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IntrodutionFrom several perspetives it beomes lear that bundle gerbes are objets ina 2-ategory: from the bird's-eye view of algebrai geometry, where gerbesappear as some kind of stak, or in topology, where they appear as onepossible ategori�ation of a line bundle, but also from a worm's-eye view onthe de�nitions of bundle gerbes and their morphisms, whih show that therehave to be morphisms between the morphisms.In [Ste00℄ a 2-groupoid is de�ned, whose objets are bundle gerbes, andwhose 1-morphisms are stable isomorphisms. To explain a few details, reallthat bundle gerbes are de�ned using surjetive submersions π : Y → M , andthat a stable isomorphism A : G1 → G2 between two bundle gerbes G1 and
G2 with surjetive submersions π1 : Y1 → M and π2 : Y → M onsists of aertain line bundle A over the �bre produt Y1 ×M Y2. 2-morphisms betweenstable isomorphisms are morphisms β : A → A′ of those line bundles, obeyinga ompatibility onstraint. Many examples of surjetive submersions arisefrom open overs {Uα}α∈A of M by taking Y to be the disjoint union ofthe open sets Uα and π to be the projetion (x, α) 7→ x. From this pointof view, �bre produts Y1 ×M Y2 orrespond the ommon re�nement of twoopen overs. So, the line bundle A of a stable isomorphism lives over theommon re�nement of the open overs of the two bundle gerbes.Di�ulties with this de�nition of stable isomorphisms arise when twostable isomorphismsA : G1 → G2 and A′ : G2 → G3 are going to be omposed:one has to de�ne a line bundle Ã over Y1 ×M Y3 using the line bundles Aover Y1 ×M Y2 and A′ over Y2 ×M Y3. In [Ste00℄ this problem is solved usingdesent theory for line bundles.In this note, I present another de�nition of 1-morphisms between bundlegerbes (De�nition 2). Compared to stable isomorphisms, their de�nition isrelaxed in two aspets:1) the line bundle is replaed by a ertain vetor bundle of rank possiblyhigher than 1.2) this vetor bundle is de�ned over a smooth manifold Z with surjetivesubmersion ζ : Z → Y1 ×M Y2. In terms of open overs, the vetorbundle lives over a re�nement of the ommon re�nement of the openovers of the two bundle gerbes.Stable isomorphisms appear as a partiular ase of this relaxed de�nition. Ialso give a generalized de�nition of 2-morphisms between suh 1-morphisms(De�nition 3). Two goals are ahieved by this new type of morphisms betweenbundle gerbes. First, relaxation 1) produes many 1-morphisms whih are1



not invertible, in ontrast to the stable isomorphisms in [Ste00℄. To be morepreise, a 1-morphism is invertible if and only if its vetor bundle has rank 1(Proposition 3). The non-invertible 1-morphisms provide a new formulationof left and right bundle gerbe modules (De�nition 6). Seond, relaxation 1)erases the di�ulties with the omposition of 1-morphisms: the vetor bundle
Ã of the omposition A′ ◦ A is just de�ned to be the tensor produt of thevetor bundles A and A′ of the two 1-morphisms pulled bak to Z ×Y2 Z ′,where A over Z is the vetor bundle of A and A′ over Z ′ is the vetor bundleof A′. The omposition de�ned like that is stritly assoiative (Proposition1). This way we end up with a stritly assoiative 2-ategory BGrb(M)of bundle gerbes over M . The aim of this note is to show that a goodunderstanding of this 2-ategory an be useful.This note is organized as follows. Setion 1 ontains the de�nitions andproperties of the 2-ategory BGrb(M) of bundle gerbes over M . We alsoequip this 2-ategory with a monoidal struture, pullbaks and a duality.Setion 2 relates our new de�nition of 1-morphisms between bundle gerbes tothe one of a stable isomorphism: two bundle gerbes are isomorphi objets in
BGrb(M) if and only if they are stably isomorphi (Corollary 1). In setion3 we present a uni�ed view on important struture related to bundle gerbesin terms of the new morphisms of the 2-ategory BGrb(M):a) a trivialization of a bundle gerbe G is a 1-isomorphism A : G → Iρfrom G to a trivial bundle gerbe Iρ given by a 2-form ρ on M .b) a bundle gerbe module of a bundle gerbe G is a (not neessarily invert-ible) 1-morphism E : G → Iω from G to a trivial bundle gerbe Iω.) a Jandl struture on a bundle gerbe G over M is a triple (k,A, ϕ) ofan involution k of M , a 1-isomorphism A : k∗G → G∗ and a ertain2-morphism ϕ : k∗A ⇒ A∗.Then we demonstrate how this understanding in ombination with the prop-erties of the 2-ategory BGrb(M) an be employed to give onvenient def-initions of surfae holonomy. For this purpose we lassify the morphismsbetween trivial bundle gerbes: there is an equivalene of ategories

Hom(Iρ1 , Iρ2)
∼= Bunρ2−ρ1(M)between the morphism ategory between the trivial bundle gerbes Iρ1 and

Iρ2 and the ategory of vetor bundles over M for whih the trae of theurvature gives the 2-form ρ2 − ρ1 times its rank.The interpretation of bundle gerbe modules and Jandl strutures in termsof morphisms between bundle gerbes is one step to understand the relation2



between two approahes to two-dimensional onformal �eld theories: on theone hand the Lagrangian approah with a metri and a bundle gerbe G beingthe relevant struture [GR02℄ and on the other hand the algebrai approahin whih a speial symmetri Frobenius algebra objet A in a modular ten-sor ategory C plays this role [FRS02℄. Similarly as bundle gerbes, speialsymmetri Frobenius algebra objets in C form a 2-ategory, alled FrobC.In both approahes it is well-known how boundary onditions have to beimposed. In the Lagrangian approah one hooses a D-brane: a submanifold
Q of the target spae together with a bundle gerbe module for the bundlegerbe G restrited to Q [Gaw05℄. In the algebrai approah one hooses a1-morphism from A to the tensor unit I of C (whih is trivially a speialsymmetri Frobenius algebra objet) in the 2-ategory FrobC [SFR06℄. Nowthat we understand a gerbe module as a 1-morphism from G to Iω we havefound a ommon priniple in both approahes. A similar suess is made forunoriented onformal �eld theories. In the Lagrangian approah, the bun-dle gerbe G has to be endowed with a Jandl struture [SSW05℄, whih is inpartiular a 1-isomorphism k∗G → G∗ to the dual bundle gerbe G∗. In thealgebrai approah one has to hoose a ertain algebra isomorphism A → Aopfrom A to the opposed algebra [FRS04℄.Aknowledgements. I would like to thank Christoph Shweigert for hisadvie and enouragement, and Urs Shreiber for the many helpful disus-sions on 2-ategories.Conventions. Let us �x the following onventions for the whole artile:by vetor bundle I refer to a omplex vetor bundle of �nite rank, equippedwith a hermitian struture and with a onnetion respeting this hermitianstruture. Aordingly, a morphism of vetor bundles is supposed to respetboth the hermitian strutures and the onnetions. In partiular, a linebundle is a vetor bundle in the above sense of rank one. The symmetrimonoidal ategory Bun(M), whih is formed by all vetor bundles over asmooth manifold M and their morphisms in the above sense, is for simpliitytaitly replaed by an equivalent strit tensor ategory.1 The 2-Category of Bundle GerbesSummarizing, the 2-ategory BGrb(M) of bundle gerbes over a smooth man-ifold M onsists of the following struture:1. A lass of objets � bundle gerbes over M .3



2. A morphism ategory Hom(G,H) for eah pair G, H of bundle gerbes,whose objets are alled 1-morphisms and are denoted by A : G → H,and whose morphisms are alled 2-morphisms and are denoted β :
A1 ⇒ A2.3. A omposition funtor

◦ : Hom(H,K) × Hom(G,H) −→ Hom(G,K)for eah triple G,H,K of bundle gerbes.4. An identity 1-morphism idG : G → G for eah bundle gerbe G togetherwith natural 2-isomorphisms
ρA : idH ◦ A =⇒ A and λA : A ◦ idG =⇒ Aassoiated to every 1-morphism A : G → H.This struture satis�es the axioms of a stritly assoiative 2-ategory:(2C1) For three 1-morphisms A : G1 → G2, A′ : G2 → G3 and A′′ : G3 → G4,the omposition funtor satis�es

A′′ ◦ (A′ ◦ A) = (A′′ ◦ A′) ◦ A.(2C2) For 1-morphisms A : G1 → G2 and A′ : G2 → G3, the 2-isomorphisms
λA and ρA satisfy the equality

idA′ ◦ ρA = λA′ ◦ idAas 2-morphisms from A′ ◦ idG2 ◦ A to A′ ◦ A.The following two subsetions ontain the de�nitions of the struture ofthe 2-ategory BGrb(M). The two axioms are proved in Propositions 1 and2. The reader who is not interested in these details may diretly ontinuewith setion 3.1.1 Objets and MorphismsThe de�nition of the objets of the 2-ategory BGrb(M) � the bundle gerbesover M � is the usual one, just like, for instane, in [Mur96, Ste00, GR02℄.Given a surjetive submersion π : Y → M we use the notation Y [k] :=
Y ×M ...×M Y for the k-fold �bre produt, whih is again a smooth manifold.Here we onsider �bre produts to be stritly assoiative for simpliity. Forthe anonial projetions between �bre produts we use the notation πi1...ik :
Y [n] → Y [k]. 4



De�nition 1. A bundle gerbe G over a smooth manifold M onsists of thefollowing struture:1. a surjetive submersion π : Y → M ,2. a line bundle L over Y [2],3. a 2-form C ∈ Ω2(Y ), and4. an isomorphism
µ : π∗

12L ⊗ π∗
23L −→ π∗

13Lof line bundles over Y [3].This struture has to satisfy two axioms:(G1) The urvature of L is �xed by
curv(L) = π∗

2C − π∗
1C.(G2) µ is assoiative in the sense that the diagram

π∗
12L ⊗ π∗

23L ⊗ π∗
34L

π∗
123µ⊗id

//

id⊗π∗
234µ

��

π∗
13L ⊗ π∗

34L

π∗
134µ

��
π∗

12L ⊗ π∗
24L π∗

124µ
// π∗

14Lof isomorphisms of line bundles over Y [4] is ommutative.To give an example of a bundle gerbe, we introdue trivial bundle gerbes.Just as for every 1-form A ∈ Ω1(M) there is the (topologially) trivial linebundle over M having this 1-form as its onnetion 1-form, we �nd a trivialbundle gerbe for every 2-form ρ ∈ Ω2(M). Its surjetive submersion is theidentity id : M → M , and its 2-form is ρ. Its line bundle over M ×M M ∼= Mis the trivial line bundle with the trivial onnetion, and its isomorphism isthe identity isomorphism between trivial line bundles. Now, axiom (G1) issatis�ed sine curv(L) = 0 and π1 = π2 = idM . The assoiativity axiom(G2) is surely satis�ed by the identity isomorphism. Thus we have de�ned abundle gerbe, whih we denote by Iρ.It should not be unmentioned that the geometri nature of bundle gerbesallows expliit onstrutions of all (bi-invariant) bundle gerbes over all om-pat, onneted and simple Lie groups [GR02, Mei02, GR03℄. It beomes in5



partiular essential that a surjetive submersion π : Y → M is more generalthan an open over of M .An important onsequene of the existene of the isomorphism µ in thestruture of a bundle gerbe G is that the line bundle L restrited to the imageof the diagonal embedding ∆ : Y → Y [2] is anonially trivializable (as a linebundle with onnetion):Lemma 1. There is a anonial isomorphism tµ : ∆∗L → 1 of line bundlesover Y , whih satis�es
π∗

1tµ ⊗ id = ∆∗
112µ and id ⊗ π∗

2tµ = ∆∗
122µas isomorphisms of line bundles over Y [2], where ∆112 : Y [2] → Y [3] dupliatesthe �rst and ∆122 : Y [2] → Y [3] dupliates the seond fator.Proof. The isomorphism tµ is de�ned using the anonial pairing withthe dual line bundle L∗ (whih is strit by onvention) and the isomorphism

µ:
∆∗L = ∆∗L ⊗ ∆∗L ⊗ ∆∗L∗ ∆∗µ⊗id // ∆∗L ⊗ ∆∗L∗ = 1 (1)The two laimed equations follow from the assoiativity axiom (G2) bypullbak of the diagram along ∆1222 and ∆1112 respetively. �Now we de�ne the ategory Hom(G1,G2) for two bundle gerbes G1 and G2,to whose struture we refer by the same letters as in De�nition 1 but withindies 1 or 2 respetively.De�nition 2. A 1-morphism A : G1 → G2 onsists of the following struture:1. a surjetive submersion ζ : Z → Y1 ×M Y2,2. a vetor bundle A over Z, and3. an isomorphism

α : L1 ⊗ ζ∗
2A −→ ζ∗

1A ⊗ L2 (2)of vetor bundles over Z ×M Z.This struture has to satisfy two axioms:(1M1) The urvature of A obeys
1

n
tr(curv(A)) = C2 − C1,where n is the rank of the vetor bundle A.6



(1M2) The isomorphism α is ompatible with the isomorphisms µ1 and µ2of the gerbes G1 and G2 in the sense that the diagram
ζ∗
12L1 ⊗ ζ∗

23L1 ⊗ ζ∗
3A

µ1⊗id //

id⊗ζ∗23α

��

ζ∗
13L1 ⊗ ζ∗

3A

ζ∗13α

��

ζ∗
12L1 ⊗ ζ∗

2A ⊗ ζ∗
23L2

ζ∗12α⊗id

��
ζ∗
1A ⊗ ζ∗

12L2 ⊗ ζ∗
23L2

id⊗µ2

// ζ∗
1A ⊗ ζ∗

13L2of isomorphisms of vetor bundles over Z×M Z×M Z is ommutative.Here we work with the following simplifying notation: we have not intro-dued notation for the anonial projetions Z → Y1 and Z → Y2, aord-ingly we don't write pullbaks with these maps. So in (2), where the linebundles Li are pulled bak along the indued map Z [2] → Y
[2]
i for i = 1, 2and also in axiom (1M1) whih is an equation of 2-forms on Z.As an example of a 1-morphism, we de�ne the identity 1-morphism

idG : G −→ G (3)of a bundle gerbe G over M . It is de�ned by Z := Y [2], the identity ζ := idZ ,the line bundle L of G over Z and the isomorphism λ de�ned by
π∗

13L ⊗ π∗
34L

π∗
134µ

// π∗
14L

π∗
124µ−1

// π∗
12L ⊗ π∗

24L, (4)where we identi�ed Z [2] = Y [4], ζ2 = π34 and ζ1 = π12. Axiom (1M1) is thesame as axiom (G1) for the bundle gerbe G and axiom (1M2) follows fromaxiom (G2).The following lemma introdues an important isomorphism of vetor bun-dles assoiated to every 1-morphism, whih will be used frequently in thede�nition of the struture of BGrb(M) and also in setion 2.Lemma 2. For any 1-morphism A : G1 → G2 there is a anonial isomor-phism
dA : ζ∗

1A −→ ζ∗
2Aof vetor bundles over Z [2] = Z×P Z, where P := Y1×M Y2, with the followingproperties: 7



a) It satis�es the oyle ondition
ζ∗
13dA = ζ∗

23dA ◦ ζ∗
12dAas an equation of isomorphisms of vetor bundles over Z [3].b) The diagram

L1 ⊗ ζ∗
3A

id⊗ζ∗34dA

��

ζ∗13α
// ζ∗

1A ⊗ L2

ζ∗12dA⊗id

��
L1 ⊗ ζ∗

4A ζ∗24α
// ζ∗

2A ⊗ L2of isomorphisms of vetor bundles over Z [2] ×M Z [2] is ommutative.Proof. Notie that the isomorphism α of A restrited from Z ×M Z to
Z ×P Z gives an isomorphism

α|Z×P Z : ∆∗L1 ⊗ ζ∗
2A −→ ζ∗

1A ⊗ ∆∗L2. (5)By omposition with the isomorphisms tµ1 and tµ2 from Lemma 1 we obtainthe isomorphism dA:
ζ∗
1A

id⊗t−1
µ2 // ζ∗

1A ⊗ ∆∗L2

α|−1
Z×P Z

// ∆∗L1 ⊗ ζ∗
2A

tµ1⊗id
// ζ∗

2A. (6)The oyle ondition a) and the ommutative diagram b) follow both fromaxiom (1M2) for A and the properties of the isomorphisms tµ1 and tµ2 fromLemma 1. �Now that we have de�ned the objets of Hom(G1,G2), we ome to itsmorphisms. For two 1-morphisms A1 : G1 → G2 and A2 : G1 → G2, onsidertriples
(W, ω, βW ) (7)onsisting of a smooth manifold W , a surjetive submersion ω : W → Z1 ×P

Z2, where again P := Y1 ×M Y2, and a morphism βW : A1 → A2 of vetorbundles over W . Here we work again with the onvention that we don't writepullbaks along the unlabelled anonial projetions W → Z1 and W → Z2.The triples (7) have to satisfy one axiom (2M): the isomorphism βW has tobe ompatible with isomorphism α1 and α2 of the 1-morphisms A1 and A28



in the sense that the diagram
L1 ⊗ ω∗

2A1
α1 //

1⊗ω∗
2βW

��

ω∗
1A1 ⊗ L2

ω∗
1βW⊗1

��
L1 ⊗ ω∗

2A2 α2
// ω∗

1A2 ⊗ L2

(8)of morphisms of vetor bundles over W ×M W is ommutative. On the set ofall triples (7) satisfying this axiom we de�ne an equivalene relation aordingto that two triples (W, ω, βW ) and (W ′, ω′, βW ′) are equivalent, if there existsa smooth manifold X with surjetive submersions to W and W ′ for whihthe diagram
X

~~~~
~~

~~
~

  A
AA

AA
AA

W
ω

��@
@@

@@
@@

W ′

ω′

~~}}
}}

}}
}

Z1 ×P Z2

(9)of surjetive submersions is ommutative, and the morphisms βW and βW ′oinide when pulled bak to X.De�nition 3. A 2-morphism β : A1 ⇒ A2 is an equivalene lass of triples
(W, ω, βW ) satisfying axiom (2M).As an example of a 2-morphism we de�ne the identity 2-morphism idA :
A ⇒ A assoiated to every 1-morphism A : G1 → G2. It is de�ned as theequivalene lass of the triple (Z [2], idZ[2], dA) onsisting of the �bre produt
Z [2] = Z ×P Z, the identity idZ[2] and the isomorphism dA : ζ∗

1A → ζ∗
2A ofvetor bundles over Z [2] from Lemma 2. Axiom (2M) for this triple is provenwith Lemma 2 b).Now we have de�ned objets and morphisms of the morphism ategory

Hom(G1,G2), and we ontinue with the de�nition the omposition β ′ • β oftwo 2-morphisms β : A1 ⇒ A2 and β ′ : A2 ⇒ A3. It is alled vertialomposition in agreement with the diagrammatial notation
G1

A1

��A2 //

A3

CCG2

β

��

β′

��

. (10)
9



We hoose representatives (W, ω, βW ) and (W ′, ω′, βW ′) and onsider the �breprodut W̃ := W ×Z2 W ′ with its anonial surjetive submersion ω̃ : W̃ →
Z1 ×P Z3, where again P := Y1 ×M Y2. By onstrution we an ompose thepullbaks of the morphisms βW and βW ′ to W̃ and obtain a morphism

βW ′ ◦ βW : A1 −→ A3 (11)of vetor bundles over W̃ . From axiom (2M) for β and β ′ the one for thetriple (W̃ , ω̃, βW ′ ◦ βW ) follows. Furthermore, the equivalene lass of thistriple is independent of the hoies of the representatives of β and β ′and thusde�nes the 2-morphism β ′•β. The omposition • of the ategory Hom(G1,G2)de�ned like this is assoiative.It remains to hek that the 2-isomorphism idA : A ⇒ A de�ned above isthe identity under the omposition •. Let β : A ⇒ A′ be a 2-morphism and
(W, ω, βW ) a representative. The omposite β• idA an be represented by thetriple (W ′, ω′, β ◦ dA) with W ′ = Z ×P W , where ω′ : W ′ → Z ×P Z ′ is theidentity on the �rst fator and the projetion W → Z ′ on the seond one.We have to show, that this triple is equivalent to the original representative
(W, ω, βW ) of β. Consider the �bre produt

X := W ×(Z×P Z′) W ′ ∼= W ×Z′ W , (12)so that ondition (9) is satis�ed. The restrition of the ommutative diagram(8) of morphisms of vetor bundles over W ×M W from axiom (2M) for β to
X gives rise to the ommutative diagram

ζ∗
2A

d−1
A //

ω∗
2βW

��

ζ∗
1A

ω∗
1βW

��
A′

∆∗d−1
A′

// A′

(13)of morphisms of vetor bundles over X, where dA and dA′ are the isomor-phisms determined by the 1-morphisms A and A′ aording to Lemma 2.Their oyle ondition from Lemma 2 a) implies∆∗dA′ = id, so that diagram(13) is redued to the equality ω∗
2βW ◦ dA = ω∗

1βW of isomorphisms of vetorbundles over X. This shows that the triples (W, ω, βW ) and (W ′, ω′, βW ◦dA)are equivalent and we have β • idA = β. The equality idA′ • β = β followsanalogously.Now the de�nition of the morphism ategory Hom(G1,G2) is omplete. Amorphism in this ategory, i.e. a 2-morphism β : A ⇒ A′, is invertible ifand only if the morphism βW : A → A′ of any representative (W, ω, βW ) of β10



is invertible. Sine � following our onvention � morphism of vetor bundlesrespet the hermitian strutures, βW is invertible if and only if the ranks ofthe vetor bundles of the 1-morphisms A and A′ oinide. In the following,we all two 1-morphisms A : G1 → G2 and A′ : G1 → G2 isomorphi, if thereexists a 2-isomorphism β : A ⇒ A′ between them.1.2 The Composition FuntorLet G1, G2 and G3 be three bundles gerbes over M . We de�ne the ompositionfuntor
◦ : Hom(G2,G3) × Hom(G1,G2) −→ Hom(G1,G3) (14)on objets in the following way. Let A : G1 → G2 and A′ : G2 → G3 be two1-morphisms. The omposed 1-morphism

A′ ◦ A : G1 −→ G3 (15)onsists of the �bre produt Z̃ := Z ×Y2 Z ′ with its anonial surjetivesubmersion ζ̃ : Z̃ → Y1 ×M Y3, the vetor bundle Ã := A ⊗ A′ over Z̃, andthe isomorphism
α̃ := (idζ∗1A ⊗ α′) ◦ (α ⊗ idζ′∗2 A′) (16)of vetor bundles over Z̃ ×M Z̃.Indeed, this de�nes a 1-morphism from G1 to G3. Reall that if ∇A and

∇A′ denote the onnetions on the vetor bundles A and A′, the tensor prod-ut onnetion ∇ on A ⊗ A′ is de�ned by
∇(σ ⊗ σ′) = ∇A(σ) ⊗ σ′ + σ ⊗∇A′(σ′) (17)for setions σ ∈ Γ(A) and σ′ ∈ Γ(A′). If we take n to be the rank of A and

n′ the rank of A′ the urvature of the tensor produt vetor bundle is
curv(A ⊗ A′) = curv(A) ⊗ idn′ + idn ⊗ curv(A′). (18)Hene its trae
1

nn′
tr(curv(Ã)) =

1

n
tr(curv(A)) +

1

n′
tr(curv(A′))

= C2 − C1 + C3 − C2

= C3 − C1 (19)satis�es axiom (1M1). Notie that equation (19) involves unlabeled proje-tions from Z̃ to Y1, Y2 and Y3, where the one to Y2 is unique beause Z̃ is11



the �bre produt over Y2. Furthermore, α̃ is an isomorphism
L1 ⊗ ζ̃∗

2 Ã L1 ⊗ ζ∗
2A ⊗ ζ ′∗

2 A′

α⊗id

��
ζ∗
1A ⊗ L2 ⊗ ζ ′∗

2 A′

id⊗α′

��
ζ∗
1A ⊗ ζ ′∗

1 A′ ⊗ L3 ζ̃∗
1 Ã ⊗ L3. (20)

Axiom (1M2) follows from axioms (1M2) for A and A′.Proposition 1. The omposition of 1-morphisms is stritly assoiative: forthree 1-morphisms A : G1 → G2, A′ : G2 → G3 and A′′ : G3 → G4 we have
(A′′ ◦ A′) ◦ A = A′′ ◦ (A′ ◦ A).Proof. By de�nition, both 1-morphism (A′′ ◦ A′) ◦ A and A′′ ◦ (A′ ◦ A)onsist of the smooth manifold X = Z×Y2 Z ′×Y3 Z ′′ with the same surjetivesubmersion X → Y1 ×M Y4. On X, they have the same vetor bundle A ⊗

A′ ⊗ A′′, and �nally the same isomorphism
(id ⊗ id ⊗ α′′) ◦ (id ⊗ α′ ⊗ id) ◦ (α ⊗ id ⊗ id) (21)of vetor bundles over X ×M X. �Now we have to de�ne the funtor ◦ on 2-morphisms. Let A1,A

′
1 : G1 →

G2 andA2,A
′
2 : G2 → G3 be 1-morphisms between bundle gerbes. The funtor

◦ on morphisms is alled horizontal omposition due to the diagrammatialnotation
G1

A1

##

A′
1

;;
β1

��

G2

A2

##

A′
2

;;
β2

��

G3 = G1

A2◦A1

%%

A′
2◦A

′
1

99β2◦β1

��

G3 . (22)Reall that the ompositions A2◦A1 and A′
2◦A

′
1 onsist of smooth manifolds

Z̃ = Z1 ×Y2 Z2 and Z̃ ′ = Z ′
1 ×Y2 Z ′

2 with surjetive submersions to P :=
Y1 ×M Y3, of vetor bundles Ã := A1 ⊗A2 over Z̃ and Ã′ := A′

1 ⊗A′
2 over Z̃ ′,and of isomorphisms α̃ and α̃′ over Z̃ ×M Z̃ and Z̃ ′ ×M Z̃ ′.To de�ne the omposed 2-morphism β2 ◦ β1, we �rst need a surjetivesubmersion

ω : W −→ Z̃ ×P Z̃ ′. (23)12



We hoose representatives (W1, ω1, βW1) and (W2, ω2, βW2) of the 2-morphisms β1 and β2 and de�ne
W := Z̃ ×P (W1 ×Y2 W2) ×P Z̃ ′ (24)with the surjetive submersion ω := z̃ × z̃′ projeting on the �rst and thelast fator. Then, we need a morphism βW : z̃∗Ã → z̃′∗Ã′ of vetor bundlesover W . Notie that we have maps

u : W1 ×Y2 W2 −→ Z̃ and u′ : W1 ×Y2 W2 −→ Z̃ ′ (25)suh that we obtain surjetive submersions
z̃ × u : W −→ Z̃ [2] and u′ × z̃′ : W −→ Z̃ ′[2]. (26)Reall from Lemma 2 that the 1-morphisms A2 ◦ A1 and A′

2 ◦ A′
1 de�neisomorphisms dA2◦A1 and dA′

2◦A
′
1
of vetor bundles over Z̃ [2] and Z̃ ′[2], whosepullbaks to W along the above maps are isomorphisms

dA2◦A1 : z̃∗Ã −→ u∗Ã and dA′
2◦A

′
1

: u′∗Ã′ −→ z̃′∗Ã′ (27)of vetor bundles over W . Finally, the morphisms βW1 and βW2 give a mor-phism
β̃ := βW1 ⊗ βW2 : u∗Ã −→ u′∗Ã′ (28)of vetor bundles over W so that the omposition

βW := dA′
2◦A

′
1
◦ β̃ ◦ dA2◦A1 (29)is a well-de�ned morphism of vetor bundles over W . Axiom (2M) for thetriple (W, ω, βW ) follows from Lemma 2 b) for A2 ◦A1 and A′

2 ◦A
′
1 and fromthe axioms (2M) for the representatives of β1 and β2. Furthermore, the equiv-alene lass of (W, ω, βW ) is independent of the hoies of the representativesof β1 and β2.Lemma 3. The assignment ◦, de�ned above on objets and morphisms, is afuntor

◦ : Hom(G2,G3) × Hom(G1,G2) −→ Hom(G1,G3).Proof. i) The assignment ◦ respets identities, i.e. for 1-morphisms A1 :
G1 → G2 and A2 : G2 → G3,

idA2 ◦ idA1 = idA2◦A1 . (30)13



To show this we hoose the de�ning representatives (W1, id, dα1) of idA1 and
(W2, id, dα2) of idA2 , where W1 = Z1 ×(Y1×MY2) Z1 and W2 = Z2 ×(Y2×M Y3) Z2.Consider the di�eomorphism

f : W1 ×Y2 W2 → Z̃ ×Y1×MY2×M Y3 Z̃ : (z1, z
′
1, z2, z

′
2) 7→ (z1, z2, z

′
1, z

′
2), (31)where Z̃ = Z1×Y2 Z2. From the de�nitions of the isomorphisms dA1 , dA2 and

dA2◦A2 we onlude the equation
dA1 ⊗ dA2 = f ∗dA2◦A1 (32)of isomorphisms of vetor bundles over W1 ×Y2 W2. The horizontal ompo-sition idA2 ◦ idA1 is anonially represented by the triple (W, ω, βW ) where

W is de�ned in (24) and βW is de�ned in (29). Now, the di�eomorphism fextends to an embedding f : W → Z̃ [4] into the four-fold �bre produt of Z̃over P = Y1 ×M Y3, suh that ω : W → Z̃ [2] fatorizes over f ,
ω = ζ̃14 ◦ f . (33)From (29) and (32) we obtain

βW = dA2◦A1 ◦ (dA1 ⊗ dA2) ◦ dA2◦A1

= f ∗(ζ̃∗
34dA2◦A1 ◦ ζ̃∗

23dA2◦A1 ◦ ζ̃∗
12dA2◦A1). (34)The oyle ondition for dA2◦A1 from Lemma 2 a) and (33) give

βW = f ∗ζ̃∗
14dA2◦A1 = ω∗dA2◦A1 . (35)We had to show that the triple (W, ω, βW ) whih represents idA2 ◦ idA2is equivalent to the triple (Z̃ [2], id, dA2◦A1) whih de�nes the identity 2-morphism idA2◦A1 . For the hoie X := W with surjetive submersions

id : X → W and ω : X → Z̃ [2], equation (35) shows exatly this equivalene.ii) The assignment ◦ respets the omposition •, i.e. for 2-morphisms
βi : Ai ⇒ A′

i and β ′
i : A′

i ⇒ A′′
i between 1-morphisms Ai, A′

i and A′′
i from Gito Gi+1, everything for i = 1, 2, we have an equality

(β ′
2 • β2) ◦ (β ′

1 • β1) = (β ′
2 ◦ β ′

1) • (β2 ◦ β1) (36)of 2-morphisms from A2 ◦ A1 to A′′
2 ◦ A′′

1. This equality is also known asthe ompatibility of vertial and horizontal ompositions. To prove it, let usintrodue the notation Z̃ := Z1 ×Y2 Z2, and analogously Z̃ ′ and Z̃ ′′, further-more we write P := Y1 ×M Y3. Notie that the 2-morphism on the left handside of (36) is represented by a triple (V, ν, βV ) with
V = Z̃ ×P (W̃1 ×Y2 W̃2) ×P Z̃ ′′, (37)14



where the �bre produts W̃i := Wi×Z′
i
W ′

i arise from the vertial ompositions
β ′

i • βi. The surjetive submersion ν : V → Z̃ ×P Z̃ ′′ is the projetion on the�rst and the last fator, and
βV = dA′′

2◦A
′′
1
◦ ((β ′

1 ◦ β1) ⊗ (β ′
2 ◦ β2)) ◦ dA2◦A1 (38)is a morphism of vetor bundles over V . The 2-morphism on the right handside of (36) is represented by the triple (V ′, ν ′, βV ′) with

V ′ = (Z̃ ×P (W1 ×Y2 W2) ×P Z̃ ′) ×Z̃′ (Z̃ ′ ×P (W ′
1 ×Y2 W ′

2) ×P Z̃ ′′)
∼= Z̃ ×P (W1 ×Y2 W2) ×P Z̃ ′ ×P (W ′

1 ×Y2 W ′
2) ×P Z̃ ′′, (39)where ν ′ is again the projetion on the outer fators, and

βV ′ = dA′′
2◦A

′′
1
◦ (β ′

1 ⊗ β ′
2) ◦ dA′

2◦A
′
1
◦ (β1 ⊗ β2) ◦ dA2◦A1 , (40)where we have used the oyle ondition for dA′

2◦A
′
1
from Lemma 2 b).We have to show that the triples (V, ν, βV ) and (V ′, ν ′, βV ′) are equivalent.Consider the �bre produt

X := V ×Z̃×P Z̃′′ V ′ (41)with surjetive submersions v : X → V and v′ : X → V ′. To show theequivalene of the two triples, we have to prove the equality
v∗βV = v′∗βV ′ . (42)It is equivalent to the ommutativity of the outer shape of the followingdiagram of isomorphisms of vetor bundles over X:

A1 ⊗ A2
dA2◦A1

uullllllll dA2◦A1

))RRRRRRRR

v∗(A1 ⊗ A2) dA2◦A1
//

β1⊗β2

��

v′∗(A1 ⊗ A2)

β1⊗β2��
v′∗(A′

1 ⊗ A′
2)

d
A′

2
◦A′

1

��

v∗(A′
1 ⊗ A′

2)

β′
1⊗β′

2

��

dA′
2
◦A′

1fffffff

22fffffff

d
A′

2
◦A′

1

XXXXXXX

,,XXXXXXX

v′∗(A′
1 ⊗ A′

2)
β′
1⊗β′

2��
v∗(A′′

1 ⊗ A′′
2)

d
A′′

2
◦A′′

1
//

d
A′′

2
◦A′′

1
((RRRRRRRR

v′∗(A′′
1 ⊗ A′′

2)

d
A′′

2
◦A′′

1
uullllllll

A′′
1 ⊗ A′′

2

(43)
15



The ommutativity of the outer shape of this diagram follows from theommutativity of its �ve subdiagrams: the triangular ones are ommutativedue to the oyle ondition from Lemma 2 a), and the ommutativity ofthe foursquare ones follows from axiom (2M) of the 2-morphisms. �To �nish the de�nition of the 2-ategory BGrb(M) we have to de�ne thenatural 2-isomorphisms λA : A ◦ idG ⇒ A and ρA : idG′ ◦ A ⇒ A for a given1-morphism A : G → G′, and we have to show that they satisfy axiom (2C2).We de�ne the 1-morphism A ◦ idG as follows: it has the anonial surjetivesubmersion from Z̃ = Y [2] ×Y Z ∼= Y ×M Z to P := Y ×M Y ′ and the vetorbundle L ⊗ A over Z̃. Consider
W := Z̃ ×P Z ∼= Z ×Y ′ Z (44)and the identity ω := idW . Under this identi�ation, let us onsider therestrition of the isomorphism α of the 1-morphism A from Z ×M Z to

W = Z ×Y ′ Z. If s : W → W denotes the exhange of the two fators,we obtain an isomorphism
s∗α|W : L ⊗ ζ∗

1A −→ ζ∗
2A ⊗ ∆∗L′ (45)of vetor bundles over W . By omposition with the anonial trivializationof the line bundle ∆∗L′ from Lemma 1 it gives an isomorphism

λW := (id ⊗ tµ′) ◦ s∗α|W : L ⊗ ζ∗
1A −→ ζ∗

2A (46)of vetor bundles over W . The axiom (2M) for the triple (W, ω, λW ) followsfrom axiom (1M2) for the 1-morphism A and from the properties of tµ′ fromLemma 1. So, λA is de�ned to be the equivalene lass of this triple. Thede�nition of ρA goes analogously: we take W = Z ×Y Z and obtain byrestrition the isomorphism
α|W : ∆∗L ⊗ ζ∗

2A −→ ζ∗
1A ⊗ L′. (47)Then, the 2-isomorphism ρA is de�ned by the triple (W, ω, ρW ) with theisomorphism

ρW := (tµ ⊗ id) ◦ α|−1
W : ζ∗

1A ⊗ L′ −→ ζ∗
2A (48)of vetor bundles over W . 16



Lemma 4. The 2 -isomorphisms λA and ρA are natural in A, i.e. for any2-morphism β : A ⇒ A′ the naturality squares
idG′ ◦ A

idid
G′

◦β

��

ρA +3 A

β

��
idG′ ◦ A′

ρA′

+3 A′

and A ◦ idG

β◦ididG

��

λA +3 A

β

��
A′ ◦ idG

λA′

+3 A′are ommutative.Proof. To alulate for instane the horizontal omposition ididG′ ◦β in thediagram on the left hand side �rst note that ididG′ is anonially representedby the triple (Y ′[2], id, idL). The isomorphism
didG′◦A : ζ̃∗

1(A ⊗ L′) → ζ̃∗
2(A ⊗ L′), (49)whih appears in the de�nition of the horizontal omposition, is an isomor-phism of vetor bundles over Z̃×Y ×M Y ′ Z̃, where ζ̃ : Z̃ := Z×M Y ′ → Y ×M Y ′is the surjetive submersion of the omposite idG′ ◦ A. Here it simpli�es to

didG′◦A = (tµ ⊗ id ⊗ id) ◦ (α−1 ⊗ id) ◦ (1 ⊗ ζ̃∗
1µ

′−1). (50)With these simpli�ations and with axiom (1M2) for A and A′, thenaturality squares redue to the ompatibility axiom (2M) of β with theisomorphisms α and α′ of A and A′ respetively. �It remains to show that the isomorphisms λA and ρA satisfy axiom (2C2)of a 2-ategory.Proposition 2. For 1-morphisms A : G1 → G2 and A′ : G2 → G3, the2-isomorphisms λA and ρA satisfy
idA′ ◦ ρA = λA′ ◦ idA.Proof. The equation to prove is an equation of 2-morphisms from A′ ◦

idG2 ◦A to A′ ◦A. The �rst 1-morphism onsists of the surjetive submersion
Z̃ := Z ×M Z ′ → P13, where we de�ne Pij := Yi ×M Yj, further of the vetorbundle A ⊗ L2 ⊗ A′ over Z̃. The seond 1-morphism A′ ◦ A onsists of thesurjetive submersion Z̃ ′ := Z×Y2 Z

′ → P13 and the vetor bundle A⊗A′ over
Z̃ ′. Let us hoose the de�ning representatives for the involved 2-morphisms:we hoose (Z ′[2], id, dA′) for idA′ , with W := Z ×Y1 Z we hoose (W, id, ρW )for ρA, with W ′ := Z ′ ×Y3 Z ′ we hoose (W ′, id, λW ′) for λA′ , and we hoose
(Z [2], id, dA′) for idA. 17



Now, the horizontal omposition idA′◦ρA is de�ned by the triple (V, ν, βV )with
V = Z̃ ×P13 (W ×Y2 Z ′[2]) ×P13 Z̃ ′, (51)the projetion ν : V → Z̃ ×P13 Z̃ ′ on the �rst and the last fator, and theisomorphism
βV = dA′◦A ◦ (ρW ⊗ dA′) ◦ dA′◦id◦A (52)of vetor bundles over V . The horizontal omposition λA′ ◦ idA is de�ned bythe triple (V ′, ν ′, βV ′) with
V ′ = Z̃ ×P13 (Z [2] ×Y2 W ′) ×P13 Z̃ ′, (53)again the projetion ν ′ on the �rst and the last fator, and the isomorphism
βV ′ = dA′◦A ◦ (dA ⊗ λW ′) ◦ dA′◦id◦A (54)of vetor bundles over V .To prove the proposition, we show that the triples (V, ν, βV ) and

(V ′, ν ′, βV ′) are equivalent. Consider the �bre produt
X := V ×(Z̃×P13

Z̃′) V ′ (55)with surjetive submersions v : X → V and v′ : X → V ′. The equivalene ofthe two triples follows from the equation
v∗βV = v′∗β ′ (56)of isomorphisms of vetor bundles over X. It is equivalent to the ommuta-tivity of the outer shape of the following diagram of isomorphisms of vetorbundles over X:
A ⊗ L2 ⊗ A′

dA′◦id◦A

yyssssssssssssss

dA′◦id◦A

%%LLLLLLLLLLLLLL

v∗(A ⊗ L2 ⊗ A′)

ρW ⊗dA′

��

dA′◦id◦A
// v′∗(A ⊗ L2 ⊗ A′)

dA⊗λW ′

��
v∗(A ⊗ A′)

dA′◦A

%%LLLLLLLLLLLLLL
dA′◦A

// v′∗(A ⊗ A′)

dA′◦A

yyrrrrrrrrrrrrrr

A ⊗ A′

(57)
18



The diagram is pathed together from three subdiagrams, and the om-mutativity of the outer shape follows beause the three subdiagramsare ommutative: the triangle diagrams are ommutative due to theoyle ondition from Lemma 2 b) for the 1-morphisms A′ ◦ idG2 ◦ Aand A′ ◦ A respetively. The ommutativity of the retangular diagramin the middle follows from Lemma 1 and from axioms (1M2) for A and A′. �1.3 Invertible 1-MorphismsIn this subsetion we address the question, whih of the 1-morphisms of the2-ategory BGrb(M) are invertible. Let G1 and G2 be two bundle gerbesover M . In a (stritly assoiative) 2-ategory, a 1-morphism A : G1 → G2 isalled invertible or 1-isomorphism, if there is a 1-morphism A−1 : G2 → G1in the opposite diretion, together with 2-isomorphisms il : A−1 ◦ A ⇒ idG1and ir : idG2 ⇒ A ◦A−1 suh that the diagram
A ◦A−1 ◦ AKS

ir◦idA

idA◦il +3 A ◦ idG1

λA

��
idG2 ◦ A ρA

+3 A

(58)of 2-isomorphisms is ommutative. The inverse 1-isomorphism A−1 is uniqueup to isomorphism.Notie that if β : A ⇒ A′ is a 2-morphism between invertible 1-morphismswe an form a 2-morphism β# : A′−1 ⇒ A−1 using the 2-isomorphisms ir for
A−1 and il for A′−1. Then, diagram (58) indues the equation id#

A = idA−1 .Proposition 3. A 1-morphism A : G1 → G2 in BGrb(M) is invertible ifand only if the vetor bundle of A is of rank 1.Proof. Suppose that A is invertible, and let n be the rank of its vetorbundle. Let A−1 be an inverse 1-morphism with a vetor bundle of rank
m. By de�nition, the omposed 1-morphisms A ◦ A−1 and A−1 ◦ A havevetor bundles of rank nm, whih has � to admit the existene of the2-isomorphisms il and ir � to oinide with the rank of the vetor bundleof the identity 1-morphisms idG1 and idG2 respetively, whih is 1. So
n = m = 1. The other inlusion is shown below by an expliit onstrutionof an inverse 1-morphism A−1 to a 1-morphism A with vetor bundle ofrank 1. �19



Let a 1-morphism A onsist of a surjetive submersion ζ : Z → Y1×M Y2,of a line bundle A over Z and of an isomorphism α of line bundles over
Z ×M Z. We expliitly onstrut an inverse 1-morphism A−1: it has thesurjetive submersion Z → Y1 ×M Y2 → Y2 ×M Y1, where the �rst map is
ζ and the seond one exhanges the fators, the dual line bundle A∗ over Zand the isomorphism

L2 ⊗ ζ∗
2A

∗ ζ∗
1A

∗ ⊗ ζ∗
1A ⊗ L2 ⊗ ζ∗

2A
∗

id⊗α−1⊗id
��

ζ∗
1A

∗ ⊗ L1 ⊗ ζ∗
2A ⊗ ζ∗

2A
∗ ζ∗

1A
∗ ⊗ L1.

(59)Axiom (1M1) for the 1-morphismA−1 is satis�ed beause A∗ has the negativeurvature, and axiom (1M2) follows from the one for A.To onstrut the 2-isomorphism il : A−1 ◦ A ⇒ idG1 notie that the 1-morphism A−1 ◦A onsists of the line bundle ζ∗
1A⊗ ζ∗

2A
∗ over Z̃ = Z ×Y2 Z.We identify Z̃ ∼= Z̃ ×P Y

[2]
1 , where P = Y

[2]
1 , whih allows us to hoose atriple (Z̃, idZ̃ , βZ̃) de�ning il. In this triple, the isomorphism βZ̃ is de�ned tobe the omposition

ζ∗
1A ⊗ ζ∗

2A
∗

id⊗t−1
µ2

⊗id
// ζ∗

1A ⊗ ∆∗L2 ⊗ ζ∗
2A

∗ α−1⊗id// L1 ⊗ ζ∗
2A ⊗ ζ∗

2A
∗ = L1. (60)Axiom (2M) for the isomorphism βZ̃ follows from axiom (1M2) of A, so thatthe triple (Z̃, idZ̃ , βZ̃) de�nes a 2-isomorphism il : A−1 ◦ A ⇒ idG1. The2-isomorphism ir : idG2 ⇒ A ◦ A−1 is onstruted analogously: here we takethe isomorphism

L2 = ζ∗
1A

∗ ⊗ ζ∗
1A ⊗ L2

id⊗α−1
// ζ∗

1A
∗ ⊗ ∆∗L1 ⊗ ζ∗

2A
id⊗tµ1⊗id

// ζ∗
1A

∗ ⊗ ζ∗
2A. (61)of line bundles over W . Notie that by using the pairing A∗ ⊗ A = 1 wehave used that A is a line bundle as assumed. Finally, the ommutativity ofdiagram (58) follows from axiom (1M2) of A.Proposition 3 shows that we have many 1-morphisms in BGrb(M) whihare not invertible, in ontrast to the 2-groupoid of bundle gerbes de�ned in[Ste00℄. Notie that we have already bene�ted from the simple de�nition ofthe ompositionA−1◦A, whih makes it also easy to see that it is ompatiblewith the onstrution of inverse 1-morphisms A−1:

(A2 ◦ A1)
−1 = A−1

1 ◦ A−1
2 . (62)20



1.4 Additional StruturesThe 2-ategory of bundle gerbes has natural de�nitions of pullbaks, ten-sor produts and dualities; all of them have been introdued for objets in[Mur96, MS00℄.Pullbaks and tensor produts of 1-morphisms and 2-morphisms an alsobe de�ned in a natural way, and we do not arry out the details here. Sum-marizing, the monoidal struture on BGrb(M) is a strit 2-funtor
⊗ : BGrb(M) × BGrb(M) −→ BGrb(M), (63)for whih the trivial bundle gerbe I0 is a strit tensor unit, i.e.

I0 ⊗ G = G = G ⊗ I0. (64)The idea of the de�nition of ⊗ is to take �bre produts of the involvedsurjetive submersions, to pull bak all the struture to this �bre produtand then to use the monoidal struture of the ategory of vetor bundlesover that spae. This was assumed to be strit, and so is ⊗. Pullbaks forthe 2-ategory BGrb(M) are implemented by strit monoidal 2-funtors
f ∗ : BGrb(M) −→ BGrb(X) (65)assoiated to every smooth map f : X → M in the way that g∗◦f ∗ = (f ◦g)∗for a seond smooth map g : Y → X. The idea of its de�nition is, to pullbak surjetive submersions, for instane

f−1Y
f̃ //

��

Y

π

��
X

f
// M

(66)and then pull bak the struture over Y along the overing map f̃ . The2-funtors ⊗ and f ∗ are all ompatible with the assignment of inverses A−1to 1-morphisms A from subsetion 1.3:
f ∗(A−1) = (f ∗A)−1 and (A1 ⊗A2)

−1 = A−1
1 ⊗A−1

2 . (67)Also the trivial bundle gerbes Iρ behave naturally under pullbaks and tensorproduts:
f ∗Iρ = If∗ρ and Iρ1 ⊗ Iρ2 = Iρ1+ρ2 . (68)To de�ne a duality we are a bit more preise, beause this has yet notbeen done systematially in the literature. Even though we will stritly21



onentrate on what we need in setion 3.3. For those purposes, it is enoughto understand the duality as a strit 2-funtor
()∗ : BGrb(M)op → BGrb(M) (69)where the opposed 2-ategory BGrb(M)op has all 1-morphisms reversed,while the 2-morphisms are as before. This 2-funtor will satisfy the identity

()∗∗ = idBGrb(M). (70)We now give the omplete de�nition of the funtor ()∗ on objets, 1-morphisms and 2-morphisms. For a given bundle gerbe G, the dual bundlegerbe G∗ onsists of the same surjetive submersion π : Y → M , the 2-form
−C ∈ Ω2(Y ), the line bundle L∗ over Y [2] and the isomorphism

µ∗−1 : π∗
12L

∗ ⊗ π∗
23L

∗ → π∗
13L

∗ (71)of line bundles over Y [3]. This struture learly satis�es the axioms of abundle gerbe. We obtain immediately
G∗∗ = G and (G ⊗H)∗ = H∗ ⊗ G∗, (72)and for the trivial bundle gerbe Iρ the equation

I∗
ρ = I−ρ. (73)For a 1-morphisms A : G1 → G2 onsisting of a vetor bundle A over

Z with surjetive submersion ζ : Z → P with P := Y1 ×M Y2 and of anisomorphism α of vetor bundles over Z×M Z, we de�ne the dual 1-morphism
A∗ : G∗

2 −→ G∗
1 (74)as follows: its surjetive submersion is the pullbak of ζ along the exhangemap s : P ′ → P , with P ′ := Y2 × Y1; that is a surjetive submersion ζ ′ :

Z ′ → P ′ and a overing map sZ in the ommutative diagram
Z ′

ζ′

��

sZ // Z

ζ

��
P ′

s
// P . (75)The vetor bundle of A∗ is A′ := s∗ZA over Z ′ and its isomorphism is

L∗
2 ⊗ ζ ′∗

2 A′ L∗
2 ⊗ L1 ⊗ ζ ′∗

2 s∗ZA ⊗ L∗
1

id⊗s̃∗α⊗id
��

L∗
2 ⊗ ζ ′∗

1 s∗ZA ⊗ L2 ⊗ L∗
1 ζ ′∗

1 A′ ⊗ L∗
1. (76)22



Axiom (1M1) is satis�ed sine the dual bundle gerbes have 2-forms withopposite signs,
curv(A′) = s∗Zcurv(A) = s∗Z(C2 − C1) = C2 − C1 = (−C1) − (−C2). (77)Axiom (1M2) relates the isomorphism (76) to the isomorphisms µ∗−1

1 and
µ∗−1

2 of the dual bundle gerbes. It an be dedued from axiom (1M2) of Ausing the following general fat, applied to µ∗
1 and µ∗

2: the dual f ∗ of anisomorphism f : L1 → L2 of line bundles oinides with the isomorphism
L∗

2 = L∗
2 ⊗ L1 ⊗ L∗

1

id⊗f⊗id // L∗
2 ⊗ L2 ⊗ L∗

1 = L∗
1, (78)de�ned using the duality on line bundles.Dual 1-morphisms de�ned like this have the properties

A∗∗ = A , (A′ ◦ A)∗ = A∗ ◦ A′∗ and (A1 ⊗A2)
∗ = A∗

2 ⊗A∗
1. (79)Finally, for a 2-morphism β : A1 ⇒ A2 we de�ne the dual 2-morphism

β∗ : A∗
1 =⇒ A∗

2 (80)in the following way. If β is represented by a triple (W, ω, βW ) with anisomorphism βW : A1 → A2 of vetor bundles over W , we onsider thepullbak of ω : W → Z1×P Z2 along sZ1 ×sZ2 : Z ′
1×P ′ Z ′

2 → Z1×P Z2, where
Z1, Z ′

2 and P ′ are as in (75), and sZ1 and sZ2 are the respetive overingmaps. This gives a ommutative diagram
W ′

ω′

��

sW // W

ω

��
Z ′

1 ×P ′ Z ′
2 sZ1

×sZ2

// Z1 ×P Z2. (81)Now onsider the triple (W ′, ω′, s∗WβW ) with the isomorphism
s∗WβW : s∗Z1

A1 −→ s∗Z2
A2 (82)of vetor bundles over W ′. It satis�es axiom (2M), and its equivalene lassdoes not depend on the hoie of the representative of β. So we de�ne thedual 2-morphism β∗ to be this lass. Dual 2-morphisms are ompatible withvertial and horizontal ompositions

(β2 ◦ β1)
∗ = β∗

1 ◦ β∗
2 and (β • β ′)∗ = β∗ • β ′∗ (83)23



and satisfy furthermore
β∗∗ = β and (β1 ⊗ β2)

∗ = β∗
2 ⊗ β∗

1 . (84)We an use adjoint 2-morphisms in the following situation: if A : G → His an invertible 1-morphism with inverse A−1 and assoiated 2-isomorphisms
il : A−1 ◦ A ⇒ idG and ir : idH ⇒ A ◦ A−1, their duals i∗l and i∗r show that
(A−1)∗ is an inverse to A∗. Sine inverses are unique up to isomorphism,

(A∗)−1 ∼= (A−1)∗. (85)Summarizing, equations (72), (79), (83) and (84) show that ()∗ is amonoidal strit 2-funtor, whih is stritly involutive. Let us �nally men-tion that it is also ompatible with pullbaks:
f ∗(G∗) = (f ∗G)∗ , f ∗A∗ = (f ∗A)∗ and f ∗β∗ = (f ∗β)∗. (86)2 Desent Theory for MorphismsIn this setion we ompare 1-morphisms between bundle gerbes in the sense ofDe�nition 2 with 1-morphisms whose surjetive submersion ζ : Z → Y1×M Y2is the identity, like in [Ste00℄. For this purpose, we introdue the subate-gory HomFP (G1,G2) of the morphism ategory Hom(G1,G2), where all smoothmanifolds Z and W appearing in the de�nitions of 1- and 2-morphismsare equal to the �bre produt P := Y1 ×M Y2. Expliitly, an objet in

HomFP (G1,G2) is a 1-morphism A : G1 → G2 whose surjetive submer-sion is the identity idP and a morphism in HomFP (G1,G2) is a 2-morphism
β : A1 ⇒ A2 whih an be represented by the triple (P, ω, β) where
ω : P → P ×P P ∼= P is the identity.Theorem 1. The inlusion funtor

D : HomFP (G1,G2) −→ Hom(G1,G2)is an equivalene of ategories.In the proof we will make use of the fat that vetor bundles form a stak,i.e. �bred ategory satisfying a gluing ondition. To make this gluing on-dition onrete, we de�ne for a surjetive submersion ζ : Z → P a ategory
Des(ζ) as follows. Its objets are pairs (A, d), where A is a vetor bundleover Z and

d : ζ∗
1A −→ ζ∗

2A (87)24



is an isomorphism of vetor bundles over Z [2] suh that
ζ∗
13d = ζ∗

23d ◦ ζ∗
12d. (88)A morphism α : (A, d) → (A′, d′) in Des(ζ) is an isomorphism α : A → A′ ofvetor bundles over Z suh that the diagram

ζ∗
1A

d

��

ζ∗1α
// ζ∗

1A
′

d′

��
ζ∗
2A ζ∗2α

// ζ∗
2A

′

(89)of isomorphisms of vetor bundles over Z [2] is ommutative. The ompositionof morphisms is just the omposition of isomorphisms of vetor bundles. Now,the gluing ondition for the stak of vetor bundles is that the pullbak along
ζ is an equivalene

ζ∗ : Bun(P ) −→ Des(ζ) (90)between the ategory Bun(P ) of vetor bundles over P and the ategory
Des(ζ).Proof of Theorem 1. We show that the faithful funtor D is an equivaleneof ategories by proving (a) that it is essentially surjetive and (b) that thesubategory HomFP (G1,G2) is full.For (a) we have to show that for every 1-morphism A : G1 → G2 witharbitrary surjetive submersion ζ : Z → P there is an isomorphi 1-morphism
SA : G1 → G2 with surjetive submersion idP . Notie that the isomorphism
dA : ζ∗

1A → ζ∗
2A of vetor bundles over Z [2] from Lemma 2 satis�es theoyle ondition (88), so that (A, dA) is an objet in Des(ζ). Now onsiderthe surjetive submersion ζ2 : Z ×M Z → P [2]. By Lemma 2 b) and underthe identi�ation of Z [2] ×M Z [2] with (Z ×M Z)×P [2] (Z ×M Z) the diagram

L1 ⊗ ζ∗
2A

1⊗ζ∗24dA

��

ζ∗12α
// ζ∗

1A ⊗ L2

ζ∗13dA⊗1

��
L1 ⊗ ζ∗

4A ζ∗34α
// ζ∗

3A ⊗ L2

(91)of isomorphisms of vetor bundles over (Z ×M Z)×P [2] (Z ×M Z) is ommu-tative, and shows that α is a morphism in Des(ζ2). Now we use that ζ∗ is anequivalene of ategories: we hoose a vetor bundle S over P together withan isomorphism β : ζ∗S → A of vetor bundles over Z, and an isomorphism
σ : L1 ⊗ ζ∗

2S −→ ζ∗
1S ⊗ L2 (92)25



of vetor bundles over P ×M P suh that the diagram
L1 ⊗ ζ∗

2ζ
∗S

id⊗ζ∗2β

��

ζ∗σ // ζ∗
1ζ

∗S ⊗ L2

ζ∗1β⊗id

��
L1 ⊗ ζ∗

2A α
// ζ∗

1A ⊗ L2

(93)of isomorphisms of vetor bundles over Z×M Z is ommutative. Sine ζ is anequivalene of ategories, the axioms of A imply the ones of the 1-morphism
SA de�ned by the surjetive submersion idP , the vetor bundle S over Pand the isomorphism σ over P [2]. Finally, the triple (Z ×P P, idZ , β) with
Z ∼= Z ×P P de�nes a 2-morphism SA ⇒ A, whose axiom (2M) is (93).(b) We have to show that any morphism β : A ⇒ A′ in Hom(G1,G2)between objets A and A′ in HomFP (G1,G2) is already a morphism in
HomFP (G1,G2). Let (W, ω, βW ) be any representative of β with a surje-tive submersion ω : W → P and an isomorphism βW : ω∗A → ω∗A′ of vetorbundles over W . The restrition of axiom (2M) for the triple (W, ω, βW ) from
W ×M W to W ×P W shows ω∗

1βW = ω∗
2βW . This shows that βW is a mor-phism in the desent ategory Des(ω). Let βP : A → A′ be an isomorphismof vetor bundles over P suh that

ω∗βP = βW (94)Beause ω is an equivalene of ategories, the triple (P, idP , βP ) de�nesa 2-morphism from A to A′ being a morphism in HomFP (G1,G2). Equa-tion (94) shows that the triples (P, idP , βP ) and (W, ω, βW ) are equivalent. �In the remainder of this setion we present two orollaries of Theorem1. First, and most importantly, we make ontat to the notion of a stableisomorphism between bundle gerbes. By de�nition [MS00℄, a stable isomor-phism is a 1-morphism, whose surjetive submersion is the identity idP onthe �bre produt of the surjetive submersions of the two bundle gerbes,and whose vetor bundle over P is a line bundle. From Proposition 3 andTheorem 1 we obtainCorollary 1. There exists a stable isomorphism A : G1 → G2 if and only ifthe bundle gerbes are isomorphi objets in BGrb(M).It is shown in [MS00℄ that the set of stable isomorphism lasses of bundlegerbes over M is a group (in virtue of the monoidal struture) whih isisomorphi to the Deligne ohomology group H2(M,D(2)). This is a veryimportant fat whih onnets the theory of bundle gerbes to other theories26



of gerbes, for instane, to Dixmier-Douady sheaves of groupoids [Bry93℄.Corollary 1 states that although our de�nition of morphisms di�ers from theone of [MS00℄, the bijetion between isomorphism lasses of bundle gerbesand the Deligne ohomology group is persistent.Seond, Theorem 1 admits to use existing lassi�ation results for 1-isomorphisms. Consider the full subgroupoid Aut(G) of Hom(G,G) assoiatedto a bundle gerbe G, whih onsists of all 1-isomorphisms A : G → G, andall (neessarily invertible) 2-morphisms between those. From Theorem 1 andLemma 2 of [SSW05℄ we obtainCorollary 2. The skeleton of the groupoid Aut(G), i.e. the set of isomor-phism lasses of 1-isomorphisms A : G → G is a torsor over the group
Pic0(M) of isomorphism lasses of �at line bundles over M .In 2-dimensional onformal �eld theory, where a bundle gerbe G is onsid-ered to be a part of the bakground �eld, the groupoid Aut(G) may be alledthe groupoid of gauge transformations of G. The above orollary lassi�essuh gauge transformation up to equivalene.3 Some important Examples of MorphismsTo disuss holonomies of bundle gerbes, it is essential to establish an equiva-lene between the morphism ategories between trivial bundle gerbes over Mand vetor bundles of ertain urvature over M . Given two 2-forms ρ1 and ρ2on M , onsider the ategory HomFP (Iρ1 , Iρ2). An objet A : Iρ1 → Iρ2 on-sists of the smooth manifold Z = M with the surjetive submersion ζ = idM ,a vetor bundle A over M and an isomorphism α : A → A. Axiom (1M2)states

1

n
tr(curv(A)) = ρ2 − ρ1 (95)with n the rank of A, and axiom (1M2) redues to α2 = α, whih in turnmeans α = idA. Together with Theorem 1, this de�nes a anonial equiva-lene of ategories

Bun : Hom(Iρ1 , Iρ2) −→ Bunρ2−ρ1(M), (96)where Bunρ(M) is the ategory of vetor bundles A over M whose urva-ture satis�es (95). Its following properties an diretly be dedued from thede�nitions.Proposition 4. The funtor Bun respets the struture of the 2-ategory ofbundle gerbes, namely: 27



a) the omposition of 1-morphisms,
Bun(A2 ◦ A1) = Bun(A1) ⊗ Bun(A2) and Bun(idIρ

) = 1.b) the assignment of inverses to invertible 1-morphisms,
Bun(A−1) = Bun(A)∗.) the monoidal struture,

Bun(A1 ⊗A2) = Bun(A1) ⊗ Bun(A2).d) pullbaks,
Bun(f ∗A) = f ∗Bun(A) and Bun(f ∗β) = f ∗Bun(β).e) the duality

Bun(A∗) = Bun(A) and Bun(β∗) = Bun(β).In the following subsetions we see how the 2-ategorial struture of bun-dle gerbes and the funtor Bun an be used to give natural de�nitions ofsurfae holonomy in several situations.3.1 TrivializationsWe give the following natural de�nition of a trivialization.De�nition 4. A trivialization of a bundle gerbe G is a 1-isomorphism
T : G −→ Iρ.Let us write out the details of suh a 1-isomorphism. By Theorem 1we may assume that the surjetive submersion of T is the identity idP on

P := Y ×M M ∼= Y with projetion π to M . Then, T onsists further of a linebundle T over Y , and of an isomorphism τ : L⊗ π∗
2T → π∗

1T of line bundlesover Y [2]. Axiom (1M2) gives π∗
13τ ◦ (µ ⊗ id) = π∗

12τ ◦ π∗
23τ as an equationof isomorphisms of line bundles over Y [3]. This is exatly the de�nition of atrivialization one �nds in the literature [CJM02℄. Additionally, axiom (1M2)gives curv(T ) = π∗ρ − C. If one spei�es ρ not as a part of the de�nition ofa trivialization, it is uniquely determined by this equation.Trivializations are essential for the de�nition of holonomy around losedoriented surfaes. 28



De�nition 5. Let φ : Σ → M be a smooth map from a losed orientedsurfae Σ to a smooth manifold M , and let G a bundle gerbe over M . Let
T : φ∗G −→ Iρbe any trivialization. The holonomy of G around φ is de�ned as

holG(φ) := exp

(

i

∫

Σ

ρ

)

∈ U(1).In this situation, the funtor Bun is a powerful tool to prove that thisde�nition does not depend on the hoie of the trivialization: if T ′ : φ∗G →
Iρ′ is another trivialization, the omposition T ◦ T ′−1 : Iρ′ → Iρ orrespondsto a line bundle Bun(T ◦T ′−1) over M with urvature ρ−ρ′. In partiular, thedi�erene between any two 2-forms ρ is a losed 2-form with integer periodsand vanishes under the exponentiation in the de�nition of holG(φ).3.2 Bundle Gerbe ModulesFor oriented surfaes with boundary one has to hoose additional strutureon the boundary to obtain a well-de�ned holonomy. This additional strutureis provided by a vetor bundle twisted by the bundle gerbe G [Gaw05℄, alsoknown as a G-module. In our formulation, its de�nition takes the followingform:De�nition 6. Let G be a bundle gerbe over M . A left G-module is a 1-morphism E : G → Iω, and a right G-module is a 1-morphism F : Iω → G.Let us ompare this de�nition with the original de�nition of (left) bundlegerbe modules in [BCM+02]. Assume � again by Theorem 1 � that a left
G-module E : G → Iω has the surjetive submersion idP with P ∼= Y . Then,it onsists of a vetor bundle E over Y and of an isomorphism ǫ : L⊗π∗

2E →
π∗

1E of vetor bundles over Y [2] whih satis�es
π∗

13ǫ ◦ (µ ⊗ id) = π∗
23ǫ ◦ π∗

12ǫ (97)by axiom (1M2). The urvature of E is restrited by axiom (1M2) to
1

n
tr(curv(E)) = π∗ω − C (98)with n the rank of E.The de�nition of bundle gerbe modules as 1-morphisms makes lear thatleft and right G-modules form ategories LMod(G) and RMod(G). This is29



useful for example to see that a 1-isomorphism A : G → G′ de�nes equiva-lenes of ategories
LMod(G) ∼= LMod(G′) and RMod(G) ∼= RMod(G′) (99)and that there are equivalenes between left modules of G and right modulesof G∗ (and vie versa), by taking duals of the respetive 1-morphisms. More-over, for a trivial bundle gerbe Iρ the ategories LMod(Iρ) and RMod(Iρ)beome anonially equivalent to the ategory Bun(M) of vetor bundlesover M via the funtor Bun. We an ombine this result with the equiva-lenes (99) applied to a trivialization T : G → Iρ of a bundle gerbe G over

M . In detail, a left G-module E : G → Iω �rst beomes a left Iρ-module
E ◦ T −1 : Iρ −→ Iω (100)whih in turn de�nes the vetor bundle E := Bun(E ◦ T −1) over M . Thesame applies to right G-modules F : Iω → G whih de�nes a vetor bundle

Ē := Bun(T ◦ F) over M .A D-brane for the bundle gerbe G is a submanifold Q of M together witha left G|Q-module. Here G|Q means the pullbak of G along the inlusion
Q →֒ M .De�nition 7. Let G be a bundle gerbe over M with D-brane (Q, E) andlet φ : Σ → M be a smooth map from a ompat oriented surfae Σ withboundary to M , suh that φ(∂Σ) ⊂ Q. Let

T : φ∗G −→ Iρbe any trivialization of the pullbak bundle gerbe φ∗G and let
E := Bun(φ∗E ◦ T −1) (101)be the assoiated vetor bundle over ∂Σ. The holonomy of G around φ isde�ned as

holG,E(φ) := exp

(

i

∫

Σ

ρ

)

· tr (holE(∂Σ)) ∈ C.The de�nition does not depend on the hoie of the trivialization: foranother trivialization T ′ : φ∗G → Iρ′ and the respetive vetor bundle E ′ :=
Bun(E ◦ T ′−1) we �nd by Proposition 4 a)
E ′ = Bun(E ◦ T ′−1) ∼= Bun(E ◦ T −1 ◦ T ◦ T ′−1) = E ⊗Bun(T ◦ T ′−1). (102)Beause isomorphi vetor bundles have the same holonomies, and the linebundle Bun(T ◦ T ′−1) has urvature ρ − ρ′ we obtain

tr (holE′(∂Σ)) = tr (holE(∂Σ)) · exp

(

i

∫

Σ

ρ − ρ′

) . (103)This shows the independene of the hoie of the trivialization.30



3.3 Jandl StruturesIn this last setion, we use the duality on the 2-ategory BGrb(M) introduedin setion 1.4 to de�ne the holonomy of a bundle gerbe around unoriented,and even unorientable surfaes (without boundary). For this purpose, weexplain the onept of a Jandl struture on a bundle gerbe G, whih has beenintrodued in [SSW05℄, in terms of 1- and 2-isomorphisms of the 2-ategory
BGrb(M).De�nition 8. A Jandl struture J on a bundle gerbe G over M is a olletion
(k,A, ϕ) of an involution k : M → M , i.e. a di�eomorphism with k◦k = idM ,a 1-isomorphism

A : k∗G −→ G∗and a 2-isomorphism
ϕ : k∗A =⇒ A∗whih satis�es the ondition

k∗ϕ = ϕ∗−1.Notie that the existene of the 2-isomorphism ϕ is only possible beause
G∗∗ = G from (72), and that the equation k∗ϕ = ϕ∗−1 only makes sensebeause A∗∗ = A from (79). Let us now disuss the relation between De�-nition 8 and the original de�nition of a Jandl struture from [SSW05℄. Forthis purpose we elaborate the details. We denote the pullbak of the sur-jetive submersion π : Y → M along k by πk : Yk → M ; for simpliity wetake Yk := Y and πk := k ◦ π. Now, we assume by Theorem 1 that the1-isomorphism A onsists of a line bundle A over Yk ×M Y . As smooth man-ifolds, we an identify Yk ×M Y with P := Y [2]; to have an identi�ation assmooth manifolds with surjetive submersions to M , we de�ne the proje-tion p : P → M by p := π ◦ π2. Under this identi�ation, the exhange map
s : Y ×M Yk → Yk ×M Y beomes an involution of P whih lifts k,

P

p

��

s // P

p

��
M

k
// M . (104)The dual 1-isomorphism A∗ has by de�nition the line bundle s∗A over P .Now, similarly as for the pullbak of π : Y → M we denote the pullbak of

p : P → M by pk : Pk → M and hoose Pk := P and pk := k ◦ p. Thisway, the pullbak 1-isomorphism k∗A has the line bundle A over P . Againby Theorem 1, we assume that the 2-isomorphism ϕ an be represented by31



a triple (P, idP , ϕP ) with an isomorphism ϕP : A → s∗A of line bundles over
P satisfying the ompatibility axiom (2M) with the isomorphism α of A:

L ⊗ ζ∗
2A

id⊗ζ∗2ϕP

��

α // ζ∗
1A ⊗ L

ζ∗1ϕP⊗id

��
L ⊗ ζ∗

2s
∗A

s∗α
// ζ∗

1s
∗A ⊗ L

(105)The dual 2-isomorphism ϕ∗ is given by (P, idP , s∗ϕP ), and the equation ϕ =
k∗ϕ∗−1 beomes ϕP = s∗ϕ−1

P . So, ϕP is an s-equivariant struture on A. Thisis exatly the original de�nition [SSW05℄: a stable isomorphism A : k∗G →
G∗, whose line bundle A is equipped with an s-equivariant struture whih isompatible with the isomorphism α of A in the sense of the ommutativityof diagram (105).De�ning a Jandl struture in terms of 1- and 2-morphisms has � justlike for gerbe modules � several advantages. For example, it is easy to seethat Jandl strutures are ompatible with pullbaks along equivariant maps,tensor produts and duals of bundle gerbes. Furthermore, we have an obviousde�nition of morphisms between Jandl strutures, whih indues exatly thenotion of equivalent Jandl strutures we introdued in [SSW05℄.De�nition 9. A morphism β : J → J ′ between Jandl strutures J =
(k,A, ϕ) and J ′ = (k,A′, ϕ′) on the same bundle gerbe G over M with thesame involution k is a 2-morphism

β : A =⇒ A′whih ommutes with ϕ and ϕ′ in the sense that the diagram
A

ϕ +3

β

��

k∗A∗

k∗β∗

��
A′

ϕ′

+3 k∗A′∗of 2-morphisms is ommutative.Sine A is invertible, every morphism of Jandl strutures is invertible.We may thus speak of a groupoid Jdl(G, k) of Jandl strutures on the bundlegerbe G with involution k. The skeleton of this groupoid has been lassi�ed[SSW05℄: it forms a torsor over the group of �at k-equivariant line bundlesover M . The following proposition relates these groupoids of Jandl strutures32



on isomorphi bundle gerbes on the same spae with the same involution.This relation is a new result, oming and bene�ting very muh from the2-ategorial struture of bundle gerbes we have developed.Proposition 5. Any 1-isomorphism B : G → G′ indues an equivalene ofgroupoids
JB : Jdl(G′, k) −→ Jdl(G, k)with the following properties:a) any 2-morphism β : B ⇒ B′ indues a natural equivalene JB

∼= J ′
B.b) there is a natural equivalene JidG

∼= idJdl(G,k).) it respets the omposition of 1-morphisms in the sense that
JB′◦B = JB ◦ JB′.Proof. The funtor JB sends a Jandl struture (k,A, ϕ) on G′ to the triple

(k,A′, ϕ′) with the same involution k, the 1-isomorphism
A′ := B∗ ◦ A ◦ k∗B : k∗G −→ G∗ (106)and the 2-isomorphism
k∗A′ k∗B∗ ◦ k∗A ◦ B

idk∗B∗◦ϕ◦idB

��
k∗B∗ ◦ A∗ ◦ B k∗A′∗

(107)where we use equation (79). The following alulation shows that (k,A′, ϕ′)is a Jandl struture:
k∗ϕ′∗ def

= k∗(idk∗B∗ ◦ ϕ ◦ idB)∗(79)
= idk∗B∗ ◦ k∗ϕ∗ ◦ idB

= idB ◦ ϕ−1 ◦ idB∗def
= ϕ′−1. (108)A morphism β of Jandl strutures on G′ is sent to the morphism

JB(β) := idB∗ ◦ β ◦ idk∗B (109)of the respetive Jandl strutures on G′. The two axioms of the ompositionfuntor ◦ from Lemma 3 show that the omposition of morphisms of Jandl33



strutures is respeted, so that JB is a funtor. It is an equivalene beause
JB−1 is an inverse funtor, where the natural equivalenes JB−1 ◦ JB

∼= id and
JB ◦ JB−1

∼= id use the 2-isomorphisms ir and il from setion 1.3 assoiatedto the inverse 1-morphism B−1.To prove a), let β : B ⇒ B′ be a 2-morphism. We de�ne the naturalequivalene JB
∼= JB′ , whih is a olletion of morphisms βJ : JB(J ) →

JB′(J ) of Jandl strutures on G for any Jandl struture J on G′ by
βJ := β∗ ◦ idA ◦ k∗β. (110)This de�nes indeed a morphism of Jandl strutures and makes the naturalitysquare

JB(J )
βJ //

JB(β)

��

JB′(J )

JB′(β)

��
JB(J ′)

βJ′

// JB′(J ′)

(111)ommutative. The natural equivalene for b) uses the 2-isomorphisms λAand ρA of the 2-ategory BGrb(M) and the fat that id∗
G = idG∗ . Finally, )follows from the de�nition of JB and the fat that the duality funtor ()∗respets the omposition of 1-morphisms, see (79). �It is worthwhile to onsider a Jandl struture J = (k,A, ϕ) over a trivialbundle gerbe Iρ. By de�nition, this is a 1-isomorphism

A : Ik∗ρ −→ I−ρ (112)and a 2-isomorphism ϕ : k∗A ⇒ A∗ satisfying ϕ = k∗ϕ∗−1. Now we applythe funtor Bun and obtain a line bundle R̂ := Bun(A) over M of urvature
−(ρ+k∗ρ) and an isomorphism ϕ̂ := Bun(ϕ) : k∗R̂ → R̂ of line bundles over
M whih satis�es ϕ̂ = k∗ϕ̂−1, summarizing: a k-equivariant line bundle. So,the funtor Bun indues an equivalene of groupoids

Bunk
ρ : Jdl(Iρ, k) −→ LBun

k
−(ρ+k∗ρ)(M) (113)between the groupoid of Jandl strutures on Iρ with involution k and thegroupoid of k-equivariant line bundles over M with urvature −(ρ+k∗ρ). Inpartiular, if G is a bundle gerbe over M and T : G → Iρ a trivialization, weobtain a funtor

Jdl(G, k)
J
T −1 // Jdl(Iρ, k)

Bunk
ρ // LBun

k
−(ρ+k∗ρ)(M) (114)34



onverting a Jandl struture on the bundle gerbe G into a k-equivariant linebundle over M . It beomes obvious that the existene of a Jandl struturewith involution k on the trivial bundle gerbe Iρ onstraints the 2-form ρ: asthe urvature of a line bundle, the 2-form −(ρ + k∗ρ) has to be losed andto have integer periods.Let us now explain how Jandl strutures enter in the de�nition of holon-omy around unoriented surfaes, and how we an take further advantage ofthe 2-ategorial formalism. We have learned before that to inorporate sur-faes with boundary we had to do two steps: we �rst spei�ed additionalstruture, a D-brane of the bundle gerbe G, and then spei�ed whih maps
φ : Σ → M are ompatible with this additional struture: those who sendthe boundary of Σ into the support of the D-brane. To disuss unorientedsurfaes (without boundary), we also do these two steps: the additional stru-ture we hoose here is a Jandl struture J = (k,A, ϕ) on the bundle gerbe
G. To desribe the spae of maps we want to onsider, we have to introduethe following geometri strutures [SSW05℄:

• For any (unoriented) losed surfae Σ there is an oriented two-foldovering pr : Σ̂ → Σ. It is unique up to orientation-preserving dif-feomorphisms and it is onneted if and only if Σ is not orientable.It has a anonial, orientation-reversing involution σ, whih permutesthe sheets and preserves the �bres. We all this two-fold overing theorientation overing of Σ.
• A fundamental domain of Σ in Σ̂ is a submanifold F of Σ̂ with ( possiblyonly pieewise smooth) boundary, suh that

F ∪ σ(F ) = Σ̂ and F ∩ σ(F ) = ∂F . (115)A key observation is that the involution σ restrits to an orientation-preserving involution on ∂F ⊂ Σ̂. Aordingly, the quotient ∂F is anoriented losed 1-dimensional submanifold of Σ.Now, given a losed surfae Σ, we onsider maps φ̂ : Σ̂ → M from theorientation overing Σ̂ to M , whih are equivariant with respet to the twoinvolutions on Σ̂ and M , i.e. the diagram
Σ̂

φ̂ //

σ

��

M

k

��
Σ̂

φ̂

// M35



has to be ommutative.De�nition 10. Let J be a Jandl struture on a bundle gerbe G over M , andlet φ̂ : Σ̂ → M be an equivariant smooth map. For a trivialization
T : φ̂∗G −→ Iρlet R̂ be the σ-equivariant line bundle over Σ̂ determined by the funtor

Bunρ
σ ◦ JT −1 : Jdl(φ̂∗G, σ) −→ LBun

σ
−(ρ+σ∗ρ)(Σ̂) (116)from (114). In turn, R̂ de�nes a line bundle R over Σ. Choose any funda-mental domain F of Σ. Then, the holonomy of G with Jandl struture Jaround φ̂ is de�ned as

holG,J (φ̂) := exp

(

i

∫

F

ρ

)

· holR(∂F ).De�nition 10 is a generalization of De�nition 5 of holonomy around anoriented surfae: for an orientable surfae Σ and any hoie of an orientation,they oinide [SSW05℄. To show that De�nition 10 does not depend onthe hoie of the trivialization T , we ombine all the olleted tools. Let
T ′ : φ̂∗G → Iρ′ be any other trivialization. We onsider the 1-isomorphism

B := T ◦ T ′−1 : Iρ′ −→ Iρ (117)and the orresponding line bundle T := Bun(B). To ompare the two σ-equivariant line bundles R̂ and R̂′ orresponding to the two trivializations,we �rst ompare the Jandl strutures JT −1(J ) on Iρ and JT ′−1(J ) on Iρ′.By Proposition 5 a), b) and ), there exists an isomorphism
JT ′−1(J ) ∼= JB(JT −1(J )) (118)of Jandl strutures on Iρ. By de�nition of the funtor JB, this isomorphismis a 2-isomorphism

A′ ∼= B∗ ◦ A ◦ σ∗B, (119)where A is the 1-morphism of JT −1(J ) and A′ is the 1-morphism of JT ′−1(J ).Now we apply the funtor Bun and obtain an isomorphism
R̂′ ∼= T ⊗ R̂ ⊗ σ∗T (120)of σ-equivariant line bundles over Σ̂, where Q̂ := σ∗T ⊗ T has the anonial

σ-equivariant struture by exhanging the tensor fators. Thus, we haveisomorphi line bundles
R′ ∼= R ⊗ Q (121)36



over Σ. Notie that the holonomy of the line bundle Q is
holQ(∂F ) = holT (∂F ) = exp

(

i

∫

F

ρ − ρ′

) (122)This shows
exp

(

i

∫

F

ρ′

)

· holR′(∂F ) = exp

(

i

∫

F

ρ′

)

· holQ(∂F ) · holR(∂F )

= exp

(

i

∫

F

ρ

)

· holR(∂F ) (123)so that De�nition 10 does not depend on the hoie of the trivialization. In[SSW05℄ we have dedued from the equation curv(R̂) = −(ρ + σ∗ρ) that itis also independent of the hoie of the fundamental domain.Unoriented surfae holonomy, de�ned in terms of Jandl strutures onbundle gerbes, provides a andidate for the Wess-Zumino term in two-dimensional onformal �eld theory for unoriented worldsheets, as they ap-pear in type I string theories. Following the examples of M = SU(2) and
M = SO(3) we give in [SSW05℄, we reprodue results known from other ap-proahes. This indiates, that a bundle gerbe with Jandl struture, togetherwith a metri, is the bakground �eld for unoriented WZW models. In thissetup, Proposition 5 assures, that � just like for oriented WZW models �only the isomorphism lass of the bundle gerbe is relevant.Referenes[BCM+02℄ P. Bouwknegt, A. L. Carey, V. Mathai, M. K. Murray andD. Stevenson, Twisted K-Theory and K-Theory of BundleGerbes, Commun. Math. Phys. 228(1), 17�49 (2002).[Bry93℄ J.-L. Brylinski, Loop spaes, Charateristi Classes and Geo-metri Quantization, volume 107 of Progress in Mathematis,Birkhäuser, 1993.[CJM02℄ A. L. Carey, S. Johnson and M. K. Murray, Holonomy on D-Branes, J. Geom. Phys. 52(2), 186�216 (2002), hep-th/0204199.[FRS02℄ J. Fuhs, I. Runkel and C. Shweigert, TFT Constrution ofRCFT Correlators I: Partition funtions, Nul. Phys. B 646,353�497 (2002), arxiv:hep-th/0204148.37
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