi
al defe
ts en
ode informationboth on internal symmetries and on dualities of a 
onformal �eld theory; this in
ludes inparti
ular T-dualities.In view of the relevan
e of target spa
e stru
tures for string theoreti
 interpretations, itis natural to ask whether a target spa
e des
ription exists for 
onformal defe
ts as well. Theanswer to this question is the primary result of the present paper.Suppose we are given two 
ompatible 
onformal �eld theories, 
orresponding to target spa
es

M1 and M2, respe
tively. We show that 
onformal defe
ts 
orrespond to submanifolds of theprodu
t M1 ×M2. Furthermore, very mu
h in the same way as for a brane, this submanifoldhas to be endowed with a ve
tor bundle (again, in the presen
e of a non-trivial B-�eld this is atwisted ve
tor bundle). For theories based on 
urrent algebras � 
ompa
ti�ed free bosons andWess--Zumino--Witten theories � we study the relevant submanifolds in detail. For simpli
ity,in this paper we restri
t our attention to the 
ases of a single 
ompa
ti�ed free boson andof the WZW model based on a 
ompa
t, 
onne
ted and simply 
onne
ted Lie group. It is
lear, however, that when 
ombined with standard te
hniques developed for D-branes, the
on
epts presented here allow one to extend our results to more general 
lasses of 
onformal�eld theories, in parti
ular to WZW theories on non-simply 
onne
ted groups, 
oset theories,theories of several free bosons 
ompa
ti�ed on a torus, and orbifolds of su
h theories.In the rest of this paper we will pro
eed as follows. Inspired by the 
al
ulation of thes
attering of 
losed string states in the presen
e of D-branes [DFPSLR, FFFS℄, in Se
tion 2 weanalyze s
attering pro
esses in the presen
e of defe
t lines, 
onsidering theories with 
urrentsymmetries and defe
ts of type ABA. In these 
ases we have M1 = M2 =M , and the target spa
e
M is a 
ompa
t 
onne
ted Lie group. In the simply 
onne
ted 
ase the relevant submanifoldof M ×M turns out to be a bi
onjuga
y 
lass, i.e. is of the form

Bh1,h2
:=

{
(g1, g2)∈G×G | ∃x, y ∈G: g1 =xh1y

−1, g2 = xh2y
−1

}
. (1.3)This is analogous to the role played by 
onjuga
y 
lasses [AS, FFFS, St℄ in the des
ription ofboundary 
onditions. Correspondingly, the so-
alled 2-
hara
ters

χ(2)
λ : G×G → C

(g1, g2) 7→ trHλ
(g1g2)

(1.4)2



take the role that 
hara
ters play in the theory of branes. We will therefore refer to the targetspa
e obje
ts that des
ribe defe
ts as bi-branes.It should be appre
iated that while the multipli
ation of the Lie group G enters in thespe
i�
 form of bi-branes for WZW theories, the des
ription of defe
ts in general does notrequire a multipli
ation on target spa
e. Rather, the relevant stru
ture for bi-branes separatingtheories with target spa
es M1 and M2 are suitable submanifolds of M1 ×M2.In Se
tion 3 we dis
uss the intrinsi
 geometry of bi
onjuga
y 
lasses and relate the algebraof fun
tions on a bi
onjuga
y 
lass to the algebra of defe
t �elds; we 
an then exhibit a two-form on the bi
onjuga
y 
lass that trivializes the di�eren
e of the three-form �eld strengthson the two ba
kgrounds involved. In Se
tion 4 we show how these data 
an be employed to
onstru
t a Wess--Zumino term in situations in whi
h the topology of both the target spa
eand the bi-brane are parti
ularly simple; a proof that the so 
onstru
ted Wess--Zumino term iswell-de�ned, as well as the des
ription of the Wess--Zumino term for more general target spa
esand/or bi-branes, are relegated to appendi
es. Finally, Se
tion 5 is devoted to aspe
ts of thefusion of two bi-branes and of the fusion of a bi-brane to a brane; we provide in parti
ularan argument for how the Verlinde algebra arises as the fusion algebra of symmetry preservingbi-branes on simply 
onne
ted Lie groups. A short outlook is supplied in Se
tion 6.2 S
attering of bulk �elds in the ba
kgrounds of defe
tsOne rationale for assigning a target spa
e geometry to a 
onformal �eld theory is to study thes
attering of bulk �elds. This is based on the general idea (see e.g. [FG℄) that (a subspa
e of)the spa
e of bulk �elds 
an be identi�ed with a trun
ation and deformation of the algebra offun
tions on the target spa
e. In the 
ase of branes this amounts, in tree level approximationto string theory s
attering amplitudes, to 
omputing the two-point fun
tions of bulk �elds ona disk with given boundary 
ondition. By fa
torization to a three-point fun
tion on the sphereand a one-point fun
tion on the disk, this 
an be redu
ed [DFPSLR, FFFS℄ to the 
omputationof one-point fun
tions of bulk �elds on the disk.Here we are interested in probing the target spa
e geometry for a topologi
al defe
t Bon the world sheet, again using the s
attering of bulk �elds. In tree-level approximation wehave to 
onsider the two-point fun
tions of bulk �elds on a world sheet that is a sphere S2
ontaining a 
losed defe
t line B. Without loss of generality, we 
an take the defe
t line tobe along the equator of the sphere. If both bulk �eld insertions are on the same hemisphere,then by fa
torization we just obtain the 
orrelator in the absen
e of a defe
t, multiplied bythe quantum dimension of the defe
t [FjFRS℄. To get information on the relevant geometry ofthe target spa
e, we must thus 
onsider the situation with the two bulk insertions on di�erenthemispheres, i.e. on di�erent sides of the defe
t line.For theories with 
urrent symmetry we will use the following notation. By g we denote a�nite-dimensional redu
tive 
omplex Lie algebra. Spe
ial 
ases of parti
ular interest are thosewhere g is simple, and the abelian Lie algebra u(1)⊕· · ·⊕ u(1). By G we denote the simplest
ompa
t Lie group with Lie algebra (the 
ompa
t real form of) g. Thus for semisimple g, G isthe 
onne
ted simply 
onne
ted 
ompa
t Lie group with Lie algebra g, while for redu
tive Liealgebras we take in addition the dire
t produ
t with d 
opies of U(1), with d the dimension ofthe 
enter of g. For 
on
reteness, the reader might wish to keep in mind the two spe
ial 
ases3



g = u(1) and g = su(2), with G =U(1) and G =SU(2), respe
tively.By g we denote the nontrivial 
entral extension of the loop algebra of g; if g is simple, g isan untwisted a�ne Lie algebra, while for g abelian we have a dire
t sum of Heisenberg algebraswith identi�ed 
enters. We �x the value of the level k for ea
h simple ideal of g; the irredu
iblehighest weight representations are then 
lassi�ed by the set Pk of dominant integral weights λat level k. Analogously the irredu
ible �nite-dimensional representations of g are labeled bythe set P of dominant integral g-weights. In parti
ular, for g= u(1), Fo
k spa
es are labeledby momentum, so that Pk = P =R, while for g = su(2), at positive integral level k the relevantsets are Pk = {0, 1, ... , k} and P = Z≥0.Thus for any λ∈P we have a �nite-dimensional g-module Hλ (for g = su(2) its dimensionis λ+1). We may as well regard Hλ as a G-module; its 
hara
ter is
χλ : G → C×

g 7→ trHλ
Rλ(g) .

(2.1)Via taking the horizontal part of an a�ne weight, we 
an regard Pk as a subset of P . The irre-du
ible g-module with highest weight λ∈Pk is in�nite-dimensional, with �nite-dimensional ho-mogeneous subspa
es; we identify its zero-grade subspa
e with the �nite-dimensional g-module
Hλ. Finally, by λ+ we denote the highest weight of the representation that is 
onjugate to
Hλ. For g= u(1), this is the representation with opposite u(1)-
harge; for g = su(2), everyrepresentation is self-
onjugate.Returning to our pre
eding dis
ussion, we now 
onsider the 
orrelation fun
tion on S2 oftwo bulk �elds labeled by g⊕ g-modules Hλ ⊠Hλ+ and Hµ ⊠Hµ+ inserted, respe
tively, atthe north and south pole of S2, with a defe
t B along the equator. Further, we restri
t ourattention to the the so-
alled Cardy 
ase, in whi
h the bulk partition fun
tion is given by 
harge
onjugation, boundary 
onditions are labeled by primary �elds and the annulus 
oe�
ients arefusion rules [Ca℄. In the Cardy 
ase also the topologi
al defe
ts are labeled by the same set Pkas the left- and right-moving parts of the bulk �elds. In the sequel we abbreviate the defe
t
B = Bα with α∈Pk by α.By holomorphi
 fa
torization, any 
orrelator on S2 is an element of the spa
e of 
onformalblo
ks on the double 
over of S2, whi
h 
onsists of the disjoint union of two 
opies of CP

1 withopposite orientation. For the 
orrelator Dα;λµ of two bulk �elds on S2 with a defe
t line α, wethus deal with a four-point blo
k Dλµ on CP
1 ⊔CP

1, whi
h is an element of the algebrai
 dualof the tensor produ
t ve
tor spa
e Hλ ⊗Hλ+ ⊗Hµ ⊗Hµ+ . Similarly as in [FFFS℄ we 
onsiderthe parti
ular 
orrelator
Gabcd

α;λµ(v⊗ ṽ⊗w⊗ w̃) := Dα;λµ(Ja
−1v⊗ J b

−1ṽ⊗ Jc
−1w⊗ Jd

−1w̃) , (2.2)where by Ja
n, with a a labeling a basis of g, we denote the modes of the 
urrents Ja(z) (for the
orresponding basis elements of g we write J̄a).In order for the 
orrelator (2.2) to be non-zero we need µ =λ+. The states v and w̃ arethen ve
tors in the g-module Hλ, while ṽ and w are states in the g-module Hλ+ , with these

g-modules regarded as the zero-grade subspa
es of the 
orresponding g-modules.To determine the 
orrelation fun
tion (2.2), we �rst study the four-point 
onformal blo
ks
Dλλ+ on CP

1 ⊔CP
1. They de
ompose into a tensor produ
t of two-point blo
ks on the two4




opies of CP
1, Dλλ+ =Fλ ⊗Fλ+ . The 
hiral Ward identities for left and right movers read

Dλλ+ ◦
(
Ja
−n ⊗1⊗1⊗1 + 1⊗1⊗Ja

n ⊗1
)

= 0 (2.3)and
Dλλ+ ◦

(
1⊗ Ja

−n ⊗1⊗1 + 1⊗1⊗1⊗Ja
n

)
= 0 , (2.4)respe
tively, for all a =1, 2, ... , dim(g) and all n∈Z. Together with the highest weight propertiesof w and w̃ and with the 
ommutation relations of g, the Ward identities imply

Dλλ+(Ja
−1v ⊗ J b

−1ṽ⊗ Jc
−1w⊗ Jd

−1w̃) = Dλλ+(v ⊗ ṽ⊗ Ja
1 Jc

−1w⊗ J b
1J

d
−1w̃)

= Fλ(v⊗ [Ja
1 , Jc

−1]w) Fλ+(ṽ⊗ [J b
1 , J

d
−1]w̃)

=
[
Fλ(v⊗ [J̄a, J̄c]w) + k κacFλ(v⊗w)

]

·
[
Fλ+(ṽ⊗ [J̄ b, J̄d]w̃) + k κbdFλ+(ṽ⊗ w̃)

]
.

(2.5)We expe
t that a dire
t 
onta
t to the geometry of 
ompa
t Lie groups exists in the weak
oupling limit, i.e. in the limit of large level k. A

ordingly we only keep those terms in (2.5)whi
h are of leading order in k; they are proportional to the Killing form of g and 
orrespondto graviton and dilaton s
attering; if g is abelian, they are the only terms present. In this limitwe obtain the expression
k2κacκbd Fλ(v⊗w) Fλ+(ṽ⊗ w̃) =: k2κacκbd D∞

λλ+(v⊗ ṽ⊗w⊗ w̃) . (2.6)As in [FFFS℄, at this point we invoke the Peter--Weyl theorem, so as to identify the spa
e⊕
λ∈Pk

Hλ ⊠Hλ+ with a subspa
e of the spa
e F(G) of fun
tions on the Lie group G. This way,equation (2.6) allows us to asso
iate to a defe
t a linear fun
tion on F(G), i.e. a distribution.Before 
omputing this distribution, whi
h essentially amounts to a Fourier transformation, wenoti
e that while boundary 
onditions give a distribution on G, defe
ts give a distribution onthe produ
t manifold G×G. As a 
onsequen
e, defe
ts will be asso
iated to submanifolds of
G×G. This also �ts ni
ely with the philosophy behind the so-
alled folding tri
k [WoA℄, bywhi
h a 
onformal defe
t separating two 
onformal �eld theories CA1

and CA2
with the same
onformal anomaly is related to a 
onformally invariant boundary 
ondition in the produ
ttheory CA1

×CA2
. It should be kept in mind, however, that in this arti
le we are only 
on
ernedwith topologi
al defe
ts, whi
h 
onstitute a spe
i�
 sub
lass of 
onformal defe
ts.Let us now Fourier transform the result (2.6) a

ording to the rules of [FFFS℄, to obtain adistribution on G×G. We �rst note that the Fourier transformation of a linear form D on thespa
e ⊕

λ,µ∈P Hλ ⊠Hλ+ ⊠Hµ ⊠Hµ+ reads
D(v⊗ ṽ⊗w⊗ w̃) =

∫

G×G

dg dg′ D̃(g, g′)∗
∑

λ,µ∈P

〈ṽ⊗ w̃|Rλ(g)⊗Rµ(g
′) |v⊗w〉

=

∫

G

dg
∑

λ∈P

〈ṽ|Rλ(g) |v〉
∫

G

dg′
∑

µ∈P

〈w̃|Rµ(g′) |w〉 D̃(g, g′)∗, (2.7)and that its inverse is given by
D̃(g, g′) =

∑

µ1;i,j

∑

µ2;k,l

Nµ1
Nµ2

D(vi ⊗ ṽj ⊗wk ⊗ w̃l) 〈ṽj|Rµ1
(g) |vi〉 〈w̃l|Rµ2

(g′) |wk〉 , (2.8)5



with {vi} a basis of Hµ1
and {ṽi} the dual basis of Hµ+

1
, and analogously for for wk and w̃k.Here the normalization fa
tors Nµi

are given by Nµ =
√
|Hµ|/|G| with |Hµ| the dimension of

Hµ and |G| the volume of G. 1For the fun
tions (2.6) of our interest this pres
ription yields
D̃∞

λλ+(g, g′) =
∑

µ
1
,µ

2
∈P

Nµ
1
Nµ

2

∑

i,j,k,l

〈ṽj |Rµ
1
(g) |vi〉Fλ(vi ⊗ vk) 〈ṽl|Rµ

2
(g′) |vk〉Fλ+(ṽj ⊗ ṽl)

= N2
λ

∑

i,j,k,l

〈ṽj |Rλ(g) |vi〉Fλ(vi ⊗ vk) 〈ṽl|Rλ+(g′) |vk〉Fλ+(ṽj ⊗ ṽl). (2.9)By the identities Rλ+(g) = (Rλ(g
−1))t, where the supers
ript indi
ates the transpose matrix,and Fλ(vi ⊗ vk) = δi,k, this redu
es to

D̃∞

λλ+(g, g′) = N2
λ

∑

i,j

(
Rλ(g)

)j

i

(
Rλ(g

′−1)
)i

j
= N2

λ
χ

λ(gg′−1) . (2.10)Here 2-
hara
ters of G pop up. 2-
hara
ters are fun
tions on the Cartesian produ
t G×Gof a group with itself. They �rst appeared in [Fr℄ in the expansion of group determinants.As 
ompared to 
hara
ters, they 
ontain more information about the group than 
hara
ters;e.g. in 
ontrast to 
hara
ters, they allow one to determine whether a representation is real orpseudo-real. (Still, 2-
hara
ters and 
hara
ters do not determine a group up to isomorphism. Asurprisingly re
ent result [HJ℄ states that a group is determined by its 1-, 2- and 3-
hara
ters.)Next we use the results of the TFT approa
h (following the lines of Se
tion 4 of [FRS2℄) toexpress the 
orrelation fun
tions in terms of 
onformal blo
ks: we have
Dα;λµ =

Sλ,α

S0,λ

Dλλ+ = χ
α(hλ)

∗Dλλ+ =
S0,α

S0,λ

χ
λ(hα)∗Dλλ+ , (2.11)where similarly as in [FFFS℄ we introdu
ed the group element

hα := exp(2πi ŷα) , (2.12)with ŷα the Cartan subalgebra element dual to the weight
yα :=

α + ρ

k + g∨
∈ g∗

0 . (2.13)(ρ denotes the Weyl ve
tor and g∨ the dual Coxeter number of g.) For the sum
Gabcd

α :=
∑

λ∈Pk

Gabcd

α;λλ+ (2.14)of two-point 
orrelators, whi
h is the analogue of a boundary state, we thus obtain, at large k,
G̃abcd

α (g, g′) = k2κacκbd
∑

λ∈Pk

N2
λ

S0,α

S0,λ

χ
λ(hα)∗ χ

λ(gg′−1) . (2.15)1 Note that, like e.g. in [BDS, FW℄, we do not take the volume of G to be normalized to 1. Rather, the`physi
al' radius of G should be √
kα′, i.e. |G| is proportional to (kα′)dim(G)/2.6



Furthermore, using that at large k the quantum dimension S0,λ/S0,0 approa
hes the ordinarydimension |Hλ| and Pk 
an be repla
ed by P , this redu
es to
G̃abcd

α (g, g′) = k2κacκbd |Hα|
|G|

∑

λ∈P

χ
λ(hα)∗ χ

λ(gg′−1) . (2.16)Up to normalization this is a delta distribution on the 
onjuga
y 
lass Cα ≡Chα
of G:

∑

λ∈P

χ
λ(hα)∗χλ(gg′−1) =

|G|
|Cα| δCα

(gg′−1) . (2.17)Thus we �nally arrive at
G̃abcd

α (g, g′)
k→∞

−−→ k2κacκbd |Hα|
|Cα| δCα

(gg′−1) . (2.18)In short, for given topologi
al defe
t α, in the large level limit the analogue (2.14) of theboundary state is 
on
entrated on those pairs (g, g′)∈G×G whose produ
t gg′−1 lies in Cα.3 The world volume of WZW bi-branes3.1 Bi
onjuga
y 
lassesA

ording to the s
attering 
al
ulation in the previous se
tion, the geometri
 obje
t in G×Gthat is relevant for the des
ription of a defe
t α is the set of those points points (g1, g2) of
G×G su
h that g1g

−1
2 lies in the 
onjuga
y 
lass Cα of G. These subsets of G×G are a
tuallysubmanifolds; we wish to des
ribe them in more detail. To this end we introdu
e the followingnotion: For a 
ompa
t 
onne
ted Lie group G and elements h1, h2 ∈G we 
all the submanifold

Bh1,h2
:=

{
(g1, g2)∈G×G | ∃x1, x2 ∈G: g1 = x1h1x

−1
2 , g2 = x1h2x

−1
2

}
⊂ G×G (3.1)the bi
onjuga
y 
lass of the pair (h1, h2).Bi
onjuga
y 
lasses inherit from the diagonal left and diagonal right a
tions of G on G×Gtwo 
ommuting a
tions of G. For the defe
ts we are des
ribing here, these two G-a
tions
orrespond to the two independent preserved 
urrent symmetries.Obviously, 2-
hara
ters are 
onstant on bi
onjuga
y 
lasses. In fa
t, very mu
h like the
hara
ters of irredu
ible G-representations form a natural basis for the fun
tions on the spa
eof 
onjuga
y 
lasses, the 2-
hara
ters of irredu
ible representations form a basis for the spa
eof fun
tions on bi
onjuga
y 
lasses.Next we observe that the smooth map

µ̃ : G×G → G
(g1, g2) 7→ g1g

−1
2

(3.2)intertwines the diagonal left and diagonal right a
tion of G on G×G and the adjoint and triviala
tions of G on itself, respe
tively. Put di�erently, µ̃ de�nes the stru
ture of a trivializable
G-equivariant prin
ipal G-bundle over G. Indeed, the G-a
tion on the �bers is by diagonalright multipli
ation, so that the G-equivariant di�eomorphism t: (g1, g2) 7→ (g1g2, g2) furnishes7



a global trivialization, where the trivial G-bundle p1: G×G→G over G proje
ts on the �rst
omponent.It now follows that a bi
onjuga
y 
lass in G×G is the preimage of a 
onjuga
y 
lass in Gunder the proje
tion µ̃ de�ned in (3.2):
Bh1,h2

= µ̃−1(Ch
1
h−1
2

) =
{
(g1, g2)∈G×G | g1g

−1
2 ∈Ch

1
h−1
2

} ; (3.3)in parti
ular,
Bh1,h2

= Bh
1
h−1
2

,e . (3.4)To establish the relation (3.3), we observe that for every element (g1, g2)∈Bh1,h2
we have

g1 = x1h1x
−1
2 and g2 = x1h2x

−1
2 for some x1.x2 ∈G, and hen
e g1g

−1
2 = x1h1h

−1
2 x−1

1 ∈Ch
1
h−1
2
. Con-versely, given (g1, g2)∈G×G su
h that there exists some x∈G with xg1g

−1
2 x−1 = h1h

−1
2 , weset x1 := x−1 and x2 := g−1

2 x−1h2 and obtain g1 = x1h1x
−1
2 and g2 = x1h2x

−1
2 , whi
h shows that

(g1, g2)∈Bh1,h2
.To 
on
lude, bi
onjuga
y 
lasses have the topology of a dire
t produ
t of G with a 
onju-ga
y 
lass. Thus for simply 
onne
ted groups, they are in parti
ular simply 
onne
ted. Thes
attering of 
losed string states in WZW theories dete
ts bi-branes 
orresponding to bi
on-juga
y 
lasses for whi
h h1h

−1
2 is a regular element of G; this 
losely parallels the �ndings of[FFFS℄ for branes.3.2 World volume quantizationAs further eviden
e for the relation between bi
onjuga
y 
lasses and WZW defe
ts, we will nowestablish that the defe
t �elds asso
iated to a topologi
al defe
t furnish a quantization of thespa
e of fun
tions on a bi
onjuga
y 
lass. Note that besides bulk �elds there also exist othertypes of �elds in the presen
e of defe
ts [FFRS2℄: disorder �elds, at whi
h defe
t lines start orend, and defe
t �elds, whi
h live on a defe
t line and 
an 
hange the type of the defe
t. Thereis a distinguished type of defe
t, a
ting as a unit with respe
t to fusion, 
alled the invisibledefe
t. A
ross this defe
t, every bulk �elds is smooth. Disorder �elds are in fa
t spe
ial defe
t�elds: those 
hanging the invisible defe
t to some other defe
t or vi
e versa. Similarly, bulk�elds 
an be regarded as defe
t �elds preserving the invisible defe
t and thus as spe
ial disorder�elds.Sin
e there are two 
ommuting a
tions of G on the world volume of a bi
onjuga
y 
lass, thespa
e F(Bh1,h2

) has the stru
ture of a G×G-module. This 
an be 
ompared with the situationfor 
onjuga
y 
lasses, whi
h des
ribe WZW branes. A 
onjuga
y 
lass C 
arries a natural G-a
tion, the adjoint a
tion, whi
h turns the spa
e of F(C) of fun
tions on C into a G-module.As pointed out in [FFFS℄, only regular 
onjuga
y 
lasses are relevant to the situation of ourinterest. A regular 
onjuga
y 
lass is isomorphi
 to G/T , with T a maximal torus of G, andthere is an isomorphism
F(G/T ) ∼=

⊕

λ∈P

multλ(0) Hλ (3.5)of G-modules, where multλ(0) denotes the multipli
ity of the weight 0 in the highest weight
g-module Hλ.This G-module stru
ture is related, in the large-level limit, to the G-module stru
ture ofa subset of the spa
e of boundary �elds for the 
orresponding WZW brane. Note that in the8



present 
ontext we should perform the large-k limit in a way su
h that the geometri
 
onjuga
y
lass is kept �xed. As a 
onsequen
e, the weight labeling the boundary 
ondition depends onthe level. More spe
i�
ally, just like in [FFFS℄ we must 
onsider weights α =α(k) su
h that
α0 :=

α(k) + ρ

k + g∨
(3.6)is 
onstant. The large-k limit of the WZW annulus 
oe�
ients Aβ

λα for the 
ase of simply
onne
ted G reads [FFFS℄
lim
k→∞

(k)A
β(k)

λ α(k) = δα0,β0
multλ(0) . (3.7)This result 
an be interpreted as follows. In the large-level limit, only open strings startingand ending at the same brane survive. As a G-module, they have the algebra of fun
tions onthe brane as a limit; this substantiates the idea that the spa
e of open strings 
onstitutes aquantization of the world volume of the brane.For bi-branes, we 
an obtain an analogous result by using G×G-modules in pla
e of G-modules. To des
ribe the intrinsi
 geometry of the bi-brane Bh1,h2

, with h1 and h2 regularelements of G, we �rst note that the bije
tion
(p1 × µ̃) : Bh1,h2

→ G×Ch
1
h−1
2

(g1, g2) 7→ (g1, g1g
−1
2 )

(3.8)intertwines two pairs of G-a
tions: �rst, the diagonal left a
tion of G on Bh1,h2
, i.e.

ρ(h)((g1, g2)) = (hg1, hg2), is intertwined with G a
ting from the left on itself and by the adjointa
tion on Ch
1
h−1
2
; and se
ond, the diagonal right a
tion on Bh1,h2

is intertwined with the righta
tion on G and the trivial a
tion on Ch
1
h−1
2
. The G×G-module stru
ture of the spa
e offun
tions on Bh1,h2

now follows easily; we have
F(Bh1,h2

) ∼= F(G×Ch
1
h−1
2

) ∼= F(G) ⊗ F(Ch
1
h−1
2

) . (3.9)Further, by the Peter--Weyl theorem we have F(G)∼=
⊕

µ∈P Hµ ⊠Hµ+ , while the G-modulestru
ture of F(Ch
1
h−1
2

) is given by (3.5). Thus after de
omposing the tensor produ
t we obtain
F(B) ∼=

⊕

λ,µ∈P

(∑

ν∈P

N λ

νµ+ multν(0)
)

Hλ ⊠Hµ , (3.10)where N λ

νµ+ is the multipli
ity of the irredu
ible g-module Hλ in the tensor produ
t Hν ⊗Hµ+ .The de
omposition (3.10) has to be 
ompared with the multipli
ities Zαβ
µν for defe
t �eldswith 
hiral labels µ, ν that 
hange a defe
t α to a defe
t β. A simple 
al
ulation in the TFTapproa
h to rational 
onformal �eld theories (
ompare Se
tion 5.10 of [FRS1℄) shows that, inthe Cardy 
ase, this multipli
ity is an ordinary fusion rule. A

ordingly, we have at level k

(k)Z
α(k) β(k)
λµ = (k)N β(k)

λµ α(k) ≡
∑

ν∈Pk

(k)N ν
λµ

(k)N β(k)
ν α(k) . (3.11)The large-k limit of the two fa
tors in this result follows easily: the fusion rules (k)N ν

λµ tendto tensor produ
t multipli
ities, while the limit of the se
ond fa
tor is the same as the one9




omputed above for the annulus 
oe�
ients (whi
h for the Cardy 
ase 
oin
ide with ordinaryfusion rules). Thus we �nd
lim
k→∞

(k)Z
α(k) β(k)
λµ = δα0,β0

∑

ν∈P

N ν

λµ multν(0) = δα0,β0

∑

ν∈P

N λ

νµ+ multν(0) , (3.12)where in the se
ond equality the 
harge 
onjugation properties of the tensor produ
t multipli
-ities are used. This is in full agreement with the G×G-module stru
ture (3.10) of the spa
e
F(B) of fun
tions on the bi-brane. Analogously as for branes, this substantiates the idea thatthe algebra of defe
t �elds 
an be regarded as a quantization of the spa
e of fun
tions on thebi-brane.3.3 Trivialization of the H-�eldAs is well-known [Wi℄, 
onformal invarian
e for theories with non-abelian 
urrents requires anon-trivial B-�eld ba
kground. While the B-�eld is de�ned only lo
ally, its 
urvature H is aglobally de�ned three-form. One important property of branes is the fa
t that the restri
tionof H to the 
orresponding submanifolds is exa
t. For symmetri
 branes in the WZW modelbased on g at level k, the 
urvature is the three-form

H = k

6 〈θ ∧ [θ ∧ θ] 〉 , (3.13)where we have denoted by θ the left-invariant Maurer--Cartan form on G, whi
h is a g-valuedone-form, and by 〈· , ·〉 the Killing form on g. Restri
ted to a 
onjuga
y 
lass Ch, the three-form
H 
an be written as the derivative of a G-invariant two-form ωh,

H|Ch
= dωh . (3.14)We will now see that bi-branes have properties that generalize this behaviour.Consider again the map µ̃ whose restri
tion maps the bi-brane Bh1,h2

to the 
onjuga
y 
lass
Ch

1
h−1
2
. We introdu
e the two-form

̟h
1
,h

2
:= µ̃∗ωh

1
h−1
2

− k

2 〈p∗1θ ∧ p∗2θ〉 (3.15)on Bh1,h2
, where pi, i =1, 2, is the proje
tion from G×G → G on its ith fa
tor, and bothsummands are restri
ted to the submanifold Bh1,h2

of G×G. From the intertwining propertiesof µ̃ it follows that the two-form ̟ is bi-invariant. Analogously to the equality (3.14) on theworld volume of a brane, on the world volume Bh1,h2
of the bi-brane the identity

p∗1H = p∗2H + d̟h1,h2
(3.16)holds; in other words: on Bh1,h2

, the di�eren
e of the H-�elds of the two target spa
es involvedis exa
t and equals the derivative of the two-form ̟h1,h2
.To establish the identity (3.16), we �rst re
all the relation

µ̃∗H = p∗1H − p∗2H + k

2
d〈p∗1θ ∧ p∗2θ〉 (3.17)10



(
ompare e.g. the proof of proposition 3.2 of [AMM℄) whi
h in the derivation of the Polyakov--Wiegmann formula a

ounts for the 
orre
t behaviour of the Wess--Zumino term. On the otherhand, we �nd
(µ̃∗H)|Bh1,h2

= µ̃∗(H|C
h
1

h
−1
2

) = µ̃∗(dωh
1
h−1
2

) = dµ̃∗ωh
1
h−1
2

; (3.18)together with the de�nition of ̟h1,h2
the last two equations imply (3.16).At this point it is worth mentioning the notion of a quasi-Hamiltonian G-spa
e whi
h hasbeen introdu
ed in [AMM℄. As shown in [AMM℄, both 
onjuga
y 
lasses and the �double�

G×G are examples of su
h spa
es. However, the reader should be warned that, while the 
aseof 
onjuga
y 
lasses is dire
tly relevant for the dis
ussion of branes, the double as 
onsideredin [AMM℄ is endowed with a G×G-a
tion that does not restri
t to the bi-brane submanifolds.4 The Wess--Zumino term in the presen
e of defe
tsHaving identi�ed a two-form ̟ on the bi-brane that trivializes the restri
tion of the di�eren
e ofthe H-�elds, we are in a position to study the Wess--Zumino term for situations with parti
ularlysimple topology. The analysis 
losely parallels the one in [FiS℄. As in the 
ase of branes, ageneral and more satisfa
tory analysis must be based on the notion of hermitian bundle gerbes.A �rst dis
ussion of these issues 
an be found in Appendix B.To attain a situation with su�
iently simple topology, we restri
t our attention in the sequelto 2-
onne
ted target spa
es M1 and M2, i.e. besides being 
onne
ted and simply 
onne
ted, themanifolds Mi also satisfy π2(Mi) = 0 (this in
ludes in parti
ular 
ompa
t 
onne
ted and simply
onne
ted simple Lie groups). Be
ause a bundle gerbe over a 2-
onne
ted spa
e is 
ompletelydetermined by its 
urvature, whi
h is a 
losed three-form with integral periods, we may then
onsider target spa
es M1 and M2 with 
losed integral three-forms H1 and H2.A similar phenomenon o

urs for bi-branes if we make the additional assumption that theworld volume of a bi-brane is 
onne
ted and simply 
onne
ted: the two-form ̟ that trivializesthe di�eren
e of the three-forms is a su�
ient substitute for the stru
ture that is needed in thegeneral 
ase as des
ribed in Appendix B. Note that all these assumptions are in parti
ular metfor WZW bi-branes of simply 
onne
ted 
ompa
t Lie groups.Under these assumptions, we arrive at the following simpli�ed de�nition of a bi-brane: Asimply 
onne
ted M1-M2-bi-brane between 2-
onne
ted target spa
es M1 and M2 with three-forms Hi ∈Ω3(Mi), i =1, 2, is a simply 
onne
ted submanifold Q of M1 ×M2 together with atwo-form ̟∈Ω2(Q) su
h that
p∗1H|Q = p∗2H|Q + d̟ . (4.1)The 
lassi
al Wess--Zumino--Witten model is a theory of maps from a two-dimensional worldsheet to a target spa
e. The spa
e of maps has to be 
hosen in a way 
onforming with the
orrelator of interest. For example, for world sheets with non-empty boundary it is requiredthat the boundary of the world sheet is mapped into the world volume of a WZW brane. Hereour aim is to des
ribe 
orrelators with defe
t lines. We merely 
onsider the simplest situation: a
losed oriented world sheet Σ with an embedded oriented 
ir
le S ⊂Σ that separates the worldsheet into two 
omponents, Σ =Σ1 ∪S Σ2, whi
h we assume to inherit the orientation of Σ.Without loss of generality we assume ∂Σ1 = S and ∂Σ2 =S as equalities of oriented manifolds,where S is the manifold S with opposite orientation.11



We assume that the defe
t separates regions that support 
onformally invariant sigma mod-els with target spa
es M1 and M2 and 
onsider pairs of maps
φi : Σi → Mi (4.2)su
h that the image of the 
ombined map

φS : S → M1 ×M2

s 7→ (φ1(s), φ2(s))
(4.3)takes its values in the submanifold Q.We next wish to �nd the Wess--Zumino part of the a
tion. First, sin
e Q is simply 
on-ne
ted, there exists a two-dimensional oriented submanifold D of Q with ∂D = φS(S). We 
anglue the images of this disk under the proje
tions pi: M1 ×M2 → Mi along their boundaries onthe images φi(Σi) of the the world sheets, and obtain two-dimensional oriented 
losed subman-ifolds. Be
ause we have required π2(Mi) = 0, we 
an �ll those to three-dimensional orientedsubmanifolds Bi ⊂Mi su
h that

∂B1 = φ1(Σ1)∪ p1(D) and ∂B2 = φ2(Σ2)∪ p2(D) . (4.4)Equipped with su
h 
hoi
es of submanifolds, we de�ne
S[φ1, φ2] :=

∫

B1

H1 +

∫

B2

H2 +

∫

D

̟ . (4.5)Note that super�
ially the expression (4.5) depends on the 
hoi
es of the manifolds B1, B2and D. However, the ambiguities are integers, so that the exponential of (4.5) is a
tuallywell-de�ned. This 
an be shown with the help of a homology theory based on two manifolds
M1 and M2 and a submanifold Q⊂M1 ×M2, whi
h we set up in Appendix A. For the dual
ohomology theory a theorem of de Rham type holds; it allows us to express a 
ohomology
lass with values in R as a triple of di�erential forms. The triple (H1, H2, ̟) then furnishes anexample of a 
o
y
le in this 
ohomology theory. As we show in Appendix A, the ambiguitiesof (4.5) arise as the pairing of the 
ohomology 
lass of (H1, H2, ̟) with a 
y
le in homologythat results from di�erent 
hoi
es of the submanifolds D, B1 and B2. We then show that if the
o
y
le (H1, H2, ̟) 
orresponds to a 
ohomology 
lass with values in Z � we shall 
all su
h atriple integral � the ambiguities of (4.5) are integers.This is analogous to the dis
ussion of the Wess--Zumino term in the presen
e of branes[FiS℄: in that 
ase the relative 
ohomology of the pair (M, Q) is relevant, where Q is theworld volume of the brane. The three-form H and the 2-form ω on Q de�ne a 
o
y
le in therelative 
ohomology with values in R, and the Wess--Zumino term is the pairing of (H, ω) witha 
ertain 
y
le. Its well-de�nedness imposes the 
ondition that (H, ω) is integral, i.e. lies in the
ohomology with values in Z. As in the 
ase of branes, the integrality 
ondition des
ribed aboveimposes severe restri
tions on the bi
onjuga
y 
lasses that 
an des
ribe defe
t lines. In fa
t,only those bi
onjuga
y 
lasses qualify whi
h are of the form µ̃−1(C), where C ⊂G is a suitable
onjuga
y 
lass, namely one that supports a gerbe module whi
h leads to a boundary 
onditionpreserving all 
hiral 
urrents at level k. It should be appre
iated, though, that the two-form onthe bi
onjuga
y 
lass di�ers from the pull-ba
k of the two-form on the 
onjuga
y 
lass, and in12



fa
t there is no sensible way in whi
h a gerbe bimodule 
an be seen as the pull-ba
k of a gerbemodule.In Appendix B we show how one 
an drop the restri
tions π2(Mi) = π1(Mi) = 0 on thetopology of the ba
kground and π1(Q) = 0 on the topology of the bi-brane world volume. Inthe absen
e of these 
onditions, it is not enough any longer to work with the two-form ̟ on thebi-brane and the 
urvature three-forms Hi on the ba
kgrounds. Rather, 
onne
tion-type datamust be taken into a

ount. This 
an be a
hieved using hermitian bundle gerbes, together witha new notion to be introdu
ed in Appendix B: gerbe bimodules. We refer to the same appendixfor the de�nition of a Wess--Zumino term in this general situation. To show that the proposedWess--Zumino term restores the 
onformal symmetry of 
orrelators with defe
ts is beyond thes
ope of this arti
le.5 Fusion of bi-branesAs pointed out in the introdu
tion, there are two natural notions of fusion involving bi-branes:the fusion of two bi-branes, and the fusion of a bi-brane and a brane to a brane. In both
ases, the fusion of elementary (bi-)branes yields, in general, a superposition of elementary(bi-)branes.As has been seen in the algebrai
 approa
h, for WZW defe
ts that preserve all 
urrentsymmetries there exists a natural notion of duality. It 
an be 
hara
terized by the propertythat the fusion of a bi-brane and its dual 
ontains the spe
ial bi-brane whi
h with respe
t tofusion a
ts as the identity. Ignoring the shift in the lo
ation of bi-branes by the Weyl ve
tor, thisis the bi-brane whose world volume is the bi
onjuga
y 
lass B(e,e), i.e. the diagonal G⊂G×G.Upon quantization, the fun
tions on this spe
ial bi-brane are related to ordinary bulk �elds,rather than general defe
t �elds.By invoking this duality, instead of working with the fusion rules
Bα ⋆ Bβ =

∑

γ

N γ
αβ Bγ (5.1)of bi-branes we sometimes 
onsider the multipli
ities

Nαβγ := N γ∨

αβ . (5.2)These stru
ture 
onstants are, in general, not symmetri
; from the results of the algebrai
approa
h, however, we expe
t them to be invariant under 
y
li
 permutations. The algebrai
approa
h also predi
ts that in the 
ase of 
ompa
t 
onne
ted and simply 
onne
ted Lie groups,the 
onstants N γ
αβ are just the ordinary fusion multipli
ities arising in the 
hiral theory, whi
hsatisfy the Verlinde formula.5.1 World volume fusionWe �rst 
onsider the e�e
t of fusion on world volumes. In this 
ontext, the notation be
omesmore transparent when 
onsidering at on
e bi-branes des
ribing defe
ts that separate di�erenttarget spa
es M1 and M2. 13



The a
tion of 
orresponden
es on sheaves suggests to 
onsider the following pres
ription:For the fusion of an M1-M2-bi-brane with world volume B ⊆M1 ×M2 and an M2-brane withworld volume V ⊆M2 one should 
onsider
B ⋆ V := p1

(
B ∩ p−1

2 (V )
) (5.3)with pi the ith proje
tion M1 ×M2 → Mi. In general B ⋆ V is only a subset, rather than a sub-manifold, of M1. On a heuristi
 level one would expe
t, however, that the quantization of thebranes [BDS℄ sele
ts a �nite superposition of branes, whi
h then should reprodu
e the resultsobtained in the TFT approa
h. The quantization 
onditions on the positions of branes requireadditional geometri
 stru
ture on the branes, namely twisted ve
tor bundles, and involve asubtle interplay of this stru
ture with the ba
kground B-�eld. We will exhibit in examples howthe required �nite superposition of branes or bi-branes arises after geometri
 quantization.Similarly, the fusion of an M1-M2-bi-brane B with an M2-M3-bi-brane B′ uses proje
tions

pij from the triple produ
t M1 ×M2 ×M3 to the two-fold produ
ts Mi ×Mj :
B ⋆ B′ := p13

(
p−1

12 (B)∩ p−1
23 (B′)

)
. (5.4)Again the question of quantization should be addressed. This issue turns out to be largelyparallel to what happens in the mixed fusion of bi-branes to branes, and a

ordingly we will
on
entrate on the 
ase of mixed fusion.5.2 Bi-branes of the 
ompa
ti�ed free boson at �xed radiusWe 
onsider a free boson 
ompa
ti�ed on a 
ir
le S1

R of radius R and restri
t ourselves, for themoment, to defe
ts separating two world sheet regions that support one and the same theory. Inthis situation, it does not harm to identify the 
ir
le with the Lie group U(1)∼= {z ∈C | |z|=1}.We 
onsider two types of branes: D0-branes V
(0)
x are lo
alized at the position x∈R mod

2πRZ. D1-branes, in 
ontrast, wrap the whole 
ir
le. The D1-brane 
hara
terized by a Wilsonline α∈R mod 1
2πR

Z will be denoted by V
(1)
α ; the Wilson line des
ribes a �at 
onne
tion on

S1
R.The world volume of a bi-brane on S1

R is a submanifold of S1
R ×S1

R of the form
Bx := {(y, y−x) | y∈R mod 2πRZ} (5.5)with x∈R mod 2πRZ. Bx has the topology of a 
ir
le, and a

ording to our general 
onsid-erations in Appendix B it must be endowed with a �at 
onne
tion, i.e. with a Wilson line α.As a 
onsequen
e, the natural parameters for bi-branes of a 
ompa
ti�ed free boson are a pair

(x, α) taking values in two dual 
ir
les des
ribing a position on S1 and a Wilson line. We willwrite B(x,α) ≡ (Bx, α) for su
h bi-branes.For the fusion of a bi-brane B(x,α) and a D0-brane V
(0)
y we have

p−1
2 (V

(0)
y ) = {(y′, y) | y′∈ [0, 2πR)} , Bx ∩ p−1

2 (V
(0)
y ) = {(x+y, y)}

and p1

(
Bx ∩ p−1

2 (V
(0)
y )

)
= {x+y} ,

(5.6)so that the pres
ription (5.3) yields
B(x,α) ⋆ V (0)

y = V
(0)
x+y . (5.7)14



Thus the fusion with a defe
t of type B(x,α) a
ts on D0-branes as a translation by x in positionspa
e.For the fusion of a bi-brane B(x,α) and a D1-brane V
(1)
β , we need to take the �at line bundleon the bi-brane into a

ount. We �rst pull ba
k the line bundle on V

(1)
β along the proje
tion

p2 to a line bundle on S1
R ×S1

R; then we restri
t it to the world volume Bx of B(x,α) and tensorthis restri
tion with the line bundle on B(x,α) des
ribed by the Wilson line α. This gives a linebundle with Wilson line α+β on the world volume of the bi-brane that 
an be pushed downalong the proje
tion p1 to a line bundle with the same Wilson line on S1
R. We 
on
lude that

B(x,α) ⋆ V
(1)
β = V

(1)
α+β . (5.8)Thus the fusion with a defe
t of type B(x,α) a
ts on D1-branes as a translation by α in the spa
eof Wilson lines.We 
an similarly 
ompute the fusion of two bi-branes B(x,α) and B(x′,α′): we have

p−1
12 (Bx) = {(y, y−x, y′) | y, y′∈ [0, 2πR)} ,

p−1
23 (Bx′) = {(y, y′, y′−x′) | y, y′∈ [0, 2πR)} ,

p13

(
p−1

12 (Bx)∩ p−1
23 (Bx′)

)
= {(y, y−x−x′) | y∈ [0, 2πR)} ,

(5.9)so that the position variables of bi-branes add up under fusion. To understand the behaviour ofWilson lines, we take into a

ount the �at line bundles by pulling them ba
k to S1
R ×S1

R ×S1
Rand tensoring them. Then as in the 
ase of mixed fusion, the Wilson lines add up. We thusobtain

B(x1,α1) ⋆ B(x2,α2) = B(x1+x2,α1+α2) . (5.10)Hen
e we �nd that both the position and Wilson line variable of bi-branes add up under fusion.This result exa
tly mat
hes the fusion of the �rst set of defe
ts that are derived algebrai
allyin [FGRS℄; for these both the left- and right-moving 
urrents are preserved, J1(z) = J2(z) and
J̄1(z̄) = J̄2(z̄), for z a point on the defe
t line. One 
an also 
onsider the 
ase that one or bothof the 
urrents are only preserved up to a non-trivial automorphism; the u(1) 
urrent algebrahas only a single non-trivial automorphism, a
ting as J 7→−J . The simplest 
ase then turnsout to be that both J1(z) =−J2(z) and J̄1(z̄) =−J̄2(z̄); in this 
ase one obtains submanifoldsof the form B = {(y mod 2πRZ, h−y mod 2πRZ) | y∈R}. The 
ase of di�erent automorphismsfor left movers and right movers is more subtle; we expe
t the 
orresponding bi-branes to �ll thewhole produ
t spa
e. Also, formula (3.15) suggests that the two-form on the bi-brane should beproportional to ± dθ1 ∧ dθ2, with the sign depending on the 
hirality on whi
h the non-trivialautomorphism a
ts. These issues will not be addressed in the present paper.5.3 Bi-branes for the 
ompa
ti�ed free boson at di�erent radiiWe next turn our attention to bi-branes whi
h des
ribe topologi
al defe
ts that separate aregion whi
h supports a boson 
ompa
ti�ed on a 
ir
le of radius R1 from a region supportinga boson 
ompa
ti�ed at radius R2. We des
ribe the produ
t spa
e by two 
oordinates x1 and
x2, with xi to be taken modulo 2πRiZ. The bi-brane world volumes are

Bh := {(y mod 2πR1Z , y−h mod 2πR2Z) | y∈R} . (5.11)15



If the ratio R1/R2 is not rational, this set is isomorphi
 to R and �lls S1
R1

×S1
R2

densely.A

ordingly there are no Wilson line variables. The algebrai
 approa
h shows that in thissituation there is a single defe
t that preserves all 
urrent symmetries [FGRS℄; in parti
ular, his not a physi
al parameter.We thus assume that the ratio of the two radii is rational,
R1/R2 = r/s (5.12)with r, s 
oprime positive integers. The bi-brane world volume then has length 2πsR1 =2πrR2and admits a Wilson line variable, to be taken modulo 1/(2πsR1) = 1/(2πrR2). It wraps s timesin R1-dire
tion; hen
e the geometri
 parameter, when measured on the x2-axis, is redu
ed to

2πR2/s. Equivalently, it wraps r times in R1-dire
tion; hen
e the geometri
 parameter, ifmeasured on the x1-axis is redu
ed to 2πR1/r. Thus the position parameter is to be takenmodulo 2πR1/r = 2πR2/s.This should again be 
ompared to the analysis of [FGRS℄. In the 
ase at hand two param-eters have been found: the �rst 
ouples to the sum of left- and right-moving momenta, whi
hby the 
ompatibility of the two radii is required to be quantized in units of r/R1. This ni
ely�ts the position parameter found above. Similarly, there is a parameter 
oupling to winding,i.e. to the di�eren
e of left- and right-moving momenta. The latter is quantized in units of sR1,�tting the quantization of the Wilson lines derived above.Again one 
an generalize the analysis to bi-branes that preserve the 
hiral 
urrents only upto automorphisms. If the non-trivial automorphism is taken for both 
hiralities, one expe
ts o�-diagonal bi-branes; the dis
ussion of the parameters largely parallels the one in the pre
edingparagraphs. In the 
ase of di�erent automorphisms, one expe
ts bi-branes �lling S1
R1

×S1
R2
,provided that the area of the produ
t spa
e is rational in suitable units. For the spe
i�
 
ase

R2 =2/R1 these bi-branes should be related to defe
ts whi
h implement T-duality. In this
ontext, the fa
t [Ho℄ that the 
urvature ± dθ1 ∧ dθ2 is of the same form as the 
urvature ofthe Poin
aré line bundle is highly intriguing. A 
areful dis
ussion of this relationship is, again,beyond the s
ope of the present paper.5.4 WZW bi-branesWe now turn our attention to bi-branes of WZW models on simply 
onne
ted 
ompa
t Liegroups. Here several new phenomena arise: the position of possible branes and bi-branes isquantized, and multipli
ities other than zero or one are expe
ted from the algebrai
 approa
h.In fa
t, from that approa
h it is known that for these theories the multipli
ities appearing inthe fusion of bi-branes as well as the mixed fusion of bi-branes and branes are the same as the
hiral fusion multipli
ities whi
h are given by the Verlinde formula.To analyze this issue, it turns out to be 
onvenient to work with fusion 
oe�
ients oftype Nαβγ ; here α and γ are group elements 
hara
terizing 
onjuga
y 
lasses Cα and Cγ of
G, respe
tively, whi
h support a brane, while β is a group element 
hara
terizing a bi-brane
µ̃−1(Cβ) with µ̃ as in (3.2). In the sequel we assume that all group elements are regular, i.e.
ontained in just a single maximal torus of G. We are thus lead to 
onsider the subset

Mαβγ := p−1
1 (Cα) ∩ µ̃−1(Cβ) ∩ p−1

2 (Cγ)

= {(g1, g2)∈G×G | g1 ∈Cα, g2 ∈Cγ, g1g
−1
2 ∈Cβ}

(5.13)16



of G×G. This set is equipped with a natural G-a
tion, obtained by 
ombining the adjoint a
-tion on g1 and on g2. Both branes and bi-branes are equipped with two-forms; as a 
onsequen
e,
Mαβγ 
omes with a natural two-form, namely the sum

ωαβγ := p∗1ωα|Mαβγ
+ p∗2ωγ|Mαβγ

+ ̟β|Mαβγ
(5.14)of the restri
tions of the three two-forms p∗1ωα, p∗2ωγ and ̟β.A

ording to the results obtained in the algebrai
 approa
h, this spa
e should be linked tothe fusion rules of the 
hiral WZW theory at level k. To see how su
h a relation 
an exist, were
all that fusion rules are dimensions of spa
es of 
onformal blo
ks. The latter 
an be obtainedby geometri
 quantization from suitable moduli spa
es of �at 
onne
tions; as su
h they arisein the quantization of Chern--Simons theories.The situation relevant for Verlinde multipli
ities is given by the three-pun
tured sphere S2

(3),also known as the `pair of pants' or trinion. In 
lassi
al Chern--Simons theory one 
onsidersthe moduli spa
e of �at 
onne
tions on S2 whose monodromy around the three insertion pointstakes values in 
onjuga
y 
lasses Cα, Cβ and Cγ , respe
tively. Taking the monodromies gα ∈Cα,
gβ ∈Cβ and gγ ∈Cγ along 
ir
les of the same orientation around all three insertions, the relationsin the fundamental group of the trinion impose that gαgβgγ = 1. Sin
e monodromies are de�nedonly up to simultaneous 
onjugation, the moduli spa
e that matters in 
lassi
al Chern--Simonstheory is isomorphi
 to the quotient Mαβγ/G.Note that the bounds on the range of bi-branes that appear in the fusion are already presentbefore geometri
 quantization. Indeed, the relevant produ
t

Ch ∗ Ch′ := {gg′ | g∈Ch, g′∈Ch′} (5.15)of 
onjuga
y 
lasses has already been 
onsidered, for G =SU(2), in [JW℄. It is 
onvenient to
hara
terize a 
onjuga
y 
lass of SU(2) by its tra
e or, equivalently, by the angle θ with
cos θ = 1

2 tr(g) , (5.16)whi
h takes values θ∈ [0, π]. One �nds (see Proposition 3.1 of [JW℄) that the (
lassi
al) produ
t(5.15) of the two 
onjuga
y 
lasses with angles θ, θ′ is the union of all 
onjuga
y 
lasses withangle θ′′ in the range
|θ− θ′| ≤ θ′′ ≤ min{θ+θ′, 2π− (θ+θ′)} . (5.17)This already yields the 
orre
t upper and lower bounds that appear in the SU(2) fusion rules.A full understanding of fusion 
an only be expe
ted after applying geometri
 quantization tothe so obtained moduli spa
e: this spa
e must be endowed with a two-form, whi
h is interpretedas the 
urvature of a line bundle, and the holomorphi
 se
tions of this bundle are what resultsfrom geometri
 quantization. In view of this need for quantization it is a highly non-trivialobservation that the two-form (5.14) furnished by the two branes and the bi-brane is exa
tlythe same as the one whi
h arises 2 from 
lassi
al Chern--Simons theory.6 OutlookOur �ndings naturally admit various extensions and generalizations. For instan
e, one 
animpose 
onservation of the 
urrents only up to an automorphism of the horizontal Lie algebra,2 We are grateful to Anton Alekseev for information about this two-form.17



whi
h may be 
hosen independently for left- and right-moving degrees of freedom. Also, ourmethods 
an be 
learly extended to more general 
lasses of 
onformal �eld theories, in parti
ularto WZW models on non-simply 
onne
ted groups, 
oset models, as well as to theories of severalfree bosons 
ompa
ti�ed on a torus and to orbifolds thereof, in
luding asymmetri
 orbifoldssu
h as lens spa
es. Another generalization 
on
erns defe
ts whi
h separate sigma models ontwo di�erent Lie groups that share the same Lie algebra.Furthermore, our results provide independent eviden
e for the idea that there is an intimaterelation between defe
ts and 
orresponden
es. This idea has played a role in a �eld theoreti
realization of the geometri
 Langlands program (see Se
tion 6.4 of [KW℄). It is therefore notunreasonable to expe
t that defe
ts and, more generally, the algebrai
 and 
ategori
al stru
turebehind RCFT 
orrelators, will enter in a CFT-inspired approa
h to the Langlands program.Finally it 
ould be rewarding to unravel similar stru
tures in latti
e models.
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A Birelative (
o-)homologyIn this Appendix we dis
uss the well-de�nedness of the Wess--Zumino term (4.5) in the presen
eof a defe
t line. To this end we set up a homology theory based on singular homology, whi
h
an be understood as a generalization of relative homology, and whi
h we will a

ordingly 
allbirelative homology. The asso
iated 
ohomology theory with real 
oe�
ients 
an be identi�edwith a 
ohomology theory based on di�erential forms, whi
h we 
all birelative de Rham 
o-homology. These stru
tures enable us to formulate pre
ise 
onditions under whi
h the Wess--Zumino term (4.5) is well-de�ned up to integers.Re
all that the (singular) homology Hk(M) of a smooth manifold M is the homology ofthe singular 
hain 
omplex with 
hain groups ∆k(M), 
onsisting of (smooth) k-simpli
es in Mand boundary operator ∂: ∆k(M)→∆k−1(M) (we suppress the index of the boundary operator
∂, as it 
an be inferred from the index of the simplex on whi
h it a
ts). If Q⊂M1 ×M2 is asubmanifold, we de�ne the kth birelative 
hain group of the triple (M1, M2, Q) to be

∆k(M1, M2, Q) := ∆k(M1) ⊕ ∆k(M2) ⊕ ∆k−1(Q) . (A.1)Using the proje
tions pi: M1 ×M2 →Mi and the in
lusion map ι: Q →֒M1 ×M2, and the in-du
ed 
hain maps (pi)∗ and ι∗, we de�ne the homomorphism
∂ : ∆k(M1, M2, Q) → ∆k−1(M1, M2, Q)

(σ1, σ2, τ) 7→ (∂σ1 +(p1)∗ι∗τ, ∂σ2 − (p2)∗ι∗τ,−∂τ) . (A.2)It is easy to verify that this map satis�es ∂2 =0, i.e. we have endowed the birelative 
hain groupswith the stru
ture of a 
omplex. We 
all its homology groups the birelative homology groups anddenote them by Hk(M1, M2, Q). Expli
itly, an element of Hk(M1, M2, Q) is represented by atriple (σ1, σ2, τ) of 
hains σi ∈∆k(Mi), i =1, 2, and a 
y
le τ ∈∆k−1(Q), su
h that ∂σ1 =(p1)∗ι∗τand ∂σ2 =−(p2)∗ι∗τ . For ea
h degree k, the birelative 
hain group �ts, by de�nition, into theshort exa
t sequen
e
0 // ∆k(M1)⊕∆k(M2)

α
// ∆k(M1, M2, Q)

β
// ∆k−1(Q) // 0 , (A.3)in whi
h α is the in
lusion and β is the proje
tion. These indu
e a long exa
t sequen
e

... // Hk(M1)⊕Hk(M2) // Hk(M1, M2, Q) // Hk−1(Q) // Hk−1(M1)⊕Hk−1(M2) // ... (A.4)in homology.To explain the term birelative homology we observe that we have generalized relative ho-mology in the following sense: if we take M2 = pt, so that we 
an identify Q with a submanifoldof M1, then there is a 
anoni
al isomorphism Hk(M1, pt, Q)→Hk(M1, Q). Here Hk(M1, Q),the relative homology group of M1 with respe
t to the submanifold Q, is 
onstru
ted as thehomomorphism [(σ1, σ2, τ)] 7→ [σ1] whi
h 
an be shown to be an isomorphism by using the 5-lemma (see e.g. [Br℄, Lemma IV.5.10) applied to the exa
t sequen
e (A.4) and the 
orrespondingsequen
e in relative homology.Dual to the singular homology groups there are singular 
ohomology groups, de�ned to bethe 
ohomology of a 
omplex whose 
o
hain groups are
∆k(M, R) := Hom(∆k(M), R) (A.5)19



for a 
oe�
ient ring R, and whose 
oboundary operator
δ : ∆k(M, R) → ∆k+1(M, R) (A.6)is given by δϕ(σ) :=ϕ(∂σ) for any (k+1)-simplex σ in M . There is a 
anoni
al pairing

Hk(M, R)×Hk(M) → R with ([ϕ], [σ]) 7→ ϕ(σ) , (A.7)whi
h is easily seen to be well de�ned. It is often 
onvenient to re
over the 
ohomology groupswith values in the real numbers in a geometri
 way, for instan
e through di�erential forms.Let us re
all how this works. The integrals of k-forms ϕ∈Ωk(M) over k-simpli
es σ∈∆k(M)de�ne homomorphisms Ψk: Ωk(M)→∆k(M,R) whi
h, by Stokes' theorem, �t together to a
hain map. The indu
ed homomorphism
Ψ∗ : Hk

dR(M) → Hk(M,R) (A.8)from de Rham 
ohomology to singular 
ohomology is an isomorphism, whi
h is known as thede Rham isomorphism (see e.g. Theorem V.9.1 of [Br℄).Analogously as for ordinary singular 
ohomology, we 
an also de�ne birelative 
ohomol-ogy. Thus there are birelative 
o
hain groups ∆k(M1, M2, Q, R), birelative 
ohomology groups
Hk(M1, M2, Q, R), and a 
anoni
al pairing

Hk(M1, M2, Q, R) × Hk(M1, M2, Q) → R . (A.9)Note that be
ause the exa
t sequen
e (A.3) splits, the dual sequen
e
0 // ∆k−1(Q, R) // ∆k(M1, M2, R) // ∆k(M1)⊕∆k(M2) // 0 (A.10)is exa
t, too, and indu
es a long exa
t sequen
e in 
ohomology. We would like be able toexpress the birelative 
ohomology groups with real 
oe�
ients by di�erential forms in a similarway as the de Rham isomorphism does it for ordinary 
ohomology. To this end we 
onsider theve
tor spa
es

Ωk(M1, M2, Q) := Ωk(M1) ⊕ Ωk(M2) ⊕ Ωk−1(Q) (A.11)together with the linear maps
d : Ωk(M1, M2, Q) → Ωk+1(M1, M2, Q)

(H1, H2, ̟) 7→ (dH1, dH2, ι
∗(p∗1H1−p∗2H2)− d̟) . (A.12)This indeed de�nes a 
omplex:

d2(H1, H2, ̟) = d (dH1, dH2, ι∗(p∗1H1 − p∗2H2) − d̟)

= (d2H1, d2H2, ι∗(p∗1dH1 − p∗2dH2) − dι∗(p∗1H1 − p∗2H2) + d2̟)

= (0, 0, 0) .

(A.13)We 
all the 
ohomology of this 
omplex the birelative de Rham 
ohomology and denote it by
HkdR(M1, M2, Q). By putting M2 = pt, this is nothing but the relative de Rham 
ohomology ofthe map ι: Q→M , see e.g. I §6 of [BT℄. 20



Noti
e that a simply 
onne
ted M1-M2-bi-brane (Q, ̟) provides us with an element
(H1, H2, ̟) of Ω3(M1, M2, Q). The 
ondition (4.1) on the two-form ̟ on the bi-brane showsthat (H1, H2, ̟) is 
losed and thus de�nes a 
lass in the birelative de Rham 
ohomology.Similarly to the de�nition of the homomorphism Ψ: Ωk(M)→∆k(M,R) mentioned abovewe obtain a natural homomorphism

Ψbi : Ωk(M1, M2, Q) → ∆k(M1, M2, Q,R) (A.14)whi
h by de�nition asso
iates to a triple (H1, H2, ̟)∈Ωk(M1, M2, Q) evaluated on an element
(σ1, σ2, τ)∈∆k(M1, M2, Q) the real number

Ψbi(H1, H2, ̟)(σ1, σ2, τ) :=

∫

σ1

H1 +

∫

σ2

H2 +

∫

τ

̟ . (A.15)The homomorphisms Ψbi �t together to a 
hain map:
(δΨbi(H1, H2, ̟))(σ1, σ2, τ) = Ψbi(H1, H2, ̟)(∂σ1+(p1)∗ι∗τ, ∂σ2−(p2)∗ι∗τ,−∂τ)

=

∫

∂σ1 +(p1)∗ι∗τ

H1 +

∫

∂σ2−(p2)∗ι∗τ

H2 +

∫

−∂τ

̟

=

∫

σ1

dH1 +

∫

σ2

dH2 +

∫

τ

ι∗(p∗1H1−p∗2H2)− d̟

= Ψbi(dH1, dH2, ι
∗(p∗1H1−p∗2H2)− d̟)(σ1, σ2, τ)

= Ψbi(d(H1, H2, ̟))(σ1, σ2, τ) . (A.16)We infer that the indu
ed homomorphism
Ψ∗

bi : Hk
dR(M1, M2, Q) → Hk(M1, M2, Q,R) (A.17)is an isomorphism, analogously as the de Rham isomorphism. To prove this 
laim, note thatby de�nition we have an exa
t sequen
e

0 // Ωk−1(Q)
α

// Ωk(M1, M2, Q)
β

// Ωk(M1)⊕Ωk(M2) // 0 , (A.18)where α(̟) := (0, 0, ̟) and β(H1, H2, ̟) := (H1, H2). It indu
es a long exa
t sequen
e
... // Hk−1

dR (Q)
α∗

// Hk
dR(M1, M2, Q)

β∗

// Hk
dR(M1)⊕Hk

dR(M2)
δ

// Hk
dR(Q) // ... (A.19)in (birelative) de Rham 
ohomology. Together with the long exa
t sequen
e in birelative 
oho-mology with values in R, indu
ed by the exa
t sequen
e (A.10), we have the following diagramwith exa
t rows:

Hk−1
dR (M1)⊕Hk−1

dR (M2)

Ψ∗⊕Ψ∗

��

// Hk−1
dR (Q)

Ψ∗

��

// Hk
dR(M1, M2, Q)

Ψ∗

bi

��

// Hk
dR(M1)⊕Hk

dR(M2)

Ψ∗⊕Ψ∗

��

// Hk
dR(Q)

Ψ∗

��Hk−1(M1,R)

⊕Hk−1(M2,R)
// Hk−1(Q,R) // Hk(M1, M2, Q,R) //

Hk(M1,R)

⊕Hk(M2,R)
// Hk(Q,R)21



It is easy to 
he
k that all subdiagrams 
ommute, so that the 5-lemma implies that Ψ∗
bi is anisomorphism.In the same way as for ordinary 
ohomology, we say that a 
o
y
le in Ωk(M1, M2, Q) isintegral i� its 
lass � identi�ed by Ψ∗

bi with a 
lass in Hk(M1, M2, Q,R) � lies in the image ofthe indu
ed homomorphism
Hk(M1, M2, Q, Z) → Hk(M1, M2, Q,R) . (A.20)In this 
ase the 
anoni
al pairing (A.9) of Ψ∗

bi([H1, H2, ̟]) with any birelative homology 
lass
[(σ1, σ2, τ)], whi
h is given by ∫

σ1

H1 +

∫

σ2

H2 +

∫

τ

̟ , (A.21)is an integer. Analogously as for WZW models in the bulk and on the boundary of a worldsheet, this notion of integral 
lasses is essential to a
hieve the well-de�nedness of Wess--Zuminoterms. We infer the following result:The Wess--Zumino term S[φ1, φ2] (4.5) of a simply 
onne
ted M1-M2-bi-brane (Q, ̟) iswell-de�ned up to integers, provided that the 
lass of (H1, H2, ̟) in the birelative de Rham
ohomology group H3dR(M1, M2, Q) is integral.To prove this 
laim, re
all that the de�nition of S[φ1, φ2] involves 
hoi
es of submanifolds
D of Q and Bi of Mi. If we represent these submanifolds as singular 
hains, then

∂D = φS(S) , ∂B1 = φ1(Σ1) − (p1)∗D and ∂B2 = φ2(Σ2) + (p2)∗D . (A.22)Consider now di�erent 
hoi
es D′, B′
1 and B′

2, and let τ := D−D′ be a 
hain in ∆2(Q) and
σi :=Bi −B′

i be 
hains in ∆3(Mi). We �nd
∂τ = 0 , ∂σ1 = −(p1)∗τ and ∂σ2 = (p2)∗τ , (A.23)so that (σ1, σ2, τ) is a 
y
le in the birelative homology H3(M1, M2, Q). The ambiguities of theWess--Zumino term S[φ1, φ2] are thus of the form

( ∫

B1

H1 +

∫

B2

H2 +

∫

D

̟
)
−

(∫

B′

1

H1 −
∫

B′

2

H2 +

∫

D′

̟
)

=

∫

σ1

H1 +

∫

σ2

H2 +

∫

τ

̟ . (A.24)In view of (A.15) the ambiguities (A.24) are nothing but the pairing of the 
y
le (σ1, σ2, τ) with
(H1, H2, ̟). If (H1, H2, ̟) is integral, this gives an integer.B Bundle gerbes and defe
tsAs we have explained in se
tion 4 it is perfe
tly a

urate to 
hara
terize bundle gerbes on2-
onne
ted target spa
es M1 and M2 by their 
urvature three-forms H1 and H2. Under this
ondition, we have de�ned an M1-M2-bi-brane to be a simply 
onne
ted submanifold Q of
M1 ×M2 together with a two-form ̟ on Q that obeys

p∗1H|Q = p∗2H|Q + d̟ . (B.1)22



In this Appendix we generalize this de�nition to bi-branes between target spa
es with are not2-
onne
ted. This makes it ne
essary to work with the full stru
ture of a hermitian bundlegerbe. Examples of non-2-
onne
ted target spa
es are provided by non-simply 
onne
ted Liegroups, su
h as the group SO(4n)/Z2, whi
h admits two non-isomorphi
 bundle gerbes withthe same 
urvature three-form H . At the same time, we drop the restri
tion on the bi-brane Qto be simply 
onne
ted. Examples of non-simply 
onne
ted bi-branes are provided by 
ertainbi
onjuga
y 
lasses of non-simply 
onne
ted Lie groups.B.1 Gerbe modulesLet us �rst re
all how branes have been understood using bundle gerbes [Ga℄. Let G be abundle gerbe on the target spa
e M with 
urvature H . The geometri
 stru
ture related to a
onformal boundary 
ondition 
onsists of a pair 3 (Q, E), with Q a submanifold of M and E agerbe module for the restri
tion of G to Q. Su
h gerbe modules are ve
tor bundles twisted bythe bundle gerbe G. We 
an view them as bundle gerbe morphisms
E : G|Q → Iω (B.2)from G|Q to a trivial bundle gerbe Iω given by a two-form ω on Q [Wa℄. The two-form ωis 
alled the 
urvature of the gerbe module. A ne
essary 
ondition for the existen
e of themorphism E is the equality

H|Q = dω (B.3)on Q. If the submanifold Q is not simply 
onne
ted, then non-trivial �at line bundles exist.Sin
e gerbe modules (of equal rank) with the same 
urvature ω form a torsor over the groupof �at line bundles, in this situation non-isomorphi
 gerbe modules with the same 
urvatureexist. This happens, for example, for the equatorial 
onjuga
y 
lass of SO(3), whi
h has thetopology of RP
2 and thus admits two non-isomorphi
 �at line bundles, whose a
tion relatestwo non-isomorphi
 gerbe modules.The arguably most dire
t way to understand (hermitian) bundle gerbes (with 
onne
tivestru
ture) is in terms of their lo
al data: with respe
t to a good open 
over U = {Ui}i∈Iof M , a bundle gerbe G 
an be des
ribed by a 
olle
tion (gijk, Aij , Bi) of smooth fun
tions

gijk: Ui ∩Uj ∩Uk →U(1), 1-forms Aij ∈Ω1(Ui ∩Uj) and two-forms Bi ∈Ω2(Ui), satisfying the
o
y
le 
onditions
g−1

jkl · gikl · g−1
ijl · gijk = 1 on Ui ∩ Uj ∩ Uk ∩ Ul ,

−i g−1
ijkdgijk + Ajk − Aik + Aij = 0 on Ui ∩ Uj ∩ Uk ,

dAij − Bj + Bi = 0 on Ui ∩ Uj . (B.4)The 
urvature of G is the globally de�ned three-form H with H|Ui
:= dBi. For example, thelo
al data of the trivial bundle gerbe Iω are (1, 0, ω|Ui∩Q). A rank-n bundle gerbe mod-ule E : G|Q →Iω is in this formalism des
ribed by a 
olle
tion (Gij, Πi) of smooth fun
tions3 But not every su
h pair 
orresponds to a 
onformal boundary 
ondition; there are far more su
h pairs than
onformal boundary 
onditions. 23



Gij : Ui ∩Uj ∩Q→U(n) and u(n)-valued 1-forms Πi ∈Ω1(Ui ∩Q)⊗ u(n) whi
h relate the lo
aldata of the bundle gerbes G|Q and Iω in the following way:
1 = gijk · Gik G−1

jk G−1
ij on Q ∩ Ui ∩ Uj ∩ Uk ,

0 = Aij + Πj − G−1
ij Πi Gij − i G−1

ij dGij on Q ∩ Ui ∩ Uj ,

ω = Bi + 1
n

tr(dΠi) on Q ∩ Ui . (B.5)Note that the derivative of the last equality reprodu
es the relation (B.3). Also note that ifthe bundle gerbe G is itself trivial, i.e. has lo
al data (1, 0, B|Ui
) for a globally de�ned Kalb--Ramond �eld B ∈Ω2(M), then (Gij, Πi) are the lo
al data of a rank-n ve
tor bundle over Qwith 
urvature of tra
e n (ω−B). This explains the terminology �twisted� ve
tor bundle in thenon-trivial 
ase. Finally, noti
e that if one 
hanges (Gij , Πi) by lo
al data of a non-trivializable�at ve
tor bundle over the world volume Q of the bi-brane, then one obtains a new bundle gerbemodule with the same 
urvature. In this way the existen
e of non-trivial �at ve
tor bundlesover Q makes the use of bundle gerbe modules unavoidable.In the 
ase of WZW 
onformal �eld theories with M = G one 
onsiders in parti
ularso-
alled symmetri
 branes, whi
h preserve the 
urrent algebra in the presen
e of boundaries,and thus in parti
ular 
onformal invarian
e. Symmetri
 D-Branes (Q, E) 
an be 
hara
terizedby three 
onditions [Ga℄:1. the world volume Q of the brane is a 
onjuga
y 
lass Ch of G;2. the lo
al two-forms dΠi take their values only in the 
enter of the Lie algebra u(n) and 
anthus be identi�ed with real two-forms;3. the two-form ω is �xed to

ω =
〈
θ|Ch

∧ Ad−1 + 1

Ad−1 − 1
θ|Ch

〉
. (B.6)The 
onditions 2 and 3 restri
t the 
hoi
e of the 
onjuga
y 
lass to 
onjuga
y 
lasses that
orrespond to integrable highest weights. This amounts in parti
ular to having a �nite numberof non-interse
ting brane world volumes.B.2 Gerbe bimodulesThat bundle gerbe modules are the appropriate stru
ture for branes in the 
ase of non-2-
onne
ted target spa
es or non-simply 
onne
ted supports, together with the folding tri
ksuggests the 
orresponding stru
ture as the appropriate generalization for bi-branes: for bundlegerbes G1 and G2 over M1 and M2, an M1-M2-bi-brane is a submanifold Q⊂M1 ×M2 togetherwith a (p∗1G1)|Q-(p∗2G2)|Q-bimodule: a bundle gerbe morphism

D : (p∗1G1)|Q → (p∗2G2)|Q ⊗ I̟ (B.7)with ̟ as in (B.1). Here we shall 
all the two-form ̟ the 
urvature of the bimodule. Thisde�nition is related to the folding tri
k in the sense, that � using the appropriate notion ofduality for bundle gerbes (see se
tion 1.4 of [Wa℄) � a G1-G2-bimodule is the same as a (G1⊗G∗
2)-module. 24



To 
onsider a bundle gerbe bimodule D in the lo
al data formalism, let U be a good 
overingof M1 ×M2, let (gijk, Aij, Bi) be lo
al data of p∗1G1, and (g′
ijk, A

′
ij, B

′
i) lo
al data of p∗2G2. Thenthe bimodule has lo
al data (Gij, Πi) similar to a bundle gerbe module, but now satisfying

g′
ijk = gijk · Gik G−1

jk G−1
ij on Q ∩ Ui ∩ Uj ∩ Uk ,

A′
ij = Aij + Πj − G−1

ij Πi Gij − i G−1
ij dGij on Q ∩ Ui ∩ Uj ,

B′
i + ̟ = Bi + 1

n
tr(dΠi) on Q ∩ Ui . (B.8)Again we make three observations: First, the derivative of the third equality gives equation(B.1); se
ond, if both bundle gerbes p∗1G1 and p∗2G2 are trivial, then a bimodule is just a rank-nve
tor bundle over Q with 
urvature of tra
e n (B′−B+̟); and third, we 
an still 
hange thelo
al data (Gij , Πi) by lo
al data of a �at ve
tor bundle over Q and obtain another bimodulewith the same 
urvature. Su
h phenomena arise, in parti
ular, for bi-branes for WZW theorieson non-simply 
onne
ted Lie groups.B.3 Holonomy in the presen
e of defe
tsWe have generalized the de�nition of bi-branes from simply 
onne
ted bi-branes between 2-
onne
ted target spa
es with three-forms to arbitrary bi-branes between arbitrary target spa
eswith bundle gerbes. Now we shall generalize the Wess--Zumino term for bi-branes as given in(4.5) to the general 
ase as well.Let M1 and M2 be smooth manifolds with bundle gerbes G1 and G2 respe
tively, and let

(Q, E) be a bi-brane, i.e. a submanifold Q of M1 ×M2 together with a (p∗1G1)|Q-(p∗2G2)|Q-bimo-dule
D : (p∗1G1)|Q → (p∗2G2)|Q ⊗ I̟ (B.9)with 
urvature ̟. Re
all that we de�ned the Wess--Zumino term for the following situation:a 
losed oriented world sheet Σ with an embedded oriented 
ir
le S ⊂Σ, whi
h separates theworld sheet into two 
omponents, Σ =Σ1 ∪S Σ2, together with maps φi: Σi →Mi for i = 1, 2su
h that the image of the 
ombined map

φS : S → M1 ×M2

s 7→ (φ1(s), φ2(s))
(B.10)is 
ontained in Q. The orientation of Σi is the one inherited from the orientation of Σ, andwithout loss of generality we take ∂Σ1 =S and ∂Σ2 =S.To de�ne the Wess--Zumino term we use the formalism introdu
ed in [Wa℄, whi
h emphasizesthe role of morphisms between bundle gerbes, in parti
ular between trivial bundle gerbes.A

ording to [Wa℄, equivalen
e 
lasses of morphisms A: Iρ1

→Iρ2
are in natural bije
tion withequivalen
e 
lasses of hermitian ve
tor bundles E with 
onne
tion whose 
urvature satis�es

1
n

tr(curv(E)) = ρ2 − ρ1 , (B.11)with n the rank of E. We write Bun(A) for the ve
tor bundle 
orresponding to the morphism
A. This assignment has three important properties (Proposition 4 in [Wa℄):25



• if the morphism A is invertible, then the ve
tor bundle Bun(A) is of rank one, i.e. a linebundle; furthermore
Bun(A−1) = Bun(A)∗ ; (B.12)

• it is 
ompatible with the 
omposition of morphisms,
Bun(A′ ◦A) = Bun(A) ⊗ Bun(A′) and Bun(idIρ

) = 1 ; (B.13)
• it is 
ompatible with tensor produ
ts,

Bun(A′⊗A) = Bun(A) ⊗ Bun(A′) . (B.14)As an illustration, 
onsider a manifold M with two bundle gerbes G1 and G2, and a G1-G2-bi-module D: G1 →G2 ⊗Iω. Suppose we have trivializations of ea
h of the bundle gerbes G1 and
G2, i.e. bundle gerbe isomorphisms Ti: Gi →Iρi

. By 
omposition, we obtain a bundle gerbemorphism
D̃ := (T2 ⊗ idIω

) ◦ D ◦ T −1
1 : Iρ1

→ Iρ2+ω . (B.15)It 
orresponds to a ve
tor bundle E :=Bun(D̃) over M . Summarizing, a gerbe bimodule to-gether with trivializations gives a hermitian ve
tor bundle on M with 
onne
tion. Let us dis
usshow the ve
tor bundle E depends on the 
hoi
e of the trivializations. If T ′
1 and T ′

2 are twodi�erent 
hoi
es of trivializations and D̃′ is the 
orresponding morphism (B.15), we obtain theline bundles
Ti := Bun(T ′

i ◦ T −1
i ) (B.16)over M , of 
urvature curv(Ti) = ρ′

i − ρi. Then we have
D̃ = (T2 ⊗ idI̟

) ◦ D ◦ T −1
1

∼= (T2 ◦ (T ′
2 )−1 ⊗ idI̟

) ◦ (T ′
2 ⊗ idI̟

) ◦ D ◦ (T ′
1 )−1 ◦ T ′

1 ◦ T −1
1

= (T2 ◦ (T ′
2 )−1 ⊗ idI̟

) ◦ D̃′ ◦ T ′
1 ◦ T −1

1 .

(B.17)Using the identi�
ation Bun of bundle gerbe morphisms with ve
tor bundles and its properties(B.13) and (B.14) we obtain
E ∼= T ∗

2 ⊗ E ′ ⊗ T1 . (B.18)We 
an apply this result in the following way to the bi-brane (Q,D). The pullba
k of thebimodule D along the map φS: S →Q gives a (φ∗
1G1)|S-(φ∗

2G2)|S-bimodule
φ∗

SD : (φ∗
1G1)|S → (φ∗

2G2)|S ⊗ Iφ∗

S
̟ . (B.19)The pullba
k bundle gerbes φ∗

iGi over Σi are trivializable by dimensional reasons. A 
hoi
e
Ti: φ∗

iGi →Iρ of trivializations for two-forms ρi on Σi produ
es a ve
tor bundle over S. Withthis ve
tor bundle E we de�ne
holG1,G2,D(Σ, S) := exp

(
i

∫

Σ1

ρ1

)
exp

(
i

∫

Σ2

ρ2

)
tr(holE(S)) ∈ C (B.20)
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to be the holonomy in the presen
e of the bi-brane (Q, E). This holonomy is the appropriategeneralization of the Wess--Zumino (4.5) term in situations where the simplifying assumptionson the topology of the ba
kground and the bi-brane do not hold any longer.This de�nition does not depend on the 
hoi
e of the trivializations T1 and T2, as we shallnow establish. For di�erent 
hoi
es T ′
1 and T ′

2 we obtain the line bundles Ti introdu
ed in(B.16). Sin
e by 
onstru
tion we have ∂Σ1 = S and ∂Σ2 = S, and sin
e the 
urvature of thebundles Ti is curv(Ti) = ρ′
i − ρi, the holonomies of T1 and T2 around S are given by

holT1
(S) = exp

(
i

∫

Σ1

ρ′
1 − ρ1

) and (holT2
(S))−1 = exp

(
i

∫

Σ2

ρ′
2 − ρ2

)
, (B.21)respe
tively. From (B.18) we obtain

tr(holE(S)) = tr(holT ∗

2
⊗E′⊗T1

(S)) = (holT2
(S))−1 tr(holE′(S)) holT1

(S) . (B.22)Together with (B.21) this shows the independen
e of number (B.20) of the 
hoi
e of the trivi-alizations.To dis
uss the relation between the holonomy (B.20) and the form of the Wess--Zuminoterm given in Se
tion 4, suppose there exist 3-dimensional oriented submanifolds B1 and B2 in
M1 and M2, respe
tively, and a 2-dimensional oriented submanifold D of Q su
h that

∂D = φS(S) , ∂B1 = φ1(Σ1)∪ p1(D) and ∂B2 = φ2(Σ2)∪ p2(D) . (B.23)By dimensional reasons we 
an 
hoose trivializations Ti: Gi|∂Bi
→Iρi

of the two bundle gerbesover ∂Bi, thus produ
ing a ve
tor bundle E over D of 
urvature
1
n

tr(curv(E)) = ̟|D + p∗2ρ2|D − p∗1ρ1|D . (B.24)The pullba
ks φ∗
iTi: φ∗

iGi →Iφ∗ρi
are trivializations as used in the de�nition of the holonomy(B.20), whi
h hen
e be
omes

holG1,G2,D(Σ, S) = exp
(
i

∫

φ1(Σ1)

ρ1

)
exp

(
i

∫

φ(Σ2)

ρ2

)
tr(holE(φS(S))) . (B.25)Here the holonomy of the ve
tor bundle E around the boundary φS(S) of D be
omes by (B.24)

tr(holE(φS(S))) = tr(holE(∂D)) = exp
(
i

∫

D

̟ + p∗2ρ2 − p∗1ρ1

) . (B.26)The holonomy of the bundle gerbe Gi|∂Bi
around the 
losed surfa
e ∂Bi is, by de�nition,

holGi
(∂Bi) = exp

(
i

∫

∂Bi

ρi

)
= exp

(
i

∫

φi(Σi)

ρi ± i

∫

D

p∗i ρi

) (B.27)with a minus sign for i = 1 and a plus sign for i =2, a

ording to the relative orientations of Dand ∂Bi in (B.23). On the other hand, we have
holGi

(∂Bi) = exp
(
i

∫

Bi

Hi

) (B.28)with Hi the 
urvature of Gi. Taking the last four equalities together, we obtain
exp

(
i

∫

B1

H1 + i

∫

B2

H2 + i

∫

D

̟
)

= holG1,G2,D(Σ, S) . (B.29)We 
on
lude that the holonomy of the bi-brane indeed spe
ializes to the exponential of theWess--Zumino term in the form given in Se
tion 4.27
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