UNIQUENESS OF E_{∞} STRUCTURES FOR CONNECTIVE COVERS

ANDREW BAKER AND BIRGIT RICHTER

ABSTRACT. We refine our earlier work on the existence and uniqueness of E_{∞} structures on K-theoretic spectra to show that at each prime p, the connective Adams summand ℓ has a unique structure as a commutative S-algebra. For the p-completion ℓ_p we show that the McClure-Staffeldt model for ℓ_p is equivalent as an E_{∞} ring spectrum to the connective cover of the periodic Adams summand L_p . We establish a Bousfield equivalence between the connective cover of the Lubin-Tate spectrum E_n and $BP\langle n \rangle$.

Introduction

The aim of this short note is to establish the uniqueness of E_{∞} structures on connective covers of certain periodic commutative S-algebras E, most prominently for the connective p-complete Adams summand. It is clear that the connective cover of an E_{∞} ring spectrum inherits a E_{∞} structure; there is even a functorial way of assigning a connective cover within the category of E_{∞} ring spectra [9, VII.3.2]. But it is not obvious in general that this E_{∞} multiplication is unique.

Our main concern is with examples in the vicinity of K-theory; we apply our uniqueness theorem to real and complex K-theory and their localizations and completions and to the Adams summand and its completion.

The existence and uniqueness of E_{∞} structures on the periodic spectra KU, KO and L was established in [5] by means of the obstruction theory for E_{∞} structures developed by Goerss-Hopkins [8] and Robinson [12]. Note however, that obstruction theoretic methods would fail in the connective cases. Let e be a commutative ring spectrum. If e satisfies some Künneth and universal coefficient properties [12, proposition 5.4], then the obstruction groups for E_{∞} multiplications consist of André-Quillen cohomology groups in the context of differential graded E_{∞} algebras applied to the graded commutative e_* -algebra e_*e . Besides problems with non-projectivity of e_*e over e_* , the algebra structures of ku_*ku, ko_*ko and $\ell_*\ell$ are far from being étale and therefore one would obtain non-trivial obstruction groups. One would then have to identify actual obstruction classes in these obstruction groups in order to establish the uniqueness of the given E_{∞} structure – but at the moment, this seems to be an intractable problem. Thus an alternative approach is called for.

In Theorem 1.3 we prove that a unique E_{∞} structure on E gives rise to a unique structure on the connective cover if E is obtained from some connective spectrum via a process of Bousfield localization. In particular, we identify the E_{∞} structure on the p-completed connective Adams summand ℓ_p provided by McClure and Staffeldt in [10] with the one that arises by taking the unique E_{∞} structure on the periodic Adams summand L = E(1) developed in [5] and taking its connective cover.

Our Theorem applies as well to the connective covers of the Lubin-Tate spectra E_n and we prove in section 2 that these spectra are Bousfield equivalent to the truncated Brown-Peterson spectra $BP\langle n\rangle$. Unlike other spectra that are Bousfield equivalent to $BP\langle n\rangle$, such as the connective cover of the completed Johnson-Wilson spectrum, $\widehat{E(n)}$, the connective cover of

²⁰⁰⁰ Mathematics Subject Classification. 55P43; 55N15.

We are grateful to John Rognes who suggested to exploit the functoriality of the connective cover functor to obtain uniqueness of E_{∞} structures. The first author thanks the Max-Planck Institute and the mathematics department in Bonn. The second author was partially supported by the *Strategisk Universitetsprogram i Ren Matematikk* (SUPREMA) of the Norwegian Research Council.

 E_n is calculationally convenient. So far, only $BP\langle 1 \rangle = \ell$ is known to have an E_{∞} structure, and we propose the connective cover of E_n as an E_{∞} approximation of $BP\langle n \rangle$.

1. E_{∞} STRUCTURES ON CONNECTIVE COVERS

Let us first make explicit what we mean by uniqueness of E_{∞} structures. We admit that this is an *ad hoc* notion, but it suffices for the examples we want to consider.

Definition 1.1. In the following, we will say that an E_{∞} structure on some homotopy commutative and associative ring spectrum E is unique if whenever there is a map of ring spectra $\varphi \colon E' \longrightarrow E$ from some other E_{∞} ring spectrum E' to E which induces an isomorphism on homotopy groups, then there is a morphism in the homotopy category of E_{∞} ring spectra $\varphi' \colon E' \longrightarrow E$ such that $\pi_*(\varphi) = \pi_*(\varphi')$.

If E and F are spectra whose E_{∞} structure was provided by the obstruction theory of Goerss and Hopkins [8], then we can compare our uniqueness notion with theirs. Note that examples of such E_{∞} ring spectra include E_n [8, 7.6], KO, KU, L and $\widehat{E(n)}$ [5]. In such cases the Hurewicz map

(1.1)
$$\operatorname{Hom}_{E_{\infty}}(E, F) \xrightarrow{h} \operatorname{Hom}_{F_{*}-\operatorname{alg}}(F_{*}E, F_{*})$$

is an isomorphism. Assume that we have a mere ring map φ as above between E and F. This gives rise to a map of F_* -algebras from F_*E to F_* by composing $F_*(\varphi)$ with the multiplication μ in F_*F . The left hand side in (1.1) denotes the derived space of E_∞ maps from E to F. In presence of a universal coefficient theorem we have $\operatorname{Hom}_{F_*-\hom}(F_*E,F_*)=[E,F]$, therefore the element $\mu \circ F_*(\varphi)$ gives rise to a homotopy class of maps of ring spectra $\widetilde{\varphi}$ from E to F. We can assume that we have functorial cofibrant replacement Q(-), hence we obtain a ring map $Q(\widetilde{\varphi})$ from Q(E) to Q(F). Via the isomorphism (1.1) this gives a map of E_∞ spectra from Q(E) to Q(F), Φ , therefore we obtain a zigzag

$$Q(E) \xrightarrow{\Phi} Q(F)$$

$$\sim \qquad \qquad \sim$$

$$E \xrightarrow{\varphi} F$$

of weak equivalences of E_{∞} spectra from E to F. Thus in such cases our definition agrees with the uniqueness notion that is natural in the Goerss-Hopkins setting.

For the rest of the paper we assume the following.

Assumption 1.2. Let E be a periodic commutative \mathbb{S} -algebra with periodicity element $v \in E_*$ of positive degree. We will view E as being obtained from a connective commutative \mathbb{S} -algebra e by Bousfield localization at $e[v^{-1}]$ in the category of e-modules. Furthermore we assume that the localization map induces an isomorphism between the homotopy groups of e and the homotopy groups of the connective cover of E.

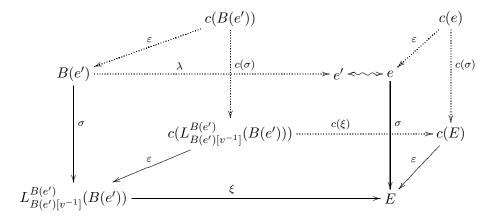
Let us denote the connective cover functor from [9, VII.3.2] by c(-). For any E_{∞} ring spectrum A, there is a weakly equivalent commutative S-algebra $B(\mathbb{P}, \mathbb{P}, \mathbb{L})(A)$, with equivalence

$$\lambda \colon B(\mathbb{P}, \mathbb{P}, \mathbb{L})(A) \xrightarrow{\simeq} A,$$

in the E_{∞} category [7, XII.1.4]. Here $B(\mathbb{P}, \mathbb{P}, \mathbb{L})$ is a bar construction with respect to the monad associated to the linear isometries operad L and the monad for commutative monoids in the category of S-algebras \mathbb{P} . We will denote the composite $B(\mathbb{P}, \mathbb{P}, \mathbb{L}) \circ c$ by \bar{c} . For a commutative S-algebra R and an R-module M, let $L_M^R(-)$ denote Bousfield localization at M in the category of R-modules and we denote the localization map by $\sigma \colon E \longrightarrow L_M^R(E)$ for any R-module E.

Theorem 1.3. Assume that we know that the E_{∞} structure on E is unique. Then the E_{∞} structure on c(E) is unique.

Proof. Each commutative S-algebra can be viewed as an E_{∞} ring spectrum. Let e' be a model for the connective cover c(E), i.e., e' is an E_{∞} ring spectrum with a map of ring spectra φ to c(E), such that $\pi_*(\varphi)$ is an isomorphism. Write $v \in e'_*$ for the isomorphic image of v under the inverse of $\pi_*(\varphi)$. As φ is a ring map it will induce a ring map on the corresponding Bousfield localizations. But as the E_{∞} structure on E is unique by assumption, this map can be replaced by an equivalent equivalence, ξ , of E_{∞} ring spectra. We abbreviate $B(\mathbb{P}, \mathbb{P}, \mathbb{L})(e')$ to B(e'). We consider the following diagram whose dotted lines provide a zigzag of E_{∞} equivalences and hence a map in the homotopy category of E_{∞} ring spectra.



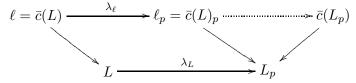
Real and complex K-theory, ko and ku, have E_{∞} structures obtained using algebraic K-theory models [9, VIII, §2]. The connective Adams summand ℓ has an E_{∞} structure because it is the connective cover of E(1). In the following we will refer to these models as the standard ones. The E_{∞} structures on KO, KU and E(1) are unique by [5, theorems 7.2, 6.2]. In all of these cases, the periodic versions are obtained by Bousfield localization [7, VIII.4.3].

Corollary 1.4. The E_{∞} structures on ko, ku and ℓ are unique.

In [10], McClure and Staffeldt construct a model for the p-completed connective Adams summand using algebraic K-theory of fields. Let $\tilde{\ell} = K(\mathbf{k}')$, the algebraic K-theory spectrum of $\mathbf{k}' = \bigcup_i \mathbb{F}_{q^{p^i}}$, where q is a prime which generates the p-adic units \mathbb{Z}_p^{\times} . Then the p-completion of $\tilde{\ell}$ is additively equivalent to the p-completed connective Adams summand ℓ_p [10, proposition 9.2]. For further details see also [2, §1]. Note that the p-completion ℓ_p inherits an E_{∞} structure from ℓ because p-completion is Bousfield localization with respect to $H\mathbb{F}_p$ and therefore preserves commutative S-algebras [7, VIII.2.2]. An a priori different model for the p-completion of the connective Adams summand can be obtained by taking the connective cover of the p-complete periodic version L = E(1). This is consistent with the statement of Corollary 1.4 because p-completion and Bousfield localization of ℓ in the category of ℓ -modules with respect to L are compatible in the following sense. Consider $\ell = \bar{c}(L)$ and its p-completion

$$\lambda_{\ell} \colon \ell \longrightarrow \ell_p = (\bar{c}(L))_p.$$

The p-completion map λ is functorial in the spectrum, therefore the following diagram of solid arrows commutes.

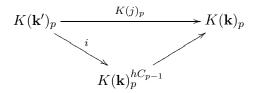


The universal property of the connective cover functor ensures that there is a map in the homotopy category of commutative S-algebras from ℓ_p to $\bar{c}(L_p)$ which is a weak equivalence. In the following we will not distinguish ℓ_p from $\bar{c}(L_p)$ anymore and denote this model simply by ℓ_p .

Proposition 1.5. The McClure-Staffeldt model $\tilde{\ell}_p$ of the p-complete connective Adams summand is equivalent as an E_{∞} ring spectrum to ℓ_p .

Remark 1.6. If E is a commutative \mathbb{S} -algebra with naive G-action for some group G, then neither the connective cover functor $\bar{c}(-)$ nor Bousfield localization of E has to commute with taking homotopy fixed points. As an example, consider connective complex K-theory ku with the conjugation action by C_2 . The homotopy fixed points ku^{hC_2} are not equivalent to ko, but on the periodic versions we obtain $KU^{hC_2} \simeq KO$.

of Proposition 1.5. Consider the algebraic K-theory model for connective complex K-theory, $ku = K(\mathbf{k})$, with $\mathbf{k} = \bigcup_i \mathbb{F}_{q^{p^i(p-1)}}$. The canonical inclusions $\mathbb{F}_{q^{p^i}} \hookrightarrow \mathbb{F}_{q^{p^i(p-1)}}$ assemble into a map $j \colon \mathbf{k}' \longrightarrow \mathbf{k}$. The Galois group C_{p-1} of \mathbf{k} over \mathbf{k}' acts on \mathbf{k} and induces an action on algebraic K-theory. As \mathbf{k}' is fixed under the action of C_{p-1} there is a factorization of $K(j)_p$ as



and i yields a weak equivalence of commutative S-algebras, where $K(\mathbf{k})_p^{hC_{p-1}}$ is a model for the connective p-complete Adams summand which is weakly equivalent to $\tilde{\ell}_p$ (see [2, §1]).

Consider the composition of the following chain of maps between commutative S-algebras:

$$K(\mathbf{k}')_p \xrightarrow{i} (K(\mathbf{k})_p)^{hC_{p-1}} \longrightarrow K(\mathbf{k})_p \longrightarrow KU_p.$$

The target KU_p is as well the target of the map $\bar{c}(KU_p) \longrightarrow KU_p$. Note that the universal property of $\bar{c}(-)$ yields a zigzag $\varsigma \colon K(\mathbf{k})_p \iff \bar{c}(KU_p)$ of equivalences between $K(\mathbf{k})_p$ and $\bar{c}(KU_p)$ in the category of commutative S-algebras.

As KU_p is the Bousfield localization of $K(\mathbf{k})_p$ in the category of $K(\mathbf{k})_p$ -modules with respect to the Bott element,

$$KU_p = L_{K(\mathbf{k})_p[\beta^{-1}]}^{K(\mathbf{k})_p} K(\mathbf{k})_p,$$

it inherits the C_{p-1} -action on $K(\mathbf{k})_p$. The functoriality of the connective cover lifts this action to an action on $\bar{c}(KU_p)$.

The connective cover functor is in fact a functor in the category of commutative S-algebras with multiplicative naive G-action for any group G. To see this we have to show that the map $\bar{c}(A) \longrightarrow A$ is G-equivariant if A is a commutative S-algebra with an underlying naive G-spectrum. The functor $B(\mathbb{P}, \mathbb{P}, \mathbb{L})$ does not cause any problems. Proving the claim for the functor c involves chasing the definition given in [9, VII, §3].

The prespectrum underlying c(A) applied to an inner product space V is defined as $T(A_0)(V)$, where A_0 is the zeroth space of the spectrum A and T is a certain bar construction involving suspensions and a monad consisting of the product of a fixed E_{∞} operad with the partial operad of little convex bodies \mathcal{K} . For a fixed V the suspension Σ^V and the operadic term \mathcal{K}_V are used. As the G-action is compatible with the E_{∞} and the additive structure of A, the evaluation map $T(A_0)(V) \longrightarrow A(V)$ is G-equivariant. For varying V, these maps constitute a map of prespectra and its adjoint on the level of spectra is $c(A) \longrightarrow A$. As the spectrification functor preserves G-equivariance, the claim follows. Therefore the resulting zigzag $\varsigma \colon K(\mathbf{k})_p \iff \bar{c}(KU_p)$ is C_{p-1} -equivariant and we obtain an induced zigzag on homotopy fixed points,

$$\varsigma^{hC_{p-1}} : (K(\mathbf{k})_p)^{hC_{p-1}} \iff (\bar{c}(KU_p))^{hC_{p-1}}.$$

As ς is an isomorphism in the homotopy category and is C_{p-1} -equivariant, $\varsigma^{hC_{p-1}}$ yields an isomorphism as well.

Goerss and Hopkins proved in [8] that the Lubin-Tate spectra E_n with

$$(E_n)_* = W(\mathbb{F}_{p^n})[[u_1, \dots, u_{n-1}]][u^{\pm 1}]$$
 with $|u_i| = 0$ and $|u| = -2$

possess unique E_{∞} structures for all primes p and all $n \ge 1$. The connective cover $c(E_n)$ has coefficients

$$(c(E_n))_* = W(\mathbb{F}_{p^n})[[u_1, \dots, u_{n-1}]][u^{-1}]$$
 with $|u_i| = 0$ and $|u| = -2$.

Of course $\bar{c}(E_n)[(u^{-1})^{-1}] \sim E_n$.

The spectra $BP\langle n\rangle$ can be built from the Brown-Peterson spectrum BP by killing all generators of the form v_m with m > n in $BP_* = \mathbb{Z}_{(p)}[v_1, v_2, \ldots]$. Using for instance Angeltveit's result [1, theorem 4.2] one can prove that the $BP\langle n\rangle$ are A_{∞} spectra and from [4] it is known that this S-algebra structure can be improved to an MU-algebra structure. On the other hand, Strickland showed in [13] that $BP\langle n\rangle$ with $n \geq 2$ is not a homotopy commutative MU-ring spectrum for p = 2. We offer $c(E_n)$ as a replacement for the p-completion $BP\langle n\rangle_p$ of $BP\langle n\rangle$.

We also need to recall that in the category of MU-modules, E(n) is the Bousfield localization of $BP\langle n\rangle$ with respect to $BP\langle n\rangle[v_n^{-1}]$, hence by [7] it inherits the structure of an MU-algebra and the natural map $BP\langle n\rangle \longrightarrow E(n)$ is a morphism of MU-algebras. Furthermore, the Bousfield localization of E(n) with respect to the MU-algebra K(n) is the I_n -adic completion $\widehat{E(n)}$, which was shown to be a commutative S-algebra in [5], and the natural map $\widehat{E(n)} \longrightarrow E_n$ is a morphism of commutative S-algebras, see for example [6, example 2.2.6]. Thus there is a morphism of ring spectra $BP\langle n\rangle \longrightarrow E_n$ which lifts to a map $BP\langle n\rangle \longrightarrow c(E_n)$.

Proposition 2.1. The spectra $BP\langle n \rangle$ and $BP\langle n \rangle_p$ are Bousfield equivalent to $c(E_n)$.

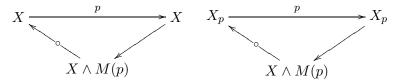
Proof. On coefficients, we obtain a ring homomorphism $(BP\langle n\rangle_p)_* \longrightarrow (c(E_n))_*$ which on homotopy is given by

$$v_k \longmapsto \begin{cases} u^{1-p^k} u_k & \text{for } 1 \leqslant k \leqslant n-1, \\ u^{1-p^n} & \text{for } k=n. \end{cases}$$

extending the natural inclusion of the p-adic integers $\mathbb{Z}_p = W(\mathbb{F}_p)$ into $W(\mathbb{F}_{p^n})$. This homomorphism is induced by a map of ring spectra.

Recall from [3] that E(n) and $\widehat{E(n)}$ are Bousfield equivalent as S-modules, and it follows that E_n is Bousfield equivalent to these since it is a finite wedge of suspensions of $\widehat{E(n)}$.

If X is a p-local spectrum with torsion free homotopy groups then its p-completion X_p is Bousfield equivalent to X, i.e., $\langle X_p \rangle = \langle X \rangle$. This follows using the cofibre triangles (in which M(p) is the mod p Moore spectrum and the circled arrow indicates a map of degree one)



together with the fact that the rationalization $p^{-1}X$ is a retract of $p^{-1}(X_p)$. In particular, we have $\langle BP\langle n\rangle_p\rangle = \langle BP\langle n\rangle\rangle$ and $\langle E(n)_p\rangle = \langle E(n)\rangle$.

From [11, theorem 2.1], the Bousfield class of $BP\langle n \rangle$ is

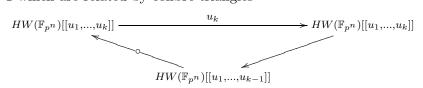
$$\langle BP\langle n\rangle\rangle = \langle E(n)\rangle \vee \langle H\mathbb{F}_p\rangle.$$

There is a cofibre triangle

$$\Sigma^{2}c(E_{n}) \xrightarrow{u^{-1}} c(E_{n})$$

$$HW(\mathbb{F}_{p^{n}})[[u_{1}, \dots, u_{n-1}]]$$

in which $HW(\mathbb{F}_{p^n})[[u_1,\ldots,u_{n-1}]]$ is the Eilenberg-MacLane spectrum. More generally we can construct a family of Eilenberg-MacLane spectra with $W(\mathbb{F}_{p^n})[[u_1,\ldots,u_k]]$ as coefficients for $k=0,\ldots,n-1$ which are related by cofibre triangles



such that for k=0 we obtain $HW(\mathbb{F}_{p^n})$. With the help of these cofibre sequences we can identify $\langle HW(\mathbb{F}_{p^n})[[u_1,\ldots,u_k]]\rangle$ with $\langle HW(\mathbb{F}_{p^n})[[u_1,\ldots,u_{k-1}]]\rangle \vee \langle HW(\mathbb{F}_{p^n})[[u_1,\ldots,u_k]][u_k^{-1}]\rangle$.

In general, if R is a commutative ring, then the ring of finite tailed Laurent series R((x)) is faithfully flat over R and therefore we have

$$\langle HR((x))\rangle = \langle HR\rangle.$$

Using this auxiliary fact we inductively get that

$$\langle HW(\mathbb{F}_{p^n})[[u_1,\ldots,u_k]]\rangle = \langle HW(\mathbb{F}_{p^n})[[u_1,\ldots,u_{k-1}]]\rangle.$$

This reduces the Bousfield class of $c(E_n)$ to $\langle E_n \rangle \vee \langle HW(\mathbb{F}_{p^n}) \rangle$. As $W(\mathbb{F}_{p^n})$ is a finitely generated free \mathbb{Z}_p -module and as $\langle H\mathbb{Z}_p \rangle = \langle H\mathbb{Q} \rangle \vee \langle H\mathbb{F}_p \rangle$ this leads to

$$\langle c(E_n) \rangle = \langle E(n) \vee H\mathbb{Q} \vee H\mathbb{F}_p \rangle$$

= $\langle E(n) \vee H\mathbb{F}_p \rangle = \langle BP\langle n \rangle \rangle.$

References

- [1] V. Angeltveit, A_{∞} -obstruction theory and the strict associativity of E/I, preprint (2004); http://hopf.math.purdue.edu/cgi-bin/generate?/Angeltveit/Ainfinity
- [2] C. Ausoni, Topological Hochschild homology of connective complex K-theory, Amer. J. Math. 127 (2005) 1261–1313.
- A. Baker, I_n-local Johnson-Wilson spectra and their Hopf algebroids, Documenta Math. 5 (2000) 351–364.
- [4] A. Baker & A. Jeanneret, Brave new Hopf algebroids and extensions of MU-algebras, Homology, Homotopy and Applications 4 (2002) 163–173.
- [5] A. Baker & B. Richter, Γ -cohomology of rings of numerical polynomials and E_{∞} structures on K-theory, Comment. Math. Helv. 80 (4) (2005) 691–723.
- [6] A. Baker & B. Richter, Realizability of algebraic Galois extensions by strictly commutative ring spectra, to appear in the *Transactions of the AMS*, preprint math.AT/0406314.
- [7] A. Elmendorf, I. Kriz, M. Mandell & J. P. May, Rings, modules, and algebras in stable homotopy theory, *Mathematical Surveys and Monographs* 47 (1997).
- [8] P. G. Goerss & M. J. Hopkins, Moduli spaces of commutative ring spectra, in 'Structured Ring Spectra', eds. A. Baker & B. Richter, London Math. Lecture Notes, 315, Cambridge University Press (2004) 151–200.
- [9] J. P. May, E_{∞} ring spaces and E_{∞} ring spectra, With contributions by F. Quinn, N. Ray & J. Tornehave, Lecture Notes in Mathematics 577 (1977).
- [10] J. E. McClure & R. E. Staffeldt, On the topological Hochschild homology of bu, I, Amer. J. Math. 115 (1993) 1–45.
- [11] D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984) 351–414.
- [12] A. Robinson, Gamma homology, Lie representations and E_{∞} multiplications, *Invent. Math.* 152 (2003) 331–348.
- [13] N. Strickland, Products on MU-modules, Trans. Amer. Math. Soc. 351 (1999) 2569–2606.

MATHEMATICS DEPARTMENT, UNIVERSITY OF GLASGOW, GLASGOW G12 8QW, SCOTLAND. E-mail address: a.baker@maths.gla.ac.uk

 URL : http://www.maths.gla.ac.uk/~ajb

FACHBEREICH MATHEMATIK DER UNIVERSITÄT HAMBURG, 20146 HAMBURG, GERMANY.

E-mail address: richter@math.uni-hamburg.de

URL: http://www.math.uni-hamburg.de/home/richter/