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Abstract
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bra, i.e. the group of isomorphism classes of invertible bimodules. The Rosenberg-Zelinsky

sequence describes a homomorphism from the group of algebra automorphisms to the Picard

group, which however is typically not surjective. We investigate under which conditions there

exists a Morita equivalent Frobenius algebra for which the corresponding homomorphism is

surjective. One motivation for our considerations is the orbifold construction in conformal

field theory.
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1 Introduction

In the study of associative algebras it is often advantageous to collect algebras into a category

whose morphisms are not algebra homomorphisms, but instead bimodules. One motivation for

this is provided by the following observation. Let k be a field and consider finite-dimensional

unital associative k-algebras. The condition on a k-linear map to be an algebra morphism is

obviously not linear. As a consequence the category of algebras and algebra homomorphisms has

the unpleasant feature of not being additive.

On the other hand, instead of an algebra homomorphism ϕ: A→B one can equivalently

consider the B-A-bimodule Bϕ which as a k-vector space coincides with B and whose left action

is given by the multiplication of B while the right action is application of ϕ composed with

multiplication in B. This is consistent with composition in the sense that given another algebra

homomorphism ψ: B→C there is an isomorphism Cψ⊗B Bϕ
∼=Cψ◦ϕ of C-A-bimodules. It is then

natural not to restrict one’s attention to such special bimodules, but to allow all B-A-bimodules as

morphisms from A to B [Be, sect. 5.7]. Of course, as bimodules come with their own morphisms,

one then actually deals with the structure of a bicategory. The advantage is that the 1-morphism

category A→B, i.e. the category of B-A-bimodules, is additive and even abelian.

Taking bimodules as morphisms has further interesting consequences. First of all, the concept

of isomorphy of two algebras A and B is now replaced by Morita equivalence, which requires the

existence of an invertible A-B-bimodule. Indeed, in applications involving associative algebras

one often finds that not only isomorphic but also Morita equivalent algebras can be used for a

given purpose. The classical example is the equivalence of the category of left (or right) modules

over Morita equivalent algebras. Another illustration is the Morita equivalence between invariant

subalgebras and crossed products, see e.g. [Ri]. Examples in the realm of mathematical physics

include the observations that matrix theories on Morita equivalent noncommutative tori are phys-

ically equivalent [Sc], and that Morita equivalent symmetric special Frobenius algebras in modular

tensor categories describe equivalent rational conformal field theories [FFRS1, FFRS3].

As a second consequence, instead of the automorphism group Aut(A) one now deals with

the invertible A-bimodules. The isomorphism classes of these particular bimodules form the

Picard group Pic(A-Bimod) of A-bimodules. While Morita equivalent algebras may have different

automorphism groups, the corresponding Picard groups are isomorphic. One finds that for any

algebra A the groups Aut(A) and Pic(A-Bimod) are related by the exact sequence

0 −→ Inn(A) −→ Aut(A)
ΨA−→ Pic(A-Bimod) , (1.1)

which is a variant of the Rosenberg-Zelinsky [RZ, KO] sequence. Here Inn(A) denotes the inner

automorphisms of A, and the group homomorphism ΨA is given by assigning to an automorphism

ω of A the bimodule Aω obtained from A by twisting the right action of A on itself by ω. In other

words, Pic(A-Bimod) is the home for the obstruction to a Skolem-Noether theorem.

It should be noticed that the group homomorphism ΨA in (1.1) is not necessarily a surjection.

But for practical purposes in concrete applications it can be of interest to have an explicit realisa-
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tion of the Picard group in terms of automorphisms of the algebra available. This leads naturally

to the following questions:

• Does there exist another algebra A′, Morita equivalent to A, such that the group homomorphism

ΨA′ : Aut(A′)→ Pic(A′-Bimod) in (1.1) is surjective?

• And, once such an algebra A′ has been constructed: Does this surjection admit a section, i.e.

can the group Pic(A-Bimod) be identified with a subgroup of the automorphism group of the

Morita equivalent algebra A′?

We will investigate these questions in a more general setting, namely we consider algebras

in k-linear monoidal categories more general than the one of k-vector spaces. Like many other

results valid for vector spaces, also the sequence (1.1) continues to hold in this setting, see [VZ,

prop. 3.14] and [FRS3, prop. 7].

We start in section 2 by collecting some aspects of algebras and Morita equivalence in monoidal

categories and review the definition of invertible objects and of the Picard category. Section 3

collects information about fixed algebras under some subgroup of algebra automorphisms. In

section 4 we answer the questions raised above for the special case that the algebra A is the tensor

unit of the monoidal category D under consideration. As recalled in section 2, the categorical

dimension provides a character on the Picard group with values in k
×. The main result of section

4, Proposition 4.3, supplies, for any finite subgroup H of the Picard group on which this character

is trivial, an algebra A′ that is Morita equivalent to the tensor unit such that the elements of

H can be identified with automorphisms of A. Theorem 4.12, in turn, gives a characterisation

of group homomorphisms H→ Aut(A) in terms of cochains on H . In this case the subgroup H

is not only required to have trivial character, but in addition a three-cocycle on Pic(A-Bimod)

must be trivial when restricted to H . The relevant three-cocycle is obtained from the associativity

constraint of D, see eq. (4.22) below. We also compute the fixed algebra under the corresponding

subgroup of automorphisms. In section 5 these results are generalised to algebras not necessarily

Morita equivalent to the tensor unit, providing an affirmative answer to the above questions also

in the general case. However, similar to the A=1 case, one needs to restrict oneself to a finite

subgroup H of Pic(A-Bimod) such that the corresponding invertible bimodules have categorical

dimension equal to 1 in A-Bimod and for which the associativity constraint of A-Bimod is trivial.

This is stated in Theorem 5.6, which is the main result of this paper.

Let us also briefly mention a motivation of our considerations which comes from conformal

field theory. A consistent rational conformal field theory (on oriented surfaces with possibly non-

empty boundary) gives rise to a Morita class of algebras in a modular tensor category [FRS1], and

choosing a particular representative A in this Morita class corresponds to selecting a particular

‘boundary condition’ for the CFT. It turns out that the Picard group Pic(A-Bimod) – rather than

just the automorphism group of A – describes symmetries of this CFT [FFRS3]. For practical

purposes it can be useful to choose the representative A of the Morita class such that a given

subgroup H of the symmetries is realised as automorphisms of A. Theorem 5.6 provides us with
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conditions for when such a representative exists. Finally, the fixed algebra under this subgroup of

automorphisms is related to the CFT obtained by ‘orbifolding’ the original CFT by the symmetry

H .
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2 Algebras in monoidal categories

In this section we collect information about a few basic structures that will be needed below. Let

D be an abelian category enriched over the category Vectk of finite-dimensional vector spaces over

a field k. An object X of D is called simple iff it has no proper subobjects. An endomorphism of a

simple object X is either zero or an isomorphism (Schur’s lemma), and hence the endomorphism

space Hom(X,X) is a finite-dimensional division algebra over k. An object X of D is called

absolutely simple iff Hom(X,X) =k idX . If k is algebraically closed, then every simple object is

absolutely simple; the converse holds e.g. if D is semisimple.

When D is monoidal, then without loss of generality we assume it to be strict. More specifically,

for the rest of this paper we make the following assumption.

Convention 2.1. (D,⊗, 1) is an abelian strict monoidal category with simple and absolutely

simple tensor unit 1, and enriched over Vectk for a field k of characteristic zero.

In particular, Hom(1, 1) = k id1, which we identify with k.

Definition 2.2. A right duality on D assigns to each object X of D an object X∨, called the right

dual object of X, and morphisms bX ∈ Hom(1, X ⊗X∨) and dX ∈ Hom(X∨⊗X, 1) such that

(idX ⊗ dX) ◦ (bX ⊗ idX) = idX and (dX ⊗ idX∨) ◦ (idX∨ ⊗ bX) = idX∨ . (2.1)

A left duality on D assigns to each object X of D a left dual object ∨X together with morphisms

b̃X ∈ Hom(1, ∨X ⊗X) and d̃X ∈ Hom(X ⊗ ∨X, 1) such that

(d̃X ⊗ idX) ◦ (idX ⊗ b̃X) = idX and (id∨X ⊗ d̃X) ◦ (b̃X ⊗ id∨X) = id∨X . (2.2)

Note that 1∨
∼=
→1∨⊗1

d1→ 1 is nonzero; since by assumption 1 is simple, we thus have 1∨∼= 1.

In the same way one sees that ∨1∼= 1. Further, given a right duality, the right dual morphism to

a morphism f ∈ Hom(X, Y ) is the morphism

f∨ := (dY ⊗ idX∨) ◦ (idY ∨ ⊗ f ⊗ idX∨) ◦ (idY ∨ ⊗ bX) ∈ Hom(Y ∨, X∨) . (2.3)
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Left dual morphisms are defined analogously. Hereby each duality furnishes a functor from D to

Dop. Further, the objects (X ⊗Y )∨ and Y ∨⊗X∨ are isomorphic.

Definition 2.3. A sovereign 1 category is a monoidal category that is equipped with a left and

a right duality which coincide as functors, i.e. X∨ = ∨X for every object X and f∨ = ∨f for every

morphism f .

In a sovereign category the left and right traces of an endomorphism f ∈ Hom(X,X) are the

scalars (remember that we identify End(1) with k)

trl(f) := dX ◦ (idX∨ ⊗ f) ◦ b̃X and trr(f) := d̃X ◦ (f ⊗ idX∨) ◦ bX , (2.4)

respectively, and the left and right dimensions of an object X are the scalars

diml(X) := trl(idX) , dimr(X) := trr(idX) . (2.5)

Both traces are cyclic, and dimensions are constant on isomorphism classes, multiplicative under

the tensor product and additive under direct sums. Further, one has trl(f) = trr(f
∨), and using

the fact that in a sovereign category each object X is isomorphic to its double dual X∨∨ it follows

that the right dimension of the dual object equals the left dimension of the object itself,

diml(X) = dimr(X
∨) , (2.6)

and vice versa. In particular, any object that is isomorphic to its dual, X ∼=X∨, has equal left

and right dimension, which we then denote by dim(X). The tensor unit 1 is isomorphic to its

dual and has dimension dim(1) = 1.

Next we collect some information about algebra objects in monoidal categories. Recall that a

(unital, associative) algebra in D is a triple (A,m, η) consisting of an object A of D and morphisms

m∈ Hom(A⊗A,A) and η∈ Hom(1, A), such that

m ◦ (idA ⊗m) = m ◦ (m⊗ idA) and m ◦ (idA ⊗ η) = idA = m ◦ (η⊗ idA) . (2.7)

Dually, a (counital, coassociative) coalgebra is a triple (C,∆, ε) with C an object of D and mor-

phisms ∆∈ Hom(C,C⊗C) and ε∈ Hom(C, 1), such that

(∆⊗ idC) ◦∆ = (idC ⊗∆) ◦∆ and (idC ⊗ ε) ◦∆ = idC = (ε⊗ idC) ◦∆ . (2.8)

The following concepts are also well known, see e.g. [Mü, FRS1].

Definition 2.4.

(i) A Frobenius algebra in D is a quintuple (A,m, η,∆, ε), such that (A,m, η) is an algebra in

D, (A,∆, ε) is a coalgebra and the compatibility relation

(idA ⊗m) ◦ (∆⊗ idA) = ∆ ◦m = (m⊗ idA) ◦ (idA ⊗∆) (2.9)

between the algebra and coalgebra structures is satisfied.

1 What we call sovereign is sometimes referred to as strictly sovereign, compare [Bi, Br].
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(ii) A Frobenius algebra A is called special iff m ◦∆ =βA idA and ε ◦ η= β1 id1 with β1, βA ∈k
×.

A is called normalised special iff A is special with βA =1.

(iii) If D is in addition sovereign, an algebra A in D is called symmetric iff the two morphisms

Φ1 := ((ε ◦m)⊗ idA∨) ◦ (idA ⊗ bA) and Φ2 := (idA∨ ⊗ (ε ◦m)) ◦ (b̃A⊗ idA) (2.10)

in Hom(A,A∨) are equal.

For (A,mA, ηA) and (B,mB, ηB) algebras in D, a morphism f : A→B is called a (unital)

morphism of algebras iff f ◦mA =mB ◦ (f ⊗ f) in Hom(A⊗A,B) and f ◦ ηA = ηB. Similarly one

defines (counital) morphisms of coalgebras and morphisms of Frobenius algebras. An algebra S

is called a subalgebra of A iff there is a monic i: S→A that is a morphism of algebras.

A (unital) left A-module is a pair (M, ρ) consisting of an object M in D and a morphism

ρ∈ Hom(A⊗M,M), such that

ρ ◦ (idA ⊗ ρ) = ρ ◦ (m⊗ idM) and ρ ◦ (η⊗ idM) = idM . (2.11)

Similarly one defines right A-modules. An A-A-bimodule (or A-bimodule for short) is a triple

(M, ρ, ̺) such that (M, ρ) is a left A-module, (M, ̺) a right A-module, and the left and right

actions of A on M commute. Analogously, A-B-bimodules carry a left action of the algebra A

and a commuting right action of the algebra B.

For (M, ρM ) and (N, ρN ) left A-modules, a morphism f ∈ Hom(M,N) is said to be a morphism

of left A-modules (or briefly, a module morphism) iff f ◦ ρM = ρN ◦ (idA ⊗ f). Analogously one

defines morphisms of A-B-bimodules. Thereby one obtains a category, with objects the A-B-bi-

modules and morphisms the A-B-bimodule morphisms. We denote this category by DA|B and the

set of bimodule morphisms from M to N by HomA|B(M,N). The Frobenius property (2.9) means

that the coproduct ∆ is a morphism of A-bimodules.

Definition 2.5. An algebra is called (absolutely) simple iff it is (absolutely) simple as a bimodule

over itself. Thus A is absolutely simple iff HomA|A(A,A) = k idA.

Remark 2.6. Since D is abelian, one can define a tensor product of A-bimodules. This turns the

bimodule category DA|A into a monoidal category. See the appendix for more detail on this and

especially on tensor products over special Frobenius algebras.

Remark 2.7. If A is a (not necessarily symmetric) Frobenius algebra in a sovereign category,

then the morphisms Φ1 and Φ2 in (2.10) are invertible, with inverses

Φ−1
1 = (dA⊗ idA) ◦ (idA∨ ⊗ (∆ ◦ η)) and Φ−1

2 = (idA ⊗ d̃A) ◦ ((∆ ◦ η)⊗ idA∨) , (2.12)

respectively. So if A is Frobenius, A and A∨ are isomorphic, hence the left and right dimension

of A are equal. Accordingly we will write dim(A) for the dimension of a Frobenius algebra in the

sequel.
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Further one can show (see [FRS1], section 3) that for any symmetric special Frobenius algebra

A the relation βA β1 = dim(A) holds. In particular, dim(A) 6=0. Furthermore, without loss of

generality one can assume that the coproduct is normalised such that β1 =dim(A) and βA =1,

i.e. A is normalised special.

Lemma 2.8. Let (A,m, η) be an algebra with dimk Hom(1, A) = 1. Then A is an absolutely simple

algebra.

Proof. By Proposition 4.7 of [FS] one has Hom(1, A)∼= HomA(A,A). The result thus follows from

1≤ dimk HomA|A(A,A)≤ dimk HomA(A,A).

Remark 2.9. Obviously the tensor unit 1 is a symmetric special Frobenius algebra. One also

easily verifies that for any object X in a sovereign category the object X ⊗X∨ with structural

morphisms

m := idX ⊗ dX ⊗ idX∨ , η := bX , ∆ := idX ⊗ b̃X ⊗ idX∨ , ε := d̃X (2.13)

provides an example of a symmetric Frobenius algebra. If the object X has nonzero left and right

dimensions, then this algebra is also special, with

βX ⊗X∨ = diml(X) , β1 = dimr(X) . (2.14)

The object X is naturally a left module overX ⊗X∨, with representation morphism ρ= idX ⊗ dX ,

while the object X∨ is a right module over X ⊗X∨ with ̺= dX ⊗ idX∨ .

Next we recall the concept of Morita equivalence of algebras (for details see e.g. [Pa, VZ]).

Definition 2.10. A Morita context in D is a sextuple (A,B, P,Q, f, g), where A and B are alge-

bras in D, P ≡ APB is an A-B-bimodule andQ≡ BQA is a B-A-bimodule, such that f : P ⊗B Q
∼=
→A

and g: Q⊗A P
∼=
→B are isomorphisms of A- and B-bimodules, respectively, and the two diagrams

(P⊗BQ)⊗AP
f ⊗ id //

∼=
��

A⊗AP

∼=

��

P⊗B(Q⊗AP )

id ⊗ g

��
P⊗BB ∼=

// P

(Q⊗AP )⊗BQ
g⊗ id //

∼=
��

B⊗BQ

∼=

��

Q⊗A(P⊗BQ)

id ⊗ f

��
Q⊗AA ∼=

// Q

(2.15)

commute.

If such a Morita context exists, we call the algebras A and B Morita equivalent. In the sequel we

will suppress the isomorphisms f and g and write a Morita context as A
P,Q
←→B.

Lemma 2.11. Let D be in addition sovereign and let U be an object of D with nonzero left and

right dimension. Then the symmetric special Frobenius algebra U ⊗U∨ is Morita equivalent to the

tensor unit, with Morita context 1
U∨,U
←→U ⊗U∨.

7



Proof. We only need to show that U∨⊗U⊗U∨ U ∼= 1. Since U ⊗U∨ is symmetric special Frobenius,

the idempotent PU∨,U for the tensor product over U ⊗U∨, as described in appendix A, is well

defined. One calculates that PU∨,U =(diml(U))−1 b̃U ◦ dU . This implies that the tensor unit is

indeed isomorphic to the image of PU∨,U . Finally, commutativity of the diagrams (2.15) follows

using the techniques of projectors as presented in the appendix.

Definition 2.12. An object X in a monoidal category is called invertible iff there exists an object

X ′ such that X ⊗X ′ ∼= 1 ∼= X ′⊗X.

If the category D has small skeleton, then the set of isomorphism classes of invertible objects

forms a group under the tensor product. This group is called the Picard group Pic(D) of D.

Lemma 2.13. Let D be in addition sovereign.

(i) Every invertible object of D is simple.

(ii) An object X in D is invertible iff X∨ is invertible.

(iii) An object X in D is invertible iff the morphisms bX and b̃X are invertible.

(iv) Every invertible object of D is absolutely simple.

Proof. (i) Let X ⊗X ′ ∼= X ′⊗X ∼= 1. Assume that e: U→X is monic for some object U . Then

idX′ ⊗ e: X ′⊗U→X ′⊗ X is monic. Indeed, if (idX′ ⊗ e) ◦ f =(idX′ ⊗ e) ◦ g for some morphisms f

and g, then by applying the duality morphism dX′ we obtain e ◦ (dX′ ⊗ idU) ◦ (idX′∨ ⊗ f) = e ◦ (dX′⊗

idU) ◦ (idX′∨ ⊗ g). As e is monic this amounts to (dX′ ⊗ idU) ◦ (idX′∨ ⊗ f) = (dX′ ⊗ idU)◦(idX′∨ ⊗ g),

which by applying bX′ and using the duality property of dX′ and bX′ shows that f = g. Thus

idX′ ⊗ e: X ′⊗U→X ′⊗X ∼= 1 is monic. As 1 is required to be simple, it is thus an isomorphism.

Then idX ⊗ idX′ ⊗ e is an isomorphism as well. By assumption there exists an isomorphism

b: 1→X ⊗X ′. With the help of b we can write e=(b−1⊗ idX) ◦ (idX ⊗ idX′ ⊗ e) ◦ (b⊗ idU).

Thus e is a composition of isomorphisms, and hence an isomorphism. In summary, e:U→X being

monic implies that e is an isomorphism. Hence X is simple.

(ii) Note that X∨⊗X ′∨ ∼= (X ′⊗X)∨ ∼= 1∨ ∼= 1, and similarly X ′∨⊗X∨ ∼= 1.

(iii) Since by part (ii) X∨ is invertible, so is X ⊗X∨. By part (i), X ⊗X∨ is therefore simple

and bX : 1→X ⊗X∨ is a nonzero morphism between simple objects. By Schur’s lemma it is an

isomorphism. The argument for b̃X proceeds along the same lines, and the converse statement

follows by definition.

(iv) The duality morphisms give an isomorphism Hom(X,X)∼= Hom(X ⊗X∨, 1). From parts (i)

and (ii) we know that X ⊗X∨∼= 1, and so Hom(X,X)∼= Hom(1, 1). That X is absolutely simple

now follows because 1 is absolutely simple by assumption.

Lemma 2.13 implies that for an invertible object X one has

diml(X) dimr(X) = diml(X) diml(X
∨) = diml(X⊗X

∨) = diml(1) = 1 . (2.16)

8



With the help of this equality one checks that the inverse of bX is given by diml(X) d̃X,

diml(X) d̃X ◦ bX = diml(X) dimr(X) id1 = id1 . (2.17)

Analogously we have dimr(X) dX ◦ b̃X = id1; thus in particular the left and right dimensions of an

invertible object X are nonzero. Further we have

diml(X) bX ◦ d̃X = idX⊗X∨ and dimr(X) b̃X ◦ dX = idX∨⊗X . (2.18)

We denote the object representing an isomorphism class g in Pic(D) by Lg, i.e. [Lg] = g ∈ Pic(D).

Then Lg ⊗Lh∼=Lgh. As the representative of the unit class 1 we take the tensor unit, L1 =1.

Lemma 2.14. Let D be in addition sovereign and H a subgroup of Pic(D).

(i) The mappings h 7→ diml(Lh) and h 7→ dimr(Lh) are characters on H.

(ii) If H is finite, then diml|r(
⊕

h∈H Lh) is either 0 or |H|. It is equal to |H| iff diml|r(Lh) = 1

for all h∈H.

Proof. Claim (i) follows directly from the multiplicativity of the left and right dimension under

the tensor product and from the fact that the dimension only depends on the isomorphism class

of an object.

Because of diml|r(
⊕

h∈H Lh) =
∑

h∈H diml|r(Lh), part (ii) is a consequence of the orthogonality of

characters.

Definition 2.15. The Picard category Pic(D) of D is the full subcategory of D whose objects

are direct sums of invertible objects of D.

3 Fixed algebras

We introduce the notion of a fixed algebra under a group of algebra automorphisms and establish

some basic results on fixed algebras.

Definition 3.1. Let (A,m, η) be an algebra in D and H ≤ Aut(A) a group of (unital) automor-

phisms of A. Then a fixed algebra under the action of H is a pair (AH , j), where AH is an object of

D and j: AH→A is a monic with α ◦ j= j for all α∈H , such that the following universal property

is fulfilled: For every object B in D and morphism f : B→A with α ◦ f = f for all α∈H , there is

a unique morphism f̄ : B→AH such that j ◦ f̄ = f .

The object AH defined this way is unique up to isomorphism. The following result justifies

using the term ‘fixed algebra’, rather than ‘fixed object’.

Lemma 3.2. Given A, H and (AH , j) as in definition 3.1, there exists a unique algebra structure

on the object AH such that the inclusion j: AH→A is a morphism of algebras.
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Proof. For arbitrary α∈H consider the diagrams

AH
j // A

α // A AH
j // A

α // A

AH ⊗AH

m ◦ (j⊗j)

OO

and

1

η

OO

(3.1)

Since α is a morphism of algebras, we have α ◦m ◦ (j⊗ j) =m ◦ ((α ◦ j)⊗ (α ◦ j)) =m ◦ (j⊗ j);

as this holds for all α∈H , the universal property of the fixed algebra yields a unique product

morphism µ: AH ⊗AH→AH such that j ◦µ=m ◦ (j⊗ j). By associativity of A we have

j ◦µ ◦ (µ⊗ idAH) = m ◦ (m⊗ idA) ◦ (j⊗ j⊗ j)

= m ◦ (idA ⊗m) ◦ (j⊗ j⊗ j) = j ◦µ ◦ (idAH ⊗µ) .
(3.2)

Since j is monic, this implies associativity of the product morphism µ. Similarly, applying the

universal property of (AH , j) on η gives a morphism η′: 1→AH that has the properties of a unit

for the product µ. So (AH , µ, η′) is an associative algebra with unit.

We proceed to show that fixed algebras under finite groups of automorphisms always exist

in the situation studied here. Let H ≤ Aut(A) be a finite subgroup of the group of algebra

automorphisms of A. Set

P = PH :=
1

|H|

∑

α∈H

α ∈ End(A) . (3.3)

Then P ◦P = 1
|H|2

∑

α,β∈H α ◦β= 1
|H|2

∑

α,β′∈H β
′ = 1

|H|

∑

β′∈H β
′ =P , i.e. P is an idempotent. Anal-

ogously one shows that α ◦P =P for every α∈H . Further, since D is abelian, we can write

P = e ◦ r with e monic and r epi. Denote the image of P ≡PH by AP , so that e: AP →A and

r ◦ e= idA
P
.

Lemma 3.3. The pair (AP , e) satisfies the universal property of the fixed algebra.

Proof. From r ◦ e= idAP
we see that α ◦ e=α ◦ e ◦ r ◦ e=α ◦P ◦ e = P ◦ e = e for all α∈H . For

B an object of D and f : B→A a morphism with α ◦ f = f for all α∈H , set f̄ := r ◦ f . Then

e ◦ f̄ = e ◦ r ◦ f =P ◦ f = 1
|H|

∑

α∈H α ◦ f = 1
|H|

∑

α∈H f = f . Further, if f ′ is another morphism sat-

isfying e ◦ f ′ = f , then e ◦ f ′ = e ◦ f̄ and, since e is monic, f̄ = f ′, so f̄ is unique. Hence the object

AP satisfies the universal property of the fixed algebra AH .

We would like to express the structural morphisms of the fixed algebra through e and r. To

this end we introduce a candidate product mP and candidate unit ηP on AP : we set

mP := r ◦m ◦ (e⊗ e) and ηP := r ◦ η . (3.4)

10



Note that e is a morphism of unital algebras:

e ◦mP = e ◦ r ◦m ◦ (e⊗ e) = P ◦m ◦ (e⊗ e) = 1
|H|

∑

α∈H α ◦m ◦ (e⊗ e)

= 1
|H|

∑

α∈H m ◦ ((α ◦ e)⊗ (α ◦ e)) = 1
|H|

∑

α∈H m ◦ (e⊗ e) = m ◦ (e⊗ e) ,

e ◦ ηP = e ◦ r ◦ η = P ◦ η = 1
|H|

∑

α∈H α ◦ η = 1
|H|

∑

α∈H η = η .

(3.5)

Lemma 3.4. The algebra (AP , mP , ηP ) is isomorphic to the algebra structure that AP inherits as

a fixed algebra.

Proof. An easy calculation shows that mP is associative and ηP is a unit for mP ; thus (AP , mP , ηP )

is an algebra. Moreover, since according to lemma 3.2 there is a unique algebra structure on AH

such that the inclusion into A is a morphism of algebras, it follows that AP and AH are isomorphic

as algebras.

In the following discussion the term fixed algebra will always refer to the algebra AP .

Lemma 3.5. With P = 1
|H|

∑

α∈H α= e ◦ r as in (3.3), we have the following equalities of mor-

phisms:

r ◦m ◦ (e⊗P ) = r ◦m ◦ (e⊗ idA) , r ◦m ◦ (P ⊗ e) = r ◦m ◦ (idA ⊗ e) and

P ◦m ◦ (e⊗ e) = m ◦ (e⊗ e) .
(3.6)

Proof. Indeed, making use of r ◦α= r and α ◦ e= e for all α∈H , we have

r ◦m ◦ (e⊗P ) =
1

|H|

∑

α∈H

r ◦m ◦ (e⊗α) =
1

|H|

∑

α∈H

r ◦ α ◦m ◦ ((α−1 ◦ e)⊗ idA)

=
1

|H|

∑

α∈H

r ◦m ◦ (e⊗ idA) = r ◦m ◦ (e⊗ idA) .

(3.7)

The other two equalities are established analogously.

Remark 3.6. With the help of the graphical calculus for morphisms in strict monoidal categories

(see [JS, Ka, Ma, BK], and e.g. Appendix A of [FFRS2] for the graphical representation of the

structural morphisms of Frobenius algebras in such categories), the equalities in Lemma 3.5 can

be visualised as follows:

AP AP

AP

e P

r

=

AP AP

AP

e

r

AP AP

AP

P e

r

=

AP AP

AP

e

r

AP AP

AP

e e

P

=

AP AP

AP

e e

(3.8)

If A is a Frobenius algebra, it is understood that Aut(A) consists of all algebra automorphisms of
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A which are at the same time also coalgebra automorphisms. Then for a Frobenius algebra A the

idempotent P can also be omitted in the following situations, which we describe again pictorially:

AP AP

AP

r P

e

AP AP

AP

P r

e

AP AP

AP

r r

P

(3.9)

Proposition 3.7. Let A be a Frobenius algebra in D and H ≤ Aut(A) a finite group of automor-

phisms of A.

(i) AP is a Frobenius algebra, and the embedding e: AP →A is a morphism of algebras while the

restriction r: A→AP is a morphism of coalgebras.

(ii) If the category D is sovereign and A is symmetric, then AP is symmetric, too.

(iii) If the category D is sovereign, A is symmetric special and AP is an absolutely simple algebra

and has nonzero left (equivalently right, cf. remark 2.7) dimension, then AP is special.

Proof. (i) The algebra structure on AP has already been defined in (3.4), and according to (3.5)

e is a morphism of algebras. Denoting the coproduct on A by ∆ and the counit by ε, we further

set ∆P := (r⊗ r) ◦∆◦ e and εP := ε ◦ e. Similarly to the calculation in (3.5) one verifies that r is a

morphism of coalgebras, and that ∆P is coassociative and εP is a counit. Regarding the Frobenius

property, we give a graphical proof of one of the equalities that must be satisfied:

∆P ◦mP =

AP AP

AP AP

r r

P

e e

=

AP AP

AP AP

r r

e e

=

AP AP

AP AP

r r

e e

=

AP AP

AP AP

r r

P

e e

= (mP ⊗ idA
P
) ◦ (idA

P
⊗∆P ) . (3.10)

Here it is used that according to remark 3.6 we are allowed to remove and insert idempotents P ,

and then the Frobenius property of A is invoked. The other half of the Frobenius property is seen

analogously.

(ii) The following chain of equalities shows that AP is symmetric:

A∨
P

AP

r

e

e e

=

A∨
P

AP

e

e∨
=

A∨
P

AP

e∨

e

=

A∨
P

AP

r

e

e e

(3.11)
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Here the notations

bX =

X X∨

and b̃X =

X∨ X

(3.12)

are used for the duality morphisms bX and b̃X , respectively, of an object X. The morphisms dX

and d̃X are drawn in a similar way.

(iii) We have εP ◦ ηP = ε ◦ e ◦ r ◦ η= ε ◦ η, which is nonzero by specialness of A. As AP is asso-

ciative, mP is a morphism of AP -bimodules. The Frobenius property ensures that ∆P is also a

morphism of bimodules. Hence mP ◦∆P is a morphism of bimodules, and by absolute simplicity

of AP it is a multiple of the identity. Moreover, mP ◦∆P is not zero: we have

εP ◦mP ◦∆P ◦ ηP = ε ◦m ◦ (idA ⊗P ) ◦∆ ◦ η (3.13)

which, as A is symmetric, is equal to trl(P ) =diml(AP ) 6=0. We conclude that mP ◦∆P 6= 0. Hence

AP is special.

Remark 3.8. In the above discussion the categoryD is assumed to be abelian, but this assumption

can be relaxed. Of the properties of an abelian category we only used that the morphism sets

are abelian groups, that composition is bilinear, and that the relevant idempotents factorise in a

monic and an epi, i.e. that D is idempotent complete. In addition we assumed that morphisms

sets are finite-dimensional k-vector spaces.

From eq. (3.3) onwards, and in particular in proposition 3.7, it is in addition used that D is

enriched over Vectk. If this is not the case, one can no longer, in general, define an idempotent P

through 1
|H|

∑

α∈H α, and there need not exist a coproduct on the fixed algebra AH , even if there

is one on A.

4 Algebras in the Morita class of the tensor unit

Recall that according to our convention 2.1 (D,⊗, 1) is abelian strict monoidal, with simple and

absolutely simple tensor unit and enriched over Vectk with k of characteristic zero. From now on

we further assume that D is skeletally small and sovereign.

We now associate to an algebra (A,m, η) in D a specific subgroup of its automorphism group –

the inner automorphisms – which are defined as follows. The space Hom(1, A) becomes a k-algebra

by defining the product as f ∗ g :=m ◦ (f ⊗ g) for f, g ∈ Hom(1, A). The morphism η∈ Hom(1, A)

is a unit for this product. We call a morphism f in Hom(1, A) invertible iff there exists a morphism

f− ∈ Hom(1, A) such that f ∗ f− = η= f− ∗ f . Now the morphism

ωf := m ◦ (m⊗ f−) ◦ (f ⊗ idA) ∈ Hom(A,A) (4.1)

is easily seen to be an algebra automorphism. The automorphisms of this form are called inner

automorphisms; they form a normal subgroup Inn(A)≤ Aut(A) as is seen below.
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Definition 4.1. For A an algebra in D and α, β ∈ Aut(A), the A-bimodule αAβ = (A, ρα, ̺β) is

the bimodule which has A as underlying object and left and right actions of A given by

ρα := m ◦ (α⊗ idA) and ̺β := m ◦ (idA ⊗β) , (4.2)

respectively. These left and right actions of A are said to be twisted by α and β, respectively, and

αAβ is called a twisted bimodule.

That this indeed defines an A-bimodule structure on the object A is easily checked with the

help of the multiplicativity and unitality of α and β. Further, as shown in [VZ, FRS3], the

bimodules αAβ are invertible. Denote the isomorphism class of a bimodule X by [X]. By setting

ΨA(α) := [idAα] (4.3)

one obtains an exact sequence

0 −→ Inn(A) −→ Aut(A)
ΨA−→ Pic(DA|A) (4.4)

of groups. In particular one sees that the subgroup Inn(A) is in fact a normal subgroup, as it is

the kernel of the homomorphism ΨA. The proof of exactness of this sequence in [VZ, FRS3] is not

only valid in braided monoidal categories, but also in the present more general situation.

Let now A and B be Morita equivalent algebras in D, with A
P,Q
←→B a Morita context

(P ≡ APB , Q≡ BQA). Then the mapping

ΠQ,P : Pic(DA|A)
∼=
−→ Pic(DB|B)

[X] 7−→ [Q⊗AX ⊗A P ]
(4.5)

constitutes an isomorphism between the Picard groups Pic(DA|A) and Pic(DB|B). In particular, if

A is an algebra that is Morita equivalent to the tensor unit 1, then we have an isomorphism

Pic(DA|A)∼= Pic(D). As Morita equivalent algebras need not have isomorphic automorphism

groups, the images of the group homomorphisms ΨA: Aut(A)→ Pic(DA|A) and ΨB: Aut(B) →

Pic(DB|B) will in general be non-isomorphic.

In the following we will consider subgroups of the group Pic(D). For a subgroup H ≤ Pic(D)

we put

Q ≡ Q(H) :=
⊕

h∈H

Lh. (4.6)

Remark 4.2. Since the object Q is the direct sum over a whole subgroup of Pic(D) and L∨
g
∼=Lg−1 ,

it follows that Q∼=Q∨. As a consequence, left and right dimensions of Q are equal, and accordingly

in the sequel we use the notation dim(Q) for both of them.

Proposition 4.3. Let H ≤ Pic(D) be a finite subgroup such that dim(Q) 6=0 for Q≡Q(H). Then

the algebra

A ≡ A(H) := Q⊗Q∨ (4.7)

satisfies H = im(ΠQ∨,Q◦ΨA), where 1
Q∨,Q
←→A is the Morita context introduced in lemma 2.11.
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Proof. The isomorphism ΠQ,Q∨: Pic(D)→ Pic(DA|A) is given by [Lg] 7→ [Q⊗Lg ⊗Q
∨]. For h∈H

we want to find automorphisms αh of A such that idAαh
∼=Q⊗Lh⊗Q

∨ as A-bimodules. We first

observe the isomorphisms Q⊗Lh∼=
⊕

g∈H Lg ⊗Lh
∼=

⊕

g∈H Lgh
∼=Q. We make a (in general non-

canonical) choice of isomorphisms fh: Q⊗Lh
∼=
→Q, with the morphism f1 chosen to be the identity

idQ. Then for each h∈H we define the endomorphism αh of Q⊗Q∨ by

αh :=

Q∨

Q∨

Q

Q

f−1

h

Lh

f∨
h

(4.8)

These are algebra morphisms:

m ◦ (αh⊗αh) =

Q Q∨

Q Q∨ Q Q∨

f−1

h
f∨

h
f−1

h

Lh

f∨
h

=

Q Q∨

Q Q∨ Q Q∨

f−1

h

f∨
h

f−1

h

f∨
h

=

Q Q∨

Q Q∨ Q Q∨

f−1

h

Lh

f∨
h

f−1

h

f∨
h

=

Q Q∨

Q Q∨ Q Q∨

f−1

h f∨
h

= αh ◦m. (4.9)

Here we have used that by lemma 2.14(ii) we have diml|r(Lh) = 1 for h∈H . The third equality is

then a consequence of idL∨
h
⊗Lh

= b̃Lh
◦ dLh

, see equation (2.18); in the fourth equality fh is cancelled

against f−1
h by using properties of the duality. (Also, for better readability, here and below we

refrain from labelling some of the Lh-lines.)

Further, the morphisms αh are also unital:

αh ◦ η =

Q∨Q

f−1

h f∨
h =

Q∨Q

f−1

h

fh

=
Lh

Q∨Q

=

Q∨Q

= η , (4.10)

where again by lemma 2.14 we have dimr(Lh) = 1. The inverse of αh is given by

α−1
h =

Q∨

Q∨

Q

Q

f
h

f−∨

h

Lh

(4.11)
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as is seen in the following calculations:

αh ◦α
−1
h =

Q

Q

Q∨

Q∨

f−1

h

f−∨

hfh

f∨
h =

Q∨

Q∨

Q

Q

Lh = idQ⊗Q∨ ,

α−1
h ◦αh =

Q∨

Q∨

Q

Q

f−1

h

f−∨

h
fh

f∨
h

=

Q∨

Q∨

Q

Q

f−1

h

f−∨

h
fh

f∨
h

= idQ⊗Q∨ . (4.12)

where in particular (2.18) and diml|rLh = 1 is used.

A bimodule isomorphism Q⊗Lh⊗Q
∨→ idAαh

is now given by

Fh := idQ ⊗ ((d̃Lh
⊗ idQ∨) ◦ (idLh

⊗ f∨
h )) . (4.13)

First we see that Fh is invertible with inverse F−1
h = idQ ⊗ ((idLh

⊗ f−∨
h ) ◦ (bLh

⊗ idQ∨)), where

f−∨
h stands for the dual of the inverse of fh. That F−1

h is indeed inverse to Fh is seen as follows:

Fh ◦F
−1
h =

Q∨

Q∨

Q

Q

f∨
h

f−∨

h

=

Q∨

Q∨

Q

Q

= idQ⊗Q∨ ,

F−1
h ◦Fh =

Q∨

Q∨

Q

Q Lh

Lh

f−∨

h

f∨
h

=

Q∨

Q∨

Q

Q Lh

Lh

f−∨

h

f∨
h

= idQ⊗Lh ⊗Q∨ . (4.14)

Moreover, Fh clearly intertwines the left actions of A on Q⊗Lh⊗Q
∨ and on idAαh

. That it

intertwines the right actions as well is verified as follows:

Q∨

Q∨Q∨

Q

Q QLh

f∨
h

f∨
h

f−1

h

=

Q∨

Q∨Q∨

Q

Q QLh

f∨
h

f∨
h

f−1

h

=

Q∨

Q∨Q∨

Q

Q QLh

f∨
h

f∨
h

f−1

h

=

Q∨

Q∨Q∨

Q

Q QLh

f∨
h

(4.15)

Here similar steps are performed as in the proof that αh respects the product of A. We conclude

that we have [Q⊗Lh⊗Q
∨]∈ im(ΨA) for all h∈H , and thus ΠQ,Q∨(H) is a subgroup of im(ΨA).
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On the other hand, for g 6∈H , Q⊗Lg ⊗Q
∨ ∼=

⊕

h,h′∈H Lhgh′ is not isomorphic to Q⊗Q∨, not even

as an object, so that ΠQ,Q∨(g) 6∈ im(ΨA). Together it follows that im(ΠQ,Q∨ ◦ΨA) =H .

Remark 4.4. Similarly to the calculation that the morphisms αh in (4.8) are morphisms of

algebras, one shows that they also respect the coproduct and the counit of A(H). So in fact we

have found automorphisms of Frobenius algebras.

We denote the inclusion morphisms Lh →Q=
⊕

g∈H Lg by eh and the projections Q→Lh by

rh, such that rg ◦ eh =0 for g 6=h and rg ◦ eg = idLg
. Then eg ◦ rg =Pg is a nonzero idempotent in

End(Q), and we have
∑

h∈H Ph = idQ.

Lemma 4.5. Let H ≤ Pic(D) be a finite subgroup such that dim(Q) 6=0 for Q≡Q(H). Given

g ∈H and an automorphism α of A=Q⊗Q∨ such that ΨA(α) = [Q⊗Lg ⊗Q
∨], there exists a

unique isomorphism fg ∈ Hom(Q⊗Lg, Q) such that rg ◦ fg ◦ (e1⊗ idLg
) = idLg

and α=αg with αg

as in (4.8).

Proof. We start by proving existence. Let ϕg: Q⊗Lg ⊗Q
∨

∼=
−→ idAα be an isomorphism of bimod-

ules. As a first step we show that ϕg = idQ⊗h for some morphism h: Lg ⊗Q
∨

∼=
→Q∨:

Q∨

Q∨

Q

Q Lg

ϕg
=

1

dim(Q)

Q∨

Q∨

Q

Q Lg

ϕg
=

1

dim(Q)

Q∨

Q∨

Q

Q Lg

ϕg (4.16)

Here in the first step we just inserted the dimension of Q, using that it is nonzero, and the second

step is the statement that ϕg intertwines the left action of A on Q⊗Lg ⊗Q
∨ and on idAα. Note

that upon setting

fg :=
1

dim(Q)

Q

Q Lg

ϕg

(4.17)

this amounts to ϕg = idQ⊗ ((d̃Lg
⊗ idQ∨) ◦ (idLg

⊗ f∨
g )), as in proposition 4.3.

Similarly the condition that ϕg intertwines the right action of A on Q⊗Lg ⊗Q
∨ and idAα means

that
Q∨

Q∨Q∨Q

Q

QLg

f∨g α

=

Q∨

Q∨Q∨Q

Q

QLg

f∨g

(4.18)

and this is equivalent to equality of the same pictures with the identity morphisms at the left sides
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removed. Applying duality morphisms to both sides of the resulting equality we obtain

Q∨

Q∨

Q

Q

L∨
g

fg

α

=

Q∨

Q∨

Q

Q

L∨
g

f∨g (4.19)

Next we apply the morphism (idQ ⊗ d̃Lg
⊗ idQ∨) ◦ (f−1

g ⊗ idL∨
g
⊗ idQ∨), leading to

Q∨

Q∨

Q

Q

α

=

Q∨

Q∨

Q

Q

f−1
g f∨g (4.20)

Using also that by lemma 2.14 (ii) we have dimr(Lg) = 1, this shows that α=αg with αg as in

(4.8). Since Lg is absolutely simple (see lemma 2.13 (iv)), we have rg ◦ fg ◦ (e1⊗ idLg
) = ξ idLg

for some ξ ∈k. As rg is injective and fg is an isomorphism, rg ◦ fg: Q⊗Lg→Lg is nonzero.

But this morphism can only be nonvanishing on the direct summand 1 of Q, and hence also

rg ◦ fg ◦ (e1⊗ idLg
) 6=0, i.e. ξ ∈k

×. Finally note that α does not change if we replace fg by a nonze-

ro multiple of fg; hence after suitable rescaling fg obeys both α=αg and rg ◦ fg ◦ (e1⊗ idLg
) = idLg

,

thus proving existence.

To show uniqueness, suppose that there is another isomorphism f ′
g: Q⊗Lg→Q such that α=α′

g

(where α′
g is given by (4.8) with f ′

g instead of fg) and rg ◦ f
′
g ◦ (e1⊗ idLg

) = idLg
. Composing both

sides of the equality αg =α′
g with fg ⊗ idQ∨ from the right and taking a partial trace over Q of

the resulting morphism Q⊗Lg ⊗Q
∨→Q⊗Q∨ gives

(dQ⊗ idQ∨) ◦ (idQ∨ ⊗αg) ◦ (idQ∨ ⊗ fg ⊗ idQ∨) ◦ (b̃Q⊗ idLg
⊗ idQ∨)

= (dQ⊗ idQ∨) ◦ (idQ∨ ⊗α′
g) ◦ (idQ∨ ⊗ fg ⊗ idQ∨) ◦ (b̃Q⊗ idLg

⊗ idQ∨)
(4.21)

Substituting the explicit form of αg and α′
g, and using that dim(Q) 6=0 and that Lg is absolutely

simple, one finds that fg =λ f ′
g for some λ∈k. The normalisation conditions rg ◦ fg ◦ (e1⊗ idLg

)

= idLg
and rg ◦ f

′
g ◦ (e1⊗ idLg

) = idLg
then force λ=1, proving uniqueness.

The construction of the automorphisms αh presented in proposition 4.3 and lemma 4.5 still

depends on the choice of isomorphisms fh or ϕh. As each such automorphism gets mapped to

[Q⊗Lh⊗Q
∨], due to exactness of the sequence (4.4) different choices of fh lead to automorphisms

which differ only by inner automorphisms. On the other hand, the mapping h 7→αh need not be

a homomorphism of groups for any choice of the isomorphisms fh.

In the following we will formulate necessary and sufficient conditions that H ≤ Pic(D) must

satisfy for the assignment h 7→αh to yield a group homomorphism from H to Aut(A). Recall

that Lg ⊗Lh∼=Lgh. Thus by lemma 2.13 (iv) the spaces Hom(Lg ⊗Lh, Lgh) are one-dimensional

(but there is no canonical choice of an isomorphism to the ground field k). For each pair
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g, h∈ Pic(D) we select a basis isomorphism gbh ∈ Hom(Lg ⊗Lh, Lgh). We denote their inverses by
gbh ∈ Hom(Lgh, Lg ⊗Lh), i.e. gbh ◦ gbh = idLg⊗Lh

and gbh ◦
gbh = idLgh

. For g=1 we take 1bg and

gb1 to be the identity, which is possible by the assumed strictness of D.

For any triple g1, g2, g3∈ Pic(D) the collection {gbh} of morphisms provides us with two bases

of the one-dimensional space Hom(Lg1⊗Lg2⊗Lg3, Lg1g2g3), namely with g1g2bg3 ◦ (g1bg2 ⊗ idLg3
) as

well as g1bg2g3 ◦ (idLg1
⊗ g2bg3). These differ by a nonzero scalar ψ(g1, g2, g3)∈k:

g1g2bg3 ◦ (g1bg2 ⊗ idLg3
) = ψ(g1, g2, g3) g1bg2g3 ◦ (idLg1

⊗ g2bg3) . (4.22)

The pentagon axiom for the associativity constraints of D implies that ψ is a three-cocycle on the

group Pic(D) with values in k
× (see e.g. appendix E of [MS], chapter 7.5 of [FK], or [Ya]). Any

other choice of bases leads to a cohomologous three-cocycle. Observe that by taking 1bh and hb1

to be the identity on Lh the cocycle ψ is normalised, i.e. satisfies ψ(g1, g2, g3) = 1 as soon as one

of the gi equals 1.

Lemma 4.6. For g, h, k∈ Pic(D), the bases introduced above obey the relation

Lk

Lh

Lk−1g

Lh−1g

kbk
−1g

h
bh−1g

=
1

ψ(h, h−1k, k−1g)

Lk

Lh

Lk−1g

Lh−1g

h
bh−1g

h−1kbk
−1g

(4.23)

Proof. In pictures:

Lk−1g

Lh−1g

Lk

Lh

h
bh−1g

kbk
−1g

=

Lk−1g

Lh−1g

Lk

Lh

h−1kbk−1g

kbk
−1g

h−1kbk
−1g

h
bh−1g

=
1

ψ

Lk−1g

Lh−1g

Lk

Lh

h
bh−1k

h−1kbk
−1g

kbk
−1g

k
bk−1g

=
1

ψ

Lk−1g

Lh−1g

Lk

Lh

h
bh−1k

h−1kbk
−1g

(4.24)

where in the second step we inserted the definition of ψ and abbreviated ψ≡ψ(h, h−1k, k−1g).

Definition 4.7. Given the normalised cocycle ψ on Pic(D), a normalised two-cochain ω on H

with values in k
× is called a trivialisation of ψ on H iff it satisfies dω=ψ

∣

∣

H
.

Proposition 4.8. Given a finite subgroup H of Pic(D) and a function ω: H ×H→k
×, define

Q :=
⊕

h∈H Lh and

m ≡ m(H,ω) :=
∑

g,h∈H ω(g, h) egh ◦ gbh ◦ (rg⊗ rh) ∈ Hom(Q⊗Q,Q) ,

η ≡ η(H,ω) := e1 ∈ Hom(1, Q) ,

∆ ≡ ∆(H,ω) := |H|−1 ∑

g,h∈H ω(g, h)−1 (eg ⊗ eh) ◦
gbh ◦ rgh ∈ Hom(Q,Q⊗Q) ,

ε ≡ ε(H,ω) := |H| r1 ∈ Hom(Q, 1) .

(4.25)

Then the following statements are equivalent:

(i) ω is a trivialisation of ψ on H.
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(ii) (Q,m, η) is an associative unital algebra.

(iii) (Q,∆, ε) is a coassociative counital coalgebra.

Moreover, if any of these equivalent conditions holds, then Q(H,ω)≡ (Q,m,∆, η, ε) is a special

Frobenius algebra with m ◦∆ = idQ and ε ◦ η= |H| id1.

Proof. The equivalence of conditions (i) – (iii) follows by direct computation using only the defi-

nitions; we refrain from giving the details. The Frobenius property then follows with the help of

lemma 4.6.

Lemma 4.9. Let ω be a trivialisation of ψ on H ≤ Pic(D) and let Q≡ Q(H,ω) be the special

Frobenius algebra defined in proposition 4.8. Then Q is symmetric iff dim(Q) 6=0.

Proof. Recall the morphisms Φ1 and Φ2 from (2.10). Since Q=
⊕

h∈H Lh, the condition Φ1 =Φ2

is equivalent to Φ1 ◦ eg = Φ2 ◦ eg for all g ∈H . By the definition of the multiplication on Q, this

amounts to

ω(g, g−1)

L∨

g−11

Lg

gbg−1 = ω(g−1, g)

L∨

g−1 1

Lg

g−1bg (4.26)

which in turn, by applying duality morphisms and composing with the morphisms gbg
−1

, is equiv-

alent to

ω(g, g−1)

1

1

gbg−1

gbg
−1

= ω(g−1, g)

1

g−1bg

gbg
−1

(4.27)

The right hand side of (4.27) is evaluated to

ω(g−1, g)

1

g−1bg

gbg
−1

= ω(g−1, g)ψ(g−1, g, g−1)

1

g−1b1

1bg
−1

= ω(g−1, g)ψ(g−1, g, g−1)

Lg

= ω(g−1, g)ψ(g−1, g, g−1) diml(Lg) id1 . (4.28)

The first step is an application of lemma 4.6, the second is due to our convention that the mor-

phisms 1bg are chosen to be identity morphisms. So the condition that Q is a symmetric Frobenius

algebra is equivalent to the condition ω(g, g−1) =ω(g−1, g)ψ(g−1, g, g−1) diml(Lg) for all g ∈H . As

ω is a trivialisation of ψ and dω(g−1, g, g−1) =ω(g, g−1)/ω(g−1, g), this is equivalent to diml(Lg) = 1

for all g ∈H . By lemma 2.14 the latter condition holds iff dim(Q) 6=0.

Definition 4.10. An admissible subgroup of Pic(D) is a finite subgroup H ≤ Pic(D) such that

diml|r(Lh) = 1 for all h∈H and such that there exists a trivialisation ω of ψ on H .
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Remark 4.11. We see that Q(H,ω) is a symmetric special Frobenius algebra if and only if H

is an admissible subgroup of Pic(D) and ω is a trivialisation of ψ on H . One can show that

every structure of a special Frobenius algebra on the object Q=
⊕

h∈H Lh is of the type Q(H,ω)

described in proposition 4.8 for a suitable trivialisation ω of ψ (see [FRS2], proposition 3.14). So

giving product and coproduct morphisms on Q is equivalent to giving a trivialisation ω of ψ.

Also observe that multiplying a trivialisation ω of ψ with a two-cocycle γ on H gives another triv-

ialisation ω′ of ψ. One can show that the Frobenius algebras Q(H,ω) and Q(H,ω′) are isomorphic

as Frobenius algebras if and only if ω and ω′ differ by multiplication with an exact two-cocycle.

Accordingly, in the sequel we call two trivialisations ω and ω′ for ψ equivalent iff ω/ω′ = dη for

some one-cochain η. Thus if ψ is trivialisable on H , then the equivalence classes of trivialisations

form a torsor over H2(H, k×).

Theorem 4.12. Let H be an admissible subgroup of Pic(D), put Q=Q(H) as in (4.6), and let

A=A(H) =Q⊗Q∨ be the algebra defined in (4.7). Then there is a bijection between

• trivialisations ω of ψ on H and

• group homomorphisms α: H→ Aut(A) with ΠQ∨,Q ◦ΨA ◦α= idH .

Proof. Denote by T the set of all trivialisations ω of ψ on H , and by H the set of all group

homomorphisms α: H→ Aut(A) satisfying ΠQ∨,Q ◦ΨA ◦α= idH . The proof that T ∼=H as sets

is organised in three steps: defining maps F : T →H and G: H→T , and showing that they are

each other’s inverse.

(i) Let ω ∈T . For each h∈H define

fh :=
∑

g∈H

ω(g, h)

Q

LhQ

gbh

egh

rg

(4.29)

Since ω takes values in k
×, these are in fact isomorphisms, with inverse given by

f−1
h =

∑

g∈H

ω(g, h)−1 (eg ⊗ idLh
) ◦ gbh ◦ rgh . (4.30)

Define the function F (ω) from H to Aut(A) by F (ω): h 7→ αh for αh given by (4.8) with fh as in

(4.29). We proceed to show that F (ω)∈H.

Abbreviate α≡F (ω). That ΠQ∨,Q ◦ΨA ◦α= idH follows from the proof of proposition 4.3. To see
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that α(g) ◦α(h) =α(gh), first rewrite α(g) ◦α(h) using (4.29) and (4.30):

α(g) ◦α(h) =
∑

k,l,m,n

ω(k, g)ω(l, h)

ω(m, g)ω(n, h)

Q∨

Q∨Q

Q

mbg

nbh

kbg
∨

lbh
∨

rk
∨

rl
∨

rmg

rnh

em

en

ekg
∨

elh
∨

Lg

Lh

=
∑

k,m

ω(k, g)ω(kg, h)

ω(m, g)ω(mg, h)

Q∨

Q∨Q

Q

mbg

mgbh

kbg
∨

kgbh
∨

rk
∨

rmgh

em

ekgh
∨

Lg

Lh

=
∑

k,m

ξkm

Q∨

Q∨Q

Q

gbh

mbgh

gbh
∨

kbgh
∨

rk
∨

rmgh

em

ekgh
∨

=
∑

k,m

ξkm

Q∨

Q∨Q

Q

mbgh
kbgh

∨

rk
∨

rmgh

em

ekgh
∨

Lgh

(4.31)

with

ξkm =
ω(k, g)ω(kg, h)ψ(k, g, h)

ω(m, g)ω(mg, h)ψ(m, g, h)
. (4.32)

Here the second step uses that there are no nonzero morphisms Ln→Lmg unless n=mg; by the

same argument we conclude that l= kg. In the third step one applies relation (4.22). Now the

condition α(g) ◦α(h) =α(gh) is equivalent to

ω(k, g)ω(kg, h)ψ(k, g, h)

ω(m, g)ω(mg, h)ψ(m, g, h)
=

ω(k, gh)

ω(m, gh)
for all m, k∈H , (4.33)

which in turn can be rewritten as

dω(m, g, h)

dω(k, g, h)
=
ψ(m, g, h)

ψ(k, g, h)
for all m, k ∈H . (4.34)

The last condition is satisfied because by assumption dω=ψ|H . So indeed we have F (ω)∈H.

(ii) Given α∈H, for each h∈H the automorphism α(h) satisfies the conditions of lemma 4.5.

As a consequence we obtain a unique isomorphism fh: Q⊗Lh→Q such that α(h) =αh and

rh ◦ fh ◦ (e1⊗ idLh
) = idLh

. Define a function ω: H ×H→ k via

ω(g, h)

Lgh

LhLg

gbh =

Lgh

LhLg

eg

fh

rgh

(4.35)

Then define the map G from H to functions H ×H→k by G(α) :=ω, with ω obtained as in

(4.35). We will show that G(α)∈T .
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Given α∈H, abbreviate ω≡G(α). First note that ω takes values in k
×, as fh is an isomorphism.

Next, the normalisation condition rh ◦ fh ◦ (e1⊗ idLh
) = idLh

implies ω(1, h) =1 for all h∈H .

Since α is a group homomorphism we have α(1) = idQ⊗Q∨ . By the uniqueness result of lemma

4.5 this implies that f1 = idQ, and so ω(g, 1) =1 for all g ∈H . Altogether it follows that ω is a

normalised two-cochain with values in k
×. By following again the steps (4.31) to (4.34) one shows

that, since α is a group homomorphism, ω must satisfy (4.34). Setting k=1 and using that ω and

ψ are normalised finally demonstrates that dω=ψ
∣

∣

H
. Thus indeed G(α)∈T .

(iii) That F (G(α)) =α is immediate by construction, and that G(F (ω)) =ω follows from the

uniqueness result of lemma 4.5.

We have seen that if H is an admissible subgroup of Pic(D) and ω a trivialisation of ψ, then

Q(H,ω) is a symmetric special Frobenius algebra. Using the product and coproduct morphisms

of Q(H,ω), the automorphisms αh induced by ω as described in theorem 4.12 can be written as

αh = |H|

Q∨

Q∨

Q

Q

Ph

(4.36)

Note that in this picture the circle on the left stands for the coproduct of Q, while the circle on

the right stands for the dual of the product.

Given a trivialisation ω of ψ, theorem 4.12 allows us to realise H as a subgroup of Aut(A). In

particular the fixed algebra under the action of H is well defined; we denote it by AH . We already

know from proposition 3.7 that AH is a symmetric Frobenius algebra. It will turn out that it is

isomorphic to Q(H,ω). In particular, by remark 4.11 any equivalent choice of a trivialisation ω′

of ψ will give an isomorphic fixed algebra.

Theorem 4.13. Let H be an admissible subgroup of Pic(D) with trivialisation ω, put A=A(H)

as in (4.7), and embed H→ Aut(A) as in theorem 4.12. Then the fixed algebra AH is well defined

and it is isomorphic to Q(H,ω).

Proof. Let Q≡Q(H,ω). By lemma 2.14 we have dim(Q) = |H|. Identify H with its image in

Aut(A) via the embedding H→ Aut(A) determined by ω as in theorem 4.12. Now define mor-

phisms i: Q→A and s: A→Q by

i := (m⊗ idQ∨) ◦ (idQ⊗bQ) , s := (idQ⊗d̃Q) ◦ (∆⊗ idQ∨) . (4.37)

We have s ◦ i= idQ, implying that i is monic and Q is a retract of A. We claim that i is the

inclusion morphism of the fixed algebra. Recall from (3.3) the definition P = |H|−1 ∑

h∈H αh of

the idempotent corresponding to the fixed algebra object. In the case under consideration, P
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takes the form

P =

Q∨

Q∨

Q

Q

(4.38)

as follows from (4.36) together with idQ =
∑

h∈HPh. We calculate that i ◦ s=P :

i ◦ s =

Q∨

Q∨

Q

Q

(2)
=

Q∨

Q∨

Q

Q

(3)
=

Q∨

Q∨

Q

Q

(4)
=

Q∨

Q∨

Q

Q

(5)
=

Q∨

Q∨

Q

Q

(6)
=

Q∨

Q∨

Q

Q

(7)
=

Q∨

Q∨

Q

Q

= P . (4.39)

Here in the second step a counit morphism is introduced and in the third step the Frobenius

property is applied. The next step uses coassociativity, while the fifth step follows because Q(H,ω)

is symmetric. Then one uses the Frobenius property and duality. So Q satisfies the universal

property of the image of P and hence the universal property of the fixed algebra. We now

calculate the product morphism that the fixed algebra inherits from Q⊗Q∨, starting from (3.4):

Q

Q

Q

=

Q

Q

Q

=

Q

Q

Q

=

Q

QQ (4.40)
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The first step uses duality, the second one holds by associativity of m. In the last step one uses

that s ◦ i= idQ. The inherited unit morphism is given by

Q

(4.41)

which due to dimk Hom(1, Q) = 1 is equal to ζη for some ζ ∈k. Applying ε to both these morphisms

and using that dim(Q) = |H|, we see that ζ = 1. Similarly one shows that the coproduct and counit

morphisms that Q inherits as a fixed algebra equal those defined in proposition 4.8. So Q(H,ω)

is isomorphic to the fixed algebra AH as a Frobenius algebra.

Remark 4.14. The algebra structure on the object Q(H,ω) is a kind of twisted group algebra

of the group H which is not twisted by a closed two-cochain, but rather by a trivialisation of the

associator of D. Algebras of this type have appeared in applications in conformal field theory

[FRS2].

5 Algebras in general Morita classes

In this section we solve the problem discussed in the previous section for algebras that are not

Morita equivalent to the tensor unit. Throughout this section we will assume the following.

Convention 5.1. (C, ⊗ , 1) has the properties listed in convention 2.1 and is in addition skeletally

small and sovereign. (A,m, η,∆, ε) is a simple and absolutely simple symmetric normalised special

Frobenius algebra in C, and H ≤ Pic(CA|A) is a finite subgroup.

Recall from remark 2.7 that the conditions above imply dim(A) 6= 0. In the sequel we will

find a symmetric special Frobenius algebra A′ =A′(H) and a Morita context A
P,P ′

←→A′ in C, such

that H is a subgroup of im(ΠP,P ′ ◦ΨA′), where ΠP,P ′ is the isomorphism introduced in (4.5). This

generalises the results of proposition 4.3.

We will apply some of the results of the previous section to the strictification D of the category

CA|A. Note that D has the properties stated in convention 2.1 and is in addition sovereign, as can

be seen by straightforward calculations which are parallel to those of [FS] for the category CA of

left A-modules. By applying the inverse equivalence functor D
≃
−→CA|A this will then yield a sym-

metric special Frobenius algebra in CA|A that has the desired properties. Note that the graphical

representations of morphisms used below are meant to represent morphisms in C. Pertinent facts

about the structure of the category CA|A are collected in appendix A; in the sequel we will freely

use the terminology presented there. It is worth emphasising that for establishing various of the

results below, it is essential that A is not just an algebra in C, but even a simple and absolutely

simple symmetric special Frobenius algebra.
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As a first step we study how concepts like algebras and modules over algebras can be trans-

ported from CA|A to C. If X is an object of CA|A, i.e. an A-bimodule in C, we denote the corre-

sponding object of C by Ẋ.

Proposition 5.2.

(i) Let (B,mB, ηB) be an algebra in CA|A. Then (Ḃ,mB ◦ rB,B, ηB ◦ η) is an algebra in C.

(ii) If (C,∆C, εC) is a coalgebra in CA|A, then (Ċ, eC,C ◦∆C , ε ◦ εC) is a coalgebra in C.

(iii) A morphism γ: B→ B′ of algebras in CA|A is also a morphism of algebras in C.

(iv) Let (B,mB, ηB) be an algebra in CA|A and (M, ρ) be a left B-module in CA|A. Then (Ṁ, ρ ◦ rB,M )

is a left Ḃ-module in C. Similarly right B-modules and B-bimodules in CA|A can be transported

to C. Further, if f : (M, ρM)→ (N, ρN) is a morphism of left B-modules in CA|A, then f is

also a morphism of left Ḃ-modules in C, and an analogous statement holds for morphisms of

right- and bimodules.

(v) If (B,mB,∆B, ηB, εB) is a Frobenius algebra in CA|A, then (Ḃ,m ◦ rB,B, eB,B ◦∆, ηB ◦ η, ε ◦ εB)

is a Frobenius algebra in C. If B is special in CA|A, then Ḃ is special in C. If B is symmetric

in CA|A, then Ḃ is symmetric in C.

Proof. (i) That mB is an associative product for B in CA|A means that

mB ◦ (idB ⊗AmB) ◦αB,B,B = mB ◦ (mB⊗A idB) , (5.1)

where αB,B,B is the associator defined in (A.4). After inserting the definitions of the tensor product

of morphisms and the associator αB,B,B this reads

(B⊗AB)⊗AB

B

m
B

m
B

rB,B

r
B,B⊗

A
B

rB,B

e
B,B

eB,B⊗
A

B

eB⊗
A

B,B

=

(B⊗AB)⊗AB

B

m
B

m
B

eB⊗
A

B,B

rB,B

(5.2)

After composing both sides of this equality with the morphism rB⊗
A
B,B ◦ (rB,B ⊗ idB) the resulting

idempotents PB,B⊗
A
B, PB⊗

A
B,B and PB,B can be dropped from the left hand side, and PB⊗

A
B,B

from the right hand side. We see that mB ◦ rB,B is indeed an associative product for Ḃ in C. Next
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consider the morphism ηB; we have

B

B

m
B

ηB

r
B,B

=

B

B

m
B

r
B,B

ηB

=

B

B

m
B

r
B,B

η
B =

B

B

m
B

rB,B

η
B

e
B,A

rB,A

= mB ◦ (idB ⊗A ηB) ◦ ρA(B)−1 = idB , (5.3)

with ρA the unit constraint as given by (A.7) in the appendix. Here in the first step the idempotent

PB,B is introduced and then moved downwards, and likewise in the third step. The fifth step is

the unit property of ηB in CA|A. So we see that ηB ◦ η is indeed a right unit for Ḃ in C, similarly

one shows that it is also a left unit.

(ii) is proved analogously to the preceding statement.

(iii) Let mB and mB′ denote the products of B and B′ in CA|A. Then

γ ◦mB ◦ rB,B = mB′ ◦ (γ⊗A γ) ◦ rB,B = mB′ ◦ rB′,B′ ◦ (γ⊗ γ) ◦PB,B

= mB′ ◦ rB′,B′ ◦PB′,B′ ◦ (γ⊗ γ) = mB′ ◦ rB′,B′ ◦ (γ⊗ γ) ,
(5.4)

where the third equality uses that γ is a morphism in CA|A. Further we have γ ◦ ηB ◦ η= ηB′ ◦ η,

as γ respects the unit ηB of B in CA|A. So γ is also a morphism of algebras in C.

(iv) The statement that M is a left B-module in CA|A reads

ρ ◦ (idB ⊗Aρ) ◦αB,B,M = ρ ◦ (mB⊗A idM) , (5.5)

which is an equality in HomA|A((B⊗AB)⊗AM,M). Similarly to the proof in i), one shows that

this indeed implies that (M, ρ ◦ rB,M) is a left Ḃ-module in C.

Now for any morphism f : (M, ρM)→ (N, ρN) we have

f ◦ ρM ◦ rB,M = ρN ◦ (idB ⊗A f) ◦ rB,M = ρN ◦ rB,N ◦ (idB ⊗ f) ◦PB,M

= ρN ◦ rB,N ◦PB,N ◦ (idB ⊗ f) = ρN ◦ rB,N ◦ (idB ⊗ f) ,
(5.6)

showing that f is a morphism of left Ḃ-modules in C. Similarly one verifies the conditions for

right- and bimodules.

(v) To see that the product and coproduct morphisms for Ḃ satisfy the Frobenius property in C
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consider the following calculation:

B B

BB

m
B

∆B

eB,B

rB,B

=

B

B

B

B

m
B

∆B

r
B,B

e
B,B

r
B,B⊗

A
B

eB⊗
A

B,B

eB,B

r
B,B

α−1

B,B,B
=

B

B

B

B

m
B

rB,B⊗
A

B

eB⊗
A

B,B

rB⊗
A

B,B

rB,B

e
B,B⊗

A
B

e
B,B

∆B

=

B

B

B

B

m
B

rB,B

∆B

e
B,B

(5.7)

The first equality is the assertion that B is a Frobenius algebra in CA|A, the second one implements

the definition of α−1
B,B,B. In the last step the resulting idempotents are moved up or down, upon

which they can be dropped. A parallel argument establishes the second identity.

Similarly one checks that specialness and symmetry of Ḃ are transported to C as well.

To apply the results of the previous section to the algebra A we also need to deal with Morita

equivalence in CA|A. We start with the following observation.

Lemma 5.3. Let B be a symmetric special Frobenius algebra in CA|A, and C and D be algebras

in CA|A and let (CMB, ρC , ̺B) be a C-B-bimodule and (BND, ρB, ̺D) a B-D-bimodule. Then the

tensor product M ⊗B N in CA|A is isomorphic, as a Ċ-Ḋ-bimodule in C, to the tensor product

Ṁ ⊗Ḃ Ṅ over the algebra Ḃ in C.

Proof. Since B is symmetric special Frobenius in CA|A, the idempotent PB
M,N corresponding to the

tensor product of M and N over B is well defined in CA|A. Explicitly it reads

(̺B⊗AρB) ◦α−1
M,B,B⊗

A
N ◦ (idM ⊗AαB,B,N ) ◦ (idM ⊗A(∆B ◦ ηB)⊗A idN )) ◦ (idM ⊗Aλ

A(N)−1) . (5.8)

One calculates that this equals the morphism given by the following morphism in C:

M⊗AN

M⊗
A
N

̺B ρB

ηB

∆B

e
M,N

eB,B

r
B,N

r
M,B

r
M,N

(5.9)

Composing with the morphisms eM,N and rM,N for the tensor product over A, we see that

P Ḃ
Ṁ,Ṅ

= eM,N ◦P
B
M,N ◦ rM,N = eM,N ◦ e

B
M,N ◦ r

B
M,N ◦ rM,N . This furnishes a different decomposition
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of P Ḃ
Ṁ,Ṅ

into a monic and an epi, hence there is an isomorphism f : M ⊗B N
∼=
→ Ṁ ⊗Ḃ Ṅ of the

images of PB
M,N and P Ḃ

Ṁ,Ṅ
, such that f ◦ rBM,N ◦ rM,N = rḂ

Ṁ,Ṅ
and eM,N ◦ e

B
M,N = eḂ

Ṁ,Ṅ
◦ f . Now the

left action of C on M ⊗B N is given by

rBM,N ◦ (ρC⊗A idN ) ◦α−1
C,M,N ◦ (idC ⊗A e

B
M,N) =

C⊗
A

(M⊗
B
N)

M⊗BN

ρC

rB
M,N

e
C⊗

A
M,N

r
C⊗

A
M,N

eC,M⊗
A

N

rC,M⊗
A

N

e
M,N

r
C,M

r
M,N

eB
M,N

eC,M⊗
B

N

=

C⊗
A

(M⊗
B
N)

M⊗BN

ρC

rB
M,N

eM,N

r
C,M

rM,N

eB
M,N

e
C,M⊗

B
N

(5.10)

Compose this morphism from the right with rC,M⊗BN and drop the resulting idempotent to get the

transported left action of Ċ. Now composing with f from the left and replacing f ◦ rBM,N ◦ rM,N

by rḂ
Ṁ,Ṅ

and eM,N ◦ e
B
M,N by eḂ

Ṁ,Ṅ
◦ f shows that f also intertwines the left actions of Ċ. Similarly

one shows that f is also an isomorphism of Ḋ-right modules.

Corollary 5.4. Assume that B and C are symmetric special Frobenius algebras in CA|A, and that

B
P,P ′

←→C is a Morita context in CA|A. Then Ḃ
Ṗ ,Ṗ ′

←→ Ċ is a Morita context in C.

Proof. Follows from lemma 5.3 above. The commutativity of the diagrams (2.15) in C follows

from the commutativity of their counterparts in CA|A.

We are now in a position to generalise the results of the previous section to the case of algebras

in arbitrary Morita classes.

Proposition 5.5. Let H ≤ Pic(CA|A) be a finite subgroup of the Picard group of CA|A and assume

that dimA(
⊕

h∈H Lh) 6=0 for representatives Lh of H in CA|A. Then there exists an algebra A′ in C

and a Morita context A
P,P ′

←→A′ in C such that ΠP ′,P maps H into the image of ΨA′ in Pic(CA′|A′).

In other words, for any h∈H there is an algebra automorphism βh of A′ such that the twisted

bimodule idA
′
βh

is isomorphic to (P ′⊗A Lh)⊗A P .

Proof. Applying proposition 4.3 to the tensor unit of D yields, by the equivalence D≃CA|A, a

symmetric special Frobenius algebra B in CA|A and a Morita context A
Q,Q′

←→B in CA|A, such that

there are automorphisms βh of B and B-bimodule isomorphisms Fh: (Q′⊗A Lh)⊗AQ
∼=
−→ idBβh

for all h∈H . By proposition 5.2 and corollary 5.4 this gives rise to a Morita context Ȧ
P,P ′

←→ Ḃ

in C, where P = Q̇ and P ′ = Q̇′. The morphisms Fh remain isomorphisms of bimodules when

transported to C, see proposition 5.2.

It follows that (P ′⊗ALh)⊗A P
∼= idḂβh

as Ḃ-bimodules in C.
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Since the algebra Ḃ might have a larger automorphism group in C, its image under ΨḂ might

be larger in Pic(CḂ|Ḃ). So we cannot conclude that H ∼= im(ΨḂ) in this case. But as we have

AutA|A(B)≤ AutC(Ḃ) as subgroups, we can still generalise theorem 4.12. This furnishes the main

result of this paper:

Theorem 5.6. Let C be a skeletally small sovereign abelian monoidal category with simple and

absolutely simple tensor unit that is enriched over Vectk, with k a field of characteristic zero.

Let A be a simple and absolutely simple symmetric special Frobenius algebra in C, and let ψ be

a normalised three-cocycle describing the associator of the Picard category of CA|A. Let H be an

admissible subgroup of Pic(CA|A) (cf. definition 4.10).

Then there exist a symmetric special Frobenius algebra A′ in C and a Morita context A
P,P ′

←→A′

such that for each trivialisation ω of ψ on H (cf. definition 4.7) the following holds.

(i) There is an injective homomorphism αω: H→ Aut(A′) such that ΠP,P ′ ◦ΨA′ ◦αω = idH . The

assignment ω 7→αω is injective.

(ii) The fixed algebra of im(αω) ≤ Aut(A′) is isomorphic to Q̇(H,ω), where Q̇(H,ω) is the algebra

Q(H,ω) in CA|A as described in proposition 4.8, transported to C.

Proof. (i) Denote again by D the strictification of the bimodule category CA|A. By propositions

4.3 and 4.8 and theorem 4.12 we find a symmetric special Frobenius algebra B in CA|A and a

Morita context A
Q,Q′

←→B in CA|A such that there is a homomorphism φω: H→ AutA|A(B) with

ΠQ,Q′ ◦ΨB: AutA|A(B)→ Pic(CA|A) as one-sided inverse. According to proposition 5.2, Ḃ is a

symmetric special Frobenius algebra in C and A
P,P ′

←→ Ḃ is a Morita context in C with P = Q̇ and

P ′ = Q̇′. Further, we can extend ΨB to AutC(Ḃ) by putting ΨḂ(γ) = [idḂγ] for γ ∈ AutC(Ḃ). Since

we have AutA|A(B)⊆ AutC(Ḃ) as a subgroup, φω then gives a homomorphism αω: H→ AutC(Ḃ)

that has ΠP,P ′ ◦ΨḂ as one-sided inverse. As was seen in theorem 4.12, the assignment ω 7→ φω is

a bijection, and hence the assignment ω 7→αω is still injective.

(ii) Put βh :=αω(h). From theorem 4.13 we know that the algebra Q(H,ω) is isomorphic to the

fixed algebra BH in CA|A. It comes together with an algebra morphism i: Q(H,ω)→B and a

coalgebra morphism s: B→Q(H,ω) such that s ◦ i= idQ(H,ω) and i ◦ s= |H|−1 ∑

h∈H βh. Now let

f ∈ HomC(X, Ḃ) be a morphism obeying βh ◦ f = f for all h∈H . Then for f̄ := s ◦ f :X→ Q̇(H,ω)

we find i ◦ f̄ = i ◦ s ◦ f = 1
|H|

∑

h∈H βh ◦ f = f , i.e. Q̇(H,ω) satisfies the universal property of the

fixed algebra in C. So ḂH ∼= Q̇(H,ω) as objects in C. By proposition 5.2, i is still a morphism of

Frobenius algebras when transported to C. It follows that ḂH ∼= Q̇(H,ω) as Frobenius algebras

in C.
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A Appendix

Here we collect some facts about the category of bimodules over an algebra in a monoidal category.

Let (C, ⊗ , 1) be a an abelian sovereign strict monoidal category, enriched over Vectk with k a field

of characteristic zero, and with simple and absolutely simple tensor unit. Let A be an algebra in

C.

The tensor product X ⊗A Y of two A-bimodules X ≡ (X, ρX , ̺X) and Y ≡ (Y, ρY , ̺Y ) is defined

to be the cokernel of the morphism (̺X ⊗ idY − idX ⊗ ρY )∈ Hom(X ⊗A⊗Y,X ⊗Y ). In the

following we will only deal with tensor products over symmetric special Frobenius algebras. In

this case the notion of tensor product can equivalently be described as follows. Let (A,m, η,∆, ε)

be a symmetric normalised special Frobenius algebra. Consider the morphism

PX,Y :=

Y

Y

X

X

∈ HomA|A(X ⊗Y,X ⊗Y ) . (A.1)

Since A is symmetric special Frobenius, PX,Y is an idempotent. Writing PX,Y = eX,Y ◦ rX,Y as a

composition of a monic eX,Y and an epi rX,Y , one can check that the morphism rX,Y satisfies the

universal property of the cokernel of (̺X ⊗ idY − idX ⊗ ρY ).

The object X ⊗A Y is in the bimodule category CA|A again. Indeed, right and left actions of A

on X ⊗A Y can be defined by

X⊗
A
Y

X⊗AY A

r
X,Y

e
X,Y

and

X⊗
A
Y

X⊗AYA

rX,Y

e
X,Y

(A.2)

The tensor product over A of two morphisms f ∈ HomA|A(X,X ′) and g ∈ HomA|A(Y, Y ′) is defined

as

f ⊗A g := rX′,Y ′ ◦ (f ⊗ g) ◦ eX,Y . (A.3)

So in particular the morphisms eX,Y , rX,Y and f ⊗A g are morphisms of A-bimodules.

For any three A-bimodules X, Y , Z one defines

αX,Y,Z :=

X⊗
A

(Y⊗
A
Z)

(X⊗
A
Y )⊗

A
Z

r
X,Y ⊗

A
Z

eX,Y

rY,Z

eX⊗
A

Z,Y

∈ HomA|A

(

(X ⊗A Y )⊗A Z,X ⊗A (Y ⊗A Z)
)

, (A.4)
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which is a morphism of A-bimodules. These morphisms are in fact isomorphisms and have the

following properties:

X⊗A(Y⊗AZ)

X Y Z

r
X⊗

A
Y,Z

α
X,Y,Z

rX,Y

=

X⊗A(Y⊗AZ)

X Y Z

rX,Y ⊗
A

Z

rY,Z

and

(X⊗AY )⊗AZ

X Y Z

e
X,Y ⊗

A
Z

α
X,Y,Z

eY,Z

=

(X⊗AY )⊗AZ

X Y Z

eX⊗
A

Y,Z

e
X,Y

(A.5)

This can be seen by writing out αX,Y,Z and letting the occurring idempotents disappear using the

properties of A as a symmetric special Frobenius algebra.

An easy, albeit lengthy, calculation then shows that the isomorphisms αX,Y,Z obey the pentagon

condition for the associativity constraints in a monoidal category, i.e. one has

(idU ⊗A αV,W,X) ◦αU,V⊗
A
W,X ◦ (αU,V,W ⊗A idX) = αU,V,W⊗

A
X ◦αU⊗

A
V,W,X (A.6)

for any quadruple U , V , W , X of A-bimodules. For an A-bimodule M , unit constraints are given

by

ρA(M) =

M

M⊗
A
A

e
M,A

and λA(M) =

M

A⊗
A
M

e
A,M

(A.7)

with inverses

ρA(M)−1 =

M

M⊗
A
A

rM,A

and λA(M)−1 =

M

A⊗
A
M

r
A,M

(A.8)

This turns the category CA|A into a (non-strict) monoidal category. We will now see that CA|A

is sovereign. Let M be an A-bimodule and M∨ its dual as an object of C. M∨ becomes an

A-bimodule by defining left and right actions of A as

M∨

M∨

A

:=

M∨

M∨

A

and

M∨

M∨

A

:=

M∨

M∨

A

(A.9)
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The structural morphisms of left and right dualities for CA|A are given by

bAM =

M⊗AM
∨

A

r
M,M∨

, dAM =

M∨⊗AM

e
M∨,M

A

d̃AM =

M⊗AM
∨

e
M,M∨

A

, b̃AM =

M∨⊗AM

r
M∨,M

A

(A.10)

One checks that this indeed furnishes dualities on CA|A, and that they coincide with those of

C not only on objects, but also on morphisms. Thus if C is sovereign, then so CA|A. One

also easily verifies that CA|A is abelian and that its morphism groups are k-vector spaces with

HomA|A(M,N)⊂ HomC(M,N) as subspaces, and hence dimk HomA|A(M,N)≤ dimk HomC(M,N).

For M an A-bimodule, we denote its left and right dimension as an object of CA|A by dimlA(M)

and dimrA(M), respectively. If A is in addition an absolutely simple algebra, one has

dimr(M) = dimr(A) dimrA(M) and diml(M) = diml(A) dimlA(M) . (A.11)
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