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Abstra
tUsually bundle gerbes are 
onsidered as obje
ts of a 2-groupoid,whose 1-morphisms, 
alled stable isomorphisms, are all invertible. Iintrodu
e new 1-morphisms whi
h in
lude stable isomorphisms, trivi-alizations and bundle gerbe modules. They �t into the stru
ture of a2-
ategory of bundle gerbes, and lead to natural de�nitions of surfa
eholonomy for 
losed surfa
es, surfa
es with boundary, and unoriented
losed surfa
es.
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Introdu
tionFrom several perspe
tives it be
omes 
lear that bundle gerbes are obje
ts ina 2-
ategory: from the bird's-eye view of algebrai
 geometry, where gerbesappear as some kind of sta
k, or in topology, where they appear as onepossible 
ategori�
ation of a line bundle, but also from a worm's-eye view onthe de�nitions of bundle gerbes and their morphisms, whi
h show that therehave to be morphisms between the morphisms.In [Ste00℄ a 2-groupoid is de�ned, whose obje
ts are bundle gerbes, andwhose 1-morphisms are stable isomorphisms. To explain a few details, re
allthat bundle gerbes are de�ned using surje
tive submersions π : Y → M , andthat a stable isomorphism A : G1 → G2 between two bundle gerbes G1 and
G2 with surje
tive submersions π1 : Y1 → M and π2 : Y → M 
onsists of a
ertain line bundle A over the �bre produ
t Y1 ×M Y2. 2-morphisms betweenstable isomorphisms are morphisms β : A → A′ of those line bundles, obeyinga 
ompatibility 
onstraint. Many examples of surje
tive submersions arisefrom open 
overs {Uα}α∈A of M by taking Y to be the disjoint union ofthe open sets Uα and π to be the proje
tion (x, α) 7→ x. From this pointof view, �bre produ
ts Y1 ×M Y2 
orrespond the 
ommon re�nement of twoopen 
overs. So, the line bundle A of a stable isomorphism lives over the
ommon re�nement of the open 
overs of the two bundle gerbes.Di�
ulties with this de�nition of stable isomorphisms arise when twostable isomorphismsA : G1 → G2 and A′ : G2 → G3 are going to be 
omposed:one has to de�ne a line bundle Ã over Y1 ×M Y3 using the line bundles Aover Y1 ×M Y2 and A′ over Y2 ×M Y3. In [Ste00℄ this problem is solved usingdes
ent theory for line bundles.In this note, I present another de�nition of 1-morphisms between bundlegerbes (De�nition 2). Compared to stable isomorphisms, their de�nition isrelaxed in two aspe
ts:1) the line bundle is repla
ed by a 
ertain ve
tor bundle of rank possiblyhigher than 1.2) this ve
tor bundle is de�ned over a smooth manifold Z with surje
tivesubmersion ζ : Z → Y1 ×M Y2. In terms of open 
overs, the ve
torbundle lives over a re�nement of the 
ommon re�nement of the open
overs of the two bundle gerbes.Stable isomorphisms appear as a parti
ular 
ase of this relaxed de�nition. Ialso give a generalized de�nition of 2-morphisms between su
h 1-morphisms(De�nition 3). Two goals are a
hieved by this new type of morphisms betweenbundle gerbes. First, relaxation 1) produ
es many 1-morphisms whi
h are1



not invertible, in 
ontrast to the stable isomorphisms in [Ste00℄. To be morepre
ise, a 1-morphism is invertible if and only if its ve
tor bundle has rank 1(Proposition 3). The non-invertible 1-morphisms provide a new formulationof left and right bundle gerbe modules (De�nition 6). Se
ond, relaxation 1)erases the di�
ulties with the 
omposition of 1-morphisms: the ve
tor bundle
Ã of the 
omposition A′ ◦ A is just de�ned to be the tensor produ
t of theve
tor bundles A and A′ of the two 1-morphisms pulled ba
k to Z ×Y2 Z ′,where A over Z is the ve
tor bundle of A and A′ over Z ′ is the ve
tor bundleof A′. The 
omposition de�ned like that is stri
tly asso
iative (Proposition1). This way we end up with a stri
tly asso
iative 2-
ategory BGrb(M)of bundle gerbes over M . The aim of this note is to show that a goodunderstanding of this 2-
ategory 
an be useful.This note is organized as follows. Se
tion 1 
ontains the de�nitions andproperties of the 2-
ategory BGrb(M) of bundle gerbes over M . We alsoequip this 2-
ategory with a monoidal stru
ture, pullba
ks and a duality.Se
tion 2 relates our new de�nition of 1-morphisms between bundle gerbes tothe one of a stable isomorphism: two bundle gerbes are isomorphi
 obje
ts in
BGrb(M) if and only if they are stably isomorphi
 (Corollary 1). In se
tion3 we present a uni�ed view on important stru
ture related to bundle gerbesin terms of the new morphisms of the 2-
ategory BGrb(M):a) a trivialization of a bundle gerbe G is a 1-isomorphism A : G → Iρfrom G to a trivial bundle gerbe Iρ given by a 2-form ρ on M .b) a bundle gerbe module of a bundle gerbe G is a (not ne
essarily invert-ible) 1-morphism E : G → Iω from G to a trivial bundle gerbe Iω.
) a Jandl stru
ture on a bundle gerbe G over M is a triple (k,A, ϕ) ofan involution k of M , a 1-isomorphism A : k∗G → G∗ and a 
ertain2-morphism ϕ : k∗A ⇒ A∗.Then we demonstrate how this understanding in 
ombination with the prop-erties of the 2-
ategory BGrb(M) 
an be employed to give 
onvenient def-initions of surfa
e holonomy. For this purpose we 
lassify the morphismsbetween trivial bundle gerbes: there is an equivalen
e of 
ategories

Hom(Iρ1 , Iρ2)
∼= Bunρ2−ρ1(M)between the morphism 
ategory between the trivial bundle gerbes Iρ1 and

Iρ2 and the 
ategory of ve
tor bundles over M for whi
h the tra
e of the
urvature gives the 2-form ρ2 − ρ1 times its rank.The interpretation of bundle gerbe modules and Jandl stru
tures in termsof morphisms between bundle gerbes is one step to understand the relation2



between two approa
hes to two-dimensional 
onformal �eld theories: on theone hand the Lagrangian approa
h with a metri
 and a bundle gerbe G beingthe relevant stru
ture [GR02℄ and on the other hand the algebrai
 approa
hin whi
h a spe
ial symmetri
 Frobenius algebra obje
t A in a modular ten-sor 
ategory C plays this role [FRS02℄. Similarly as bundle gerbes, spe
ialsymmetri
 Frobenius algebra obje
ts in C form a 2-
ategory, 
alled FrobC.In both approa
hes it is well-known how boundary 
onditions have to beimposed. In the Lagrangian approa
h one 
hooses a D-brane: a submanifold
Q of the target spa
e together with a bundle gerbe module for the bundlegerbe G restri
ted to Q [Gaw05℄. In the algebrai
 approa
h one 
hooses a1-morphism from A to the tensor unit I of C (whi
h is trivially a spe
ialsymmetri
 Frobenius algebra obje
t) in the 2-
ategory FrobC [SFR06℄. Nowthat we understand a gerbe module as a 1-morphism from G to Iω we havefound a 
ommon prin
iple in both approa
hes. A similar su

ess is made forunoriented 
onformal �eld theories. In the Lagrangian approa
h, the bun-dle gerbe G has to be endowed with a Jandl stru
ture [SSW05℄, whi
h is inparti
ular a 1-isomorphism k∗G → G∗ to the dual bundle gerbe G∗. In thealgebrai
 approa
h one has to 
hoose a 
ertain algebra isomorphism A → Aopfrom A to the opposed algebra [FRS04℄.A
knowledgements. I would like to thank Christoph S
hweigert for hisadvi
e and en
ouragement, and Urs S
hreiber for the many helpful dis
us-sions on 2-
ategories.Conventions. Let us �x the following 
onventions for the whole arti
le:by ve
tor bundle I refer to a 
omplex ve
tor bundle of �nite rank, equippedwith a hermitian stru
ture and with a 
onne
tion respe
ting this hermitianstru
ture. A

ordingly, a morphism of ve
tor bundles is supposed to respe
tboth the hermitian stru
tures and the 
onne
tions. In parti
ular, a linebundle is a ve
tor bundle in the above sense of rank one. The symmetri
monoidal 
ategory Bun(M), whi
h is formed by all ve
tor bundles over asmooth manifold M and their morphisms in the above sense, is for simpli
ityta
itly repla
ed by an equivalent stri
t tensor 
ategory.1 The 2-Category of Bundle GerbesSummarizing, the 2-
ategory BGrb(M) of bundle gerbes over a smooth man-ifold M 
onsists of the following stru
ture:1. A 
lass of obje
ts � bundle gerbes over M .3



2. A morphism 
ategory Hom(G,H) for ea
h pair G, H of bundle gerbes,whose obje
ts are 
alled 1-morphisms and are denoted by A : G → H,and whose morphisms are 
alled 2-morphisms and are denoted β :
A1 ⇒ A2.3. A 
omposition fun
tor

◦ : Hom(H,K) × Hom(G,H) −→ Hom(G,K)for ea
h triple G,H,K of bundle gerbes.4. An identity 1-morphism idG : G → G for ea
h bundle gerbe G togetherwith natural 2-isomorphisms
ρA : idH ◦ A =⇒ A and λA : A ◦ idG =⇒ Aasso
iated to every 1-morphism A : G → H.This stru
ture satis�es the axioms of a stri
tly asso
iative 2-
ategory:(2C1) For three 1-morphisms A : G1 → G2, A′ : G2 → G3 and A′′ : G3 → G4,the 
omposition fun
tor satis�es

A′′ ◦ (A′ ◦ A) = (A′′ ◦ A′) ◦ A.(2C2) For 1-morphisms A : G1 → G2 and A′ : G2 → G3, the 2-isomorphisms
λA and ρA satisfy the equality

idA′ ◦ ρA = λA′ ◦ idAas 2-morphisms from A′ ◦ idG2 ◦ A to A′ ◦ A.The following two subse
tions 
ontain the de�nitions of the stru
ture ofthe 2-
ategory BGrb(M). The two axioms are proved in Propositions 1 and2. The reader who is not interested in these details may dire
tly 
ontinuewith se
tion 3.1.1 Obje
ts and MorphismsThe de�nition of the obje
ts of the 2-
ategory BGrb(M) � the bundle gerbesover M � is the usual one, just like, for instan
e, in [Mur96, Ste00, GR02℄.Given a surje
tive submersion π : Y → M we use the notation Y [k] :=
Y ×M ...×M Y for the k-fold �bre produ
t, whi
h is again a smooth manifold.Here we 
onsider �bre produ
ts to be stri
tly asso
iative for simpli
ity. Forthe 
anoni
al proje
tions between �bre produ
ts we use the notation πi1...ik :
Y [n] → Y [k]. 4



De�nition 1. A bundle gerbe G over a smooth manifold M 
onsists of thefollowing stru
ture:1. a surje
tive submersion π : Y → M ,2. a line bundle L over Y [2],3. a 2-form C ∈ Ω2(Y ), and4. an isomorphism
µ : π∗

12L ⊗ π∗
23L −→ π∗

13Lof line bundles over Y [3].This stru
ture has to satisfy two axioms:(G1) The 
urvature of L is �xed by
curv(L) = π∗

2C − π∗
1C.(G2) µ is asso
iative in the sense that the diagram

π∗
12L ⊗ π∗

23L ⊗ π∗
34L

π∗
123µ⊗id

//

id⊗π∗
234µ

��

π∗
13L ⊗ π∗

34L

π∗
134µ

��
π∗

12L ⊗ π∗
24L π∗

124µ
// π∗

14Lof isomorphisms of line bundles over Y [4] is 
ommutative.To give an example of a bundle gerbe, we introdu
e trivial bundle gerbes.Just as for every 1-form A ∈ Ω1(M) there is the (topologi
ally) trivial linebundle over M having this 1-form as its 
onne
tion 1-form, we �nd a trivialbundle gerbe for every 2-form ρ ∈ Ω2(M). Its surje
tive submersion is theidentity id : M → M , and its 2-form is ρ. Its line bundle over M ×M M ∼= Mis the trivial line bundle with the trivial 
onne
tion, and its isomorphism isthe identity isomorphism between trivial line bundles. Now, axiom (G1) issatis�ed sin
e curv(L) = 0 and π1 = π2 = idM . The asso
iativity axiom(G2) is surely satis�ed by the identity isomorphism. Thus we have de�ned abundle gerbe, whi
h we denote by Iρ.It should not be unmentioned that the geometri
 nature of bundle gerbesallows expli
it 
onstru
tions of all (bi-invariant) bundle gerbes over all 
om-pa
t, 
onne
ted and simple Lie groups [GR02, Mei02, GR03℄. It be
omes in5



parti
ular essential that a surje
tive submersion π : Y → M is more generalthan an open 
over of M .An important 
onsequen
e of the existen
e of the isomorphism µ in thestru
ture of a bundle gerbe G is that the line bundle L restri
ted to the imageof the diagonal embedding ∆ : Y → Y [2] is 
anoni
ally trivializable (as a linebundle with 
onne
tion):Lemma 1. There is a 
anoni
al isomorphism tµ : ∆∗L → 1 of line bundlesover Y , whi
h satis�es
π∗

1tµ ⊗ id = ∆∗
112µ and id ⊗ π∗

2tµ = ∆∗
122µas isomorphisms of line bundles over Y [2], where ∆112 : Y [2] → Y [3] dupli
atesthe �rst and ∆122 : Y [2] → Y [3] dupli
ates the se
ond fa
tor.Proof. The isomorphism tµ is de�ned using the 
anoni
al pairing withthe dual line bundle L∗ (whi
h is stri
t by 
onvention) and the isomorphism

µ:
∆∗L = ∆∗L ⊗ ∆∗L ⊗ ∆∗L∗ ∆∗µ⊗id // ∆∗L ⊗ ∆∗L∗ = 1 (1)The two 
laimed equations follow from the asso
iativity axiom (G2) bypullba
k of the diagram along ∆1222 and ∆1112 respe
tively. �Now we de�ne the 
ategory Hom(G1,G2) for two bundle gerbes G1 and G2,to whose stru
ture we refer by the same letters as in De�nition 1 but withindi
es 1 or 2 respe
tively.De�nition 2. A 1-morphism A : G1 → G2 
onsists of the following stru
ture:1. a surje
tive submersion ζ : Z → Y1 ×M Y2,2. a ve
tor bundle A over Z, and3. an isomorphism

α : L1 ⊗ ζ∗
2A −→ ζ∗

1A ⊗ L2 (2)of ve
tor bundles over Z ×M Z.This stru
ture has to satisfy two axioms:(1M1) The 
urvature of A obeys
1

n
tr(curv(A)) = C2 − C1,where n is the rank of the ve
tor bundle A.6



(1M2) The isomorphism α is 
ompatible with the isomorphisms µ1 and µ2of the gerbes G1 and G2 in the sense that the diagram
ζ∗
12L1 ⊗ ζ∗

23L1 ⊗ ζ∗
3A

µ1⊗id //

id⊗ζ∗23α

��

ζ∗
13L1 ⊗ ζ∗

3A

ζ∗13α

��

ζ∗
12L1 ⊗ ζ∗

2A ⊗ ζ∗
23L2

ζ∗12α⊗id

��
ζ∗
1A ⊗ ζ∗

12L2 ⊗ ζ∗
23L2

id⊗µ2

// ζ∗
1A ⊗ ζ∗

13L2of isomorphisms of ve
tor bundles over Z×M Z×M Z is 
ommutative.Here we work with the following simplifying notation: we have not intro-du
ed notation for the 
anoni
al proje
tions Z → Y1 and Z → Y2, a

ord-ingly we don't write pullba
ks with these maps. So in (2), where the linebundles Li are pulled ba
k along the indu
ed map Z [2] → Y
[2]
i for i = 1, 2and also in axiom (1M1) whi
h is an equation of 2-forms on Z.As an example of a 1-morphism, we de�ne the identity 1-morphism

idG : G −→ G (3)of a bundle gerbe G over M . It is de�ned by Z := Y [2], the identity ζ := idZ ,the line bundle L of G over Z and the isomorphism λ de�ned by
π∗

13L ⊗ π∗
34L

π∗
134µ

// π∗
14L

π∗
124µ−1

// π∗
12L ⊗ π∗

24L, (4)where we identi�ed Z [2] = Y [4], ζ2 = π34 and ζ1 = π12. Axiom (1M1) is thesame as axiom (G1) for the bundle gerbe G and axiom (1M2) follows fromaxiom (G2).The following lemma introdu
es an important isomorphism of ve
tor bun-dles asso
iated to every 1-morphism, whi
h will be used frequently in thede�nition of the stru
ture of BGrb(M) and also in se
tion 2.Lemma 2. For any 1-morphism A : G1 → G2 there is a 
anoni
al isomor-phism
dA : ζ∗

1A −→ ζ∗
2Aof ve
tor bundles over Z [2] = Z×P Z, where P := Y1×M Y2, with the followingproperties: 7



a) It satis�es the 
o
y
le 
ondition
ζ∗
13dA = ζ∗

23dA ◦ ζ∗
12dAas an equation of isomorphisms of ve
tor bundles over Z [3].b) The diagram

L1 ⊗ ζ∗
3A

id⊗ζ∗34dA

��

ζ∗13α
// ζ∗

1A ⊗ L2

ζ∗12dA⊗id

��
L1 ⊗ ζ∗

4A ζ∗24α
// ζ∗

2A ⊗ L2of isomorphisms of ve
tor bundles over Z [2] ×M Z [2] is 
ommutative.Proof. Noti
e that the isomorphism α of A restri
ted from Z ×M Z to
Z ×P Z gives an isomorphism

α|Z×P Z : ∆∗L1 ⊗ ζ∗
2A −→ ζ∗

1A ⊗ ∆∗L2. (5)By 
omposition with the isomorphisms tµ1 and tµ2 from Lemma 1 we obtainthe isomorphism dA:
ζ∗
1A

id⊗t−1
µ2 // ζ∗

1A ⊗ ∆∗L2

α|−1
Z×P Z

// ∆∗L1 ⊗ ζ∗
2A

tµ1⊗id
// ζ∗

2A. (6)The 
o
y
le 
ondition a) and the 
ommutative diagram b) follow both fromaxiom (1M2) for A and the properties of the isomorphisms tµ1 and tµ2 fromLemma 1. �Now that we have de�ned the obje
ts of Hom(G1,G2), we 
ome to itsmorphisms. For two 1-morphisms A1 : G1 → G2 and A2 : G1 → G2, 
onsidertriples
(W, ω, βW ) (7)
onsisting of a smooth manifold W , a surje
tive submersion ω : W → Z1 ×P

Z2, where again P := Y1 ×M Y2, and a morphism βW : A1 → A2 of ve
torbundles over W . Here we work again with the 
onvention that we don't writepullba
ks along the unlabelled 
anoni
al proje
tions W → Z1 and W → Z2.The triples (7) have to satisfy one axiom (2M): the isomorphism βW has tobe 
ompatible with isomorphism α1 and α2 of the 1-morphisms A1 and A28



in the sense that the diagram
L1 ⊗ ω∗

2A1
α1 //

1⊗ω∗
2βW

��

ω∗
1A1 ⊗ L2

ω∗
1βW⊗1

��
L1 ⊗ ω∗

2A2 α2
// ω∗

1A2 ⊗ L2

(8)of morphisms of ve
tor bundles over W ×M W is 
ommutative. On the set ofall triples (7) satisfying this axiom we de�ne an equivalen
e relation a

ordingto that two triples (W, ω, βW ) and (W ′, ω′, βW ′) are equivalent, if there existsa smooth manifold X with surje
tive submersions to W and W ′ for whi
hthe diagram
X

~~~~
~~

~~
~

  A
AA

AA
AA

W
ω

��@
@@

@@
@@

W ′

ω′

~~}}
}}

}}
}

Z1 ×P Z2

(9)of surje
tive submersions is 
ommutative, and the morphisms βW and βW ′
oin
ide when pulled ba
k to X.De�nition 3. A 2-morphism β : A1 ⇒ A2 is an equivalen
e 
lass of triples
(W, ω, βW ) satisfying axiom (2M).As an example of a 2-morphism we de�ne the identity 2-morphism idA :
A ⇒ A asso
iated to every 1-morphism A : G1 → G2. It is de�ned as theequivalen
e 
lass of the triple (Z [2], idZ[2], dA) 
onsisting of the �bre produ
t
Z [2] = Z ×P Z, the identity idZ[2] and the isomorphism dA : ζ∗

1A → ζ∗
2A ofve
tor bundles over Z [2] from Lemma 2. Axiom (2M) for this triple is provenwith Lemma 2 b).Now we have de�ned obje
ts and morphisms of the morphism 
ategory

Hom(G1,G2), and we 
ontinue with the de�nition the 
omposition β ′ • β oftwo 2-morphisms β : A1 ⇒ A2 and β ′ : A2 ⇒ A3. It is 
alled verti
al
omposition in agreement with the diagrammati
al notation
G1

A1

��A2 //

A3

CCG2

β

��

β′

��

. (10)
9



We 
hoose representatives (W, ω, βW ) and (W ′, ω′, βW ′) and 
onsider the �breprodu
t W̃ := W ×Z2 W ′ with its 
anoni
al surje
tive submersion ω̃ : W̃ →
Z1 ×P Z3, where again P := Y1 ×M Y2. By 
onstru
tion we 
an 
ompose thepullba
ks of the morphisms βW and βW ′ to W̃ and obtain a morphism

βW ′ ◦ βW : A1 −→ A3 (11)of ve
tor bundles over W̃ . From axiom (2M) for β and β ′ the one for thetriple (W̃ , ω̃, βW ′ ◦ βW ) follows. Furthermore, the equivalen
e 
lass of thistriple is independent of the 
hoi
es of the representatives of β and β ′and thusde�nes the 2-morphism β ′•β. The 
omposition • of the 
ategory Hom(G1,G2)de�ned like this is asso
iative.It remains to 
he
k that the 2-isomorphism idA : A ⇒ A de�ned above isthe identity under the 
omposition •. Let β : A ⇒ A′ be a 2-morphism and
(W, ω, βW ) a representative. The 
omposite β• idA 
an be represented by thetriple (W ′, ω′, β ◦ dA) with W ′ = Z ×P W , where ω′ : W ′ → Z ×P Z ′ is theidentity on the �rst fa
tor and the proje
tion W → Z ′ on the se
ond one.We have to show, that this triple is equivalent to the original representative
(W, ω, βW ) of β. Consider the �bre produ
t

X := W ×(Z×P Z′) W ′ ∼= W ×Z′ W , (12)so that 
ondition (9) is satis�ed. The restri
tion of the 
ommutative diagram(8) of morphisms of ve
tor bundles over W ×M W from axiom (2M) for β to
X gives rise to the 
ommutative diagram

ζ∗
2A

d−1
A //

ω∗
2βW

��

ζ∗
1A

ω∗
1βW

��
A′

∆∗d−1
A′

// A′

(13)of morphisms of ve
tor bundles over X, where dA and dA′ are the isomor-phisms determined by the 1-morphisms A and A′ a

ording to Lemma 2.Their 
o
y
le 
ondition from Lemma 2 a) implies∆∗dA′ = id, so that diagram(13) is redu
ed to the equality ω∗
2βW ◦ dA = ω∗

1βW of isomorphisms of ve
torbundles over X. This shows that the triples (W, ω, βW ) and (W ′, ω′, βW ◦dA)are equivalent and we have β • idA = β. The equality idA′ • β = β followsanalogously.Now the de�nition of the morphism 
ategory Hom(G1,G2) is 
omplete. Amorphism in this 
ategory, i.e. a 2-morphism β : A ⇒ A′, is invertible ifand only if the morphism βW : A → A′ of any representative (W, ω, βW ) of β10



is invertible. Sin
e � following our 
onvention � morphism of ve
tor bundlesrespe
t the hermitian stru
tures, βW is invertible if and only if the ranks ofthe ve
tor bundles of the 1-morphisms A and A′ 
oin
ide. In the following,we 
all two 1-morphisms A : G1 → G2 and A′ : G1 → G2 isomorphi
, if thereexists a 2-isomorphism β : A ⇒ A′ between them.1.2 The Composition Fun
torLet G1, G2 and G3 be three bundles gerbes over M . We de�ne the 
ompositionfun
tor
◦ : Hom(G2,G3) × Hom(G1,G2) −→ Hom(G1,G3) (14)on obje
ts in the following way. Let A : G1 → G2 and A′ : G2 → G3 be two1-morphisms. The 
omposed 1-morphism

A′ ◦ A : G1 −→ G3 (15)
onsists of the �bre produ
t Z̃ := Z ×Y2 Z ′ with its 
anoni
al surje
tivesubmersion ζ̃ : Z̃ → Y1 ×M Y3, the ve
tor bundle Ã := A ⊗ A′ over Z̃, andthe isomorphism
α̃ := (idζ∗1A ⊗ α′) ◦ (α ⊗ idζ′∗2 A′) (16)of ve
tor bundles over Z̃ ×M Z̃.Indeed, this de�nes a 1-morphism from G1 to G3. Re
all that if ∇A and

∇A′ denote the 
onne
tions on the ve
tor bundles A and A′, the tensor prod-u
t 
onne
tion ∇ on A ⊗ A′ is de�ned by
∇(σ ⊗ σ′) = ∇A(σ) ⊗ σ′ + σ ⊗∇A′(σ′) (17)for se
tions σ ∈ Γ(A) and σ′ ∈ Γ(A′). If we take n to be the rank of A and

n′ the rank of A′ the 
urvature of the tensor produ
t ve
tor bundle is
curv(A ⊗ A′) = curv(A) ⊗ idn′ + idn ⊗ curv(A′). (18)Hen
e its tra
e
1

nn′
tr(curv(Ã)) =

1

n
tr(curv(A)) +

1

n′
tr(curv(A′))

= C2 − C1 + C3 − C2

= C3 − C1 (19)satis�es axiom (1M1). Noti
e that equation (19) involves unlabeled proje
-tions from Z̃ to Y1, Y2 and Y3, where the one to Y2 is unique be
ause Z̃ is11



the �bre produ
t over Y2. Furthermore, α̃ is an isomorphism
L1 ⊗ ζ̃∗

2 Ã L1 ⊗ ζ∗
2A ⊗ ζ ′∗

2 A′

α⊗id

��
ζ∗
1A ⊗ L2 ⊗ ζ ′∗

2 A′

id⊗α′

��
ζ∗
1A ⊗ ζ ′∗

1 A′ ⊗ L3 ζ̃∗
1 Ã ⊗ L3. (20)

Axiom (1M2) follows from axioms (1M2) for A and A′.Proposition 1. The 
omposition of 1-morphisms is stri
tly asso
iative: forthree 1-morphisms A : G1 → G2, A′ : G2 → G3 and A′′ : G3 → G4 we have
(A′′ ◦ A′) ◦ A = A′′ ◦ (A′ ◦ A).Proof. By de�nition, both 1-morphism (A′′ ◦ A′) ◦ A and A′′ ◦ (A′ ◦ A)
onsist of the smooth manifold X = Z×Y2 Z ′×Y3 Z ′′ with the same surje
tivesubmersion X → Y1 ×M Y4. On X, they have the same ve
tor bundle A ⊗

A′ ⊗ A′′, and �nally the same isomorphism
(id ⊗ id ⊗ α′′) ◦ (id ⊗ α′ ⊗ id) ◦ (α ⊗ id ⊗ id) (21)of ve
tor bundles over X ×M X. �Now we have to de�ne the fun
tor ◦ on 2-morphisms. Let A1,A

′
1 : G1 →

G2 andA2,A
′
2 : G2 → G3 be 1-morphisms between bundle gerbes. The fun
tor

◦ on morphisms is 
alled horizontal 
omposition due to the diagrammati
alnotation
G1

A1

##

A′
1

;;
β1

��

G2

A2

##

A′
2

;;
β2

��

G3 = G1

A2◦A1

%%

A′
2◦A

′
1

99β2◦β1

��

G3 . (22)Re
all that the 
ompositions A2◦A1 and A′
2◦A

′
1 
onsist of smooth manifolds

Z̃ = Z1 ×Y2 Z2 and Z̃ ′ = Z ′
1 ×Y2 Z ′

2 with surje
tive submersions to P :=
Y1 ×M Y3, of ve
tor bundles Ã := A1 ⊗A2 over Z̃ and Ã′ := A′

1 ⊗A′
2 over Z̃ ′,and of isomorphisms α̃ and α̃′ over Z̃ ×M Z̃ and Z̃ ′ ×M Z̃ ′.To de�ne the 
omposed 2-morphism β2 ◦ β1, we �rst need a surje
tivesubmersion

ω : W −→ Z̃ ×P Z̃ ′. (23)12



We 
hoose representatives (W1, ω1, βW1) and (W2, ω2, βW2) of the 2-morphisms β1 and β2 and de�ne
W := Z̃ ×P (W1 ×Y2 W2) ×P Z̃ ′ (24)with the surje
tive submersion ω := z̃ × z̃′ proje
ting on the �rst and thelast fa
tor. Then, we need a morphism βW : z̃∗Ã → z̃′∗Ã′ of ve
tor bundlesover W . Noti
e that we have maps

u : W1 ×Y2 W2 −→ Z̃ and u′ : W1 ×Y2 W2 −→ Z̃ ′ (25)su
h that we obtain surje
tive submersions
z̃ × u : W −→ Z̃ [2] and u′ × z̃′ : W −→ Z̃ ′[2]. (26)Re
all from Lemma 2 that the 1-morphisms A2 ◦ A1 and A′

2 ◦ A′
1 de�neisomorphisms dA2◦A1 and dA′

2◦A
′
1
of ve
tor bundles over Z̃ [2] and Z̃ ′[2], whosepullba
ks to W along the above maps are isomorphisms

dA2◦A1 : z̃∗Ã −→ u∗Ã and dA′
2◦A

′
1

: u′∗Ã′ −→ z̃′∗Ã′ (27)of ve
tor bundles over W . Finally, the morphisms βW1 and βW2 give a mor-phism
β̃ := βW1 ⊗ βW2 : u∗Ã −→ u′∗Ã′ (28)of ve
tor bundles over W so that the 
omposition

βW := dA′
2◦A

′
1
◦ β̃ ◦ dA2◦A1 (29)is a well-de�ned morphism of ve
tor bundles over W . Axiom (2M) for thetriple (W, ω, βW ) follows from Lemma 2 b) for A2 ◦A1 and A′

2 ◦A
′
1 and fromthe axioms (2M) for the representatives of β1 and β2. Furthermore, the equiv-alen
e 
lass of (W, ω, βW ) is independent of the 
hoi
es of the representativesof β1 and β2.Lemma 3. The assignment ◦, de�ned above on obje
ts and morphisms, is afun
tor

◦ : Hom(G2,G3) × Hom(G1,G2) −→ Hom(G1,G3).Proof. i) The assignment ◦ respe
ts identities, i.e. for 1-morphisms A1 :
G1 → G2 and A2 : G2 → G3,

idA2 ◦ idA1 = idA2◦A1 . (30)13



To show this we 
hoose the de�ning representatives (W1, id, dα1) of idA1 and
(W2, id, dα2) of idA2 , where W1 = Z1 ×(Y1×MY2) Z1 and W2 = Z2 ×(Y2×M Y3) Z2.Consider the di�eomorphism

f : W1 ×Y2 W2 → Z̃ ×Y1×MY2×M Y3 Z̃ : (z1, z
′
1, z2, z

′
2) 7→ (z1, z2, z

′
1, z

′
2), (31)where Z̃ = Z1×Y2 Z2. From the de�nitions of the isomorphisms dA1 , dA2 and

dA2◦A2 we 
on
lude the equation
dA1 ⊗ dA2 = f ∗dA2◦A1 (32)of isomorphisms of ve
tor bundles over W1 ×Y2 W2. The horizontal 
ompo-sition idA2 ◦ idA1 is 
anoni
ally represented by the triple (W, ω, βW ) where

W is de�ned in (24) and βW is de�ned in (29). Now, the di�eomorphism fextends to an embedding f : W → Z̃ [4] into the four-fold �bre produ
t of Z̃over P = Y1 ×M Y3, su
h that ω : W → Z̃ [2] fa
torizes over f ,
ω = ζ̃14 ◦ f . (33)From (29) and (32) we obtain

βW = dA2◦A1 ◦ (dA1 ⊗ dA2) ◦ dA2◦A1

= f ∗(ζ̃∗
34dA2◦A1 ◦ ζ̃∗

23dA2◦A1 ◦ ζ̃∗
12dA2◦A1). (34)The 
o
y
le 
ondition for dA2◦A1 from Lemma 2 a) and (33) give

βW = f ∗ζ̃∗
14dA2◦A1 = ω∗dA2◦A1 . (35)We had to show that the triple (W, ω, βW ) whi
h represents idA2 ◦ idA2is equivalent to the triple (Z̃ [2], id, dA2◦A1) whi
h de�nes the identity 2-morphism idA2◦A1 . For the 
hoi
e X := W with surje
tive submersions

id : X → W and ω : X → Z̃ [2], equation (35) shows exa
tly this equivalen
e.ii) The assignment ◦ respe
ts the 
omposition •, i.e. for 2-morphisms
βi : Ai ⇒ A′

i and β ′
i : A′

i ⇒ A′′
i between 1-morphisms Ai, A′

i and A′′
i from Gito Gi+1, everything for i = 1, 2, we have an equality

(β ′
2 • β2) ◦ (β ′

1 • β1) = (β ′
2 ◦ β ′

1) • (β2 ◦ β1) (36)of 2-morphisms from A2 ◦ A1 to A′′
2 ◦ A′′

1. This equality is also known asthe 
ompatibility of verti
al and horizontal 
ompositions. To prove it, let usintrodu
e the notation Z̃ := Z1 ×Y2 Z2, and analogously Z̃ ′ and Z̃ ′′, further-more we write P := Y1 ×M Y3. Noti
e that the 2-morphism on the left handside of (36) is represented by a triple (V, ν, βV ) with
V = Z̃ ×P (W̃1 ×Y2 W̃2) ×P Z̃ ′′, (37)14



where the �bre produ
ts W̃i := Wi×Z′
i
W ′

i arise from the verti
al 
ompositions
β ′

i • βi. The surje
tive submersion ν : V → Z̃ ×P Z̃ ′′ is the proje
tion on the�rst and the last fa
tor, and
βV = dA′′

2◦A
′′
1
◦ ((β ′

1 ◦ β1) ⊗ (β ′
2 ◦ β2)) ◦ dA2◦A1 (38)is a morphism of ve
tor bundles over V . The 2-morphism on the right handside of (36) is represented by the triple (V ′, ν ′, βV ′) with

V ′ = (Z̃ ×P (W1 ×Y2 W2) ×P Z̃ ′) ×Z̃′ (Z̃ ′ ×P (W ′
1 ×Y2 W ′

2) ×P Z̃ ′′)
∼= Z̃ ×P (W1 ×Y2 W2) ×P Z̃ ′ ×P (W ′

1 ×Y2 W ′
2) ×P Z̃ ′′, (39)where ν ′ is again the proje
tion on the outer fa
tors, and

βV ′ = dA′′
2◦A

′′
1
◦ (β ′

1 ⊗ β ′
2) ◦ dA′

2◦A
′
1
◦ (β1 ⊗ β2) ◦ dA2◦A1 , (40)where we have used the 
o
y
le 
ondition for dA′

2◦A
′
1
from Lemma 2 b).We have to show that the triples (V, ν, βV ) and (V ′, ν ′, βV ′) are equivalent.Consider the �bre produ
t

X := V ×Z̃×P Z̃′′ V ′ (41)with surje
tive submersions v : X → V and v′ : X → V ′. To show theequivalen
e of the two triples, we have to prove the equality
v∗βV = v′∗βV ′ . (42)It is equivalent to the 
ommutativity of the outer shape of the followingdiagram of isomorphisms of ve
tor bundles over X:

A1 ⊗ A2
dA2◦A1

uullllllll dA2◦A1

))RRRRRRRR

v∗(A1 ⊗ A2) dA2◦A1
//

β1⊗β2

��

v′∗(A1 ⊗ A2)

β1⊗β2��
v′∗(A′

1 ⊗ A′
2)

d
A′

2
◦A′

1

��

v∗(A′
1 ⊗ A′

2)

β′
1⊗β′

2

��

dA′
2
◦A′

1fffffff

22fffffff

d
A′

2
◦A′

1

XXXXXXX

,,XXXXXXX

v′∗(A′
1 ⊗ A′

2)
β′
1⊗β′

2��
v∗(A′′

1 ⊗ A′′
2)

d
A′′

2
◦A′′

1
//

d
A′′

2
◦A′′

1
((RRRRRRRR

v′∗(A′′
1 ⊗ A′′

2)

d
A′′

2
◦A′′

1
uullllllll

A′′
1 ⊗ A′′

2

(43)
15



The 
ommutativity of the outer shape of this diagram follows from the
ommutativity of its �ve subdiagrams: the triangular ones are 
ommutativedue to the 
o
y
le 
ondition from Lemma 2 a), and the 
ommutativity ofthe foursquare ones follows from axiom (2M) of the 2-morphisms. �To �nish the de�nition of the 2-
ategory BGrb(M) we have to de�ne thenatural 2-isomorphisms λA : A ◦ idG ⇒ A and ρA : idG′ ◦ A ⇒ A for a given1-morphism A : G → G′, and we have to show that they satisfy axiom (2C2).We de�ne the 1-morphism A ◦ idG as follows: it has the 
anoni
al surje
tivesubmersion from Z̃ = Y [2] ×Y Z ∼= Y ×M Z to P := Y ×M Y ′ and the ve
torbundle L ⊗ A over Z̃. Consider
W := Z̃ ×P Z ∼= Z ×Y ′ Z (44)and the identity ω := idW . Under this identi�
ation, let us 
onsider therestri
tion of the isomorphism α of the 1-morphism A from Z ×M Z to

W = Z ×Y ′ Z. If s : W → W denotes the ex
hange of the two fa
tors,we obtain an isomorphism
s∗α|W : L ⊗ ζ∗

1A −→ ζ∗
2A ⊗ ∆∗L′ (45)of ve
tor bundles over W . By 
omposition with the 
anoni
al trivializationof the line bundle ∆∗L′ from Lemma 1 it gives an isomorphism

λW := (id ⊗ tµ′) ◦ s∗α|W : L ⊗ ζ∗
1A −→ ζ∗

2A (46)of ve
tor bundles over W . The axiom (2M) for the triple (W, ω, λW ) followsfrom axiom (1M2) for the 1-morphism A and from the properties of tµ′ fromLemma 1. So, λA is de�ned to be the equivalen
e 
lass of this triple. Thede�nition of ρA goes analogously: we take W = Z ×Y Z and obtain byrestri
tion the isomorphism
α|W : ∆∗L ⊗ ζ∗

2A −→ ζ∗
1A ⊗ L′. (47)Then, the 2-isomorphism ρA is de�ned by the triple (W, ω, ρW ) with theisomorphism

ρW := (tµ ⊗ id) ◦ α|−1
W : ζ∗

1A ⊗ L′ −→ ζ∗
2A (48)of ve
tor bundles over W . 16



Lemma 4. The 2 -isomorphisms λA and ρA are natural in A, i.e. for any2-morphism β : A ⇒ A′ the naturality squares
idG′ ◦ A

idid
G′

◦β

��

ρA +3 A

β

��
idG′ ◦ A′

ρA′

+3 A′

and A ◦ idG

β◦ididG

��

λA +3 A

β

��
A′ ◦ idG

λA′

+3 A′are 
ommutative.Proof. To 
al
ulate for instan
e the horizontal 
omposition ididG′ ◦β in thediagram on the left hand side �rst note that ididG′ is 
anoni
ally representedby the triple (Y ′[2], id, idL). The isomorphism
didG′◦A : ζ̃∗

1(A ⊗ L′) → ζ̃∗
2(A ⊗ L′), (49)whi
h appears in the de�nition of the horizontal 
omposition, is an isomor-phism of ve
tor bundles over Z̃×Y ×M Y ′ Z̃, where ζ̃ : Z̃ := Z×M Y ′ → Y ×M Y ′is the surje
tive submersion of the 
omposite idG′ ◦ A. Here it simpli�es to

didG′◦A = (tµ ⊗ id ⊗ id) ◦ (α−1 ⊗ id) ◦ (1 ⊗ ζ̃∗
1µ

′−1). (50)With these simpli�
ations and with axiom (1M2) for A and A′, thenaturality squares redu
e to the 
ompatibility axiom (2M) of β with theisomorphisms α and α′ of A and A′ respe
tively. �It remains to show that the isomorphisms λA and ρA satisfy axiom (2C2)of a 2-
ategory.Proposition 2. For 1-morphisms A : G1 → G2 and A′ : G2 → G3, the2-isomorphisms λA and ρA satisfy
idA′ ◦ ρA = λA′ ◦ idA.Proof. The equation to prove is an equation of 2-morphisms from A′ ◦

idG2 ◦A to A′ ◦A. The �rst 1-morphism 
onsists of the surje
tive submersion
Z̃ := Z ×M Z ′ → P13, where we de�ne Pij := Yi ×M Yj, further of the ve
torbundle A ⊗ L2 ⊗ A′ over Z̃. The se
ond 1-morphism A′ ◦ A 
onsists of thesurje
tive submersion Z̃ ′ := Z×Y2 Z

′ → P13 and the ve
tor bundle A⊗A′ over
Z̃ ′. Let us 
hoose the de�ning representatives for the involved 2-morphisms:we 
hoose (Z ′[2], id, dA′) for idA′ , with W := Z ×Y1 Z we 
hoose (W, id, ρW )for ρA, with W ′ := Z ′ ×Y3 Z ′ we 
hoose (W ′, id, λW ′) for λA′ , and we 
hoose
(Z [2], id, dA′) for idA. 17



Now, the horizontal 
omposition idA′◦ρA is de�ned by the triple (V, ν, βV )with
V = Z̃ ×P13 (W ×Y2 Z ′[2]) ×P13 Z̃ ′, (51)the proje
tion ν : V → Z̃ ×P13 Z̃ ′ on the �rst and the last fa
tor, and theisomorphism
βV = dA′◦A ◦ (ρW ⊗ dA′) ◦ dA′◦id◦A (52)of ve
tor bundles over V . The horizontal 
omposition λA′ ◦ idA is de�ned bythe triple (V ′, ν ′, βV ′) with
V ′ = Z̃ ×P13 (Z [2] ×Y2 W ′) ×P13 Z̃ ′, (53)again the proje
tion ν ′ on the �rst and the last fa
tor, and the isomorphism
βV ′ = dA′◦A ◦ (dA ⊗ λW ′) ◦ dA′◦id◦A (54)of ve
tor bundles over V .To prove the proposition, we show that the triples (V, ν, βV ) and

(V ′, ν ′, βV ′) are equivalent. Consider the �bre produ
t
X := V ×(Z̃×P13

Z̃′) V ′ (55)with surje
tive submersions v : X → V and v′ : X → V ′. The equivalen
e ofthe two triples follows from the equation
v∗βV = v′∗β ′ (56)of isomorphisms of ve
tor bundles over X. It is equivalent to the 
ommuta-tivity of the outer shape of the following diagram of isomorphisms of ve
torbundles over X:
A ⊗ L2 ⊗ A′

dA′◦id◦A

yyssssssssssssss

dA′◦id◦A

%%LLLLLLLLLLLLLL

v∗(A ⊗ L2 ⊗ A′)

ρW ⊗dA′

��

dA′◦id◦A
// v′∗(A ⊗ L2 ⊗ A′)

dA⊗λW ′

��
v∗(A ⊗ A′)

dA′◦A

%%LLLLLLLLLLLLLL
dA′◦A

// v′∗(A ⊗ A′)

dA′◦A

yyrrrrrrrrrrrrrr

A ⊗ A′

(57)
18



The diagram is pat
hed together from three subdiagrams, and the 
om-mutativity of the outer shape follows be
ause the three subdiagramsare 
ommutative: the triangle diagrams are 
ommutative due to the
o
y
le 
ondition from Lemma 2 b) for the 1-morphisms A′ ◦ idG2 ◦ Aand A′ ◦ A respe
tively. The 
ommutativity of the re
tangular diagramin the middle follows from Lemma 1 and from axioms (1M2) for A and A′. �1.3 Invertible 1-MorphismsIn this subse
tion we address the question, whi
h of the 1-morphisms of the2-
ategory BGrb(M) are invertible. Let G1 and G2 be two bundle gerbesover M . In a (stri
tly asso
iative) 2-
ategory, a 1-morphism A : G1 → G2 is
alled invertible or 1-isomorphism, if there is a 1-morphism A−1 : G2 → G1in the opposite dire
tion, together with 2-isomorphisms il : A−1 ◦ A ⇒ idG1and ir : idG2 ⇒ A ◦A−1 su
h that the diagram
A ◦A−1 ◦ AKS

ir◦idA

idA◦il +3 A ◦ idG1

λA

��
idG2 ◦ A ρA

+3 A

(58)of 2-isomorphisms is 
ommutative. The inverse 1-isomorphism A−1 is uniqueup to isomorphism.Noti
e that if β : A ⇒ A′ is a 2-morphism between invertible 1-morphismswe 
an form a 2-morphism β# : A′−1 ⇒ A−1 using the 2-isomorphisms ir for
A−1 and il for A′−1. Then, diagram (58) indu
es the equation id#

A = idA−1 .Proposition 3. A 1-morphism A : G1 → G2 in BGrb(M) is invertible ifand only if the ve
tor bundle of A is of rank 1.Proof. Suppose that A is invertible, and let n be the rank of its ve
torbundle. Let A−1 be an inverse 1-morphism with a ve
tor bundle of rank
m. By de�nition, the 
omposed 1-morphisms A ◦ A−1 and A−1 ◦ A haveve
tor bundles of rank nm, whi
h has � to admit the existen
e of the2-isomorphisms il and ir � to 
oin
ide with the rank of the ve
tor bundleof the identity 1-morphisms idG1 and idG2 respe
tively, whi
h is 1. So
n = m = 1. The other in
lusion is shown below by an expli
it 
onstru
tionof an inverse 1-morphism A−1 to a 1-morphism A with ve
tor bundle ofrank 1. �19



Let a 1-morphism A 
onsist of a surje
tive submersion ζ : Z → Y1×M Y2,of a line bundle A over Z and of an isomorphism α of line bundles over
Z ×M Z. We expli
itly 
onstru
t an inverse 1-morphism A−1: it has thesurje
tive submersion Z → Y1 ×M Y2 → Y2 ×M Y1, where the �rst map is
ζ and the se
ond one ex
hanges the fa
tors, the dual line bundle A∗ over Zand the isomorphism

L2 ⊗ ζ∗
2A

∗ ζ∗
1A

∗ ⊗ ζ∗
1A ⊗ L2 ⊗ ζ∗

2A
∗

id⊗α−1⊗id
��

ζ∗
1A

∗ ⊗ L1 ⊗ ζ∗
2A ⊗ ζ∗

2A
∗ ζ∗

1A
∗ ⊗ L1.

(59)Axiom (1M1) for the 1-morphismA−1 is satis�ed be
ause A∗ has the negative
urvature, and axiom (1M2) follows from the one for A.To 
onstru
t the 2-isomorphism il : A−1 ◦ A ⇒ idG1 noti
e that the 1-morphism A−1 ◦A 
onsists of the line bundle ζ∗
1A⊗ ζ∗

2A
∗ over Z̃ = Z ×Y2 Z.We identify Z̃ ∼= Z̃ ×P Y

[2]
1 , where P = Y

[2]
1 , whi
h allows us to 
hoose atriple (Z̃, idZ̃ , βZ̃) de�ning il. In this triple, the isomorphism βZ̃ is de�ned tobe the 
omposition

ζ∗
1A ⊗ ζ∗

2A
∗

id⊗t−1
µ2

⊗id
// ζ∗

1A ⊗ ∆∗L2 ⊗ ζ∗
2A

∗ α−1⊗id// L1 ⊗ ζ∗
2A ⊗ ζ∗

2A
∗ = L1. (60)Axiom (2M) for the isomorphism βZ̃ follows from axiom (1M2) of A, so thatthe triple (Z̃, idZ̃ , βZ̃) de�nes a 2-isomorphism il : A−1 ◦ A ⇒ idG1. The2-isomorphism ir : idG2 ⇒ A ◦ A−1 is 
onstru
ted analogously: here we takethe isomorphism

L2 = ζ∗
1A

∗ ⊗ ζ∗
1A ⊗ L2

id⊗α−1
// ζ∗

1A
∗ ⊗ ∆∗L1 ⊗ ζ∗

2A
id⊗tµ1⊗id

// ζ∗
1A

∗ ⊗ ζ∗
2A. (61)of line bundles over W . Noti
e that by using the pairing A∗ ⊗ A = 1 wehave used that A is a line bundle as assumed. Finally, the 
ommutativity ofdiagram (58) follows from axiom (1M2) of A.Proposition 3 shows that we have many 1-morphisms in BGrb(M) whi
hare not invertible, in 
ontrast to the 2-groupoid of bundle gerbes de�ned in[Ste00℄. Noti
e that we have already bene�ted from the simple de�nition ofthe 
ompositionA−1◦A, whi
h makes it also easy to see that it is 
ompatiblewith the 
onstru
tion of inverse 1-morphisms A−1:

(A2 ◦ A1)
−1 = A−1

1 ◦ A−1
2 . (62)20



1.4 Additional Stru
turesThe 2-
ategory of bundle gerbes has natural de�nitions of pullba
ks, ten-sor produ
ts and dualities; all of them have been introdu
ed for obje
ts in[Mur96, MS00℄.Pullba
ks and tensor produ
ts of 1-morphisms and 2-morphisms 
an alsobe de�ned in a natural way, and we do not 
arry out the details here. Sum-marizing, the monoidal stru
ture on BGrb(M) is a stri
t 2-fun
tor
⊗ : BGrb(M) × BGrb(M) −→ BGrb(M), (63)for whi
h the trivial bundle gerbe I0 is a stri
t tensor unit, i.e.

I0 ⊗ G = G = G ⊗ I0. (64)The idea of the de�nition of ⊗ is to take �bre produ
ts of the involvedsurje
tive submersions, to pull ba
k all the stru
ture to this �bre produ
tand then to use the monoidal stru
ture of the 
ategory of ve
tor bundlesover that spa
e. This was assumed to be stri
t, and so is ⊗. Pullba
ks forthe 2-
ategory BGrb(M) are implemented by stri
t monoidal 2-fun
tors
f ∗ : BGrb(M) −→ BGrb(X) (65)asso
iated to every smooth map f : X → M in the way that g∗◦f ∗ = (f ◦g)∗for a se
ond smooth map g : Y → X. The idea of its de�nition is, to pullba
k surje
tive submersions, for instan
e

f−1Y
f̃ //

��

Y

π

��
X

f
// M

(66)and then pull ba
k the stru
ture over Y along the 
overing map f̃ . The2-fun
tors ⊗ and f ∗ are all 
ompatible with the assignment of inverses A−1to 1-morphisms A from subse
tion 1.3:
f ∗(A−1) = (f ∗A)−1 and (A1 ⊗A2)

−1 = A−1
1 ⊗A−1

2 . (67)Also the trivial bundle gerbes Iρ behave naturally under pullba
ks and tensorprodu
ts:
f ∗Iρ = If∗ρ and Iρ1 ⊗ Iρ2 = Iρ1+ρ2 . (68)To de�ne a duality we are a bit more pre
ise, be
ause this has yet notbeen done systemati
ally in the literature. Even though we will stri
tly21




on
entrate on what we need in se
tion 3.3. For those purposes, it is enoughto understand the duality as a stri
t 2-fun
tor
()∗ : BGrb(M)op → BGrb(M) (69)where the opposed 2-
ategory BGrb(M)op has all 1-morphisms reversed,while the 2-morphisms are as before. This 2-fun
tor will satisfy the identity

()∗∗ = idBGrb(M). (70)We now give the 
omplete de�nition of the fun
tor ()∗ on obje
ts, 1-morphisms and 2-morphisms. For a given bundle gerbe G, the dual bundlegerbe G∗ 
onsists of the same surje
tive submersion π : Y → M , the 2-form
−C ∈ Ω2(Y ), the line bundle L∗ over Y [2] and the isomorphism

µ∗−1 : π∗
12L

∗ ⊗ π∗
23L

∗ → π∗
13L

∗ (71)of line bundles over Y [3]. This stru
ture 
learly satis�es the axioms of abundle gerbe. We obtain immediately
G∗∗ = G and (G ⊗H)∗ = H∗ ⊗ G∗, (72)and for the trivial bundle gerbe Iρ the equation

I∗
ρ = I−ρ. (73)For a 1-morphisms A : G1 → G2 
onsisting of a ve
tor bundle A over

Z with surje
tive submersion ζ : Z → P with P := Y1 ×M Y2 and of anisomorphism α of ve
tor bundles over Z×M Z, we de�ne the dual 1-morphism
A∗ : G∗

2 −→ G∗
1 (74)as follows: its surje
tive submersion is the pullba
k of ζ along the ex
hangemap s : P ′ → P , with P ′ := Y2 × Y1; that is a surje
tive submersion ζ ′ :

Z ′ → P ′ and a 
overing map sZ in the 
ommutative diagram
Z ′

ζ′

��

sZ // Z

ζ

��
P ′

s
// P . (75)The ve
tor bundle of A∗ is A′ := s∗ZA over Z ′ and its isomorphism is

L∗
2 ⊗ ζ ′∗

2 A′ L∗
2 ⊗ L1 ⊗ ζ ′∗

2 s∗ZA ⊗ L∗
1

id⊗s̃∗α⊗id
��

L∗
2 ⊗ ζ ′∗

1 s∗ZA ⊗ L2 ⊗ L∗
1 ζ ′∗

1 A′ ⊗ L∗
1. (76)22



Axiom (1M1) is satis�ed sin
e the dual bundle gerbes have 2-forms withopposite signs,
curv(A′) = s∗Zcurv(A) = s∗Z(C2 − C1) = C2 − C1 = (−C1) − (−C2). (77)Axiom (1M2) relates the isomorphism (76) to the isomorphisms µ∗−1

1 and
µ∗−1

2 of the dual bundle gerbes. It 
an be dedu
ed from axiom (1M2) of Ausing the following general fa
t, applied to µ∗
1 and µ∗

2: the dual f ∗ of anisomorphism f : L1 → L2 of line bundles 
oin
ides with the isomorphism
L∗

2 = L∗
2 ⊗ L1 ⊗ L∗

1

id⊗f⊗id // L∗
2 ⊗ L2 ⊗ L∗

1 = L∗
1, (78)de�ned using the duality on line bundles.Dual 1-morphisms de�ned like this have the properties

A∗∗ = A , (A′ ◦ A)∗ = A∗ ◦ A′∗ and (A1 ⊗A2)
∗ = A∗

2 ⊗A∗
1. (79)Finally, for a 2-morphism β : A1 ⇒ A2 we de�ne the dual 2-morphism

β∗ : A∗
1 =⇒ A∗

2 (80)in the following way. If β is represented by a triple (W, ω, βW ) with anisomorphism βW : A1 → A2 of ve
tor bundles over W , we 
onsider thepullba
k of ω : W → Z1×P Z2 along sZ1 ×sZ2 : Z ′
1×P ′ Z ′

2 → Z1×P Z2, where
Z1, Z ′

2 and P ′ are as in (75), and sZ1 and sZ2 are the respe
tive 
overingmaps. This gives a 
ommutative diagram
W ′

ω′

��

sW // W

ω

��
Z ′

1 ×P ′ Z ′
2 sZ1

×sZ2

// Z1 ×P Z2. (81)Now 
onsider the triple (W ′, ω′, s∗WβW ) with the isomorphism
s∗WβW : s∗Z1

A1 −→ s∗Z2
A2 (82)of ve
tor bundles over W ′. It satis�es axiom (2M), and its equivalen
e 
lassdoes not depend on the 
hoi
e of the representative of β. So we de�ne thedual 2-morphism β∗ to be this 
lass. Dual 2-morphisms are 
ompatible withverti
al and horizontal 
ompositions

(β2 ◦ β1)
∗ = β∗

1 ◦ β∗
2 and (β • β ′)∗ = β∗ • β ′∗ (83)23



and satisfy furthermore
β∗∗ = β and (β1 ⊗ β2)

∗ = β∗
2 ⊗ β∗

1 . (84)We 
an use adjoint 2-morphisms in the following situation: if A : G → His an invertible 1-morphism with inverse A−1 and asso
iated 2-isomorphisms
il : A−1 ◦ A ⇒ idG and ir : idH ⇒ A ◦ A−1, their duals i∗l and i∗r show that
(A−1)∗ is an inverse to A∗. Sin
e inverses are unique up to isomorphism,

(A∗)−1 ∼= (A−1)∗. (85)Summarizing, equations (72), (79), (83) and (84) show that ()∗ is amonoidal stri
t 2-fun
tor, whi
h is stri
tly involutive. Let us �nally men-tion that it is also 
ompatible with pullba
ks:
f ∗(G∗) = (f ∗G)∗ , f ∗A∗ = (f ∗A)∗ and f ∗β∗ = (f ∗β)∗. (86)2 Des
ent Theory for MorphismsIn this se
tion we 
ompare 1-morphisms between bundle gerbes in the sense ofDe�nition 2 with 1-morphisms whose surje
tive submersion ζ : Z → Y1×M Y2is the identity, like in [Ste00℄. For this purpose, we introdu
e the sub
ate-gory HomFP (G1,G2) of the morphism 
ategory Hom(G1,G2), where all smoothmanifolds Z and W appearing in the de�nitions of 1- and 2-morphismsare equal to the �bre produ
t P := Y1 ×M Y2. Expli
itly, an obje
t in

HomFP (G1,G2) is a 1-morphism A : G1 → G2 whose surje
tive submer-sion is the identity idP and a morphism in HomFP (G1,G2) is a 2-morphism
β : A1 ⇒ A2 whi
h 
an be represented by the triple (P, ω, β) where
ω : P → P ×P P ∼= P is the identity.Theorem 1. The in
lusion fun
tor

D : HomFP (G1,G2) −→ Hom(G1,G2)is an equivalen
e of 
ategories.In the proof we will make use of the fa
t that ve
tor bundles form a sta
k,i.e. �bred 
ategory satisfying a gluing 
ondition. To make this gluing 
on-dition 
on
rete, we de�ne for a surje
tive submersion ζ : Z → P a 
ategory
Des(ζ) as follows. Its obje
ts are pairs (A, d), where A is a ve
tor bundleover Z and

d : ζ∗
1A −→ ζ∗

2A (87)24



is an isomorphism of ve
tor bundles over Z [2] su
h that
ζ∗
13d = ζ∗

23d ◦ ζ∗
12d. (88)A morphism α : (A, d) → (A′, d′) in Des(ζ) is an isomorphism α : A → A′ ofve
tor bundles over Z su
h that the diagram

ζ∗
1A

d

��

ζ∗1α
// ζ∗

1A
′

d′

��
ζ∗
2A ζ∗2α

// ζ∗
2A

′

(89)of isomorphisms of ve
tor bundles over Z [2] is 
ommutative. The 
ompositionof morphisms is just the 
omposition of isomorphisms of ve
tor bundles. Now,the gluing 
ondition for the sta
k of ve
tor bundles is that the pullba
k along
ζ is an equivalen
e

ζ∗ : Bun(P ) −→ Des(ζ) (90)between the 
ategory Bun(P ) of ve
tor bundles over P and the 
ategory
Des(ζ).Proof of Theorem 1. We show that the faithful fun
tor D is an equivalen
eof 
ategories by proving (a) that it is essentially surje
tive and (b) that thesub
ategory HomFP (G1,G2) is full.For (a) we have to show that for every 1-morphism A : G1 → G2 witharbitrary surje
tive submersion ζ : Z → P there is an isomorphi
 1-morphism
SA : G1 → G2 with surje
tive submersion idP . Noti
e that the isomorphism
dA : ζ∗

1A → ζ∗
2A of ve
tor bundles over Z [2] from Lemma 2 satis�es the
o
y
le 
ondition (88), so that (A, dA) is an obje
t in Des(ζ). Now 
onsiderthe surje
tive submersion ζ2 : Z ×M Z → P [2]. By Lemma 2 b) and underthe identi�
ation of Z [2] ×M Z [2] with (Z ×M Z)×P [2] (Z ×M Z) the diagram

L1 ⊗ ζ∗
2A

1⊗ζ∗24dA

��

ζ∗12α
// ζ∗

1A ⊗ L2

ζ∗13dA⊗1

��
L1 ⊗ ζ∗

4A ζ∗34α
// ζ∗

3A ⊗ L2

(91)of isomorphisms of ve
tor bundles over (Z ×M Z)×P [2] (Z ×M Z) is 
ommu-tative, and shows that α is a morphism in Des(ζ2). Now we use that ζ∗ is anequivalen
e of 
ategories: we 
hoose a ve
tor bundle S over P together withan isomorphism β : ζ∗S → A of ve
tor bundles over Z, and an isomorphism
σ : L1 ⊗ ζ∗

2S −→ ζ∗
1S ⊗ L2 (92)25



of ve
tor bundles over P ×M P su
h that the diagram
L1 ⊗ ζ∗

2ζ
∗S

id⊗ζ∗2β

��

ζ∗σ // ζ∗
1ζ

∗S ⊗ L2

ζ∗1β⊗id

��
L1 ⊗ ζ∗

2A α
// ζ∗

1A ⊗ L2

(93)of isomorphisms of ve
tor bundles over Z×M Z is 
ommutative. Sin
e ζ is anequivalen
e of 
ategories, the axioms of A imply the ones of the 1-morphism
SA de�ned by the surje
tive submersion idP , the ve
tor bundle S over Pand the isomorphism σ over P [2]. Finally, the triple (Z ×P P, idZ , β) with
Z ∼= Z ×P P de�nes a 2-morphism SA ⇒ A, whose axiom (2M) is (93).(b) We have to show that any morphism β : A ⇒ A′ in Hom(G1,G2)between obje
ts A and A′ in HomFP (G1,G2) is already a morphism in
HomFP (G1,G2). Let (W, ω, βW ) be any representative of β with a surje
-tive submersion ω : W → P and an isomorphism βW : ω∗A → ω∗A′ of ve
torbundles over W . The restri
tion of axiom (2M) for the triple (W, ω, βW ) from
W ×M W to W ×P W shows ω∗

1βW = ω∗
2βW . This shows that βW is a mor-phism in the des
ent 
ategory Des(ω). Let βP : A → A′ be an isomorphismof ve
tor bundles over P su
h that

ω∗βP = βW (94)Be
ause ω is an equivalen
e of 
ategories, the triple (P, idP , βP ) de�nesa 2-morphism from A to A′ being a morphism in HomFP (G1,G2). Equa-tion (94) shows that the triples (P, idP , βP ) and (W, ω, βW ) are equivalent. �In the remainder of this se
tion we present two 
orollaries of Theorem1. First, and most importantly, we make 
onta
t to the notion of a stableisomorphism between bundle gerbes. By de�nition [MS00℄, a stable isomor-phism is a 1-morphism, whose surje
tive submersion is the identity idP onthe �bre produ
t of the surje
tive submersions of the two bundle gerbes,and whose ve
tor bundle over P is a line bundle. From Proposition 3 andTheorem 1 we obtainCorollary 1. There exists a stable isomorphism A : G1 → G2 if and only ifthe bundle gerbes are isomorphi
 obje
ts in BGrb(M).It is shown in [MS00℄ that the set of stable isomorphism 
lasses of bundlegerbes over M is a group (in virtue of the monoidal stru
ture) whi
h isisomorphi
 to the Deligne 
ohomology group H2(M,D(2)). This is a veryimportant fa
t whi
h 
onne
ts the theory of bundle gerbes to other theories26



of gerbes, for instan
e, to Dixmier-Douady sheaves of groupoids [Bry93℄.Corollary 1 states that although our de�nition of morphisms di�ers from theone of [MS00℄, the bije
tion between isomorphism 
lasses of bundle gerbesand the Deligne 
ohomology group is persistent.Se
ond, Theorem 1 admits to use existing 
lassi�
ation results for 1-isomorphisms. Consider the full subgroupoid Aut(G) of Hom(G,G) asso
iatedto a bundle gerbe G, whi
h 
onsists of all 1-isomorphisms A : G → G, andall (ne
essarily invertible) 2-morphisms between those. From Theorem 1 andLemma 2 of [SSW05℄ we obtainCorollary 2. The skeleton of the groupoid Aut(G), i.e. the set of isomor-phism 
lasses of 1-isomorphisms A : G → G is a torsor over the group
Pic0(M) of isomorphism 
lasses of �at line bundles over M .In 2-dimensional 
onformal �eld theory, where a bundle gerbe G is 
onsid-ered to be a part of the ba
kground �eld, the groupoid Aut(G) may be 
alledthe groupoid of gauge transformations of G. The above 
orollary 
lassi�essu
h gauge transformation up to equivalen
e.3 Some important Examples of MorphismsTo dis
uss holonomies of bundle gerbes, it is essential to establish an equiva-len
e between the morphism 
ategories between trivial bundle gerbes over Mand ve
tor bundles of 
ertain 
urvature over M . Given two 2-forms ρ1 and ρ2on M , 
onsider the 
ategory HomFP (Iρ1 , Iρ2). An obje
t A : Iρ1 → Iρ2 
on-sists of the smooth manifold Z = M with the surje
tive submersion ζ = idM ,a ve
tor bundle A over M and an isomorphism α : A → A. Axiom (1M2)states

1

n
tr(curv(A)) = ρ2 − ρ1 (95)with n the rank of A, and axiom (1M2) redu
es to α2 = α, whi
h in turnmeans α = idA. Together with Theorem 1, this de�nes a 
anoni
al equiva-len
e of 
ategories

Bun : Hom(Iρ1 , Iρ2) −→ Bunρ2−ρ1(M), (96)where Bunρ(M) is the 
ategory of ve
tor bundles A over M whose 
urva-ture satis�es (95). Its following properties 
an dire
tly be dedu
ed from thede�nitions.Proposition 4. The fun
tor Bun respe
ts the stru
ture of the 2-
ategory ofbundle gerbes, namely: 27



a) the 
omposition of 1-morphisms,
Bun(A2 ◦ A1) = Bun(A1) ⊗ Bun(A2) and Bun(idIρ

) = 1.b) the assignment of inverses to invertible 1-morphisms,
Bun(A−1) = Bun(A)∗.
) the monoidal stru
ture,

Bun(A1 ⊗A2) = Bun(A1) ⊗ Bun(A2).d) pullba
ks,
Bun(f ∗A) = f ∗Bun(A) and Bun(f ∗β) = f ∗Bun(β).e) the duality

Bun(A∗) = Bun(A) and Bun(β∗) = Bun(β).In the following subse
tions we see how the 2-
ategorial stru
ture of bun-dle gerbes and the fun
tor Bun 
an be used to give natural de�nitions ofsurfa
e holonomy in several situations.3.1 TrivializationsWe give the following natural de�nition of a trivialization.De�nition 4. A trivialization of a bundle gerbe G is a 1-isomorphism
T : G −→ Iρ.Let us write out the details of su
h a 1-isomorphism. By Theorem 1we may assume that the surje
tive submersion of T is the identity idP on

P := Y ×M M ∼= Y with proje
tion π to M . Then, T 
onsists further of a linebundle T over Y , and of an isomorphism τ : L⊗ π∗
2T → π∗

1T of line bundlesover Y [2]. Axiom (1M2) gives π∗
13τ ◦ (µ ⊗ id) = π∗

12τ ◦ π∗
23τ as an equationof isomorphisms of line bundles over Y [3]. This is exa
tly the de�nition of atrivialization one �nds in the literature [CJM02℄. Additionally, axiom (1M2)gives curv(T ) = π∗ρ − C. If one spe
i�es ρ not as a part of the de�nition ofa trivialization, it is uniquely determined by this equation.Trivializations are essential for the de�nition of holonomy around 
losedoriented surfa
es. 28



De�nition 5. Let φ : Σ → M be a smooth map from a 
losed orientedsurfa
e Σ to a smooth manifold M , and let G a bundle gerbe over M . Let
T : φ∗G −→ Iρbe any trivialization. The holonomy of G around φ is de�ned as

holG(φ) := exp

(

i

∫

Σ

ρ

)

∈ U(1).In this situation, the fun
tor Bun is a powerful tool to prove that thisde�nition does not depend on the 
hoi
e of the trivialization: if T ′ : φ∗G →
Iρ′ is another trivialization, the 
omposition T ◦ T ′−1 : Iρ′ → Iρ 
orrespondsto a line bundle Bun(T ◦T ′−1) over M with 
urvature ρ−ρ′. In parti
ular, thedi�eren
e between any two 2-forms ρ is a 
losed 2-form with integer periodsand vanishes under the exponentiation in the de�nition of holG(φ).3.2 Bundle Gerbe ModulesFor oriented surfa
es with boundary one has to 
hoose additional stru
tureon the boundary to obtain a well-de�ned holonomy. This additional stru
tureis provided by a ve
tor bundle twisted by the bundle gerbe G [Gaw05℄, alsoknown as a G-module. In our formulation, its de�nition takes the followingform:De�nition 6. Let G be a bundle gerbe over M . A left G-module is a 1-morphism E : G → Iω, and a right G-module is a 1-morphism F : Iω → G.Let us 
ompare this de�nition with the original de�nition of (left) bundlegerbe modules in [BCM+02]. Assume � again by Theorem 1 � that a left
G-module E : G → Iω has the surje
tive submersion idP with P ∼= Y . Then,it 
onsists of a ve
tor bundle E over Y and of an isomorphism ǫ : L⊗π∗

2E →
π∗

1E of ve
tor bundles over Y [2] whi
h satis�es
π∗

13ǫ ◦ (µ ⊗ id) = π∗
23ǫ ◦ π∗

12ǫ (97)by axiom (1M2). The 
urvature of E is restri
ted by axiom (1M2) to
1

n
tr(curv(E)) = π∗ω − C (98)with n the rank of E.The de�nition of bundle gerbe modules as 1-morphisms makes 
lear thatleft and right G-modules form 
ategories LMod(G) and RMod(G). This is29



useful for example to see that a 1-isomorphism A : G → G′ de�nes equiva-len
es of 
ategories
LMod(G) ∼= LMod(G′) and RMod(G) ∼= RMod(G′) (99)and that there are equivalen
es between left modules of G and right modulesof G∗ (and vi
e versa), by taking duals of the respe
tive 1-morphisms. More-over, for a trivial bundle gerbe Iρ the 
ategories LMod(Iρ) and RMod(Iρ)be
ome 
anoni
ally equivalent to the 
ategory Bun(M) of ve
tor bundlesover M via the fun
tor Bun. We 
an 
ombine this result with the equiva-len
es (99) applied to a trivialization T : G → Iρ of a bundle gerbe G over

M . In detail, a left G-module E : G → Iω �rst be
omes a left Iρ-module
E ◦ T −1 : Iρ −→ Iω (100)whi
h in turn de�nes the ve
tor bundle E := Bun(E ◦ T −1) over M . Thesame applies to right G-modules F : Iω → G whi
h de�nes a ve
tor bundle

Ē := Bun(T ◦ F) over M .A D-brane for the bundle gerbe G is a submanifold Q of M together witha left G|Q-module. Here G|Q means the pullba
k of G along the in
lusion
Q →֒ M .De�nition 7. Let G be a bundle gerbe over M with D-brane (Q, E) andlet φ : Σ → M be a smooth map from a 
ompa
t oriented surfa
e Σ withboundary to M , su
h that φ(∂Σ) ⊂ Q. Let

T : φ∗G −→ Iρbe any trivialization of the pullba
k bundle gerbe φ∗G and let
E := Bun(φ∗E ◦ T −1) (101)be the asso
iated ve
tor bundle over ∂Σ. The holonomy of G around φ isde�ned as

holG,E(φ) := exp

(

i

∫

Σ

ρ

)

· tr (holE(∂Σ)) ∈ C.The de�nition does not depend on the 
hoi
e of the trivialization: foranother trivialization T ′ : φ∗G → Iρ′ and the respe
tive ve
tor bundle E ′ :=
Bun(E ◦ T ′−1) we �nd by Proposition 4 a)
E ′ = Bun(E ◦ T ′−1) ∼= Bun(E ◦ T −1 ◦ T ◦ T ′−1) = E ⊗Bun(T ◦ T ′−1). (102)Be
ause isomorphi
 ve
tor bundles have the same holonomies, and the linebundle Bun(T ◦ T ′−1) has 
urvature ρ − ρ′ we obtain

tr (holE′(∂Σ)) = tr (holE(∂Σ)) · exp

(

i

∫

Σ

ρ − ρ′

) . (103)This shows the independen
e of the 
hoi
e of the trivialization.30



3.3 Jandl Stru
turesIn this last se
tion, we use the duality on the 2-
ategory BGrb(M) introdu
edin se
tion 1.4 to de�ne the holonomy of a bundle gerbe around unoriented,and even unorientable surfa
es (without boundary). For this purpose, weexplain the 
on
ept of a Jandl stru
ture on a bundle gerbe G, whi
h has beenintrodu
ed in [SSW05℄, in terms of 1- and 2-isomorphisms of the 2-
ategory
BGrb(M).De�nition 8. A Jandl stru
ture J on a bundle gerbe G over M is a 
olle
tion
(k,A, ϕ) of an involution k : M → M , i.e. a di�eomorphism with k◦k = idM ,a 1-isomorphism

A : k∗G −→ G∗and a 2-isomorphism
ϕ : k∗A =⇒ A∗whi
h satis�es the 
ondition

k∗ϕ = ϕ∗−1.Noti
e that the existen
e of the 2-isomorphism ϕ is only possible be
ause
G∗∗ = G from (72), and that the equation k∗ϕ = ϕ∗−1 only makes sensebe
ause A∗∗ = A from (79). Let us now dis
uss the relation between De�-nition 8 and the original de�nition of a Jandl stru
ture from [SSW05℄. Forthis purpose we elaborate the details. We denote the pullba
k of the sur-je
tive submersion π : Y → M along k by πk : Yk → M ; for simpli
ity wetake Yk := Y and πk := k ◦ π. Now, we assume by Theorem 1 that the1-isomorphism A 
onsists of a line bundle A over Yk ×M Y . As smooth man-ifolds, we 
an identify Yk ×M Y with P := Y [2]; to have an identi�
ation assmooth manifolds with surje
tive submersions to M , we de�ne the proje
-tion p : P → M by p := π ◦ π2. Under this identi�
ation, the ex
hange map
s : Y ×M Yk → Yk ×M Y be
omes an involution of P whi
h lifts k,

P

p

��

s // P

p

��
M

k
// M . (104)The dual 1-isomorphism A∗ has by de�nition the line bundle s∗A over P .Now, similarly as for the pullba
k of π : Y → M we denote the pullba
k of

p : P → M by pk : Pk → M and 
hoose Pk := P and pk := k ◦ p. Thisway, the pullba
k 1-isomorphism k∗A has the line bundle A over P . Againby Theorem 1, we assume that the 2-isomorphism ϕ 
an be represented by31



a triple (P, idP , ϕP ) with an isomorphism ϕP : A → s∗A of line bundles over
P satisfying the 
ompatibility axiom (2M) with the isomorphism α of A:

L ⊗ ζ∗
2A

id⊗ζ∗2ϕP

��

α // ζ∗
1A ⊗ L

ζ∗1ϕP⊗id

��
L ⊗ ζ∗

2s
∗A

s∗α
// ζ∗

1s
∗A ⊗ L

(105)The dual 2-isomorphism ϕ∗ is given by (P, idP , s∗ϕP ), and the equation ϕ =
k∗ϕ∗−1 be
omes ϕP = s∗ϕ−1

P . So, ϕP is an s-equivariant stru
ture on A. Thisis exa
tly the original de�nition [SSW05℄: a stable isomorphism A : k∗G →
G∗, whose line bundle A is equipped with an s-equivariant stru
ture whi
h is
ompatible with the isomorphism α of A in the sense of the 
ommutativityof diagram (105).De�ning a Jandl stru
ture in terms of 1- and 2-morphisms has � justlike for gerbe modules � several advantages. For example, it is easy to seethat Jandl stru
tures are 
ompatible with pullba
ks along equivariant maps,tensor produ
ts and duals of bundle gerbes. Furthermore, we have an obviousde�nition of morphisms between Jandl stru
tures, whi
h indu
es exa
tly thenotion of equivalent Jandl stru
tures we introdu
ed in [SSW05℄.De�nition 9. A morphism β : J → J ′ between Jandl stru
tures J =
(k,A, ϕ) and J ′ = (k,A′, ϕ′) on the same bundle gerbe G over M with thesame involution k is a 2-morphism

β : A =⇒ A′whi
h 
ommutes with ϕ and ϕ′ in the sense that the diagram
A

ϕ +3

β

��

k∗A∗

k∗β∗

��
A′

ϕ′

+3 k∗A′∗of 2-morphisms is 
ommutative.Sin
e A is invertible, every morphism of Jandl stru
tures is invertible.We may thus speak of a groupoid Jdl(G, k) of Jandl stru
tures on the bundlegerbe G with involution k. The skeleton of this groupoid has been 
lassi�ed[SSW05℄: it forms a torsor over the group of �at k-equivariant line bundlesover M . The following proposition relates these groupoids of Jandl stru
tures32



on isomorphi
 bundle gerbes on the same spa
e with the same involution.This relation is a new result, 
oming and bene�ting very mu
h from the2-
ategorial stru
ture of bundle gerbes we have developed.Proposition 5. Any 1-isomorphism B : G → G′ indu
es an equivalen
e ofgroupoids
JB : Jdl(G′, k) −→ Jdl(G, k)with the following properties:a) any 2-morphism β : B ⇒ B′ indu
es a natural equivalen
e JB

∼= J ′
B.b) there is a natural equivalen
e JidG

∼= idJdl(G,k).
) it respe
ts the 
omposition of 1-morphisms in the sense that
JB′◦B = JB ◦ JB′.Proof. The fun
tor JB sends a Jandl stru
ture (k,A, ϕ) on G′ to the triple

(k,A′, ϕ′) with the same involution k, the 1-isomorphism
A′ := B∗ ◦ A ◦ k∗B : k∗G −→ G∗ (106)and the 2-isomorphism
k∗A′ k∗B∗ ◦ k∗A ◦ B

idk∗B∗◦ϕ◦idB

��
k∗B∗ ◦ A∗ ◦ B k∗A′∗

(107)where we use equation (79). The following 
al
ulation shows that (k,A′, ϕ′)is a Jandl stru
ture:
k∗ϕ′∗ def

= k∗(idk∗B∗ ◦ ϕ ◦ idB)∗(79)
= idk∗B∗ ◦ k∗ϕ∗ ◦ idB

= idB ◦ ϕ−1 ◦ idB∗def
= ϕ′−1. (108)A morphism β of Jandl stru
tures on G′ is sent to the morphism

JB(β) := idB∗ ◦ β ◦ idk∗B (109)of the respe
tive Jandl stru
tures on G′. The two axioms of the 
ompositionfun
tor ◦ from Lemma 3 show that the 
omposition of morphisms of Jandl33



stru
tures is respe
ted, so that JB is a fun
tor. It is an equivalen
e be
ause
JB−1 is an inverse fun
tor, where the natural equivalen
es JB−1 ◦ JB

∼= id and
JB ◦ JB−1

∼= id use the 2-isomorphisms ir and il from se
tion 1.3 asso
iatedto the inverse 1-morphism B−1.To prove a), let β : B ⇒ B′ be a 2-morphism. We de�ne the naturalequivalen
e JB
∼= JB′ , whi
h is a 
olle
tion of morphisms βJ : JB(J ) →

JB′(J ) of Jandl stru
tures on G for any Jandl stru
ture J on G′ by
βJ := β∗ ◦ idA ◦ k∗β. (110)This de�nes indeed a morphism of Jandl stru
tures and makes the naturalitysquare

JB(J )
βJ //

JB(β)

��

JB′(J )

JB′(β)

��
JB(J ′)

βJ′

// JB′(J ′)

(111)
ommutative. The natural equivalen
e for b) uses the 2-isomorphisms λAand ρA of the 2-
ategory BGrb(M) and the fa
t that id∗
G = idG∗ . Finally, 
)follows from the de�nition of JB and the fa
t that the duality fun
tor ()∗respe
ts the 
omposition of 1-morphisms, see (79). �It is worthwhile to 
onsider a Jandl stru
ture J = (k,A, ϕ) over a trivialbundle gerbe Iρ. By de�nition, this is a 1-isomorphism

A : Ik∗ρ −→ I−ρ (112)and a 2-isomorphism ϕ : k∗A ⇒ A∗ satisfying ϕ = k∗ϕ∗−1. Now we applythe fun
tor Bun and obtain a line bundle R̂ := Bun(A) over M of 
urvature
−(ρ+k∗ρ) and an isomorphism ϕ̂ := Bun(ϕ) : k∗R̂ → R̂ of line bundles over
M whi
h satis�es ϕ̂ = k∗ϕ̂−1, summarizing: a k-equivariant line bundle. So,the fun
tor Bun indu
es an equivalen
e of groupoids

Bunk
ρ : Jdl(Iρ, k) −→ LBun

k
−(ρ+k∗ρ)(M) (113)between the groupoid of Jandl stru
tures on Iρ with involution k and thegroupoid of k-equivariant line bundles over M with 
urvature −(ρ+k∗ρ). Inparti
ular, if G is a bundle gerbe over M and T : G → Iρ a trivialization, weobtain a fun
tor

Jdl(G, k)
J
T −1 // Jdl(Iρ, k)

Bunk
ρ // LBun

k
−(ρ+k∗ρ)(M) (114)34




onverting a Jandl stru
ture on the bundle gerbe G into a k-equivariant linebundle over M . It be
omes obvious that the existen
e of a Jandl stru
turewith involution k on the trivial bundle gerbe Iρ 
onstraints the 2-form ρ: asthe 
urvature of a line bundle, the 2-form −(ρ + k∗ρ) has to be 
losed andto have integer periods.Let us now explain how Jandl stru
tures enter in the de�nition of holon-omy around unoriented surfa
es, and how we 
an take further advantage ofthe 2-
ategorial formalism. We have learned before that to in
orporate sur-fa
es with boundary we had to do two steps: we �rst spe
i�ed additionalstru
ture, a D-brane of the bundle gerbe G, and then spe
i�ed whi
h maps
φ : Σ → M are 
ompatible with this additional stru
ture: those who sendthe boundary of Σ into the support of the D-brane. To dis
uss unorientedsurfa
es (without boundary), we also do these two steps: the additional stru
-ture we 
hoose here is a Jandl stru
ture J = (k,A, ϕ) on the bundle gerbe
G. To des
ribe the spa
e of maps we want to 
onsider, we have to introdu
ethe following geometri
 stru
tures [SSW05℄:

• For any (unoriented) 
losed surfa
e Σ there is an oriented two-fold
overing pr : Σ̂ → Σ. It is unique up to orientation-preserving dif-feomorphisms and it is 
onne
ted if and only if Σ is not orientable.It has a 
anoni
al, orientation-reversing involution σ, whi
h permutesthe sheets and preserves the �bres. We 
all this two-fold 
overing theorientation 
overing of Σ.
• A fundamental domain of Σ in Σ̂ is a submanifold F of Σ̂ with ( possiblyonly pie
ewise smooth) boundary, su
h that

F ∪ σ(F ) = Σ̂ and F ∩ σ(F ) = ∂F . (115)A key observation is that the involution σ restri
ts to an orientation-preserving involution on ∂F ⊂ Σ̂. A

ordingly, the quotient ∂F is anoriented 
losed 1-dimensional submanifold of Σ.Now, given a 
losed surfa
e Σ, we 
onsider maps φ̂ : Σ̂ → M from theorientation 
overing Σ̂ to M , whi
h are equivariant with respe
t to the twoinvolutions on Σ̂ and M , i.e. the diagram
Σ̂

φ̂ //

σ

��

M

k

��
Σ̂

φ̂

// M35



has to be 
ommutative.De�nition 10. Let J be a Jandl stru
ture on a bundle gerbe G over M , andlet φ̂ : Σ̂ → M be an equivariant smooth map. For a trivialization
T : φ̂∗G −→ Iρlet R̂ be the σ-equivariant line bundle over Σ̂ determined by the fun
tor

Bunρ
σ ◦ JT −1 : Jdl(φ̂∗G, σ) −→ LBun

σ
−(ρ+σ∗ρ)(Σ̂) (116)from (114). In turn, R̂ de�nes a line bundle R over Σ. Choose any funda-mental domain F of Σ. Then, the holonomy of G with Jandl stru
ture Jaround φ̂ is de�ned as

holG,J (φ̂) := exp

(

i

∫

F

ρ

)

· holR(∂F ).De�nition 10 is a generalization of De�nition 5 of holonomy around anoriented surfa
e: for an orientable surfa
e Σ and any 
hoi
e of an orientation,they 
oin
ide [SSW05℄. To show that De�nition 10 does not depend onthe 
hoi
e of the trivialization T , we 
ombine all the 
olle
ted tools. Let
T ′ : φ̂∗G → Iρ′ be any other trivialization. We 
onsider the 1-isomorphism

B := T ◦ T ′−1 : Iρ′ −→ Iρ (117)and the 
orresponding line bundle T := Bun(B). To 
ompare the two σ-equivariant line bundles R̂ and R̂′ 
orresponding to the two trivializations,we �rst 
ompare the Jandl stru
tures JT −1(J ) on Iρ and JT ′−1(J ) on Iρ′.By Proposition 5 a), b) and 
), there exists an isomorphism
JT ′−1(J ) ∼= JB(JT −1(J )) (118)of Jandl stru
tures on Iρ. By de�nition of the fun
tor JB, this isomorphismis a 2-isomorphism

A′ ∼= B∗ ◦ A ◦ σ∗B, (119)where A is the 1-morphism of JT −1(J ) and A′ is the 1-morphism of JT ′−1(J ).Now we apply the fun
tor Bun and obtain an isomorphism
R̂′ ∼= T ⊗ R̂ ⊗ σ∗T (120)of σ-equivariant line bundles over Σ̂, where Q̂ := σ∗T ⊗ T has the 
anoni
al

σ-equivariant stru
ture by ex
hanging the tensor fa
tors. Thus, we haveisomorphi
 line bundles
R′ ∼= R ⊗ Q (121)36



over Σ. Noti
e that the holonomy of the line bundle Q is
holQ(∂F ) = holT (∂F ) = exp

(

i

∫

F

ρ − ρ′

) (122)This shows
exp

(

i

∫

F

ρ′

)

· holR′(∂F ) = exp

(

i

∫

F

ρ′

)

· holQ(∂F ) · holR(∂F )

= exp

(

i

∫

F

ρ

)

· holR(∂F ) (123)so that De�nition 10 does not depend on the 
hoi
e of the trivialization. In[SSW05℄ we have dedu
ed from the equation curv(R̂) = −(ρ + σ∗ρ) that itis also independent of the 
hoi
e of the fundamental domain.Unoriented surfa
e holonomy, de�ned in terms of Jandl stru
tures onbundle gerbes, provides a 
andidate for the Wess-Zumino term in two-dimensional 
onformal �eld theory for unoriented worldsheets, as they ap-pear in type I string theories. Following the examples of M = SU(2) and
M = SO(3) we give in [SSW05℄, we reprodu
e results known from other ap-proa
hes. This indi
ates, that a bundle gerbe with Jandl stru
ture, togetherwith a metri
, is the ba
kground �eld for unoriented WZW models. In thissetup, Proposition 5 assures, that � just like for oriented WZW models �only the isomorphism 
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