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to String- and Chern-Simons n-transport
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Abstract

We give a generalization of the notion of a Cartan-Ehresmann connection from Lie algebras to L∞-
algebras and use it to study the obstruction theory of lifts through higher String-like extensions of Lie
algebras. We find (generalized) Chern-Simons and BF-theory functionals this way and describe aspects
of their parallel transport and quantization.

It is known that over a D-brane the Kalb-Ramond background field of the string restricts to a 2-
bundle with connection (a gerbe) which can be seen as the obstruction to lifting the PU(H)-bundle on
the D-brane to a U(H)-bundle. We discuss how this phenomenon generalizes from the ordinary central
extension U(1) → U(H) → PU(H) to higher categorical central extensions, like the String-extension
BU(1) → String(G) → G. Here the obstruction to the lift is a 3-bundle with connection (a 2-gerbe):
the Chern-Simons 3-bundle classified by the first Pontrjagin class. For G = Spin(n) this obstructs
the existence of a String-structure. We discuss how to describe this obstruction problem in terms of
Lie n-algebras and their corresponding categorified Cartan-Ehresmann connections. Generalizations
even beyond String-extensions are then straightforward. For G = Spin(n) the next step is “Fivebrane
structures” whose existence is obstructed by certain generalized Chern-Simons 7-bundles classified by
the second Pontrjagin class.

∗hisham.sati@yale.edu
†schreiber@math.uni-hamburg.de
‡jds@math.upenn.edu

http://arXiv.org/abs/0801.3480v2


Contents

1 Introduction 4

2 The Setting and Plan 6
2.1 L∞-algebras and their String-like central extensions . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 L∞-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 L∞-algebras from cocycles: String-like extensions . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 L∞-algebra differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 L∞-algebra Cartan-Ehresmann connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 g-Bundle Descent data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Connections on n-bundles: the extension problem . . . . . . . . . . . . . . . . . . . . . 9

2.3 Higher String and Chern-Simons n-transport: the lifting problem . . . . . . . . . . . . . . . . 11

3 Physical applications: String-, Fivebrane- and p-Brane structures 12

4 Statement of the main results 14

5 Differential graded-commutative algebra 17
5.1 Differential forms on smooth spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Homotopies and inner derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Vertical flows and basic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 L∞-algebras and their String-like extensions 26
6.1 L∞-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 L∞-algebra homotopy and concordance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 L∞-algebra cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.4 L∞-algebras from cocycles: String-like extensions . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.5 L∞-algebra valued forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.5.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.6 L∞-algebra characteristic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.6.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 L∞-algebra Cartan-Ehresmann connections 57
7.1 g-Bundle descent data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2 Connections on g-bundles: the extension problem . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.2.1 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.3 Characteristic forms and characteristic classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.4 Universal and generalized g-connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.4.1 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2



8 Higher String- and Chern-Simons n-bundles: the lifting problem 69
8.1 Weak cokernels of L∞-morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.2 Lifts of g-descent objects through String-like extensions . . . . . . . . . . . . . . . . . . . . . 74

8.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.3 Lifts of g-connections through String-like extensions . . . . . . . . . . . . . . . . . . . . . . . 77

8.3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9 L∞-algebra parallel transport 82
9.1 L∞-parallel transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.1.1 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.2 Transgression of L∞-transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.3 Configuration spaces of L∞-transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A Appendix: Explicit formulas for 2-morphisms of L∞-algebras 93

3



1 Introduction

The study of extended n-dimensional relativistic objects which arise in string theory has shown that these
couple to background fields which can naturally be thought of as n-fold categorified generalizations of fiber
bundles with connection. These structures, or various incarnations of certain special cases of them, are prob-
ably most commonly known as (bundle-)(n−1)-gerbes with connection. These are known to be equivalently
described by Deligne cohomology, by abelian gerbes with connection (“and curving”) and by Cheeger-Simons
differential characters. Following [6, 9] we address them as n-bundles with connection.

fundamental
object

background
field

n-particle n-bundle

(n− 1)-brane (n− 1)-gerbe

Table 1: The two schools of counting higher dimensional structures. Here n is in N = {0, 1, 2, · · · }.

In string theory, the first departure from bundles with connections to higher bundles with connection
occured with the fundamental (super)string coupling to the Neveu-Schwarz (NS) B-field. Locally, the B-field
is just an R-valued two-form. However, the study of the path integral, which amounts to ‘exponentiation’,
reveals that the B-field can be thought of as an abelian gerbe with connection whose curving corresponds
to the H-field H3 or as a Cheeger-Simons differential character, whose holonomy [34] can be described [20]
in the language of bundle gerbes [62].

The next step up occurs with the M-theory (super)membrane which couples to the C-field [11]. In
supergravity, this is viewed locally as an R-valued differential three-form. However, the study of the path
integral has shown that this field is quantized in a rather nontrivial way [75]. This makes the C-field not
precisely a 2-gerbe or degree 3 Cheeger-Simons differential character but rather a shifted version [28] that
can also be modeled using the Hopkins-Singer description of differential characters [46]. Some aspects of the
description in terms of Deligne cohomology is given in [26].

From a purely formal point of view, the need of higher connections for the description of higher di-
mensional branes is not a surprise: n-fold categorified bundles with connection should be precisely those
objects that allow us to define a consistent assignment of “phases” to n-dimensional paths in their base
space. We address such an assignment as parallel n-transport. This is in fact essentially the definition of
Cheeger-Simons differential characters [25] as these are consistent assignments of phases to chains. However,
abelian bundle gerbes, Deligne cohomology and Cheeger-Simons differential characters all have one major
restriction: they only know about assignments of elements in U(1).

While the group of phases that enter the path integral is usually abelian, more general n-transport is
important nevertheless. For instance, the latter plays a role at intermediate stages. This is well understood
for n = 2: over a D-brane the abelian bundle gerbe corresponding to the NS field has the special property
that it measures the obstruction to lifting a PU(H)-bundle to a U(H)-bundle, i.e. lifting a bundle with
structure group the infinite projective unitary group on a Hilbert space H to the corresponding unitary
group [15] [16]. Hence, while itself an abelian 2-structure, it is crucially related to a nonabelian 1-structure.

That this phenomenon deserves special attention becomes clear when we move up the dimensional ladder:
The Green-Schwarz anomaly cancelation [40] in the heterotic string leads to a 3-structure with the special
property that, over the target space, it measures the obstruction to lifting an E8×Spin(n)-bundle to a certain
nonabelian principal 2-bundle, called a String 2-bundle. Such a 3-structure is also known as a Chern-Simons
2-gerbe [21]. By itself this is abelian, but its structure is constrained by certain nonabelian data. Namely
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this string 2-bundle with connection, from which the Chern-Simons 3-bundle arises, is itself an instance of
a structure that yields parallel 2-transport. It can be described neither by abelian bundle gerbes, nor by
Cheeger-Simons differential characters, nor by Deligne cohomology.

In anticipation of such situations, previous works have considered nonabelian gerbes and nonabelian
bundle gerbes with connection. However, it turns out that care is needed in order to find the right setup.
For instance, the kinds of nonabelian gerbes with connection studied in [17] [3], although very interesting, are
not sufficiently general to capture String 2-bundles. Moreover, it is not easy to see how to obtain the parallel
2-transport assignment from these structures. For the application to string physics, it would be much more
suitable to have a nonabelian generalization of the notion of a Cheeger-Simons differential character, and
thus a structure which, by definition, knows how to assign generalized phases to n-dimensional paths.

The obvious generalization that is needed is that of a parallel transport n-functor. Such a notion was
described in [9] [68]: a structure defined by the very fact that it labels n-paths by algebraic objects that allow
composition in n different directions, such that this composition is compatible with the gluing of n-paths.
One can show that such transport n-functors encompass abelian and nonabelian gerbes with connection as
special cases [68]. However, these n-functors are more general. For instance, String 2-bundles with connection
are given by parallel transport 2-functors. Ironically, the strength of the latter – namely their knowledge
about general phase assignments to higher dimensional paths – is to some degree also a drawback: for many
computations, a description entirely in terms of differential form data would be more tractable. However, the
passage from parallel n-transport to the corresponding differential structure is more or less straightforward:
a parallel transport n-functor is essentially a morphism of Lie n-groupoids. As such, it can be sent, by a
procedure generalizing the passage from Lie groups to Lie algebras, to a morphism of Lie n-algebroids.

The aim of this paper is to describe two topics: First, to set up a formalism for higher bundles with
connections entirely in terms of L∞-algebras, which may be thought of as a categorification of the theory
of Cartan-Ehresmann connections. This is supposed to be the differential version of the theory of parallel
transport n-functors, but an exhaustive discussion of the differentiation procedure is not given here. Instead
we discuss a couple of examples and then show how the lifting problem has a nice description in this
language. To do so, we present a family of L∞-algebras that govern the gauge structure of p-branes, as
above, and discuss the lifting problem for them. By doing so, we characterize Chern-Simons 3-forms as local
connection data on 3-bundles with connection which arise as the obstruction to lifts of ordinary bundles to
the corresponding String 2-bundles, governed by the String Lie 2-algebra.

The formalism immediately allows the generalization of this situation to higher degrees. Indeed we
indicate how certain 7-dimensional generalizations of Chern-Simons 3-bundles obstruct the lift of ordinary
bundles to certain 6-bundles governed by the Fivebrane Lie 6-algebra. The latter correspond to what we
define as the fivebrane structure, for which the degree seven NS field H7 plays the role that the degree three
dual NS field H3 plays for the n = 2 case.

The paper is organized in such a way that section 2 serves more or less as a self-contained description of
the basic ideas and construction, with the rest of the document having all the details and all the proofs.

In this paper we make use of the homotopy algebras usually referred to as L∞-algebras. These algebras
also go by other names such as sh-Lie algebras [57]. In our context we may also call such algebras Lie
∞-algebras which we think of as the abstract concept of an ∞-vector space with an antisymmetric bracket
∞-functor on it, which satisfies a Jacobi identity up to coherent equivalence, whereas “L∞-algebra” is
concretely a codifferential coalgebra of sorts. In this paper we will nevertheless follow the standard notation
of L∞-algebra.
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2 The Setting and Plan

We set up a useful framework for describing higher order bundles with connection entirely in terms of Lie n-
algebras, which can be thought of as arising from a categorification of the concept of an Ehresmann connection
on a principal bundle. Then we apply this to the study of Chern-Simons n-bundles with connection as
obstructions to lifts of principalG-bundles through higher String-like extensions of their structure Lie algebra.

2.1 L∞-algebras and their String-like central extensions

A Lie group has all the right properties to locally describe the phase change of a charged particle as it traces
out a worldline. A Lie n-group is a higher structure with precisely all the right properties to describe locally
the phase change of a charged (n− 1)-brane as it traces out an n-dimensional worldvolume.

2.1.1 L∞-algebras

Just as ordinary Lie groups have Lie algebras, Lie n-groups have Lie n-algebras. If the Lie n-algebra is what
is called semistrict, these are [5] precisely L∞-algebras [57] which have come to play a significant role in
cohomological physics. A (“semistrict” and finite dimensional) Lie n-algebra is any of the following three
equivalent structures:

• an L∞-algebra structure on a graded vector space g concentrated in the first n degrees (0, ..., n− 1);

• a quasi-free differential graded-commutative algebra (“qDGCA”: free as a graded-commutative) algebra
on the dual of that vector space: this is the Chevalley-Eilenberg algebra CE(g) of g;

• an n-category internal to the category of graded vector spaces and equipped with a skew-symmetric
linear bracket functor which satisfies a Jacobi identity up to higher coherent equivalence.

For every L∞-algebra g, we have the following three qDGCAs:

• the Chevalley-Eilenberg algebra CE(g)

• the Weil algebra W(g)

• the algebra of invariant polynomials or basic forms inv(g).

These sit in a sequence

CE(g) W(g)oooo inv(g)? _oo , (1)

where all morphisms are morphisms of dg-algebras. This sequence plays the role of the sequence of differential
forms on the “universal g-bundle”.

2.1.2 L∞-algebras from cocycles: String-like extensions

A simple but important source of examples for higher Lie n-algebras comes from the abelian Lie algebra u(1)
which may be shifted into higher categorical degrees. We write bn−1u(1) for the Lie n-algebra which is entirely
trivial except in its nth degree, where it looks like u(1). Just as u(1) corresponds to the Lie group U(1) , so
bn−1u(1) corresponds to the iterated classifying space Bn−1U(1), realizable as the topological group given
by the Eilenberg-MacLane space K(Z, n). Thus an important source for interesting Lie n-algebras comes
from extensions

0→ bn−1u(1)→ ĝ→ g→ 0 (2)

of an ordinary Lie algebra g by such a shifted abelian Lie n-algebra bn−1u(1). We find that, for each (n+1)-
cocycle µ in the Lie algebra cohomology of g, we do obtain such a central extension, which we describe
by

0→ bn−1u(1)→ gµ → g→ 0 . (3)
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dg-algebras L∞-algebras groupoids
(pointed)

topological
spaces

Chevalley-
Eilenberg
algebra

CE(g) Lie algebra g� _

��

structure
group as
monoidal

set

G� _

��

structure
group G� _

i

��
Weil algebra W(g)

i∗

OOOO

inner
derivation

Lie
2-algebra

inn(g)

inner
automorphism

2-group as
monoidal
groupoid

INN(G)

����

universal
G-bundle EG

p

����algebra of
invariant

polynomials
inv(g)

?�

p∗

OO

structure group
as one-object

groupoid
BG

classifying
space
for G

BG

�
(·)∗

regard as codifferential coalgebra and dualize

oo �
Lie

differentiate

oo �
|·|

take nerves and geometrically realize

//

Figure 1: The universal G-bundle in its various incarnations. That the ordinary universal G bundle is
the realization of the nerve of the groupoid which we denote here by INN(G) is an old result by Segal (see
[65] for a review and a discussion of the situation for 2-bundles). This groupoid INN(G) is in fact a 2-group.
The corresponding Lie 2-algebra (2-term L∞-algebra) we denote by inn(g). Regarding this as a codifferential
coalgebra and then dualizing that to a differential algebra yields the Weil algebra of the Lie algebra g. This
plays the role of differential forms on the universal G-bundle, as already known to Cartan. The entire table
is expected to admit an ∞-ization. Here we concentrate on discussing ∞-bundles with connection in terms
just of L∞-algebras and their dual dg-algebras. An integration of this back to the world of ∞-groupoids
should proceed along the lines of [39, 43], but is not considered here.

Since, for the case when µ = 〈·, [·, ·]〉 is the canonical 3-cocycle on a semisimple Lie algebra g, this gµ is
known ([7] and [43]) to be the Lie 2-algebra of the String 2-group, we call these central extensions String-like
central extensions. (We also refer to these as Lie n-algebras “of Baez-Crans type” [5].) Moreover, whenever
the cocycle µ is related by transgression to an invariant polynomial P on the Lie algebra, we find that gµ
fits into a short homotopy exact sequence of Lie (n+ 1)-algebras

0→ gµ → csP (µ)→ chP (µ)→ 0 . (4)

Here csP (g) is a Lie (n+ 1)-algebra governed by the Chern-Simons term corresponding to the transgression
element interpolating between µ and P . In a similar fashion chP (g) knows about the characteristic (Chern)
class associated with P .

In summary, from elements of the cohomology of CE(g) together with related elements in W(g) we obtain
the String-like extensions of Lie algebras to Lie 2n-algebras and the associated Chern- and Chern-Simons
Lie (2n− 1)-algebras:
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Lie algebra cocycle µ Baez-Crans Lie n-algebra gµ
invariant polynomial P Chern Lie n-algebra chP (g)
transgression element cs Chern-Simons Lie n-algebra csP (g)

2.1.3 L∞-algebra differential forms

For g an ordinary Lie algebra and Y some manifold, one finds that dg-algebra morphisms CE(g) → Ω•(Y )
from the Chevally-Eilenberg algebra of g to the DGCA of differential forms on Y are in bijection with
g-valued 1-forms A ∈ Ω1(Y, g) whose ordinary curvature 2-form

FA = dA+ [A ∧A] (5)

vanishes. Without the flatness, the correspondence is with algebra morphisms not respecting the differentials.
But dg-algebra morphisms A : W(g) → Ω•(Y ) are in bijection with arbitrary g-valued 1-forms. These are
flat precisely if A factors through CE(g). This situation is depicted in the following diagram:

CE(g)

(A,FA=0)

��

W(g)oooo

(A,FA)

��
Ω•(Y )

=
Ω•(Y )

. (6)

This has an obvious generalization for g an arbitrary L∞-algebra. For g any L∞-algebra, we write

Ω•(Y, g) = Homdg−Alg(W(g),Ω•(X)) (7)

for the collection of g-valued differential forms and

Ω•
flat(Y, g) = Homdg−Alg(CE(g),Ω•(X)) (8)

for the collection of flat g-valued differential forms.

2.2 L∞-algebra Cartan-Ehresmann connections

2.2.1 g-Bundle Descent data

A descent object for an ordinary principal G-bundle on X is a surjective submersion π : Y → X together
with a functor g : Y ×X Y → BG from the groupoid whose morphisms are pairs of points in the same fiber
of Y , to the groupoid BG which is the one-object groupoid corresponding to the group G. Notice that the
groupoid BG is not itself the classifying space BG of G, but the geometric realization of its nerve, |BG|, is:
|BG| = BG.

We may take Y to be the disjoint union of some open subsets {Ui} of X that form a good open cover of
X . Then g is the familiar concept of a transition function decribing a bundle that has been locally trivialized
over the Ui. But one can also use more general surjective submersions. For instance, for P → X any principal
G-bundle, it is sometimes useful to take Y = P . In this case one obtains a canonical choice for the cocycle

g : Y ×X Y = P ×X P → BG (9)

since P being principal means that
P ×X P ≃diffeo P ×G . (10)

This reflects the fact that every principal bundle canonically trivializes when pulled back to its own total
space. The choice Y = P differs from that of a good cover crucially in the following aspect: if the group
G is connected, then also the fibers of Y = P are connected. Cocycles over surjective submersions with
connected fibers have special properties, which we will utilize: When the fibers of Y are connected, we may
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think of the assignment of group elements to pairs of points in one fiber as arising from the parallel transport
with respect to a flat vertical 1-form Avert ∈ Ω1

vert(Y, g), flat along the fibers. As we shall see, this can be
thought of as the vertical part of a Cartan-Ehresmann connection 1-form. This provides a morphism

Ω•
vert(Y ) CE(g)

Avertoo (11)

of differential graded algebras from the Chevalley-Eilenberg algebra of g to the vertical differential forms on
Y .

Unless otherwise specified, morphism will always mean homomorphism of differential graded algebra.
Avert has an obvious generalization: for g any Lie n-algebra, we say that a g-bundle descent object for a

g-n-bundle on X is a surjective submersion π : Y → X together with a morphism Ω•
vert(Y ) CE(g)

Avertoo .

Now Avert ∈ Ω•
vert(Y, g) encodes a collection of vertical p-forms on Y , each taking values in the degree p-part

of g and all together satisfying a certain flatness condition, controlled by the nature of the differential on
CE(g).

2.2.2 Connections on n-bundles: the extension problem

Given a descent object Ω•
vert(Y ) CE(g)

Avertoo as above, a flat connection on it is an extension of

the morphism Avert to a morphism Aflat that factors through differential forms on Y

Ω•
vert(Y ) CE(g)

Avertoo

Aflat

{{
Ω•(Y )

i∗

OOOO
. (12)

In general, such an extension does not exist. A general connection on a g-descent object Avert is a morphism

Ω•(Y ) W(g)
(A,FA)oo (13)

from the Weil algebra of g to the differential forms on Y together with a morphism

Ω•(Y ) inv(g)
{Ki}oo (14)

from the invariant polynomials on g, as in 2.1.1, to the differential forms on X , such that the following two
squares commute:

Ω•
vert(Y ) CE(g)

Avertoo

Ω•(Y )

i∗

OOOO

W (g)

OOOO

(A,FA)oo

Ω•(X)
?�

π∗

OO

inv(g)
?�

OO

{Ki}
oo

. (15)
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Whenever we have such two commuting squares, we say

• Avert ∈ Ω•
vert(Y, g) is a g-bundle descent object (playing the role of a transition function);

• A ∈ Ω•(Y, g) is a (Cartan-Ehresmann) connection with values in the L∞-algebra g on the total space
of the surjective submersion;

• FA ∈ Ω•+1(Y, g) are the corresponding curvature forms;

• and the set {Ki ∈ Ω•(X)} are the corresponding characteristic forms, whose classes {[Ki]} in
deRham cohomology

Ω•(X) inv(g)
{Ki}oo

H•
deRham(X) H•(inv(g))

{[Ki]}oo

(16)

are the corresponding characteristic classes of the given descent object Avert.

Ω•
vert(Y ) CE(g)

Avertoo descent
data

first
Cartan-Ehresmann

condition

Ω•(Y )

i∗

OOOO

W (g)

OOOO

(A,FA)oo connection
data

second
Cartan-Ehresmann

condition

Ω•(X)
?�

π∗

OO

inv(g)
?�

OO

{Ki}oo characteristic
forms

H•
dR(X) H•(inv(g))

{[Ki]}
oo Chern-Weil

homomorphism

Figure 2: A g-connection descent object and its interpretation. For g-any L∞-algebra and X a
smooth space, a g-connection on X is an equivalence class of pairs (Y, (A,FA)) consisting of a surjective
submersion π : Y → X and dg-algebra morphisms forming the above commuting diagram. The equivalence
relation is concordance of such diagrams. The situation for ordinary Cartan-Ehresmann (1-)connections is
described in 7.2.1.

Hence we realize the curvature of a g-connection as the obstruction to extending a g-descent object to a
flat g-connection.
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2.3 Higher String and Chern-Simons n-transport: the lifting problem

Given a g-descent object

CE(g)

Avertyyttttttttt

Ω•
vert(Y )

, (17)

and given an extension of g by a String-like L∞-algebra

CE(bn−1u(1)) CE(gµ)
ioooo CE(g)? _oo , (18)

we ask if it is possible to lift the descent object through this extension, i.e. to find a dotted arrow in

CE(bn−1u(1)) CE(gµ)oooo

""

CE(g)? _oo

Avert}}{{
{{

{{
{{

Ω•
vert(Y )

. (19)

In general this is not possible. We seek a straightforward way to compute the obstruction to the existence
of the lift. The strategy is to form the weak (homotopy) kernel of

CE(bn−1u(1)) CE(gµ)
ioooo (20)

which we denote by CE(bn−1u(1) →֒ gµ) and realize as a mapping cone of qDGCAs. This comes canonically
with a morphism f from CE(g) which happens to have a weak inverse

CE(bn−1u(1) →֒ gµ)

tthhhhhhhhhhhhhhhhhhhh

f−1

qqCE(bn−1u(1)) CE(gµ)
ioooo CE(g)? _oo

fnnnnn

77nnnnn

. (21)

Then we see that, while the lift to a gµ-cocycle may not always exist, the lift to a (bn−1u(1) →֒ gµ)-cocycle
does always exist. We form Avert ◦ f

−1:

CE(bn−1u(1) →֒ gµ)

ssffffffffffffffffffffffffff

f−1
nnnn

wwnnnn
n

CE(bn−1u(1)) CE(gµ)
ioooo

""

CE(g)? _oo

Avert}}{{
{{

{{
{{

Ω•
vert(Y )

. (22)

The failure of this lift to be a true lift to gµ is measured by the component of Avert ◦ f
−1 on bn−1u(1)[1] ≃

bnu(1). Formally this is the composite A′
vert := Avert ◦ f

−1 ◦ j in

CE(bn−1u(1) →֒ gµ)

ssffffffffffffffffffffffffff

f−1
nnnn

wwnnn
nn

CE(bnu(1))? _
joo

A′

vert

jjjjjjjjjjjjjjjjjj

uujjjjjjjjjjjjjjjjjjCE(bn−1u(1)) CE(gµ)
ioooo

""

CE(g)? _oo

Avert
{{

{

}}{{
{

Ω•
vert(Y )

. (23)
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The nontriviality of the bnu(1)-descent object A′
vert is the obstruction to constructing the desired lift.

We thus find the following results, for any g-cocycle µ which is in transgression with the the invariant
polynomial P on g,

• The characteristic classes (in deRham cohomology) of gµ-bundles are those of the corresponding g-
bundles modulo those coming from the invariant polynomial P .

• The lift of a g-valued connection to a gµ-valued connection is obstructed by a bnu(1)-valued (n + 1)-
connection whose (n+1)-form curvature is P (FA), i.e. the image under the Chern-Weil homomorphism
of the invariant polynomial corresponding to µ.

• Accordingly, the (n + 1)-form connection of the obstructing bnu(1) (n+ 1)-bundle is a Chern-Simons
form for this characteristic class.

We call the obstructing bnu(1) (n + 1)-descent object the corresponding Chern-Simons (n + 1)-bundle.
For the case when µ = 〈·, [·, ·]〉 is the canonical 3-cocycle on a semisimple Lie algebra g, this structure
(corresponding to a 2-gerbe) has a 3-connection given by the ordinary Chern-Simons 3-form and has a
curvature 4-form given by the (image in deRham cohomology of) the first Pontrjagin class of the underlying
g-bundle.

3 Physical applications: String-, Fivebrane- and p-Brane struc-

tures

We can now discuss physical applications of the formalism that we have developed. What we describe is a
useful way to handle obstructing n-bundles of various kinds that appear in string theory. In particular, we can
describe generalizations of string structure in string theory. In the context of p-branes, such generalizations
have been suggested based on p-loop spaces [30] [10] [64] and, more generally, on the space of maps Map(M,X)
from the brane worldvolume M to spacetime X [60]. The statements in this section will be established in
detail in [77].

From the point of view of supergravity, all branes, called p-branes in that setting, are a priori treated
in a unified way. In tracing back to string theory, however, there is a distinction in the form-fields between
the Ramond-Ramond (RR) and the Neveu-Schwarz (NS) forms. The former live in generalized cohomology
and the latter play two roles: they act as twist fields for the RR fields and they are also connected to the
geometry and topology of spacetime. The H-field H3 plays the role of a twist in K-theory for the RR fields
[50] [15] [59]. The twist for the degree seven dual field H7 is observed in [67] at the rational level.

The ability to define fields and their corresponding partition functions puts constraints on the topology of
the underlying spacetime. The most commonly understood example is that of fermions where the ability to
define them requires spacetime to be spin, and the ability to describe theories with chiral fermions requires
certain restrictions coming from the index theorem. In the context of heterotic string theory, the Green-
Schwarz anomaly cancelation leads to the condition that the difference between the Pontrjagin classes of
the tangent bundle and that of the gauge bundle be zero. This is called the string structure, which can be
thought of as a spin structure on the loop space of spacetime [52] [27]. In M-theory, the ability to define
the partition function leads to an anomaly given by the integral seventh-integral Steifel-Whitney class of
spacetime [29] whose cancelation requires spacetime to be orientable with respect to generalized cohomology
theories beyond K-theory [55] .

In all cases, the corresponding structure is related to the homotopy groups of the orthogonal group: the
spin structure amounts to killing the first homotopy group, the string structure and – to some extent– the
W7 condition to killing the third homotopy group. Note that when we say that the n-th homotopy group is
killed, we really mean that all homotopy groups up to and including the n-th one are killed. For instance,
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a String structure requires killing everything up to and including the third, hence everything through the
sixth, since there are no homotopy groups in degrees four, five or six.

The Green-Schwarz anomaly cancelation condition for the heterotic string can be translated to the
language of n-bundles as follows. We have two bundles, the spin bundle with structure group G = Spin(10),
and the gauge bundle with structure group G′ being either SO(32)/Z2 or E8 × E8. Considering the latter,
we have one copy of E8 on each ten-dimensional boundary component, which can be viewed as an end-of-
the-world nine-brane, or M9-brane [47]. The structure of the four-form on the boundary which we write
as

G4|∂ = dH3 (24)

implies that the 3-bundle (2-gerbe) becomes the trivializable lifting 2-gerbe of a String(Spin(10)×E8) bundle
over the M9-brane. As the four-form contains the difference of the Pontrjagin classes of the bundles with
structure groups G and G′, the corresponding three-form will be a difference of Chern-Simons forms. The
bundle aspect of this has been studied in [12] and will be revisited in the current context in [77].

The NS fields play a special role in relation to the homtopy groups of the orthogonal group. The degree
three class [H3] plays the role of a twist for a spin structure. Likewise, the degree seven class plays a role
of a twist for a higher structure related to BO〈9〉, the 8-connected cover of BO, which we might call a
Fivebrane-structure on spacetime. We can talk about such a structure once the spacetime already has a
string structure. The obstructions are given in table 2, where A is the connection on the G′ bundle and ω
is a connection on the G bundle.

n
2

= 4 · 0 + 2
6

= 4 · 1 + 2
fundamental object

(n− 1)-brane
n-particle

string 5-brane

target space
structure

string structure
ch2(A)− p1(ω) = 0

fivebrane structure
ch4(A)− 1

48p2(ω) = 0

Table 2: Higher dimensional extended objects and the corresponding topological structures.

In the above we alluded to how the brane structures are related to obstructions to having spacetimes with
connected covers of the orthogonal groups as structures. The obstructing classes here may be regarded as
classifying the corresponding obstructing n-bundles, after we apply the general formalism that we outlined
earlier. The main example of this general mechanism that will be of interest to us here is the case where
g is an ordinary semisimple Lie algebra. In particular, we consider g = spin(n). For g = spin(n) and µ a
(2n+1)-cocycle on spin(n), we call spin(n)µ the (skeletal version of the) (2n−1)-brane Lie (2n)−algebra.
Thus, the case of String structure and Fivebrane structure occurring in the fundamental string and NS
fivebrane correspond to the cases n = 1 and n = 3 respectively. Now applying our formalism for g = spin(n),
and µ3, µ7 the canonical 3- and 7-cocycle, respectively, we have:

• the obstruction to lifting a g-bundle descent object to a String 2-bundle (a gµ3-bundle descent object)
is the first Pontryagin class of the original g-bundle cocycle;

• the obstruction to lifting a String 2-bundle descent object to a Fivebrane 6-bundle cocycle (a gµ7 -bundle
descent object) is the second Pontryagin class of the original g-bundle cocycle.

The cocyles and invariant polynomials corresponding to the two structures are given in the following
table

In case of the fundamental string, the obstruction to lifting the PU(H) bundles to U(H) bundles is
measured by a gerbe or a line 2-bundle. In the language of E8 bundles this corresponds to lifting the loop
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p-brane cocycle invariant polynomial
p = 1 = 4 · 0 + 1 µ3 = 〈·, [·, ·]〉 P1 = 〈·, ·〉 first Pontrjagin
p = 5 = 4 · 1 + 1 µ7 = 〈·, [·, ·], [·, ·], [·, ·]〉 P2 = 〈·, ·, ·, ·〉 second Pontrjagin

Table 3: Lie algebra cohomology governing NS p-branes.

group LE8 bundles to the central extension L̂E8 bundles [59]. The obstruction for the case of the String
structure is a 2-gerbe and that of a Fivebrane structure is a 6-gerbe. The structures are summarized in the
following table

obstruction G-bundle Ĝ-bundle
1-gerbes / line 2-bundles
2-gerbes / line 3-bundles
6-gerbes / line 7-bundles

obstruct the lift of
PU(H)-bundles
Spin(n)-bundles

String(n)-2-bundles
to

U(H)-bundles
String(n)-2-bundles

FiveBrane(n)-6-bundles

Table 4: Obstructing line n-bundles appearing in string theory.

A description can also be given in terms of (higher) loop spaces, generalizing the known case where a
String structure on a space X can be viewed as a Spin structure on the loop space LX . A fuller discussion
of the ideas of this section will be given in [77].

4 Statement of the main results

We define, for any L∞-algebra g and any smooth space X , a notion of

• g-descent objects over X ;

and an extension of these to

• g-connection descent objects over X .

These descent objects are to be thought of as the data obtained from locally trivializing an n-bundle (with
connection) whose structure n-group has the Lie n-algebra g. Being differential versions of n-functorial
descent data of such n-bundles, they consist of morphisms of quasi free differential graded-commutative
algebras (qDGCAs).

We define for each L∞-algebra g a dg-algebra inv(g) of invariant polynomials on g. We show that every
g-connection descent object gives rise to a collection of deRham classes on X : its characteristic classes.
These are images of the elements of inv(g). Two descent objects are taken to be equivalent if they are
concordant in a natural sense.

Our first main result is

Theorem 1 (characteristic classes) Characteristic classes are indeed characteristic of g-descent objects
(but do not necessarily fully characterize them) in the following sense:

• Concordant g-connection descent objects have the same characteristic classes.

• If the g-connection descent objects differ just by a gauge transformation, they even have the same
characteristic forms.

This is our proposition 32 and corollary 2.

14



Remark. We expect that this result can be strengthened. Currently our characteristic classes are just in
deRham cohomology. One would expect that these are images of classes in integral cohomology. While we
do not attempt here to discuss integral characteristic classes in general, we discuss some aspects of this for
the case of abelian Lie n-algebras g = bn−1u(1) in 7.1.1 by relating g-descent objects to Deligne cohomology.

The reader should also note that in our main examples to be discussed in section 8 we start with an
L∞-connection which happens to be an ordinary Cartan-Ehresmann connection on an ordinary bundle and
is hence known to have integral classes. It follows from our results then that also the corresponding Chern-
Simons 3-connections in particular have an integral class.

We define String-like extensions gµ of L∞-algebras coming from any L∞-algebra cocycle µ: a closed
element in the Chevalley-Eilenberg dg-algebra CE(g) corresponding to g: µ ∈ CE(g). These generalize the
String Lie 2-algebra which governs the dynamics of (heterotic) superstrings.

Our second main results is

Theorem 2 (string-like extensions and their properties) Every degree (n + 1)-cocycle µ on an L∞-
algebra g we obtain the string-like extension gµ which sits in an exact seqeuence

0→ bn−1u(1)→ gµ → g→ 0 .

When µ is in transgression with an invariant polynomial P we furthermore obtain a weakly exact sequence

0→ gµ → csP (g)→ chP (µ)→ 0

of L∞-algebras, where csP (g) ≃ inn(gµ) is trivializable (equivalent to the trivial L∞-algebra). There is an
algebra of invariant polynomials on g associated with csP (g) and we show that it is the algebra of invariant
polynomials of g modulo the ideal generaled by P .

This is proposition 20, proposition 21 and proposition 24.
Our third main result is

Theorem 3 (obstructions to lifts through String-like extensions) For µ ∈ CE(g) any degree n + 1
g-cocycle that transgresses to an invariant polynomial P ∈ inv(g), the obstruction to lifting a g-descent object
to a gµ-descent object is a (bnu(1))-descent object whose single characteristic class is the class corresponding
to P of the original g-descent object.

This is reflected by the fact that the cohomology of the basic forms on the Chevalley-Eilenberg algebra of
the corresponding Chern-Simons L∞-algebra csP (g) is that of the algebra of basic forms on inv(g) modulo
the ideal generated by P .

This is our proposition 24 and proposition 44.
We discuss the following applications.

• For g an ordinary semisimple Lie algebra and µ its canonical 3-cocycle, the obstruction to lifting a
g-bundle to a String 2-bundle is a Chern-Simons 3-bundle with characteristic class the Pontrjagin class
of the original bundle. This is a special case of our proposition 44 which is spelled out in detail in in
8.3.1.

The vanishing of this obstruction is known as a String structure [52, 56, 63]. In categorical language,
this issue was first discussed in [72].

By passing from our Lie ∞-algebraic description to smooth spaces along the lines of 5.1 and then
forming fundamental n-groupoids of these spaces, one can see that our construction of obstructing
n-bundles to lifts through String-like extensions reproduces the construction [18, 19] of Čech cocycles
representing characteristic classes. This, however, will not be discussed here.
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• This result generalizes to all String-like extensions. Using the 7-cocycle on so(n) we obtain lifts through
extensions by a Lie 6-algebra, which we call the Fivebrane Lie 6-algebra. Accordingly, fivebrane
structures on string structures are obstructed by the second Pontrjagin class.

This pattern continues and one would expect our obstruction theory for lifts through string-like exten-
sions with respect to the 11-cocycle on so(n) to correspond to Ninebrane structure.

The issue of p-brane structures for higher p was discussed before in [60]. In contrast to the discussion
there, we here see p-brane structures only for p = 4n + 1, corresponding to the list of invariant
polynomials and cocycles for so(n). While our entire obstruction theory applies to all cocycles on all
Lie ∞-algebras, it is only for those on so(n) and maybe e8 for which the physical interpretation in the
sense of p-brane structures is understood.

• We discuss how the action functional of the topological field theory known as BF-theory arises from an
invariant polynomial on a strict Lie 2-algebra, in a generalization of the integrated Pontrjagin 4-form
of the topological term in Yang-Mills theory. See proposition 18 and the example in 6.6.1.

This is similar to but different from the Lie 2-algebraic interpretation of BF theory indicated in [37, 38],
where the “cosmological” bilinear in the connection 2-form is not considered and a constraint on the
admissable strict Lie 2-algebras is imposed.

• We indicate in 9.1 the notion of parallel transport induced by a g-connection, relate it to the n-
functorial parallel transport of [9, 68, 69, 70] and point out how this leads to σ-model actions in terms
of dg-algebra morphisms. See section 9.

• We indicate in 9.3.1 how by forming configuration spaces by sending DGCAs to smooth spaces and then
using the internal hom of smooth space, we obtain for every g-connection descent object configuration
spaces of maps equipped with an action functional induced by the transgressed g-connection. We show
that the algebra of differential forms on these configuration spaces naturally supports the structure of
the corresponding BRST-BV complex, with the iterated ghost-of-ghost structure inherited from the
higher degree symmetries induced by g.

This construction is similar in spirit to the one given in [1], reviewed in [66], but also, at least superfi-
cially, a bit different.

• We indicate also in 9.3.1 how this construction of configuration spaces induces the notion of transgres-
sion of n-bundles on X to (n − k)-bundles on spaces of maps from k-dimensional spaces into X . An
analogous integrated description of transgression in terms of inner homs is in [69]. We show in 9.3.1 in
particular that this transgression process relates the concept of String-structures in terms of 4-classes
down on X with the corresponding 3-classes on LX , as discussed for instance in [56]. Our construction
immediately generalizes to fivebrane and higher classes.

All of our discussion here pertains to principal L∞-connections. One can also discuss associated g-
connections induced by (∞-)representations of g (for instance as in [58]) and then study the collections of
“sections” or “modules” of such associated g-connections.

The extended quantum field theory of a (n − 1)-brane charged under an n-connection (“a charged n-
particle”, definition 42) should (see for instance [32, 33, 72, 45]) assign to each d-dimensional part Σ of the
brane’s parameter space (“worldvolume”) the collection (an (n−d−1)-category, really) of sections/modules
of the transgression of the n-bundle to the configuration space of maps from Σ.

For instance, the space of sections of a Chern-Simons 3-connection trangressed to maps from the circle
should yield the representation category of the Kac-Moody extension of the corresponding loop group.

Our last proposition 47 points in this direction. But a more detailed discussion will not be given here.
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5 Differential graded-commutative algebra

Differential N-graded commutative algebras (DGCAs) play a prominent role in our discussion. One way to
understand what is special about DGCAs is to realize that every DGCA can be regarded, essentially, as the
algebra of differential forms on some generalized smooth space.

We explain what this means precisely in 5.1. The underlying phenomenon is essentially the familiar
governing principle of Sullivan models in rational homotopy theory [44, 73], but instead of working with
simplicial spaces, we here consider presheaf categories. This will not become relevant, though, until the
discussion of configuration spaces, parallel transport and action functionals in 9.

5.1 Differential forms on smooth spaces

We can think of every differential graded commutative algebra essentially as being the algebra of differential
forms on some space, possibly a generalized space.

Definition 1 Let S be the category whose objects are the open subsets of R ∪ R
2 ∪ R

3 ∪ · · · and whose
morphisms are smooth maps between these. We write

S∞ := SetS
op

(25)

for the category of set-valued presheaves on S.

So an object X in S∞ is an assignment of sets U 7→ X(U) to each open subset U , together with an
assignment

( U
φ // V ) 7→ ( X(U) oo

φ∗

X
X(V ) ) (26)

of maps of sets to maps of smooth subsets which respects composition. A morphism

f : X → Y (27)

of smooth spaces is an assignment U 7→ ( X(U)
fU // Y (U) ) of maps of sets to open subsets, such that for

all smooth maps of subsets U
φ // V we have that the square

X(V )
fV //

φ∗

X

��

Y (V )

φ∗

Y

��
X(U)

fU // Y (U)

(28)

commutes. We think of the objects of S∞ smooth spaces. The set X(U) that such a smooth space X assigns
to an open subset U is to be thought of as the set of smooth maps from U into X . As opposed to manifolds
which are locally isomorphic to an object in S, smooth spaces can hence be thought of as being objects
which are just required to have the property that they may be probed by objects of S. Every open subset V
becomes a smooth space by setting

V : U 7→ HomS∞(U, V ) . (29)

This are the representable presheaves. Similarly, every ordinary manifold X becomes a smooth space by
setting

X : U 7→ Hommanifolds(U,X) . (30)

The special property of smooth spaces which we need here is that they form a (cartesian) closed category:
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• for any two smooth spaces X and Y there is a cartesian product X×Y , which is again a smooth space,
given by the assignment

X × Y : U 7→ X(U)× Y (U) ; (31)

where the cartesian product on the right is that of sets;

• the collection hom(X,Y ) of morphisms from one smooth space X to another smooth space Y is again
a smooth space, given by the assignment

homS∞(X,Y ) : U 7→ HomS∞(X × U, Y ) . (32)

A very special smooth space is the smooth space of differential forms.

Definition 2 We write Ω• for the smooth space which assigns to each open subset the set of differential
forms on it

Ω• : U 7→ Ω•(U) . (33)

Using this object we define the DGCA of differential forms on any smooth space X to be the set

Ω•(X) := HomS∞(X,Ω•) (34)

equipped with the obvious DGCA structure induced by the local DGCA structure of each Ω•(U).

Therefore the object Ω• is in a way both a smooth space as well as a differential graded commutative
algebra: it is a DGCA-valued presheaf. Such objects are known as schizophrenic [48] or better ambimorphic
[78] objects: they relate two different worlds by duality. In fact, the process of mapping into these objects
provides an adjunction between the dual categories:

Definition 3 There are contravariant functors from smooth spaces to DGCAs given by

Ω• : S∞ → DGCAs

X 7→ Ω•(X) (35)

and

Hom(−,Ω•(−)) : DGCAs → S∞

A 7→ XA (36)

These form an adjunction of categories. The unit

DGCAs

Id

''

Hom(−,Ω•(−))
// S∞

Ω•

// DGCAs

u
��

(37)

of this adjunction is a natural transformation whose component map embeds each DGCA A into the algebra
of differential forms on the smooth space it defines

A
� � // Ω•(XA) (38)

by sending every a ∈ A to the map of presheaves

(f ∈ HomDGCAs(A,Ω
•(U))) 7→ (f(a) ∈ Ω•(U)) . (39)

This way of obtaining forms on XA from elements of A will be crucial for our construction of differential
forms on spaces of maps, hom(X,Y ), used in 9.3.

Using this adjunction, we can “pull back” the internal hom of S∞ to DGCAs. Since the result is not
literally the internal hom in DGCAs (which does not exist since DGCAs are not profinite as opposed to
codifferential coalgebras [39]) we call it “maps” instead of “hom”.
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Definition 4 (forms on spaces of maps) Given any two DGCAs A and B, we define the DGCA of
“maps” from B to A

maps(B,A) := Ω•(homS∞(XA, XB)) . (40)

This is a functor
maps : DGCAsop ×DGCAs→ DGCAs . (41)

Notice the fact (for instance corollary 35.10 in [53] and theorem 2.8 in [61]) that for any two smooth

spaces X and Y , algebra homomorphisms C∞(X)
φ∗

← C∞(Y ) and hence DGCA morphisms Ω•(X)
φ∗

← Ω•(Y )
are in bijection with smooth maps φ : X → Y .

It follows that an element of hom(XA, XB) is, over test domains U and V a natural map of sets

HomDGCAs(A,Ω
•(V ))×HomDGCAs(Ω

•(U),Ω•(V ))→ HomDGCAs(B,Ω
•(V )) . (42)

One way to obtain such maps is from pullback along algebra homomorphisms

B → A⊗ Ω•(U) .

This will be an important source of DGCAs of maps for the case that A is the Chevalley-Eilenberg algebra
of an an L∞-algebra, as described in 5.1.1.

5.1.1 Examples

Diffeological spaces Particularly useful are smooth spaces X which, while not quite manifolds, have the
property that there is a set Xs such that

X : U 7→ X(U) ⊂ HomSet(U,Xs) (43)

for all U ∈ S. These are the Chen-smooth or diffeological spaces used in [9, 69, 70]. In particular, all spaces
of maps homS∞(X,Y ) for X and Y manifolds are of this form. This includes in particular loop spaces.

Forms on spaces of maps. When we discuss parallel transport and its transgression to configuration
spaces in 9.3, we need the following construction of differential forms on spaces of maps.

Definition 5 (currents) For A any DGCA, we say that a current on A is a smooth linear map

c : A→ R . (44)

For A = Ω•(X) this reduces to the ordinary notion of currents.

Proposition 1 Let A be a quasi free DGCAs in positive degree (meaning that the underlying graded com-
mutative algebras are freely generated from some graded vector space in positive degree). For each element
b ∈ B and current c on A, we get an element in Ω•(HomDGCAs(B,A⊗Ω•(−))) by mapping, for each U ∈ S

HomDGCAs(B,A⊗ Ω•(U)) → Ω•(U)

f∗ 7→ c(f∗(b)) . (45)

If b is in degree n and c in degree m ≤ n, then this differential form is in degree n−m.
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The superpoint. Most of the DGCAs we shall consider here are non-negatively graded or even positively
graded. These can be thought of as Chevalley-Eilenberg algebras of Lie n-algebroids and Lie n-algebras,
respectively, as discussed in more detail in 6. However, DGCAs of arbitrary degree do play an important
role, too. Notice that a DGCA of non-positive degree is in particular a cochain complex of non-positive
degree. But that is the same as a chain complex of non-negative degree.

The following is a very simple but important example of a DGCA in non-positive degree.

Definition 6 (superpoint) The “algebra of functions on the superpoint” is the DGCA

C(pt) := (R⊕ R[−1], dpt) (46)

where the product on R⊕ R[−1] is the tensor product over R, and where the differential dpt : R[−1]→ R is
the canonical isomorphism.

The smooth space associated to this algebra according to definition 3 is just the ordinary point, because
for any test domain U the set

HomDGCAs(C(pt),Ω•(U)) (47)

contains only the morphism which sends 1 ∈ R to the constant unit function on U , and which sends R[−1]
to 0. However, as is well known from the theory of supermanifolds, the algebra C(pt) is important in that
morphisms from any other DGCA A into it compute the (shifted) tangent space corresponding to A. From
our point of view here this manifests itself in particular by the fact that for X any manifold, we have a
canonical injection

Ω•(TX) →֒ Ω•(maps(C∞(X), C(pt))) (48)

of the differential forms on the tangent bundle of X into the differential forms on the smooth space of algebra
homomorphisms of C∞(X) to C(pt):

for every test domain U an element in HomDGCAs(C
∞(X), C(pt⊗Ω•(U))) comes from a pair consisting

of a smooth map f : U → X and a vector field v ∈ Γ(TX). Together this constitutes a smooth map

f̂ : U → TX and hence for every form ω ∈ Ω•(TX) we obtain a form on maps(C∞(X), C(pt)) by the
assignment

((f, v) ∈ HomDGCAs(C
∞(X), C(pt⊗ Ω•(U)))) 7→ (f̂∗ω ∈ Ω•(U)) (49)

over each test domain U .
In 6.1.1 we discuss how in the analogous fashion we obtain the Weil algebra W(g) of any L∞-algebra g

from its Chevalley-Eilenberg algebra CE(g) by mapping that to C(pt). This says that the Weil alghebra is
like the space of functions on the shifted tangent bundle of the “space” that the Chevalley-Eilenberg algebra
is the space of functions on. See also figure 3.

5.2 Homotopies and inner derivations

When we forget the algebra structure of DGCAs, they are simply cochain complexes. As such they naturally
live in a 2-category Ch• whose objects are cochain complexes (V •, dV ), whose morphisms

(V •, dV ) (W •, dW )
f∗

oo (50)

are degree preserving linear maps V • W •
f∗

oo that do respect the differentials,

[d, f∗] := dV ◦ f
∗ − f∗ ◦ dW = 0 , (51)

and whose 2-morphisms

(V •, dV ) (W •, dW )

f∗

||

g∗

bb
ρ

��

(52)
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are cochain homotopies, namely linear degree -1 maps ρ : W • → V • with the property that

g∗ = f∗ + [d, ρ] = f∗ + dV ◦ ρ+ ρ ◦ dW . (53)

Later in 6.2 we will also look at morphisms that do preserve the algebra structure, and homotopies of
these. Notice that we can compose a 2-morphism from left and right with 1-morphisms, to obtain another
2-morphism

(U•, dU ) (V •, dV )
h∗

oo (W •, dW )

f∗

||

g∗

bb
(X•, dX)

j∗ooρ

��

(54)

whose component map now is

h∗ ◦ ρ ◦ j∗ : X•
j∗ // W •

ρ // V • h∗

// U• . (55)

This will be important for the interpretation of the diagrams we discuss, of the type 64 and 70 below.

Of special importance are linear endomorphisms V • V •
ρoo of DGCAs which are algebra derivations.

Among them, the inner derivations in turn play a special role:

Definition 7 (inner derivations) On any DGCA (V •, dV ), a degree 0 endomorphism

(V •, dV ) (V •, dV )
Loo (56)

is called an inner derivation if

• it is an algebra derivation of degree 0;

• it is connected to the 0-derivation, i.e. there is a 2-morphims

(V •, dV ) (V •, dV )

0

||

L=[dV ,ρ]

bb
ρ

��

, (57)

where ρ comes from an algebra derivation of degree -1.

Remark. Inner derivations generalize the notion of a Lie derivative on differential forms, and hence they
encode the notion of vector fields in the context of DGCAs.

5.2.1 Examples

Lie derivatives on ordinary differential forms. The formula somtetimes known as “Cartan’s magic
formula”, which says that on a smooth space Y the Lie derivative Lvω of a differential form ω ∈ Ω•(Y )
along a vector field v ∈ Γ(TY ) is given by

Lvω = [d, ιv] , (58)

where ιv : Ω•(Y )→ Ω•(Y ), says that Lie derivatives on differential forms are inner derivations, in our sense.
When Y is equipped with a smooth projection π : Y → X , it is of importance to distinguish the vector fields
vertical with respect to π. The abstract formulation of this, applicable to arbitrary DGCAs, is given in 5.3
below.
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5.3 Vertical flows and basic forms

We will prominently be dealing with surjections

A B
i∗oooo (59)

of differential graded commutative algebras that play the role of the dual of an injection

F
� � i // P (60)

of a fiber into a bundle. We need a way to identitfy in the context of DGCAs which inner derivations of P
are vertical with respect to i. Then we can find the algebra corresponding to the basis of P as those elements
of B which are annihilated by all vertical derivations.

Definition 8 (vertical derivations) Given any surjection of differential graded algebras

F P
i∗oooo (61)

we say that the vertical inner derivations

P P

0

��

[dP ,ρ]

\\
ρ

��

(62)

(this diagram is in the category of cochain complexes, compare the beginning of 6.2) on P with respect to i∗

are those inner derivations

• for which there exists an inner derivation of F

F F

0

��

[dP ,ρ
′]

\\ ρ′

��

(63)

such that

F F

[d,ρ′]

aa

0

}}

P

OOOO

P

OOOO

[d,ρ]

aa

0

}}

ρ′

��

ρ

��

; (64)

• and where ρ′ is a contraction, ρ′ = ιx, i.e. a derivation which sends indecomposables to degree 0.
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Definition 9 (basic elements) Given any surjection of differential graded algebras

F P
i∗oooo (65)

we say that the algebra

Pbasic =
⋂

ρ vertical

ker(ρ) ∩ ker(ρ ◦ dp) (66)

of basic elements of P (with respect to the surjection i∗) is the subalgebra of P of all those elements a ∈ P
which are annihilated by all i∗-vertical derivations ρ, in that

ρ(a) = 0 (67)

ρ(dPa) = 0 . (68)

We have a canonical inclusion

P Pbasic
? _

p∗oo . (69)

Diagrammatically the above condition says that

F F

[d,ρ′]

dd

0

zz

P

i∗

OOOO

P

i∗

OOOO

[d,ρ]

dd

0

zz

Pbasic

?�

p∗

OO

Pbasic

?�

p∗

OO

0oo

ρ′

��

ρ

��

. (70)

5.3.1 Examples

Basic forms on a bundle As a special case of the above general defintion, we reobtain the standard
notion of basic differential forms on a smooth surjective submersion π : Y → X with connected fibers.

Definition 10 Let π : Y → X be a smooth map. The vertical deRham complex , Ω•
vert(Y ), with respect

to Y is the deRham complex of Y modulo those forms that vanish when restricted in all arguments to vector
fields in the kernel of π∗ : Γ(TY )→ Γ(TX), namely to vertical vector fields.

The induced differential on Ω•
vert(Y ) sends ωvert = i∗ω to

dvert : i∗ω 7→ i∗dω . (71)

Proposition 2 This is well defined. The quotient Ω•
vert(Y ) with the differential induced from Ω•(Y ) is

indeed a dg-algebra, and the projection

Ω•
vert(Y ) Ω•(Y )

i∗oo (72)

is a homomorphism of dg-algebras (in that it does respect the differential).
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Proof. Notice that if ω ∈ Ω•(Y ) vanishes when evalutated on vertical vector fields then obviously so does
α ∧ ω, for any α ∈ Ω•(Y ). Moreover, due to the formula

dω(v1, · · · , vn+1) =
∑

σ∈Sh(1,n+1)

±vσ1ω(vσ2 , · · · , vσn+1) +
∑

σ∈Sh(2,n+1)

±ω([vσ1 , vσ2 ], vσ3 , · · · , vσn+1) (73)

and the fact that for v, w vertical so is [v, w] and hence dω is also vertical. This gives that vertical differential
forms on Y form a dg-subalgebra of the algebra of all forms on Y . Therefore if i∗ω = i∗ω′ then

di∗ω′ = i∗dω′ = i∗d(ω + (ω′ − ω)) = i∗dω + 0 = di∗ω . (74)

Hence the differential is well defined and i∗ is then, by construction, a morphism of dg-algebras.
�

Recall the following standard definition of basic differential forms.

Definition 11 (basic forms) Given a surjective submersion π : Y → X, the basic forms on Y are those
with the property that they and their differentials are annihilated by all vertical vector fields

ω ∈ Ω•(Y )basic ⇔ ∀v ∈ ker(π) : ιvω = ιvdω = 0 . (75)

It is a standard result that

Proposition 3 If π : Y → X is locally trivial and has connected fibers, then the basic forms are precisely
those coming from pullback along π

Ω•(Y )basic ≃ Ω•(X) . (76)

Remark. The reader should compare this situation with the definition of invariant polynomials in 6.3.
The next proposition asserts that these statements about ordinary basic differential forms are indeed a

special case of the general definition of basic elements with respect to a surjection of DGCAs, definition 9.

Proposition 4 Given a surjective submersion π : Y → X with connected fibers, then

• the inner derivations of Ω•(Y ) which are vertical with respect to Ω•
vert(Y ) Ω•(Y )

i∗oooo according to the

general definition 8, come precisely from contractions ιv with vertical vector fields v ∈ ker(π∗) ⊂ Γ(TY );

• the basic differential forms on Y according to definition 11 conincide with the basic elements of Ω•(Y )
relative to the above surjection

Ω•
vert(Y ) Ω•(Y )

i∗oooo (77)

according to the general definition 9.

Proof. We first show that if Ω•(Y ) Ω•(Y )
ρoo is a vertical algebra derivation, then ρ has to annihilate

all forms in the image of π∗. Let α ∈ Ω•(Y ) be any 1-form and ω = π∗β for β ∈ Ω1(X). Then the wedge
product α ∧ ω is annihilated by the projection to Ω•

vert(Y ) and we find

ρ(ω) ∧ α 0
�oo

ρ(ω) ∧ α
+ρ(α) ∧ ω

_

i∗

OO

α ∧ ω
_

i∗

OO

�ρoo

. (78)
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We see that ρ(ω) ∧ α has to vanish for all α. Therefore ρ(ω) has to vanish for all ω pulled back along π∗.
Hence ρ must be contraction with a vertical vector field. It then follows from the condition 64 that a basic
form is one annihilated by all such ρ and all such ρ ◦ d. �

Possibly the most familiar kinds of surjective submersions are

• Fiber bundles.

Indeed, the standard Cartan-Ehresmann theory of connections of principal bundles is obtained in our
context by fixing a Lie group G and a principal G-bundle p : P → X and then using Y = P itself as the
surjective submersion. The definition of a connection on P in terms of a g-valued 1-form on P can be
understood as the descent data for a connection on P obtained with respect to canonical trivialization
of the pullback of P to Y = P . Using for the surjective submersion Y a principal G-bundle P → X is
also most convenient for studying all kinds of higher n-bundles obstructing lifts of the given G-bundle.
This is why we will often make use of this choice in the following.

• Covers by open subsets.

The disjoint union of all sets in a cover of X by open subsets of X forms a surjective submersion
π : Y → X . In large parts of the literature on descent (locally trivialized bundles), these are the only
kinds of surjective submersions that are considered. We will find here, that in order to characterize
principal n-bundles entirely in terms of L∞-algebraic data, open covers are too restrictive and the full
generality of surjective submersions is needed. The reason is that, for π : Y → X a cover by open
subsets, there are no nontrivial vertical vector fields

ker(π) = 0, (79)

hence
Ω•

vert(Y ) = 0 . (80)

With the definition of g-descent objects in 7.1 this implies that all g-descent objects over a cover by
open subsets are trivial.

There are two important subclasses of surjective submersions π : Y → X :

• those for which Y is (smoothly) contractible;

• those for which the fibers of Y are connected.

We say Y is (smoothly) contractible if the identity map Id : Y → Y is (smoothly) homotopic to a map
Y → Y which is constant on each connected component. Hence Y is a disjoint union of spaces that are
each (smoothly) contractible to a point. In this case the Poincaré lemma says that the dg-algebra Ω•(Y ) of
differential forms on Y is contractible; each closed form is exact:

Ω•(Y ) Ω•(Y )

0

}}

[d,τ ]

aa
τ

��

. (81)

Here τ is the familiar homotopy operator that appears in the proof of the Poincaré lemma. In practice,
we often make use of the best of both worlds: surjective submersions that are (smoothly) contractible to
a discrete set but still have a sufficiently rich collection of vertical vector fields. The way to obtain these
is by refinement: starting with any surjective submersion π : Y → X which has good vertical vector fields
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but might not be contractible, we can cover Y itself with open balls, whose disjoint union, Y ′, then forms a
surjective submersion Y ′ → Y over Y . The composite π′

Y ′

π
  A

AA
AA

AA
A

// Y

~~~~
~~

~~
~~

X

(82)

is then a contractible surjective submersion of X . We will see that all our descent objects can be pulled back
along refinements of surjective submersions this way, so that it is possible, without restriction of generality,
to always work on contractible surjective submersions. Notice that for these the structure of

Ω•
vert(Y ) Ω•(Y )oooo Ω•(X)? _oo (83)

is rather similar to that of

CE(g) W(g)oooo inv(g)? _oo , (84)

since W(g) is also contractible, according to proposition 6.

Vertical derivations on universal g-bundles. The other important exmaple of vertical flows, those on
DGCAs modelling universal g-bundle for g an L∞-algebra, is discussed at the beginning of 6.3.

6 L∞-algebras and their String-like extensions

L∞-algebras are a generalization of Lie algebras, where the Jacobi identity is demanded to hold only up to
higher coherent equivalence, as the category theorist would say, or “strongly homotopic”, as the homotopy
theorist would say.

6.1 L∞-algebras

Definition 12 Given a graded vector space V , the tensor space T •(V ) :=
⊕

n=0 V
⊗n with V 0 being the

ground field. We will denote by T a(V ) the tensor algebra with the concatenation product on T •(V ):

x1 ⊗ x2 ⊗ · · · ⊗ xp
⊗

xp+1 ⊗ · · · ⊗ xn 7→ x1 ⊗ x2 ⊗ · · · ⊗ xn (85)

and by T c(V ) the tensor coalgebra with the deconcatenation product on T •(V ):

x1 ⊗ x2 ⊗ · · · ⊗ xn 7→
∑

p+q=n

x1 ⊗ x2 ⊗ · · · ⊗ xp
⊗

xp+1 ⊗ · · · ⊗ xn. (86)

The graded symmetric algebra ∧•(V ) is the quotient of the tensor algebra T a(V ) by the graded action of the
symmetric groups Sn on the components V ⊗n. The graded symmetric coalgebra ∨•(V ) is the sub-coalgebra
of the tensor coalgebra T c(V ) fixed by the graded action of the symmetric groups Sn on the components V ⊗n.

Remark. ∨•(V ) is spanned by graded symmetric tensors

x1 ∨ x2 ∨ · · · ∨ xp (87)

for xi ∈ V and p ≥ 0, where we use ∨ rather than ∧ to emphasize the coalgebra aspect, e.g.

x ∨ y = x⊗ y ± y ⊗ x. (88)
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In characteristic zero, the graded symmetric algebra can be identified with a sub-algebra of T a(V ) but
that is unnatural and we will try to avoid doing so. The coproduct on ∨•(V ) is given by

∆(x1 ∨ x2 · · · ∨ xn) =
∑

p+q=n

∑

σ∈Sh(p,q)

ǫ(σ)(xσ(1) ∨ xσ(2) · · ·xσ(p))⊗ (xσ(p+1) ∨ · · ·xσ(n)) . (89)

The notation here means the following:

• Sh(p, q) is the subset of all those bijections (the “unshuffles”) of {1, 2, · · · , p+q} that have the property
that σ(i) < σ(i+ 1) whenever i 6= p;

• ǫ(σ), which is shorthand for ǫ(σ, x1 ∨ x2, · · ·xp+q), the Koszul sign, defined by

x1 ∨ · · · ∨ xn = ǫ(σ)xσ(1) ∨ · · ·xσ(n) . (90)

Definition 13 (L∞-algebra) An L∞-algebra g = (g, D) is a N+-graded vector space g equipped with a
degree -1 coderivation

D : ∨•g→ ∨•g (91)

on the graded co-commutative coalgebra generated by g, such that D2 = 0. This induces a differential

dCE(g) : Sym•(g)→ Sym•+1(g) (92)

on graded-symmetric multilinear functions on g. When g is finite dimensional this yields a degree +1 differ-
ential

dCE(g) : ∧•g∗ → ∧•g∗ (93)

on the graded-commutative algebra generated from g∗. This is the Chevalley-Eilenberg dg-algebra correspond-
ing to the L∞-algebra g.

Remark. That the original definition of L∞-algebras in terms of multibrackets yields a codifferential
coalgebra as above was shown in [57]. That every such codifferential comes from a collection of multibrackets
this way is due to [58].

Example For (g[−1], [·, ·]) an ordinary Lie algebra (meaning that we regard the vector space g to be in
degree 1), the corresponding Chevalley-Eilenberg qDGCA is

CE(g) = (∧•g∗, dCE(g)) (94)

with

dCE(g) : g∗
[·,·]∗ // g∗ ∧ g∗ . (95)

If we let {ta} be a basis of g and {Cabc} the corresponding structure constants of the Lie bracket [·, ·], and
if we denote by {ta} the corresponding basis of g∗, then we get

dCE(g)t
a = −

1

2
Cabct

b ∧ tc . (96)

If g is concentrated in degree 1, . . . , n, we also say that g is a Lie n-algebra. Notice that built in we have a
shift of degree for convenience, which makes ordinary Lie 1-algebras be in degree 1 already. In much of the
literature a Lie n-algebra would be based on a vector space concentratred in degrees 0 to n− 1. An ordinary
Lie algebra is a Lie 1-algebra. Here the coderivation differential D = [·, ·] is just the Lie bracket, extended
as a coderivation to ∨•g, with g regarded as being in degree 1.

In the rest of the paper we assume, just for simplicity and since it is sufficient for our applications, all
g to be finite-dimensional. Then, by the above, these L∞-algebras are equivalently conceived of in terms of
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their dual Chevalley-Eilenberg algebras, CE(g), as indeed every quasi-free differential graded commutative
algebra (“qDGCA”, meaning that it is free as a graded commutative algebra) corresponds to an L∞-algebra.
We will find it convenient to work entirely in terms of qDGCAs, which we will usually denote as CE(g).

While not very interesting in themselves, truly free differential algebras are a useful tool for handling
quasi-free differential algebras.

Definition 14 We say a qDGCA is free (even as a differential algebra) if it is of the form

F(V ) := (∧•(V ∗ ⊕ V ∗[1]), dF(V )) (97)

with
dF(V )|V ∗ = σ : V ∗ → V ∗[1] (98)

the canonical isomorphism and
dF(V )|V ∗[1] = 0 . (99)

Remark. Such algebras are indeed free in that they satisfy the universal property: given any linear map
V → W , it uniquely extends to a morphism of qDGCAs F (V )→ (

∧•(W ∗), d) for any choice of differential
d.

Example. The free qDGCA on a 1-dimensional vector space in degree 0 is the graded commutative algebra
freely generated by two generators, t of degree 0 and dt of degree 1, with the differential acting as d : t 7→ dt
and d : dt 7→ 0. In rational homotopy theory, this models the interval I = [0, 1]. The fact that the qDGCA
is free corresponds to the fact that the interval is homotopy equivalent to the point.

We will be interested in qDGCAs that arise as mapping cones of morphisms of L∞-algebras.

Definition 15 (“mapping cone” of qDGCAs) Let

CE(h) CE(g)
t∗oo (100)

be a morphism of qDGCAs. The mapping cone of t∗, which we write CE(h
t
→ g), is the qDGCA whose

underlying graded algebra is
∧• (g∗ ⊕ h∗[1]) (101)

and whose differential dt∗ is such that it acts as

dt∗ =

(
dg 0
t∗ dh

)

. (102)

We postpone a more detailed definition and discussion to 8.1; see definition 39 and proposition 36. Strictly
speaking, the more usual notion of mapping cones of chain complexes applies to t : h → g, but then is
extended as a derivation differential to the entire qDGCA.

Definition 16 (Weil algebra of an L∞-algebra) The mapping cone of the identity on CE(g) is the Weil
algebra

W(g) := CE(g
Id
→ g) (103)

of g.

Proposition 5 For g an ordinary Lie algebra this does coincide with the ordinary Weil algebra of g.

Proof. See the example in 6.1.1. �

The Weil algebra has two important properties.
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Proposition 6 The Weil algebra W(g) of any L∞-algebra g

• is isomorphic to a free differential algebra

W(g) ≃ F(g) , (104)

and hence is contractible;

• has a canonical surjection

CE(g) W(g)
i∗oooo . (105)

Proof. Define a morphism
f : F(g)→W(g) (106)

by setting

f : a 7→ a (107)

f : (dF(V )a = σa) 7→ (dW(g)a = dCE(g)a+ σa) (108)

for all a ∈ g∗ and extend as an algebra homomorphism. This clearly respects the differentials: for all a ∈ V ∗

we find

a � dF (g) //
_

f

��

σa_

f

��
a �

dW(g)

// dCE(g)a+ σa

and

σa � dF (g) //
_

f

��

0_

f

��
dW(g)a

�

dW(g)

// 0

. (109)

One checks that the strict inverse exists and is given by

f−1|g∗ : a 7→ a (110)

f−1|g∗[1] : σa 7→ dF (g)a− dCE(g)a . (111)

Here σ : g∗ → g∗[1] is the canonical isomorphism that shifts the degree. The surjection CE(g) W(g)
i∗oooo

simply projects out all elements in the shifted copy of g:

i∗|∧•g∗ = id (112)

i∗|g∗[1] = 0 . (113)

This is an algebra homomorphism that respects the differential. �

As a corollary we obtain

Corollary 1 For g any L∞-algebra, the cohomology of W(g) is trivial.

Proposition 7 The step from a Chevalley-Eilenberg algebra to the corresponding Weil algebra is functorial:
for any morphism

CE(h) CE(g)
f∗

oo (114)

we obtain a morphism

W(h) W(g)
f̂∗

oo (115)

and this respects composition.
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Proof. The morphism f̂∗ acts as for all generators a ∈ g∗ as

f̂∗ : a 7→ f∗(a) (116)

and
f̂∗ : σa 7→ σf∗(a) . (117)

We check that this does repect the differentials

a_

f̂∗

��

� dW(g) // dCE(g)a+ σa
_

f̂∗

��
f∗(a)

dW(h) // dCE(h)f
∗(a) + σf∗(a)

σa_

f̂∗

��

� dW(g)// −σ(dCE(g)a)
_

f̂∗

��
σf∗(a)

dW(h) // −σ(dCE(h)a)

, (118)

�

Remark. As we will shortly see, W(g) plays the role of the algebra of differential forms on the universal

g-bundle. The surjection CE(g) W (g)
i∗oooo plays the role of the restriction to the differential forms on

the fiber of the universal g-bundle.

6.1.1 Examples

In section 6.4 we construct large families of examples of L∞-algebras, based on the first two of the following
examples:

1. Ordinary Weil algebras as Lie 2-algebras. What is ordinarily called the Weil algebra W(g) of a Lie
algebra (g[−1], [·, ·]) can, since it is again a DGCA, also be interpreted as the Chevalley-Eilenberg algebra
of a Lie 2-algebra. This Lie 2-algebra we call inn(g). It corresponds to the Lie 2-group INN(G) discussed in
[65]:

W(g) = CE(inn(g)) . (119)

We have
W(g) = (∧•(g∗ ⊕ g∗[1]), dW(g)) . (120)

Denoting by σ : g∗ → g∗[1] the canonical isomorphism, extended as a derivation to all of W(g), we have

dW(g) : g∗
[·,·]∗+σ // g∗ ∧ g∗ ⊕ g∗[1] (121)

and

dW(g) : g∗[1]
−σ◦dCE(g)◦σ

−1

// g∗ ⊗ g∗[1] . (122)

With {ta} a basis for g∗ as above, and {σta} the corresponding basis of g∗[1] we find

dW(g) : ta 7→ −
1

2
Cabct

b ∧ tc + σta (123)

and
dW(g) : σta 7→ −Cabct

bσtc . (124)

The Lie 2-algebra inn(g) is, in turn, nothing but the strict Lie 2-algebra as in the third example below, which

comes from the infinitesimal crossed module (g
Id
→ g

ad
→ der(g)).
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2. Shifted u(1). By the above, the qDGCA corresponding to the Lie algebra u(1) is simply

CE(u(1)) = (∧•R[1], dCE(u(1)) = 0) . (125)

We write
CE(bn−1u(1)) = (∧•R[n], dCE(bnu(1)) = 0) (126)

for the Chevalley-Eilenberg algebras corresponding to the Lie n-algebras bn−1u(1).

3. Infinitesimal crossed modules and strict Lie 2-algebras. An infinitesimal crossed module is a
diagram

( h
t // g α // der(h) ) (127)

of Lie algebras where t and α satisfy two compatibility conditions. These conditions are equivalent to the
nilpotency of the differential on

CE(h
t
→ g) := (∧•(g∗ ⊕ h∗[1]), dt) (128)

defined by

dt|g∗ = [·, ·]∗g + t∗ (129)

dt|h∗[1] = α∗ , (130)

where we consider the vector spaces underlying both g and h to be in degree 1. Here in the last line we

regard α as a linear map α : g ⊗ h → h. The Lie 2-algebras (h
t
→ g) thus defined are called strict Lie

2-algebras: these are precisely those Lie 2-algebras whose Chevalley-Eilenberg differential contains at most
co-binary components.

4. Inner derivation L∞-algebras. In straightforward generalization of the first exmaple we find: for g

any L∞-algebra, its Weil algebra W(g) is again a DGCA, hence the Chevalley-Eilenberg algebra of some
other L∞-algbera. This we address as the L∞-algebra of inner derivations and write

CE(inn(g)) := W(g) . (131)

This identification is actually useful for identifying the Lie ∞-groups that correspond to an integrated
picture underlying our differential discussion. In [65] the Lie 3-group corresponding to inn(g) for g the strict
Lie 2-algebra of any strict Lie 2-group is discussed. This 3-group is in particular the right codomain for
incorporating the the non-fake flat nonabelian gerbes with connection considered in [17] into the integrated
version of the picture discussed here. This is indicated in [70] and should be discussed elsewhere.

tangent category
inner automorphism

(n+ 1)-group
inner derivation

Lie (n+ 1)-algebra
Weil algebra

shifted
tangent bundle

CE(Lie(TBG)) CE(Lie(INN(G))) CE(inn(g)) W(g) C∞(T [1]g)

Figure 3: A remarkable coincidence of concepts relates the notion of tangency to the notion of universal
bundles. The leftmost equality is discussed in [65]. The second one from the right is the identification 131.
The rightmost equality is equation 143.

Proposition 8 For g any finite dimensional L∞-algebra, the differential forms on the smooth space of
morphisms from the Chevalley-Eilenberg algebra CE(g) to the algebra of “functions on the superpoint”,
definition 6, i.e. the elements in maps(CE(g), C(pt)), which come from currents as in definition 5, form the
Weil algebra W(g) of g:

W(g) ⊂ maps(CE(g), C(pt)) . (132)
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Proof. For any test domain U , an element in HomDGCAs(CE(g), C(pt)⊗ Ω•(U)) is specified by a degree 0
algebra homomorphism

λ : CE(g)→ Ω•(U) (133)

and a degree +1 algebra morphism
λ : CE(g)→ Ω•(U) (134)

by
a 7→ λ(a) + c ∧ ω(a) (135)

for all a ∈ g∗ and for c denoting the canonical degree -1 generator of C(pt); such that the equality in the
bottom right corner of the diagram

a � dCE(g) //
_

��

dCE(g)a
_

��

λ(a) + c ∧ ω(a)
� dpt+dU // λ(dCE(g)a)+c∧ω(dCE(g)a)

=d(λ(a))+ω(a)−c∧d(ω(a))

(136)

holds. Under the two canonical currents on C(pt) of degree 0 and degree 1, respectively, this gives rise for
each a ∈ g∗ of degree |a| to an |a|-form and an (|a|+1) form on maps(CE(g), C(pt)) whose values on a given
plot are λ(a) and ω(a), respectively.

By the above diagram, the differential of these forms satisfies

dλ(a) = λ(dCE(g)a) + ω(a) (137)

and
dω(a) = −ω(dCE(g)a) . (138)

But this is precisely the structure of W(g). �

To see the last step, it may be helpful to consider this for a simple case in terms of a basis:
let g be an ordinary Lie algebra, {ta} a basis of g∗ and {Cabc} the corresponding structure constants.

Then, using the fact that, since we are dealing with algebra homomorphisms, we have

λ(ta ∧ tb) = λ(ta) ∧ λ(tb) (139)

and
ω(ta ∧ tb) = c ∧ (ω(ta) ∧ λ(tb)− λ(ta) ∧ ω(tb)) (140)

we find

dλ(ta) = −
1

2
Cabcλ(t

b) ∧ λ(tc) + ω(ta) (141)

and
dω(ta) = −Cabcλ(t

b) ∧ ω(tc) . (142)

This is clearly just the structure of W(g).

Remark. As usual, we may think of the superpoint as an “infinitesimal interval”. The above says that
the algebra of inner derivations of an L∞-algebra consists of the maps from the infinitesimal interval to the
supermanifold on which CE(g) is the “algebra of functions”. On the one hand this tells us that

W(g) = C∞(T [1]g) (143)
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in supermanifold language. On the other hand, this construction is clearly analogous to the corresponding
discussion for Lie n-groups given in [65]: there the 3-group INN(G) of inner automorphisms of a strict 2-
group G was obtained by mapping the “fat point” groupoid pt = { • // ◦ } into G. As indicated there,
this is a special case of a construction of “tangent categories” which mimics the relation between inn(g)
and the shifted tangent bundle T [1]g in the integrated world of Lie ∞-groups. This relation between these
concepts is summarized in figure 3.

6.2 L∞-algebra homotopy and concordance

Like cochain complexes, differental graded algebras can be thought of as being objects in a higher categorical
structure, which manifests itself in the fact that there are not only morphisms between DGCAs, but also
higher morphisms between these morphisms. It turns out that we need to consider a couple of slightly
differing notions of morphisms and higher morphisms for these. While differing, these concepts are closely
related among each other, as we shall discuss.

In 5.2 we had already considered 2-morphisms of DGCAs obtained after forgetting their algebra structure
and just remembering their differential structure. The 2-morphisms we present now crucially do know about
the algebra structure.

name nature

infinitesimal transformation

chain homotopy

CE(g) CE(h)

g∗

aa

f∗

}}
η

��

finite homotopy/concordance

extension over interval

CE(g) CE(g)⊗ Ω•(I)
Id⊗t∗

oo
Id⊗s∗oo CE(h)η∗oo

g∗

ww

f∗

gg

Table 5: The two different notions of higher morphisms of qDGCAs.

Infinitesimal homotopies between dg-algebra homomorphisms. When we restrict attention to
cochain maps between qDGCAs which respect not only the differentials but also the free graded commutative
algebra structure, i.e. to qDGCA homomorphisms, it becomes of interest to express the cochain homotopies
in terms of their action on generators of the algebra. We now define transformations (2-morphisms) between
morphisms of qDGCAs by first defining them for the case when the domain is a Weil algebra, and then
extending the definition to arbitrary qDGCAs.

Definition 17 (transformation of morphisms of L∞-algebras) We define transformations between qDGCA
morphisms in two steps

• A 2-morphism

CE(g) F(h)

g∗

``

f∗

~~
η

��

(144)
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is defined by a degree -1 map η : h∗ ⊕ h∗[1] → CE(g) which is extended to a linear degree -1 map
η : ∧•(h∗ ⊕ h∗[1])→ CE(g) by defining it on all monomials of generators by the formula

η : x1 ∧ · · · ∧ xn 7→

1

n!

∑

σ

ǫ(σ)

n∑

k=1

(−1)

k−1
P

i=1

|xσ(i)|
g∗(xσ(1) ∧ · · · ∧ xσ(k−1)) ∧ η(xσ(k)) ∧ f

∗(xσ(k+1) ∧ · · · ∧ xσ(n)) (145)

for all x1, · · · , xn ∈ h∗ ⊕ h∗[1], such that this is a chain homotopy from f∗ to g∗:

g∗ = f∗ + [d, η] . (146)

• A general 2-morphism

CE(g) CE(h)

g∗

aa

f∗

}}
η

��

(147)

is a 2-morphism

CE(h)
g∗

��
CE(g) W(h)

i∗
ccccHHHHHHHHH

i∗{{{{vv
vv

vv
vv

v
F(h)

≃oo

CE(h)f∗

WW

x� xxxxxxxxxxxx

xxxxxxxxxxxx (148)

of the above kind that vanishes on the shifted generators, i.e. such that

CE(h)
g∗

��
CE(g) W(h)

i∗
ccccHHHHHHHHH

i∗{{{{vv
vv

vv
vv

v
h∗[1]? _oo

CE(h)f∗

WW

x� xxxxxxxxxxxx

xxxxxxxxxxxx (149)

vanishes.

Proposition 9 Formula 145 is consistent in that g∗|h∗⊕h∗[1] = (f∗ + [d, η])|h∗⊕h∗[1] implies that g∗ = f∗ +
[d, η] on all elements of F (h).

Remark. Definition 17, which may look ad hoc at this point, has a practical and a deep conceptual
motivation.

• Practical motivation. While it is clear that 2-morphisms of qDGCAs should be chain homotopies, it
is not straightforward, in general, to characterize these by their action on generators. Except when the
domain qDGCA is free, in which case our formula 17 makes sense. The prescription 148 then provides
a systematic algorithm for extending this to arbitrary qDGCAs.
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In particular, using the isomorphism W(g) ≃ F(g) from proposition 6, the above yields the usual
explicit description of the homotopy operator τ : W(g)→W(g) with IdW(g) = [dW(g), τ ]. Among other
things, this computes for us the transgression elements (“Chern-Simons elements”) for L∞-algbras in
6.3.

• Conceptual motivation. As we will see in 6.3 and 6.5, the qDGCA W(g) plays an important twofold
role: it is both the algebra of differential forms on the total space of the universal g-bundle – while
CE(g) is that of forms on the fiber –, as well as the domain for g-valued differential forms, where the
shifted component, that in g∗[1], is the home of the corresponding curvature.

In the light of this, the above restriction 149 can be understood as saying either that

– vertical transformations induce transformations on the fibers;

or

– gauge transformations of g-valued forms are transformations under which the curvatures transform
covariantly.

Finite transformations between qDGCA morphisms: concordances. We now consider the finite
transformations of morphisms of DGCAs. What we called 2-morphisms or transformations for qDGCAs
above would in other contexts possibly be called a homotopy. Also the following concept is a kind of
homotopy, and appears as such in [71] which goes back to [14]. Here we wish to clearly distinguish these
different kinds of homotopies and address the following concept as concordance – a finite notion of 2-morphism
between dg-algebra morphisms.

Remark. In the following the algebra of forms Ω•(I) on the interval

I := [0, 1]

plays an important role. Essentially everything would also go through by instead using F (R), the DGCA
on a single degree 0 generator, which is the algebra of polynomial forms on the interval. This is the model
used in [71].

Definition 18 (concordance) We say that two qDGCA morphisms

CE(g) CE(h)
g∗oo (150)

and

CE(g) CE(h)
h∗

oo (151)

are concordant, if there exists a dg-algebra homomorphism

CE(g)⊗ Ω•(I) CE(h)
η∗oo (152)

from the source CE(h) to the the target CE(g) tensored with forms on the interval, which restricts to the two
given homomorphisms when pulled back along the two boundary inclusions

{•}
s //

t
// I , (153)
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so that the diagram of dg-algebra morphisms

CE(g) CE(g)⊗ Ω•(I)
Id⊗t∗

oo
Id⊗s∗oo CE(h)

η∗oo

g∗

ww

f∗

gg
(154)

commutes.

See also table 5. Notice that the above diagram is shorthand for two separate commuting diagrams, one
involving g∗ and s∗, the other involving f∗ and t∗.

We can make precise the statement that definition 17 is the infinitesimal version of definition 18, as
follows.

Proposition 10 Concordances

CE(g)⊗ Ω•(I) CE(h)
η∗oo (155)

are in bijection with 1-parameter families

α : [0, 1]→ Homdg−Alg(CE(h),CE(g)) (156)

of morphisms whose derivatives with respect to the parameter is a chain homotopy, i.e. a 2-morphism

∀t ∈ [0, 1] : CE(g) CE(h)

d
dt
α(t)=[d,ρ]

aa

0

}}
ρ

��

(157)

in the 2-category of cochain complexes. For any such α, the morphisms f∗ and g∗ between which it defines
a concordance are defined by the value of α on the boundary of the interval.

Proof. Writing t : [0, 1] → R for the canonical coordinate function on the interval I = [0, 1] we can
decompose the dg-algebra homomorphism η∗ as

η∗ : ω 7→ (t 7→ α(ω)(t) + dt ∧ ρ(ω)(t)) . (158)

α is itself a degree 0 dg-algebra homomorphism, while ρ is degree -1 map. Then the fact that η∗ respects
the differentials implies that for all ω ∈ CE(h) we have

ω � dh //
_

η∗

��

dhω
_

η∗

��

(t 7→ (α(ω)(t) + dt ∧ ρ(ω)(t))) � dg+dt //
(t 7→ (α(dhω)(t) + dt ∧ ρ(dhω)(t))
= (t 7→ (dg(α(ω))(t)
+dt ∧ ( d

dt
α(ω)− dgρ(ω))(t))

. (159)
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The equality in the bottom right corner says that

α ◦ dh − dg ◦ α = 0 (160)

and

∀ω ∈ CE(g) :
d

dt
α(ω) = ρ(dhω) + dg(ρ(ω)) . (161)

But this means that α is a chain homomorphism whose derivative is given by a chain homotopy. �

6.2.1 Examples

Transformations between DGCA morphisms. We demonstrate two examples for the application of
the notion of transformations of DGCA morphisms from definition 17 which are relevant for us.

Computation of transgression forms. As an example for the transformation in definition 17, we
show how the usual Chern-Simons transgression form is computed using formula 145. The reader may wish to
first skip to our discussion of Lie ∞-algebra cohomology in 6.3 for more background. So let g be an ordinary
Lie algebra with invariant bilinear form P , which we regard as a dW(g)-closed element P ∈ ∧2g∗[1] ⊂W(g).
We would like to compute τP , where τ is the contracting homotopy of W(g), such that

[d, τ ] = IdW(g) , (162)

which according to proposition 6 is given on generators by

τ : a 7→ 0 (163)

τ : dW(g)a 7→ a (164)

for all a ∈ g∗. Let {ta} be a chosen basis of g∗ and let {Pab} be the components of P in that basis, then

P = Pab(σt
a) ∧ (σtb) . (165)

In order to apply formula 145 we need to first rewrite this in terms of monomials in {ta} and {dW(g)t
a}.

Hence, using σta = dW(g)t
a + 1

2C
a
bct

b ∧ tc, we get

τP = τ

(

Pab(dW(g)t
a) ∧ (dW(g)t

a)− Pab(dW(g)t
a) ∧ Cbcdt

c ∧ td +
1

4
PabC

a
cdC

b
ef t

c ∧ td ∧ tc ∧ td
)

. (166)

Now equation 145 can be applied to each term. Noticing the combinatorial prefactor 1
n! , which depends on

the number of factors in the above terms, and noticing the sum over all permutations, we find

τ
(
Pab(dW(g)t

a) ∧ (dW(g)t
a)
)

= Pab(dW(g)t
a) ∧ tb

τ
(
−Pab(dW(g)t

a) ∧ Cbcdt
c ∧ td

)
=

1

3!
· 2 PabC

b
cdt

b ∧ tc ∧ td =
1

3
Cabct

a ∧ tb ∧ tc , (167)

where we write Cabc := PadC
d
bc as usual. Finally τ

(
1
4PabC

a
cdC

b
ef t

c ∧ td ∧ tc ∧ td
)

= 0 . In total this yields

τP = Pab(dW(g)t
a) ∧ tb +

1

3
Cabct

a ∧ tb ∧ tc . (168)

By again using dW(g)t
a = − 1

2C
a
bct

b ∧ tc+ σta together with the invariance of P (hence the dW(g)-closedness
of P which implies that the constants Cabc are skew symmetric in all three indices), one checks that this
does indeed satisfy

dW(g)τP = P . (169)
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In 6.5 we will see that after choosing a g-valued connection on the space Y the generators ta here will get
sent to components of a g-valued 1-form A, while the dW(g)t

a will get sent to the components of dA. Under
this map the element τP ∈W(g) maps to the familiar Chern-Simons 3-form

CSP (A) := P (A ∧ dA) +
1

3
P (A ∧ [A ∧A]) (170)

whose differential is the characteristic form of A with respect to P :

dCSP (A) = P (FA ∧ FA) . (171)

Characteristic forms, for arbitrary Lie ∞-algebra valued forms, are discussed further in 6.6.

2-Morphisms of Lie 2-algebras

Proposition 11 For the special case that g is any Lie 2-algebra (any L∞-algebra concentrated in the first
two degrees) the 2-morphisms defined by definition 17 reproduce the 2-morphisms of Lie 2-algebras as stated
in [5] and used in [7].

Proof. The proof is given in the appendix. �

This implies in particular that with the 1- and 2-morphisms as defined above, Lie 2-algebras do form a
2-category. There is an rather straightforward generalization of definition 17 to higher morphisms, which
one would expect yields correspondingly n-categories of Lie n-algebras. But this we shall not try to discuss
here.

6.3 L∞-algebra cohomology

The study of ordinary Lie algebra cohomology and of invariant polynomials on the Lie algebra has a simple
formulation in terms of the qDGCAs CE(g) and W(g). Furthermore, this has a straightforward generalization
to arbitrary L∞-algebras which we now state.

For CE(g) W(g)
i∗oooo the canonical morphism from proposition 6, notice that

CE(g) ≃W(g)/ker(i∗) (172)

and that
ker(i∗) = 〈g∗[1]〉W(g) , (173)

the ideal in W(g) generated by g∗[1]. Algebra derivations

ιX : W(g)→W(g) (174)

for X ∈ g are like (contractions with) vector fields on the space on which W(g) is like differential forms. In
the case of an ordinary Lie algebra g, the corresponding inner derivations [dW(g), ιX ] for X ∈ g are of degree
-1 and are known as the Lie derivative LX . They generate flows exp([dW(g), ιX ]) : W(g)→W(g) along these
vector fields.

Definition 19 (vertical derivations) We say an algebra derivation τ : W(g) → W(g) is vertical if it
vanishes on the shifted copy g∗[1] of g∗ inside W(g),

τ |g∗[1] = 0 . (175)

Proposition 12 The vertical derivations are precisely those that come from contractions

ιX : g∗ 7→ R (176)

for all X ∈ g, extended to 0 on g∗[1] and extended as algebra derivations to all of ∧•(g∗ ⊕ g∗[1]).
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The reader should compare this and the following definitions to the theory of vertical Lie derivatives and
basic differential forms with respect to any surjective submersion π : Y → X . This is discussed in 5.3.1.

Definition 20 (basic forms and invariant polynomials) The algebra W(g)basic of basic forms in W(g)
is the intersection of the kernels of all vertical derivations and Lie derivatives. i.e. all the contractions ιX
and Lie derivatives LX for X ∈ g. Since LX = [dW(g), ιX ], it follows that in the kernel of ιX , the Lie
derivative vanishes only if ιXdW(g) vanishes.

As will be discussed in a moment, basic forms in W(g) play the role of invariant polynomials on the
L∞-algebra g. Therefore we often write inv(g) for W(g)basic:

inv(g) := W(g)basic . (177)

Using the obvious inclusion W(g) inv(g)? _
p∗oo we obtain the sequence

CE(g) W(g)
i∗oooo inv(g)? _

p∗oo (178)

of dg-algebras that plays a major role in our analysis: it can be interpreted as coming from the universal
bundle for the Lie ∞-algebra g. As shown in figure 4, we can regard vertical derivations on W(g) as
derivations along the fibers of the corresponding dual sequence.

CE(g) CE(g)

[d,ιX ]

gg

0

ww (co)adjoint action
of g on itself

W(g)

OOOO

W(g)

OOOO

[d,ιX ]

gg

0

ww vertical derivation
on W(g)

inv(g)
?�

OO

inv(g)
?�

OO

0

gg

0

ww leaves basic forms
invariant

ιX
��

0
��

ιX
��

.

Figure 4: Interpretation of vertical derivations on W(g). The algebra CE(g) plays the role of the
algebra of differential forms on the Lie ∞-group that integrates the Lie ∞-algebra g. The coadjoint action
of g on these forms corresponds to Lie derivatives along the fibers of the universal bundle. These vertical
derivatives leave the forms on the base of this universal bundle invariant. The diagram displayed is in the
2-category Ch• of cochain complexes, as described in the beginning of 6.2.

Definition 21 (cocycles, invariant polynomials and transgression elements) Let g be an L∞-algebra.
Then

• An L∞-algebra cocycle on g is a dCE(g)-closed element of CE(g).

µ ∈ CE(g) , dCE(g)µ = 0 . (179)

• An L∞-algebra invariant polynomial on g is an element P ∈ inv(g) := W(g)basic.
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• An L∞-algebra g-transgression element for a given cocycle µ and an invariant polynomial P is an
element cs ∈W(g) such that

dW(g)cs = p∗P (180)

i∗cs = µ . (181)

If a transgression element for µ and P exists, we say that µ transgresses to P and that P suspends
to µ. If µ = 0 we say that P suspends to 0. The situation is illustrated diagrammatically in figure 5 and
figure 6.

Definition 22 (suspension to 0) An element P ∈ inv(g) is said to suspend to 0 if under the inclusion

ker(i∗) W(g)? _
p∗oo (182)

it becomes a coboundary:
p∗P = dker(i∗)α (183)

for some α ∈ ker(i∗).

Remark. We will see that it is the intersection of inv(g) with the cohomology of ker(i∗) that is a candidate,
in general, for an algebraic model of the classifying space of the object that integrates the L∞-algebra g.
But at the moment we do not entirely clarify this relation to the integrated theory, unfortunately.

cocycle transgression element inv. polynomial

G
� � i // EG

p // // BG

0

0 p∗P
_
d

OO

P
�

p∗
oo

µ
_

d

OO

cs�

i∗
oo _

d

OO

Figure 5: Lie algebra cocycles, invariant polynomials and transgression forms in terms of coho-
mology of the universal G-bundle. Let G be a simply connected compact Lie group with Lie algebra g.
Then invariant polynomials P on g correspond to elements in the cohomology H•(BG) of the classifying
space of G. When pulled back to the total space of the universal G-bundle EG→ BG, these classes become
trivial, due to the contractability of EG: p∗P = d(cs). Lie algebra cocycles, on the other hand, correspond
to elements in the cohomology H•(G) of G itself. A cocycle µ ∈ H•(G) is in transgression with an invariant
polynomial P ∈ H•(BG) if µ = i∗cs.

Proposition 13 For the case that g is an ordinary Lie algebra, the above definition reproduces the ordinary
definitions of Lie algebra cocycles, invariant polynomials, and transgression elements. Moreover, all elements
in inv(g) are closed.
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cocycle transgression element inv. polynomial

CE(g) W(g)
i∗oooo inv(g)? _

p∗oo

0

0 p∗P
_

dW(g)

OO

G

τ

��

P
�

p∗
oo

µ
_

dCE(g)

OO

cs�i∗oo _

dW(g)

OO

Figure 6: The homotopy operator τ is a contraction homotopy for W(g). Acting with it on a closed
invariant polynomial P ∈ inv(g) ⊂ ∧•g[1] ⊂W(g) produces an element cs ∈ W (g) whose “restriction to the
fiber” µ := i∗cs is necessarily closed and hence a cocycle. We say that cs induces the transgression from µ
to P , or that P suspends to µ.

Proof. That the definitions of Lie algebra cocycles and transgression elements coincides is clear. It remains
to be checked that inv(g) really contains the invariant polynomials. In the ordinary definition a g-invariant
polynomial is a dW(g)-closed element in ∧•(g∗[1]). Hence one only needs to check that all elements in
∧•(g∗[1]) with the property that their image under dW(g) is again in ∧•(g∗[1]) are in fact already closed.
This can be seen for instance in components, using the description of W(g) given in 6.1.1. �

Remark. For ordinary Lie algebras g corresponding to a simply connected compact Lie group G, the
situation is often discussed in terms of the cohomology of the universal G-bundle. This is recalled in figure
5 and in 6.3.1. The general definition above is a precise analog of that familiar situation: W(g) plays the
role of the algebra of (left invariant) differential forms on the universal g-bundle and CE(g) plays the role of
the algebra of (left invariant) differential forms on its fiber. Then inv(g) plays the role of differential forms
on the base, BG = EG/G. In fact, for G a compact and simply connected Lie group and g its Lie algebra,
we have

H•(inv(g)) ≃ H•(BG,R) . (184)

In summary, the situation we thus obtain is that depicted in figure 1. Compare this to the following fact.

Proposition 14 For p : P → X a principal G-bundle, let vert(P ) ⊂ Γ(TP ) be the vertical vector fields on
P . The horizontal differential forms on P which are invariant under vert(P ) are precisely those that are
pulled back along p from X.

These are called the basic differential forms in [41].

Remark. We will see that, contrary to the situation for ordinary Lie algebras, in general invariant poly-
nomials of L∞ algebras are not dW(g)-closed (the dW(g)-differential of them is just horizontal). We will
also see that those indecomposable invariant polynomials in inv(g), i.e. those that become exact in ker(i∗),
are not characteristic for the corresponding g-bundles. This probably means that the real cohomology of
the classifying space of the Lie ∞-group integrating g is spanned by invariant polynomials modulo those
suspending to 0. But here we do not attempt to discuss this further.
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Proposition 15 For every invariant polynomial P ∈ ∧•g[1] ⊂W(g) on an L∞-algebra g such that dW(g)p
∗P =

0, there exists an L∞-algebra cocycle µ ∈ CS(g) that transgresses to P .

Proof. This is a consequence of proposition 6 and proposition 1. Let P ∈W (g) be an invariant polyno-

mial. By proposition 6, p∗P is in the kernel of the restriction homomorphism CE(g) W(g)
i∗oooo : i∗P = 0.

By proposition 1, p∗P is the image under dW(g) of an element cs := τ(p∗P ) and by the algebra homomorphism
property of i∗ we know that its restriction, µ := i∗cs, to the fiber is closed, because

dCE(g)i
∗cs = i∗dW(g)cs = i∗p∗P = 0 . (185)

Therefore µ is an L∞-algebra cocycle for g that transgresses to the invariant polynomial P . �

Remark. Notice that this statement is useful only for indecomposable invariant polynomials. All others
trivially suspend to the 0 cocycle.

Proposition 16 An invariant polynomial which suspends to a Lie ∞-algebra cocycle that is a coboundary
also suspends to 0.

Proof. Let P be an invariant polynomial, cs the corresponding transgression element and µ = i∗cs the
corresponding cocycle, which is assumed to be a coboundary in that µ = dCE(g)b for some b ∈ CE(g). Then
by the definition of dW(g) it follows that µ = i∗(dW(g)b).

Now notice that
cs′ := cs− dW(g)b (186)

is another transgression element for P , since

dW(g)cs
′ = p∗P . (187)

But now
i∗(cs′) = i∗(cs− dW(g)b) = 0 . (188)

Hence P suspends to 0. �

6.3.1 Examples

The cohomologies of G and of BG in terms of qDGCAs. To put our general considerations for
L∞-algebras into perspective, it is useful to keep the following classical results for ordinary Lie algebras in
mind.

A classical result of E. Cartan [22] [23] (see also [49]) says that for a connected finite dimensional Lie
group G, the cohomologyH•(G) of the group is isomorphic to that of the Chevalley-Eilenberg algebra CE(g)
of its Lie algebra g:

H•(G) ≃ H•(CE(g)) , (189)

namely to the algebra of Lie algebra cocycles on g. If we denote by QG the space of indecomposable such
cocycles, and form the qDGCA ∧•QG = H•(∧•QG) with trivial differential, the above says that we have an
isomorphism in cohomology

H•(G) ≃ H•(∧•QG) = ∧•QG (190)

which is realized by the canonical inclusion

i : ∧•QG
� � // CE(g) (191)

of all cocycles into the Chevalley-Eilenberg algebra.
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Subsequently, we have the classical result of Borel [13]: For a connected finite dimensional Lie group G,
the cohomology of its classifying space BG is a finitely generated polynomial algebra on even dimensional
generators:

H•(BG) ≃ ∧•PG . (192)

Here PG is the space of indecomposable invariant polynomials on g, hence

H•(BG) ≃ H•(inv(g)) . (193)

In fact, PG and QG are isomorphic after a shift:

PG ≃ QG[1] (194)

and this isomorphism is induced by transgression between indecomposable cocycles µ ∈ CE(g) and indecom-
posable invariant polynomials P ∈ inv(g) via a transgression element cs = τP ∈W(g).

Cohomology and invariant polynomials of bn−1u(1)

Proposition 17 For every integer n ≥ 1, the Lie n-algebra bn−1u(1) (the (n − 1)-folded shifted version of
ordinary u(1)) from 6.1.1) we have the following:

• there is, up to a scalar multiple, a single indecomposable Lie ∞-algebra cocycle which is of degree n
and linear,

µbn−1u(1) ∈ R[n] ⊂ CE(bn−1u(1)) , (195)

• there is, up to a scalar multiple, a single indecomposable Lie ∞-algebra invariant polynomial, which is
of degree (n+ 1)

Pbn−1u(1) ∈ R[n+ 1] ⊂ inv(bn−1u(1)) = CE(bnu(1)) . (196)

• The cocycle µbn−1u(1) is in transgression with Pbn−1u(1).

These statements are an obvious consequence of the definitions involved, but they are important. The fact
that bn−1u(1) has a single invariant polynomial of degree (n+1) will immediately imply, in 7, that bn−1u(1)-
bundles have a single characteristic class of degree (n+1): known (at least for n = 2, as the Dixmier-Douady
class). Such a bn−1u(1)-bundle classes appear in 8 as the obstruction classes for lifts of n-bundles through
string-like extensions of their structure Lie n-algebra.

Cohomology and invariant polynomials of strict Lie 2-algebras. Let g(2) = (h
t
→ g

α
→ der(h)) be a

strict Lie 2-algebra as described in section 6.1. Notice that there is a canonical projection homomorphism

CE(g) CE(h
t
→ g)

j∗oooo (197)

which, of course, extends to the Weil algebras

W(g) W(h
t
→ g)

j∗oooo . (198)

Here j∗ is simply the identity on g∗ and on g∗[1] and vanishes on h∗[1] and h∗[2].

Proposition 18 Every invariant polynomial P ∈ inv(g) of the ordinary Lie algebra g lifts to an invariant

polynomial on the Lie 2-algebra (h
t
→ g):

W(h
t
→ g)

i∗

����
W(g) inv(g)? _oo

1 Q

ccG
G

G
G

G
G

G
G

G

. (199)
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However, a closed invariant polynomial will not necessarily lift to a closed one.

Proof. Recall that dt := d
CE(h

t
→g)

acts on g∗ as

dt|g∗ = [·, ·]∗g + t∗ . (200)

By definition 15 and definition 16 it follows that d
W(h

t
→g)

acts on g∗[1] as

d
W(h

t
→g)
|g∗[1] = −σ ◦ [·, ·]∗g − σ ◦ t

∗ (201)

and on h∗[1] as
d
W(h

t
→g)
|h∗[1] = −σ ◦ α∗ . (202)

Then notice that
(σ ◦ t∗) : g∗[1]→ h∗[2] . (203)

But this means that d
W(h

t
→g)

differs from dW(g) on ∧•(g∗[1]) only by elements that are annihilated by vertical

ιX . This proves the claim. �

It may be easier to appreciate this proof by looking at what it does in terms of a chosen basis.

Same discussion in terms of a basis. Let {ta} be a basis of g∗ and {bi} be a basis of h∗[1]. Let
{Cabc}, {α

i
aj}, and {tai}, respectively, be the components of [·, ·]g, α and t in that basis. Then corresponding

to CE(g), W(g), CE(h
t
→ g), and W(h

t
→ g), respectively, we have the differentials

dCE(g) : ta 7→ −
1

2
Cabct

b ∧ tc, (204)

dW(g) : ta 7→ −
1

2
Cabct

b ∧ tc + σta, (205)

d
CE(h

t
→g)

: ta 7→ −
1

2
Cabct

b ∧ tc + taib
i, (206)

and

d
W(h

t
→g)

: ta 7→ −
1

2
Cabct

b ∧ tc + taib
i + σta. (207)

Hence we get

dW(g) : σta 7→ −σ(−
1

2
Cabct

b ∧ tc) = Cabc(σt
b) ∧ tc (208)

as well as

d
W(h

t
→g)

: σta 7→ −σ(−
1

2
Cabct

b ∧ tc + taib
i) = Cabc(σt

b) ∧ tc + taiσb
i . (209)

Then if
P = Pa1···an

(σta1 ) ∧ · · · ∧ (σtan) (210)

is dW(g)-closed, i.e. an invariant polynomial on g, it follows that

d
W(h

t
→g)

P = nPa1,a2,···an
(ta1

iσb
i) ∧ (σta2) ∧ · · · ∧ (σtan) . (211)

(all terms appearing are in the image of the shifting isomorphism σ), hence P is also an invariant polynomial

on (h
t
→ g). �

We will see a physical application of this fact in 6.6.
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t
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d
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t
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d
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t
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d
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t
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t
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d
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Figure 7: Cocycles and invariant polynomials on strict Lie 2-algebras (h
t
→ g), induced from

cocycles and invariant polynomials on g. An invariant polynomial P on g in transgression with a cocycle

µ on g lifts to a generally non-closed invariant polynomial on (h
t
→ g). The diagram says that its closure,

d
inv(h

t
→g)

P , suspends to the d
CE(h

t
→g)

-closure of the cocycle µ. Since this (h
t
→ g)-cocycle d

(h
t
→g)

µ is hence

a coboundary, it follows from proposition 16 that d
inv(h

t
→g)

P suspends also to 0. Nevertheless the situation

is of interest, in that it governs the topological field theory known as BF theory. This is discussed in section
6.6.1.

Remark. Notice that the invariant polynomials P lifted from g to (h
t
→ g) this way are no longer closed,

in general. This is a new phenomenon we encounter for higher L∞-algebras. While, according to proposition
13, for g an ordinary Lie algebra all elements in inv(g) are closed, this is no longer the case here: the lifted
elements P above vanish only after we hit with them with both d

W(h
t
→g)

and a vertical τ .

Proposition 19 Let P be any invariant polynomial on the ordinary Lie algebra g in transgression with the

cocycle µ on g. Regarded both as elements of W(h
t
→ g) and CE(h

t
→ g) respectively. Notice that d

CE(h
t
→g)

µ

in in general non-vanishing but is of course now an exact cocycle on (h
t
→ g).

We have : the (h
t
→ g)-cocycle d

CE(h
t
→g)

µ transgresses to d
inv(h

t
→g)

P .

The situation is illustrated by the diagram in figure 7.

Concrete Example: su(5)→ sp(5). It is known that the cohomology of the Chevalley-Eilenberg algebras
for su(5) and sp(5) are generated, respectively, by four and five indecomposable cocycles,

H•(CE(su(5))) = ∧•[a, b, c, d] (212)

and
H•(CE(sp(5))) = ∧•[v, w, x, y, z] , (213)
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which have degree as indicated in the following table:

generator degree
a 3
b 5

H•CE(su(5)) c 7
d 9

v 3
w 7

H•(CE(sp(5))) x 11
y 15
z 19

.

As discussed for instance in [41], the inclusion of groups

SU(5) →֒ Sp(5) (214)

is reflected in the morphism of DGCAs

CE(su(5)) CE(sp(5))
t∗oooo (215)

which acts, in cohomology, on v and w as
a v�oo

c w�oo
(216)

and which sends x, y and z to wedge products of generators.
We would like to apply the above reasoning to this situation. Now, su(5) is not normal in sp(5) hence

(su(5) →֒ sp(5)) does not give a Lie 2-algebra. But we can regard the cohomology complexes H•(CE(su(5)))
and H•(CE(sp(5))) as Chevalley-Eilenberg algebras of abelian L∞-algebras in their own right. Their inclu-
sion is normal, in the sense to be made precise below in definition 38. By useful abuse of notation, we write
now CE(su(5) →֒ sp(5)) for this inclusion at the level of cohomology.

Recalling from 129 that this means that in CE(su(5) →֒ sp(5)) we have

dCE(su(5)→֒sp(5))v := σa (217)

and
dCE(su(5)→֒sp(5)))w := σc (218)

we see that the generators σa and σb drop out of the cohomology of the Chevalley-Eilenberg algebra

CE(su(5) →֒ sp(5)) = (
∧•

(sp(5)∗ ⊕ su(5)∗[1]), dt) (219)

of the strict Lie 2-algebra coming from the infinitesimal crossed module (t : su(5) →֒ sp(5)).
A simple spectral sequence argument shows that products are not killed in H•(CE(su(5) →֒ sp(5))), but

they may no longer be decomposable. Hence

H•(CE(su(5) →֒ sp(5))) (220)

is generated by classes in degrees 6 and 10 by σb and σd, and in degrees 21 and 25, which are represented
by products in 219 involving σa and σc, with the only non zero product being

6 ∧ 25 = 10 ∧ 21 , (221)

where 31 is the dimension of the manifold Sp(5)/SU(5). Thus the strict Lie 2-algebra (t : su(5) →֒ sp(5))
plays the role of the quotient Lie 1-algebra sp(5)/su(5). We will discuss the general mechanism behind this
phenomenon in 8.1: the Lie 2-algebra (su(5) →֒ sp(5)) is the weak cokernel, i.e. the homotopy cokernel of
the inclusion su(5) →֒ sp(5).
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The Weil algebra of (su(5) →֒ sp(5)) is

W(su(5) →֒ sp(5)) = (∧•(sp(5)∗ ⊕ su(5)∗[1]⊕ sp(5)∗[1]⊕ su(5)∗[2]), dW(su(5)→֒sp(5))) . (222)

Recall the formula 124 for the action of dW(su(5)→֒sp(5)) on generators in sp(5)∗[1] ⊕ su(5)∗[2]. By that
formula, σv and σw are invariant polynomials on sp(5) which lift to non-closed invariant polynomials on
su(5) →֒ sp(5)):

dW(su(5)→֒sp(5))) : σv 7→ −σ(dCE(su(5)→֒sp(5))v) = −σσa (223)

by equation 217; and
dW(su(5)→֒sp(5))) : σw 7→ −σ(dCE(su(5)→֒sp(5))w) = −σσc (224)

by equation 218. Hence σv and σw are not closed in CE(su(5) →֒ sp(5)), but they are still invariant
polynomials according to definition 20, since their differential sits entirely in the shifted copy (sp(5)∗ ⊕
su(5)∗[1])[1].

On the other hand, notice that we do also have closed invariant polynomials on (su(5) →֒ sp(5)), for
instance σσb and σσd.

6.4 L∞-algebras from cocycles: String-like extensions

We now consider the main object of interest here: families of L∞-algebras that are induced from L∞-cocycles
and invariant polynomials. First we need the following

Definition 23 (String-like extensions of L∞-algebras) Let g be an L∞-algebra.

• For each degree (n+ 1)-cocycle µ on g, let gµ be the L∞-algebra defined by

CE(gµ) = (∧•(g∗ ⊕ R[n]), dCE(gµ)) (225)

with differential given by
dCE(gµ)|g∗ := dCE(g), (226)

and
dCE(gµ))|R[n] : b 7→ −µ , (227)

where {b} denotes the canonical basis of R[n]. This we call the String-like extension of g with
respecto to µ, because, as described below in 6.4.1, it generalizes the construction of the String Lie
2-algebra.

• For each degree n invariant polynomial P on g, let chP (g) be the L∞-algebra defined by

CE(chP (g)) = (∧•(g∗ ⊕ g∗[1]⊕ R[2n− 1]), dCE(chP (g))) (228)

with the differential given by
dCE(chP (g))|g∗⊕g∗[1] := dW(g) (229)

and
dCE(chP (g)))|R[2n−1] : c 7→ P , (230)

where {c} denotes the canonical basis of R[2n−1]. This we call the Chern L∞-algebra corresponding
to the invariant polynomial P , because, as described below in 6.5.1, connections with values in it pick
out the Chern-form corresponding to P .

• For each degree 2n− 1 transgression element cs, let csP (g) be the L∞-algebra defined by

CE(csP (g)) = (∧•(g∗ ⊕ g∗[1]⊕ R[2n− 2]⊕ R[2n− 1]), dCE(chP (g))) (231)
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with
dCE(csP (g))|∧•(g∗⊕g∗[1]) = dW(g) (232)

dCE(csP (g))|R[2n−2] : b 7→ −cs + c (233)

dCE(chp(g))|R[2n−1] : c 7→ P , (234)

where {b} and {c} denote the canonical bases of R[2n− 2] and R[2n− 1], respectively. This we call
the Chern-Simons L∞-algebra with respect to the transgression element cs, because, as described
below in 6.5.1, connections with values in these come from (generalized) Chern-Simons forms.

The nilpotency of these differentials follows directly from the very definition of L∞-algebra cocoycles and
invariant polynomials.

Proposition 20 (the string-like extensions) For each L∞-cocycle µ ∈ ∧n(g∗) of degree n, the corre-
sponding String-like extension sits in an exact sequence

0 CE(bn−1u(1))oo CE(gµ)oooo CE(g)? _oo 0oo (235)

Proof. The morphisms are the canonical inclusion and projection. �

Proposition 21 For cs ∈W(g) any transgression element interpolating between the cocycle µ ∈ CE(g) and
the invariant polynomial P ∈ ∧•(g[1]) ⊂W(g), we obtain a homotopy-exact sequence

CE(gµ) CE(csP (g))oooo

≃

CE(chP (g))? _oo

W(gµ)

. (236)

Here the isomorphism

f : W(gµ)
≃ // CE(csP (g)) (237)

is the identity on g∗ ⊕ g∗[1]⊕ R[n]
f |g∗⊕g∗[1]⊕R[n] = Id (238)

and acts as
f |R[n+1] : b 7→ c+ µ− cs (239)

for b the canonical basis of R[n] and c that of R[n+ 1]. We check that this does respect the differentials

b
�

dW(gµ) //
_

f

��

−µ+ c
_

f

��
b

� dCE(csP (g)) // −cs + c

c �
dW(gµ) //

_

f

��

σµ
_

f

��
c+ µ− cs �dCE(csP (g)) // σµ

. (240)

Recall from definition 39 that σ is the canonical isomorphism σ : g∗ → g∗[1] extended by 0 to g∗[1] and then
as a derivation to all of ∧•(g∗ ⊕ g∗[1]). In the above the morphism between the Weil algebra of gµ and the
Chevalley-Eilenberg algebra of csP (g) is indeed an isomorphism (not just an equivalence). This isomorphism
exhibits one of the main points to be made here: it makes manifest that the invariant polynomial P that
is related by transgression to the cocycle µ which induces gµ becomes exact with respect to gµ. This is the
statement of proposition 23 below.
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L∞-algebra cohomology and invariant polynomials of String-like extensions. The L∞-algebra
gµ obtained from an L∞-algebra g with an L∞-algebra cocycle µ ∈ H•(CE(g)) can be thought of as being
obtained from g by “killing” a cocycle µ. This is familiar from Sullivan models in rational homotopy theory.

Proposition 22 Let g be an ordinary semisimple Lie algebra and µ a cocycle on it. Then

H•(CE(gµ)) = H•(CE(g))/〈µ〉 . (241)

Accordingly, one finds that in cohomology the invariant polynomials on gµ are those of g except that the
polynomial in transgression with µ now suspends to 0.

Proposition 23 Let g be an L∞-algebra and µ ∈ CE(g) in transgression with the invariant polynomial
P ∈ inv(g). Then with respect to the String-like extension gµ the polynomial P suspends to 0.

Proof. Since µ is a coboundary in CE(gµ), this is a corollary of proposition 16. �

Remark. We will see in 7 that those invariant polynomials which suspend to 0 do actually not contribute
to the characteristic classes. As we will also see there, this can be understood in terms of the invari-

ant polynomials not with respect to the projection CE(g) W(g)oooo but with respect to the projection

CE(g) CE(csP (gµ)) ,oooo recalling from 21 that W(g) is isomorphic to csP (g).

Proposition 24 For g any L∞-algebra with cocycle µ of degree 2n+ 1 in transgression with the invariant
polynomial P , denote by csP (g)basic the DGCA of basic forms with respect to the canonical projection

CE(g) CE(csP (gµ)) ,oooo (242)

according to the general definition 9.
Then the cohomology of csP (g)basic is that of inv(g) modulo P :

H•(csP (g)basic) ≃ H
•(inv(g))/〈P 〉 . (243)

Proof. One finds that the vertical derivations on CE(csP (g)) = ∧•(g∗ ⊕ g∗[1] ⊕ R[n] ⊕ R[n + 1]) are
those that vanish on everything except the unshifted copy of g∗. Therefore the basic forms are those in
∧•(g∗[1] ⊕ R[n] ⊕ R[n + 1]) such that also their dcsP (g)-differential is in that space. Hence all invariant
g-polynomials are among them. But one of them now becomes exact, namely P . �

Remark. The first example below, definition 24, introduces the String Lie 2-algebra of an ordinary semisim-
ple Lie algebra g, which gave all our String-like extensions its name. It is known, corollary 2 in [8] that the
real cohomology of the classifying space of the 2-group integrating it is that of G = exp(g), modulo the ideal
generated by the class corresponding to P . Hence CE(csP (g)) is an algebraic model for this space.

6.4.1 Examples

Ordinary central extensions. Ordinary central extensions coming from a 2-cocycle µ ∈ H2(CE(g)) of
an ordinary Lie algebra g are a special case of the “string-like” extensions we are considering:

By definition 23 the L∞-algebra gµ is the Lie 1-algebra whose Chevalley-Eilenberg algebra is

CE(gµ) = (∧•(g∗ ⊕ R[1]), dCE(gµ)) (244)
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CE(gµ)
=

CE(gµ)

W(gµ)
≃

OOOO

CE(csP (g))

OOOO

inv(g) = inv(gµ)
� � //

� ?

OO

csP (g)basic

� ?

OO

H•(csP (g)basic) ≃ H
•(inv(g))/〈P 〉

Figure 8: The DGCA sequence playing the role of differential forms on the universal (higher) String
n-bundle for a String-like extension gµ, definition 23, of an L∞-algebra g by a cocycle µ of odd degree in
transgression with an invariant polynomial P . Compare with figure 1. In H•(inv(gµ)) = H•(W(gµ)basic) the
class of P is still contained, but suspends to 0, according to proposition 23. In H•(csP (g)basic) the class of P
vanishes, according to proposition 24. The isomorphism W(gµ) ≃ CE(csP (g)) is from proposition 21. For g

an ordinary semisimple Lie algebra and gµ the ordinary String extension coming from the canonical 3-cocycle,
this corresponds to the fact that the classifying space of the String 2-group [7, 43] has the cohomology of
the classifying space of the underlying group, modulo the first Pontrajagin class [8].

where
dCE(gµ)|g∗ = dCE(g) (245)

and
dCE(gµ)|R[1] : b 7→ µ (246)

for b the canonical basis of R[1]. (Recall that in our conventions g is in degree 1).
This is indeed the Chevalley-Eilenberg algebra corresponding to the Lie bracket

[(x, c), (x′, c′)] = ([x, x′], µ(x, x′)) (247)

(for all x, x′ ∈ g, c, c′ ∈ R) on the centrally extended Lie algebra.

The String Lie 2-algebra.

Definition 24 Let g be a semisiple Lie algebra and µ = 〈·, [·, ·]〉 the canonical 3-cocycle on it. Then

string(g) (248)

is defined to be the strict Lie 2-algebra coming from the crossed module

(Ω̂g→ Pg) , (249)

where Pg is the Lie algebra of based paths in g and Ω̂g the Lie algebra of based loops in g, with central
extension induced by µ. Details are in [7].

Proposition 25 ([7]) The Lie 2-algebra gµ obtained from g and µ as in definition 23 is equivalent to the
strict string Lie 2-algebra

gµ ≃ string(g) . (250)
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This means there are morphisms gµ → string(g) and string(g)→ gµ whose composite is the identity only up
to homotopy

gµ //

Id

;;string(g) // gµ

=��

string(g) //

Id

;;
gµ // string(g)

η��

(251)

We call gµ the skeletal and string(g) the strict version of the String Lie 2-algebra.

The Fivebrane Lie 6-algebra

Definition 25 Let g = so(n) and µ the canonical 7-cocycle on it. Then

fivebrane(g) (252)

is defined to be the strict Lie 7-algebra which is equivalent to gµ

gµ ≃ fivebrane(g) . (253)

A Lie n-algebra is strict if it corresponds to a differential graded Lie algebra on a vector space in degree
1 to n. (Recall our grading conventions from 6.1.)

Remark. It is a major open problem to identify the strict fivebrane(g). Proposition 25 suggests that it
might involve hyperbolic Kac-Moody algebras and/or the torus algebra of g, since these would seem to be
what comes beyond the affine Kac-Moody algebras relevant for string(n).

The BF-theory Lie 3-algebra.

Definition 26 For g any ordinary Lie algebra with bilinear invariant symmetric form 〈·, ·〉 ∈ inv(g) in

transgression with the 3-cocycle µ, and for h
t
→ g a strict Lie 2-algebra based on g, denote by

µ̂ := d
CE(h

t
→g)

µ (254)

the corresponding exact 4-cocycle on (h
t
→ g) discussed in 6.3.1. Then we call the string-like extended Lie

3-algebra

bf(h
t
→ g) := (h

t
→ g)µ̂ (255)

the corresponding BF-theory Lie 3-algebra.

The terminology here will become clear once we describe in 8.3.1 and 9.1.1 how the BF-theory action
functional discussed in 6.6.1 arises as the parallel 4-transport given by the b3u(1)-4-bundle which arises as

the obstruction to lifting (h
t
→ g)-2-descent objects to bf(h

t
→ g)-3-descent objects.

6.5 L∞-algebra valued forms

Consider an ordinary Lie algebra g valued connection form A regarded as a linear map g∗ → Ω1(Y ).
Since CE(g) is free as a graded commutative algebra, this linear map extends uniquely to a morphism of
graded commutative algebras, though not in general of differential graded commutative algebra. In fact, the
deviation is measured by the curvature FA of the connection. However, the differential in W(g) is precisely
such that the connection does extend to a morphism of differential graded-commutative algebras

W(g)→ Ω•(Y ) . (256)

This implies that a good notion of a g-valued differential form on a smooth space Y , for g any L∞-algebra,
is a morphism of differential graded-commutative algebras from the Weil algebra of g to the algebra of
differential forms on Y .
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Definition 27 (g-valued forms) For Y a smooth space and g an L∞-algebra, we call

Ω•(Y, g) := Homdgc−Alg(W(g),Ω•(Y )) (257)

the space of g-valued differential forms on X.

Definition 28 (curvature) We write g-valued differential forms as

( Ω•(Y ) W(g)
(A,FA)oo ) ∈ Ω•(Y, g) , (258)

where FA denotes the restriction to the shifted copy g∗[1] given by

curv : ( Ω•(Y ) W(g)
(A,FA)oo ) 7→ ( Ω•(Y ) W(g)

(A,FA)oo g∗[1]? _oo

FA

{{
) . (259)

FA we call the curvature of A.

Proposition 26 The g-valued differential form Ω•(Y ) W(g)
(A,FA)oo factors through CE(g) precisely

when its curvature FA vanishes.

CE(g)

(A,FA=0)

��

W(g)oooo

(A,FA)

��
Ω•(Y )

=
Ω•(Y )

. (260)

In this case we say that A is flat. Hence the space of flat g-valued forms is

Ω•
flat(Y, g) ≃ Homdgc−Alg(CE(g),Ω•(Y )) . (261)

Bianchi identity. Recall from 6.1 that the Weil algebra W(g) of an L∞-algebra g is the same as the
Chevalley-Eilenberg algebra CE(inn(g)) of the L∞-algebra of inner derivation of g. It follows that g-valued
differential forms on Y are the same as flat inn(g)-valued differential forms on Y :

Ω•(Y, g) = Ω•
flat(inn(g)) . (262)

By the above definition of curvature, this says that the curvature FA of a g-valued connection (A,FA) is itself
a flat inn(g)-valued connection. This is the generalization of the ordinary Bianchi identity to L∞-algebra
valued forms.

Definition 29 Two g-valued forms A,A′ ∈ Ω•(Y, g) are called (gauge) equivalent precisely if they are
related by a vertical concordance, i.e. by a concordance, such that the corresponding derivation ρ from
proposition 10 is vertical, in the sense of definition 8.

6.5.1 Examples

1. Ordinary Lie-algebra valued 1-forms. We have already mentioned ordinary Lie algebra valued
1-forms in this general context in 2.1.3.

2. Forms with values in shifted bn−1u(1)
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A bn−1u(1)-valued form is nothing but an ordinary n-form A ∈ Ωn(Y ):

Ω•(bn−1u(1), Y ) ≃ Ωn(Y ) . (263)

A flat bn−1u(1)-valued form is precisely a closed n-form.

CE(bn−1u(1))

(A)

dA=0

��

oooo W(bn−1u(1))

(A,FA)

A=dA

��
Ω•(Y )

= // Ω•(Y )

3. Crossed module valued forms. Let g(2) = (h
t
→ g) be a strict Lie 2-algebra coming from a crossed

module. Then a g(2)-valued form is an ordinary g-valued 1-form A and an ordinary h-valued 2-form B. The
corresponding curvature is an ordinary g-valued 2-form β = FA + t(B) and an ordinary h-valued 3-form
H = dAB. This is denoted by the right vertical arrow in the following diagram.

CE(h
t
→ g)

(A,B)

FA+t(B)=0

��

W(h
t
→ g)oooo

(A,B,β,H)

β=FA+t(B)
H=dAB

��
Ω•(Y )

=
Ω•(Y )

. (264)

Precisely if the curvature components β and H vanish, does this morphism on the right factor through

CE(h
t
→ g), which is indicated by the left vertical arrow of the above diagram.

4. String Lie n-algebra valued forms. For g an ordinary Lie algebra and µ a degree (2n+ 1)-cocycle on
g the situation is captured by the following diagram

String-like Chern-Simons Chern

1 2n 2n+ 1 2n+ 1

CE(g) CE(gµ)//� � oooo CE(csP (g)) oo ? _CE(chP (g))

Ω•(Y )
=

��

(A)

FA=0

Ω•(Y )
=

��

(A,B)

FA=0

dB+CSk(A)=0

Ω•(Y )
=

��

(A,B,C)

C=dB+CSP (A)

Ω•(Y )
��

(A,C)

dC=k((FA)n+1)

. (265)

Here CSP (A) denotes the Chern-Simons form such that dCSP (A) = P (FA), given by the specific con-
tracting homotopy.
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The standard example is that corresponding to the ordinary String-extension.

CE(g) CE(string(g))//� � oooo

≃

W(stringk(g))

CE(g) CE(gµ)//� � oooo CE(csk(g))

≃

oo _? CE(chP (g))

Ω•(Y )
=

��

(A)

FA=0

Ω•(Y )
=

��

(A,B)
FA=0

dB+CSP (A)=0

Ω•(Y )
=

��

(A,B,C)

C=dB+CSP (A)

Ω•(Y )
��

(A,C)

dC=〈FA∧FA〉

(266)

In the above, g is semisimple with invariant bilinear form P = 〈·, ·〉 related by transgression to the 3-cocycle
µ = 〈·, [·, ·]〉. Then the Chern-Simons 3-form for any g-valued 1-form A is

CS〈·,·〉(A) = 〈A ∧ dA〉+
1

3
〈A ∧ [A ∧A]〉 . (267)

5. Fields of 11-dimensional supergravity.
While we shall not discuss it in detail here, it is clear that the entire discussion we give has a straightfor-

ward generalization to super L∞-algebras, obtained simply by working entirely within the category of super
vector spaces (the category of Z2-graded vector spaces equipped with the unique non-trivial symmetric
braiding on it, which introduces a sign whenever two odd-graded vector spaces are interchanged).

A glance at the definitions shows that, up to mere differences in terminology, the theory of “FDA”s
(“free differential algebras”) considered in [4, 24] is nothing but that of what we call qDGCAs here: quasi-
free differential graded commutative algebras.

Using that and the interpretation of qDGCAs in terms of L∞-algebras, one can translate everything said
in [4, 24] into our language here to obtain the following statement:

The field content of 11-dimensional supergravity is nothing but a g-valued form, for

g = sugra(10, 1) (268)

the Lie 3-algebra which is the string-like extension

0→ b2u(1)→ sugra(10, 1)→ siso(10, 1)→ 0 (269)

of the super-Poincaré Lie algebra in 10+1 dimensions, coming from a certain 4-cocycle on that.

CE(sugra(10, 1))

(flat connection,
parallel gravitino,

vanishing supertorsion)

��

W(sugra(10, 1))oooo

(graviton g,
gravitino Ψ,
3-form C3)

��
Ω•(Y )

=
Ω•(Y )

(270)

While we shall not further pursue this here, this implies the following two interesting issues.

• It is known in string theory [28] that the supergravity 3-form in fact consists of three parts: two
Chern-Simons parts for an e8 and for a so(10, 1)-connection, as well as a further fermionic part, coming
precisely from the 4-cocycle that governs sugra(10, 1). As we discuss in 8 and 9, the two Chern-Simons
components can be understood in terms of certain Lie 3-algebra connections coming from the Chern-
Simons Lie 3-algebra csP (g) from definition 23. It hence seems that there should be a Lie n-algebra
which nicely unifies csP (e8), csP (so(10, 1)8) and sugra(10, 1). This remains to be discussed.
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• The discussion in 7 shows how to obtain from g-valued forms globally defined connections on possibly
nontrivial g-n-bundles. Applied to sugra(10, 1) this should yield a global description of the supergravity
field content, which extends the local field content considered in [4, 24] in the way a connection in a
possibly nontrivial Yang-Mills bundle generalizes a Lie algebra valued 1-form. This should for instance
allow to discuss supergravity instanton solutions.

6.6 L∞-algebra characteristic forms

Definition 30 For g any L∞ algebra and

Ω•(Y ) W(g)
(A,FA)oo (271)

any g-valued differential form, we call the composite

Ω•(Y ) W(g)
(A,FA)oo inv(g)? _oo

{P (FA)}

zz
(272)

the collection of invariant forms of the g-valued form A. We call the deRham classes [P (FA)] of the
characteristic forms arising as the image of closed invariant polynomials

Ω•(Y ) W(g)
(A,FA)oo inv(g)? _oo

{Pi(FA)}

yy

H•
dR(Y ) H•(inv(g))

{[P (FA)]}oo

(273)

the collection of characteristic classes of the g-valued form A.

Recall from 6.3 that for ordinary Lie algebras all invariant polynomials are closed, while for general L∞-
algebras it is only true that their dW(g)-differential is horizontal. Notice that Y will play the role of a cover
of some space X soon, and that characteristic forms really live down on X . We will see shortly a constraint
imposed which makes the characteristic forms descend down from the Y here to such an X .

Proposition 27 Under gauge transformations as in definition 29, characteristic classes are invariant.

Proof. This follows from proposition 10: By that proposition, the derivative of the concordance form Â
along the interval I = [0, 1] is a chain homotopy

d

dt
Â(P ) = [d, ιX ]P = dτ(P ) + ιX(dW(g)P ) . (274)

By definition of gauge-transformations, ιX is vertical. By definition of basic forms, P is both in the kernel
of ιX as well as in the kernel of ιX ◦ d. Hence the right hand vanishes. �

6.6.1 Examples

Characteristic forms of bn−1u(1)-valued forms.
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Proposition 28 A bn−1u(1)-valued form Ω•(Y ) W(bn−1u(1))
Aoo is precisely an n-form on Y :

Ω•(Y, bn−1u(1)) ≃ Ωn(Y ) . (275)

If two such bn−1u(1)-valued forms are gauge equivalent according to definition 29, then their curvatures
coincide

( Ω•(Y ) W(bn−1u(1))
Aoo ) ∼ ( Ω•(Y ) W(bn−1u(1))

A′

oo ) ⇒ dA = dA′ . (276)

BF-theory. We demonstrate that the expression known in the literature as the action functional for BF-
theory with cosmological term is the integral of an invariant polynomial for g-valued differential forms where

g is a Lie 2-algebra. Namely, let g(2) = (h
t
→ g) be any strict Lie 2-algebra as in 6.1. Let

P = 〈·, ·〉 (277)

be an invariant bilinear form on g, hence a degree 2 invariant polynomial on g. According to proposition 18,
P therefore also is an invariant polynomial on g(2).

Now for (A,B) a g(2)-valued differential form on X , as in the example in 6.5,

Ω•(Y ) W(g(2))
((A,B),(β,H))oo , (278)

one finds

Ω•(Y ) W(g(2))
((A,B),(β,H))oo inv(g(2))? _oo

P 7→〈β,β〉

hh
(279)

so that the corresponding characteristic form is the 4-form

P (β,H) = 〈β ∧ β〉 = 〈(FA + t(B)) ∧ (FA + t(B))〉 . (280)

Collecting terms as

P (β,H) = 〈FA ∧ FA〉
︸ ︷︷ ︸

Pontryagin term

+2 〈t(B) ∧ FA〉
︸ ︷︷ ︸

BF-term

+ 〈t(B) ∧ t(B)〉
︸ ︷︷ ︸

“cosmological constant”

(281)

we recognize the Lagrangian for topological Yang-Mills theory and BF theory with cosmological term.
For X a compact 4-manifold, the corresponding action functional

S : Ω•(X, g(2))→ R (282)

sends g(2)-valued 2-forms to the intgral of this 4-form

(A,B) 7→

∫

X

(〈FA ∧ FA〉+ 2〈t(B) ∧ FA〉+ 〈t(B) ∧ t(B)〉) . (283)

The first term here is usually not considered an intrinsic part of BF-theory, but its presence does not affect
the critical points of S.

The critical points of S, i.e. the g(2)-valued differential forms on X that satisfy the equations of motion
defined by the action S, are given by the equation

β := FA + t(B) = 0 . (284)

Notice that this implies
dAt(B) = 0 (285)
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but does not constrain the full 3-curvature
H = dAB (286)

to vanish. In other words, the critical points of S are precisely the fake flat g(2)-valued forms which precisely
integrate to strict parallel transport 2-functors [37, 69, 9].

While the 4-form 〈β ∧ β〉 looks similar to the Pontrjagin 4-form 〈FA ∧ FA〉 for an ordinary connection
1-form A, one striking difference is that 〈β ∧ β〉 is, in general, not closed. Instead, according to equation
211, we have

d〈β ∧ β〉 = 2〈β ∧ t(H)〉 . (287)

Remark. Under the equivalence [7] of the skeletal String Lie 2-algebra to its strict version, recalled in
proposition 25, the characteristic forms for strict Lie 2-algebras apply also to one of our central objects of
interest here, the String 2-connections. But a little care needs to be exercised here, because the strict version
of the String Lie 2-algebra is no longer finite dimensional.

Remark. Our interpretation above of BF-theory as a gauge theory for Lie 2-algebras is not unrelated to,
but different from the one considered in [37, 38]. There only the Lie 2-algebra coming from the infinitesimal

crossed module (|g|
0
→ g

ad
→ der(g)) (for g any ordinary Lie algebra and |g| its underlying vector space,

regarded as an abelian Lie algebra) is considered, and the action is restricted to the term
∫
〈FA ∧ B〉. We

can regard the above discussion as a generalization of this approach to arbitrary Lie 2-algebras. Standard
BF-theory (with “cosmological” term) is reproduced with the above Lagrangian by using the Lie 2-algebra

inn(g) corresponding to the infinitesimal crossed module (g
Id
→ g

ad
→ der(g)) discussed in 6.1.1.

7 L∞-algebra Cartan-Ehresmann connections

We will now combine all of the above ingredients to produce a definition of g-valued connections. As we shall
explain, the construction we give may be thought of as a generalization of the notion of a Cartan-Ehresmann
connection, which is given by a Lie algebra-valued 1-form on the total space of a bundle over base space
satisfying two conditions:

• first Cartan-Ehresmann condition: on the fibers the connection form restricts to a flat canonical form

• second Cartan-Ehresmann condition: under vertical flows the connections transforms nicely, in such a
way that its characteristic forms descend down to base space.

We will essentially interpret these two conditions as a pullback of the universal g-bundle, in its DGC-
algebraic incarnation as given in equation 178.

The definition we give can also be seen as the Lie algebraic image of a similar construction involving
locally trivializable transport n-functors [9, 70], but this shall not be further discussed here.

7.1 g-Bundle descent data

Definition 31 (g-bundle descent data) Given a Lie n-algebra g, a g-bundle descent object on X is a pair
(Y,Avert) consisting of a choice of surjective submersion π : Y → X with connected fibers (this condition will
be dropped when we extend to g-connection descent objects in 7.2) together with a morphism of dg-algebras

Ω•
vert(Y ) CE(g)

Avertoo . (288)

Two such descent objects are taken to be equivalent

( Ω•
vert(Y ) CE(g)

Avertoo ) ∼ ( Ω•
vert(Y

′) CE(g)
A′

vertoo ) (289)
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precisely if their pullbacks π∗
1Avert and π∗

2A
′
vert to the common refinement

Y ×X Y ′ π1 //

π2

��

Y

π

��
Y ′ π′

// X

(290)

are concordant in the sense of definition 18.

Thus two such descent objects Avert, A
′
vert on the same Y are equivalent if there is η∗vert such that

Ω•
vert(Y ) Ω•

vert(Y × I)
s∗oo
t∗oo CE(g)

η∗vertoo

Avert

vv

A′

vert

gg
. (291)

Recall from the discussion in 2.2.1 that the surjective submersions here play the role of open covers of X .

7.1.1 Examples

Example: ordinary G-bundles. The following example is meant to illustrate how the notion of descent
data with respect to a Lie algebra g as defined here can be related to the ordinary notion of descent data
with respect to a Lie group G. Consider the case where g is an ordinary Lie (1-)algebra. A g-cocycle then
is a surjective submersion π : Y → X together with a g-valued flat vertical 1-form Avert on Y . Assume the
fiber of π : Y → X to be simply connected. Then for any two points (y, y′) ∈ Y ×X Y in the same fiber we
obtain an element g(y, y′) ∈ G, where G is the simply connected Lie group integrating g, by choosing any

path y
γ // y′ in the fiber connecting y with y′ and forming the parallel transport determined by Avert

along this path

g(y, y′) := P exp(

∫

γ

Avert) . (292)

By the flatness of Avert and the assumption that the fibers of Y are simply connected

• g : Y ×X Y → G is well defined (does not depend on the choice of paths), and

• satisfies the cocycle condition for G-bundles

g :

y′

��?
??

??
??

y //

@@��������
y′′

7→

•
g(y′,y′′)

��@
@@

@@
@@

•
g(y,y′′)

//

g(y,y′)
??�������

•

. (293)

Any such cocycle g defines a G-principal bundle. Conversely, every G-principal bundle P → X gives rise
to a structure like this by choosing Y := P and letting Avert be the canonical invariant g-valued vertical
1-form on Y = P . Then suppose (Y,Avert) and (Y,A′

vert) are two such cocycles defined on the same Y , and
let (Ŷ := Y × I, Âvert) be a concordance between them. Then, for every path

y × {0}
γ // y × {1} (294)

connecting the two copies of a point y ∈ Y over the endpoints of the interval, we again obtain a group
element

h(y) := P exp(

∫

γ

Âvert) . (295)

By the flatness of Â, this is
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• well defined in that it is independent of the choice of path;

• has the property that for all (y, y′) ∈ Y ×X Y we have

h :

y × {0}

��

// y × {1}

��
y′ × {0} // y′ × {1}

7→

•

g(y,y′)

��

h(y) // •

g′(y,y′)

��
•

h(y′) // •

. (296)

Therefore h is a gauge transformation between g and g′, as it should be.

Note that there is no holonomy since the fibers are assumed to be simply connected in this example.

Abelian gerbes, Deligne cohomology and (bn−1u(1))-descent objects For the case that the L∞-
algebra in question is shifted u(1), i.e. g = bn−1u(1), classes of g-descent objects on X should coincide with
classes of “line n-bundles”, i.e. with classes of abelian (n−1)-gerbes on X , hence with elements in Hn(X,Z).
In order to understand this, we relate classes of bn−1u(1))-descent objects to Deligne cohomology. We recall
Deligne cohomology for a fixed surjective submersion π : Y → X . For comparison with some parts of the
literature, the reader should choose Y to be the disjoint union of sets of a good cover of X . More discussion
of this point is in 5.3.1.

The following definition should be thought of this way: a collection of p-forms on fiberwise intersections
of a surjective submersion Y → X are given. The 0-form part defines an n-bundle (an (n− 1)-gerbe) itself,
while the higher forms encode a connection on that n-bundle.

Definition 32 (Deligne cohomology) Deligne cohomology can be understood as the cohomology on dif-
ferential forms on the simplicial space Y • given by a surjective submersion π : Y → X, where the complex
of forms is taken to start as

0 // C∞(Y [n],R/Z)
d // Ω1(Y [n],R)

d // Ω2(Y [n],R)
d // · · · , (297)

where the first differential, often denoted dlog in the literature, is evaluated by acting with the ordinary
differential on any R-valued representative of a U(1) ≃ R/Z-valued function.

More in detail, given a surjective submersion π : Y → X, we obtain the augmented simplicial space

Y • =

(

· · ·Y [3]

π1 //
π2 //
π3

// Y [2]
π1 //
π2

// Y
π // Y [0]

)

(298)

of fiberwise cartesian powers of Y , Y [n] := Y ×X Y ×X · · · ×X Y
︸ ︷︷ ︸

n factors

, with Y [0] := X. The double complex of

differential forms

Ω•(Y •) =
⊕

n∈N

Ωn(Y •) =
⊕

n∈N

⊕

r,s∈N

r+s=n

Ωr(Y [s]) (299)

on Y • has the differential d±δ coming from the deRham differential d and the alternating pullback operation

δ : Ωr(Y [s]) → Ωr(Y [s+1])

δ : ω 7→ π∗
1ω − π

∗
2ω + π∗

3ω + · · · − (−1)s+1 . (300)

Here we take 0-forms to be valued in R/Z. The map Ω0(Y )
d // Ω1(Y ) takes any R-valued repre-

sentative f of an R/Z-valued form and sends that to the ordinary df . This operation is often denoted

59



Ω0(Y )
dlog // Ω1(Y ) . Writing Ω•

k(Y
•) for the space of forms that vanish on Y [l] for l < k we define (every-

thing with respect to Y ):

• A Deligne n-cocycle is a closed element in Ωn(Y •);

• a flat Deligne n-cocycle is a closed element in Ωn1 (Y •);

• a Deligne coboundary is an element in (d± δ)Ω•
1(Y

•) (i.e. no component in Y [0] = X);

• a shift of connection is an element in (d± δ)Ω•(Y •) (i.e. with possibly a contribution in Y [0] = X).

The 0-form part of a Deligne cocycle is like the transition function of a U(1)-bundle. Restricting to this
part yields a group homomorphism

[·] : Hn(Ω•(Y •)) // // Hn(X,Z) (301)

to the integral cohomology on X . (Notice that the degree on the right is indeed as given, using the total
degree on the double comples Ω•(Y •) as given.)

Addition of a Deligne coboundary is a gauge transformation. Using the fact [62] that the “fundamental
complex”

Ωr(X)
δ // Ωr(Y )

δ // Ωr(Y [2]) · · · (302)

is exact for all r ≥ 1, one sees that Deligne cocycles with the same class in Hn(X,Z) differ by elements in
(d ± δ)Ω•(Y •). Notice that they do not, in general, differ by an element in Ω•

1(Y
•): two Deligne cochains

which differ by an element in (d ± δ)Ω•
1(Y

•) describe equivalent line n-bundles with equivalent connections,
while those that differ by something in (d ± δ)Ω•

0(Y
•) describe equivalent line n-bundles with possibly

inequivalent connections on them.
Let

v : Ω•(Y •)→ Ω•
vert(Y ) (303)

be the map which sends each Deligne n-cochain a with respect to Y to the vertical part of its (n− 1)-form
on Y [1]

ν : a 7→ a|Ωn−1
vert (Y [1]) . (304)

(Recall the definition 10 of Ω•
vert(Y ).) Then we have

Proposition 29 If two Deligne n-cocycles a and b over Y have the same class in Hn(X,Z), then the classes
of ν(a) and ν(b) coincide.

Proof. As mentioned above, a and b have the same class in Hn(X,Z) if and only if they differ by an element
in (d± δ)(Ω•(Y •)). This means that on Y [1] they differ by an element of the form

dα+ δβ = dα+ π∗β . (305)

Since π∗β is horizontal, this is exact in Ω•
vert(Y

[1]). �

Proposition 30 If the (n−1)-form parts B,B′ ∈ Ωn−1(Y ) of two Deligne n-cocycles differ by a d± δ-exact
part, then the two Deligne cocycles have the same class in Hn(X,Z).

Proof. If the surjective submersion is not yet contractible, we pull everything back to a contractible refine-
ment, as described in 5.3.1. So assume without restriction of generality that all Y [n] are contractible. This
implies that H•

deRham(Y [n]) = H0(Y [n]), which is a vector space spanned by the connected components of
Y [n]. Now assume

B −B′ = dβ + δα (306)
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on Y . We can immediately see that this implies that the real classes in Hn(X,R) coincide: the Deligne
cocycle property says

d(B −B′) = δ(H −H ′) (307)

hence, by the exactness of the deRham complex we have now,

δ(H −H ′) = δ(dα) (308)

and by the exactness of δ we get [H ] = [H ′].
To see that also the integral classes coincide we use induction over k in Y [k]. For instance on Y [2] we

have
δ(B −B′) = d(A−A′) (309)

and hence
δdβ = d(A−A′) . (310)

Now using again the exactness of the deRham differential d this implies

A−A′ = δβ + dγ . (311)

This way we work our way up to Y [n], where it then follows that the 0-form cocycles are coboundant, hence
that they have the same class in Hn(X,Z). �

Proposition 31 bn−1u(1)-descent objects with respect to a given surjective submersion Y are in bijection
with closed vertical n-forms on Y :

{

Ω•
vert(Y ) CE(bn−1u(1))

Avertoo
}

↔ {Avert ∈ Ωnvert(Y ) , dAvert = 0} . (312)

Two such bn−1u(1) descent objects on Y are equivalent precisely if these forms represent the same cohomology
class

(Avert ∼ A
′
vert) ⇔ [Avert] = [A′

vert] ∈ H
n(Ω•

vert(Y )) . (313)

Proof. The first statement is a direct consequence of the definition of bn−1u(1) in 6.1. The second statement
follows from proposition 10 using the reasoning as in proposition 27. �

Hence two Deligne cocycles with the same class in Hn(X,Z) indeed specify the same class of bn−1u(1)-
descent data.

7.2 Connections on g-bundles: the extension problem

It turns out that a useful way to conceive of the curvature on a non-flat g n-bundle is, essentially, as the
(n+ 1)-bundle with connection obstructing the existence of a flat connection on the original g-bundle. This
superficially trivial statement is crucial for our way of coming to grips with non-flat higher bundles with
connection.

Definition 33 (descent object for g-connection) Given g-bundle descent object

Ω•
vert(Y ) CE(g)

Avertoo (314)
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as above, a g-connection on it is a completion of this morphism to a diagram

Ω•
vert(Y ) CE(g)

Avertoo

Ω•(Y )

i∗

OOOO

W (g)

OOOO

(A,FA)oo

Ω•(X)
?�

π∗

OO

inv(g)
?�

OO

{Ki}
oo

. (315)

As before, two g-connection descent objects are taken to be equivalent, if their pullbacks to a common refine-
ment are concordant.

The top square can always be completed: any representative A ∈ Ω•(Y ) of Avert ∈ Ω•
vert(Y ) will do.

The curvature FA is then uniquely fixed by the dg-algebra homomorphism property. The existence of the
top square then says that we have a 1-form on a total space which resticts to a canonical flat 1-form on the
firbers. The commutativity of the lower square means that for all invariant polynomials P of g, the form
P (FA) on Y is a form pulled back from X and is the differential of a form cs that vanishes on vertical vector
fields

P (FA) = π∗K . (316)

The completion of the bottom square is hence an extra condition: it demands that A has been chosen such
that its curvature FA has the property that the form P (FA) ∈ Ω•(Y ) for all invariant polynomials P are
lifted from base space, up to that exact part.

• The commutativity of the top square generalizes the first Cartan-Ehresmann condition: the con-
nection form on the total space restricts to a nice form on the fibers.

• The commutativity of the lower square generalizes the second Cartan-Ehresmann condition: the
connection form on the total space has to behave in such a way that the invariant polynomials applied
to its curvature descend down to the base space.

The pullback
f∗(Y, (A,FA)) = (Y ′, (f∗A, f∗FA)) (317)

of a g-connection descent object (Y, (A,FA)) on a surjective submersion Y along a morphism

Y ′

π′

  A
AA

AA
AA

A

f // Y

π
~~~~

~~
~~

~~

X

(318)

is the g-connection descent object depicted in figure 9.
Notice that the characteristic forms remain unaffected by such a pullback. This way, any two g-connection

descent objects may be pulled back to a common surjective submersion. A concordance between two g-
connection descent objects on the same surjective submersion is depicted in figure 10.

Suppose (A,FA) and (A′, FA′) are descent data for g-bundles with connection over the same Y (possibly
after having pulled them back to a common refinement). Then a concordance between them is a diagram as
in figure 10.

62



Ω•
vert(Y

′) Ω•
vert(Y )

f∗

oo CE(g)
Avertoo

f∗Avert

ff

Ω•(Y ′)

i′∗

OOOO

Ω•(Y )
f∗

oo

i∗

OOOO

W (g)

OOOO

(A,FA)oo

(f∗A,Ff∗A

ff

Ω•(X)
?�

π′∗

OO

Ω•(X)
Idoo

?�

π∗

OO

inv(g)
?�

OO

{Ki}
oo

{Ki}

ff

.

Figure 9: Pullback of a g-connection descent object (Y, (A,FA)) along a morphism f : Y ′ → Y of
surjective submersions, to f∗(Y, (A,FA)) = (Y ′, (f∗A,Ff∗A)).

Definition 34 (equivalence of g-connections) We say that two g-connection descent objects are equiv-
alent as g-connection descent objects if they are connected by a vertical concordance namely one for which
the derivation part of η∗ (according to proposition 10) vanishes on the shifted copy g∗[1] →֒W(g).

We have have a closer look at concordance and equivalence of g-connection descent objects in 7.3.

7.2.1 Examples.

Example (ordinary Cartan-Ehresmann connection). Let P → X be a principal G-bundle and con-
sider the descent object obtained by setting Y = P and letting Avert be the canonical invariant vertical flat
1-form on fibers P . Then finding the morphism

Ω•(Y ) W(g)
(A,FA)oo (319)

such that the top square commutes amounts to finding a 1-form on the total space of the bundle which
restricts to the canonical 1-form on the fibers. This is the first of the two conditions on a Cartan-Ehresmann
connection. Then requiring the lower square to commute implies requiring that the 2n-forms Pi(FA), formed
from the curvature 2-form FA and the degree n-invariant polynomials Pi of g, have to descend to 2n-forms
Ki on the base X . But that is precisely the case when Pi(FA) is invariant under flows along vertical vector
fields. Hence it is true when A satisfies the second condition of a Cartan-Ehresmann connection, the one
that says that the connection form transforms nicely under vertical flows.

Further examples appear in 8.3.1.
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Ω•
vert(Y ) Ω•

vert(Y )⊗ Ω•(I)s∗oo
t∗oo CE(g)

η∗vertoo

Avert

uu

A′

vert

hh

Ω•(Y )

OOOO

Ω•(Y )⊗ Ω•(I)

OOOO

s∗oo
t∗oo W(g)

η∗oo

OOOO

(A,FA)

vv

(A′,FA′)

hh

Ω•(X)
?�

OO

Ω•(X)⊗ Ω•(I)
?�

OO

s∗oo
t∗oo inv(g)oo

?�

OO

{Ki}

uu

{K′

i}

hh

Figure 10: Concordance between g-connection descent objects (Y, (A,FA)) and (Y, (A′, FA′)) defined
on the same surjective submersion π : Y → X . Concordance between descent objects not on the same
surjective submersion is reduced to this case by pulling both back to a common refinement, as in figure 9.

7.3 Characteristic forms and characteristic classes

Definition 35 For any g-connection descent object (Y, (A,FA)) we say that in

Ω•
vert(Y ) CE(g)

Avertoo

Ω•(Y )

i∗

OOOO

W (g)

OOOO

(A,FA)oo

Ω•(X)
?�

π∗

OO

inv(g)
?�

OO

{Ki}oo

H•
dR(X) H•(inv(g))

{[Ki]}
oo

(320)

the {Ki} are the characteristic forms, while their deRham classes [Ki] ∈ H
•
deRham(X) are the characteristic

classes of (Y, (A,FA)).

Proposition 32 If two g-connection descent objects (Y, (A,FA)) and (Y ′, (A′, FA′)) are related by a con-
cordance as in figure 9 and figure 10 then they have the same characteristic classes:

(Y, (A,FA)) ∼ (Y ′, (A′, FA′)) ⇒ {[Ki]} = {[K ′
i]} . (321)

Proof. We have seen that pullback does not change the characteristic forms. It follows from proposition 27
that the characteristic classes are invariant under concordance. �

Corollary 2 If two g-connection descent objects are equivalent according to definition 34, then they even
have the same characteristic forms.
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Proof. For concordances between equivalent g-connection descent objects the derivation part of η∗ is vertical
and therefore vanishes on inv(g) = W(g)basic. �

Remark. (shifts of g-connections) We observe that, by the very definition of W(g), any shift in the
connection A,

A 7→ A′ = A+D ∈ Ω•(Y, g)

can be understood as a transformation

Ω•(Y ) W(g)

(A,FA)

~~

(A+D,FA+D)

``
ρ

��

with the property that ρ vanishes on the non-shifted copy g∗ →֒W(g) and is nontrivial only on the shifted
copy g∗[1] →֒W(g): in that case for a ∈ g∗ any element in the unshifted copy, we have

(A+D)(a) = A(a) + [d, ρ](a) = A(a) + ρ(dW(g)a) = A(a) + ρ(dCE(g)a+ σa) = A(a) + ρ(σa).

and hence D(a) = ρ(σ), which uniquely fixes ρ in terms of D and vice versa.
Therefore concordances which are not purely vertical describe homotopies between g-connection descent

objects in which the connection is allowed to vary.

Remark (gauge transformations versus shifts of the connections). We therefore obtain the follow-
ing picture.

• Vertical concordances relate gauge equivalent g-connections (compare definition 29 of gauge transfor-
mations of g-valued forms)

(A,FA) and (A′, FA′) are
equivalent as g-connections

⇔ ∃

Ω•
vert(Y ) Ω•

vert(Y )⊗ Ω•(I)s∗oo
t∗oo CE(g)

η∗vertoo

Avert

uu

A′

vert

hh

Ω•(Y )

OOOO

Ω•(Y )⊗ Ω•(I)

OOOO

s∗oo
t∗oo W(g)

η∗oo

OOOO

(A,FA)

vv

(A′,FA′ )

hh

Ω•(X)
?�

OO

Ω•(X)⊗ Ω•(I)
?�

OO

s∗oo
t∗oo inv(g)oo

?�

OO
;

(322)

• Non-vertical concordances relate g-connection descent objects whose underlying g-descent object – the
underlying g-n-bundles – are equivalent, but which possibly differ in the choice of connection on these
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g-bundles:

(A′, FA′) is obtained from
(A,FA) by a

shift of g-connections
⇔ ∃

Ω•
vert(Y ) Ω•

vert(Y )⊗ Ω•(I)s∗oo
t∗oo CE(g)

η∗vertoo

Ω•(Y )

OOOO

Ω•(Y )⊗ Ω•(I)

OOOO

s∗oo
t∗oo W(g)

η∗oo

OOOO

(A,FA)

vv

(A′,FA′ )

hh

Ω•(X)
?�

OO

Ω•(X)⊗ Ω•(I)
?�

OO

s∗oo
t∗oo inv(g)oo

?�

OO

{Ki}

uu

{K′

i}

hh

(323)

Remark. This in particular shows that for a given g-descent object

Ω•
vert(Y ) CE(g)

Avertoo

the corresponding characteristic classes obtained by choosing a connection (A,FA) does not depend on
continuous variations of that choice of connection.

In the case of ordinary Lie (1-)algebras g it is well known that any two connections on the same bundle
may be continuously connected by a path of connections: the space of 1-connections is an affine space
modeled on Ω1(X, g). If we had an analogous statement for g-connections for higher L∞-algebras, we could
strengthen the above statement.

7.3.1 Examples

Ordinary characteristic classes of g-bundles Let g be an ordinary Lie algebra and (Y, (A,FA)) be
a g-descent object corresponding to an ordinary Cartan-Ehresmann connection as in 7.2.1. Using the fact
13 we know that inv(g) contains all the ordinary invariant polynomials P on g. Hence the characteristic
classes [P (FA)] are precisely the standard characteristic classes (in deRham cohomology) of the G-bundle
with connection.

Characteristic classes of bn−1u(1)-bundles.- For g = bn−1u(1) we have, according to proposition 17,
inv(bn−1u(1)) = CE(bnu(1)) and hence a single degree n+ 1 characteristic class: the curvature itself.

This case we had already discussed in the context of Deligne cohomology in 7.1.1. In particular, notice
that in definition 32 we had already encountered the distinction between homotopies of L∞-algebra that
are or are not pure gauge transformations, in that they do or do not shift the connection: what is called a
Deligne coboundary in definition 32 corresponds to an equivalence of bn−1u-connection descent objects as in
322, while what is called a shift of connection there corresponds to a concordance that involves a shift as in
323.

7.4 Universal and generalized g-connections

We can generalize the discussion of g-bundles with connection on spaces X , by

• allowing all occurrences of the algebra of differential forms to be replaced with more general differential
graded algebras; this amounts to admitting generalized smooth spaces as in 5.1;
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• by allowing all Chevalley-Eilenberg and Weil algebras of L∞-algebras to be replaced by DGCAs which
may be nontrivial in degree 0. This amounts to allowing not just structure∞-groups but also structure
∞-groupoids.

Definition 36 (generalized g-connection descent objects) Given any L∞-algebra g, and given any
DGCA A, we say a g-connection descent object for A is

• a surjection F P
i∗oooo such that A ≃ Pbasic;

• a choice of horizontal morphisms in the diagram

F CE(g)
Avertoo

P

i∗

OOOO

W (g)

OOOO

(A,FA)oo

A
?�

OO

inv(g)
?�

OO

{Ki}
oo

; (324)

The notion of equivalence of these descent objects is as before.

Horizontal forms Given any algebra surjection

F

P

i∗

OO

we know from definition 8 what the “vertical directions” on P are. After we have chosen a g-connection on
P , we obtain also notion of horizontal elements in P :

Definition 37 (horizontal elements) Given a g-connection (A,FA) on P , the algebra of horizontal ele-
ments

horA(P ) ⊂ P

of P with respect to this connection are those elements not in the ideal generated by the image of A.

Notice that horA(P ) is in general just a graded-commutative algebra, not a differential algebra. Accordingly
the inclusion horA(P ) ⊂ P is meant just as an inclusion of algebras.
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CE(g) CE(g)
Idoo

W(g)

i∗

OOOO

W (g)

OOOO

Idoo

inv(g)
?�

OO

inv(g)
?�

OO

Id
oo

(326)

Figure 11: The universal g-connection descent object.

7.4.1 Examples.

The universal g-connection. The tautological example is actually of interest: for any L∞-algebra g,
there is a canonical g-connection descent object on inv(g). This comes from choosing

( F P
i∗oooo ) := ( CE(g) W(g)

i∗oooo ) (325)

and then taking the horizontal morphisms to be all identities, as shown in figure 11:
We can then finally give an intrinsic interpretation of the decomposition of the generators of the Weil

algebra W(g) of any L∞-algebra into elemenets in g∗ and elements in the shifted copy g∗[1], which is crucial
for various of our constructions (for instance for the vanishing condition in 149):

Proposition 33 The horizontal elements of W(g) with respect to the univeral g-connection (A,FA) on W(g)
are precisely those generated entirely from the shifted copy g∗[1]:

horA(W(g)) = ∧•(g∗[1]) ⊂W(g) .

Line n-bundles on classifying spaces

Proposition 34 Let g be any L∞-algebra and P ∈ inv(g) any closed invariant polynomial on g of degree
n+ 1. Let cs := τP be the transgression element and µ := i∗cs the cocycle that P transgresses to according
to proposition 15. Then we canonically obtain a bn−1u(1)-connection descent object in inv(g):

CE(g) CE(bn−1u(1))
µoo

W(g)

i∗

OOOO

W (bn−1u(1))

OOOO

(cs,P )oo

inv(g)
?�

OO

inv(bnu(1)) = CE(bn−1u(1))
?�

OO

P
oo

(327)
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Remark. For instance for g an ordinary semisimple Lie algebra and µ its canonical 3-cocylce, we obtain
a descent object for a Lie 3-bundle which plays the role of what is known as the canonical 2-gerbe on the
classifying space BG of the simply connected group G integrating g [21]. From the above and using 6.5.1
we read off that its connection 3-form is the canonical Chern-Simons 3-form. We will see this again in 9.3.1,
where we show that the 3-particle (the 2-brane) coupled to the above g-connection descent object indeed
reproduces Chern-Simons theory.

8 Higher String- and Chern-Simons n-bundles: the lifting prob-

lem

We discuss the general concept of weak cokernels of morphisms of L∞-algebras. Then we apply this to the
special problem of lifts of differential g-cocycles through String-like extensions.

8.1 Weak cokernels of L∞-morphisms

After introducing the notion of a mapping cone of qDGCAs, the main point here is proposition 40, which
establishes the existence of the weak inverse f−1 that was mentioned in 2.3. It will turn out to be that very
weak inverse which picks up the information about the existence or non-existence of the lifts discussed in
8.3. We can define the weak cokernel for normal L∞-subalgebras :

Definition 38 (normal L∞-subalgebra) We say a Lie ∞-algebra h is a normal sub L∞-algebra of the
L∞-algebra g if there is a morphism

CE(h) CE(g)
t∗oooo (328)

which the property that

• on g∗ it restricts to a surjective linear map h∗ g∗
t∗1oooo ;

• if a ∈ ker(t∗) then dCE(g)a ∈ ∧
•(ker(t∗1)).

Proposition 35 For h and g ordinary Lie algebras, the above notion of normal sub L∞-algebra coincides
with the standard notion of normal sub Lie algebras.

Proof. If a ∈ ker(t∗) then for any x, y ∈ g the condition says that (dCE(g)a)(x∨y) = −a(D[x∨y]) = −a([x, y])
vanishes when x or y are in the image of t. But a([x, y]) vanishes when [x, y] is in the image of t. Hence the
condition says that if at least one of x and y is in the image of t, then their bracket is. �

Definition 39 (mapping cone of qDGCAs; crossed module of normal sub L∞-algebras) Let t : h →֒ g

be an inclusion of a normal sub L∞-algebra h into g. The mapping cone of t∗ is the qDGCA whose underlying
graded algebra is

∧• (g∗ ⊕ h∗[1]) (329)

and whose differential dt is such that it acts on generators schematically as

dt =

(
dg 0
t∗ dh

)

. (330)
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In more detail, dt∗ is defined as follows. We write σt∗ for the degree +1 derivation on ∧•(g∗ ⊕ h∗[1]) which
acts on g∗ as t∗ followed by a shift in degree and which acts on h∗[1] as 0. Then, for any a ∈ g∗, we have

dta := dCE(g)a+ σt∗(a) . (331)

and
dtσt

∗(a) := −σt∗(dCE(g)a) = −dtdCE(g)a . (332)

Notice that the last equation

• defines dt on all of h∗[1] since t∗ is surjective;

• is well defined in that it agrees for a and a′ if t∗(a) = t∗(a′), since t is normal.

Proposition 36 The differential dt defined this way indeed satisfies (dt)
2 = 0.

Proof. For a ∈ g∗ we have

dtdta = dt(dCE(g)a+ σt∗(a)) = σt∗(dCE(g)a)− σt
∗(dCE(g)a) = 0 . (333)

Hence (dt)
2 vanishes on ∧•(g∗). Since

dtdtσt
∗(a) = −dtdtdCE(g)a (334)

and since dCE(g)a ∈ ∧
•(g∗) this implies (dt)

2 = 0. �

We write CE(h
t
→֒ g) := (∧•(g∗ ⊕ h∗[1]), dt) for the resulting qDGCA and (h

t
→֒ g) for the corresponding

L∞-algebra.

The next proposition asserts that CE(h
t
→֒ g) is indeed a (weak) kernel of t∗.

Proposition 37 There is a canonical morphism CE(g) CE(h
t
→֒ g)oo with the property that

CE(h) CE(g)
t∗oo CE(h

t
→֒ g)oo

0

ee KS
τ

. (335)

Proof. On components, this morphism is the identity on g∗ and 0 on h∗[1]. One checks that this respects
the differentials. The homotopy to the 0-morphism sends

τ : σt∗(a) 7→ t∗(a) . (336)

Using definition 17 one checks that then indeed

[d, τ ] : a 7→ τ(dCE(g)a+ σt∗a) = a (337)

and
[d, τ ] : σt∗a 7→ dCE(g)a+ τ(−σt∗(dCE(g)a)) = 0 . (338)

Here the last step makes crucial use of the condition 149 which demands that

τ(d
W(h

t
→֒g)

σt∗a− d
CE(h

t
→֒g)

σt∗a) = 0 (339)

and the formula (145) which induces precisely the right combinatorial factors. �

Notice that not only is CE(h
t
→֒ g) in the kernel of t∗, it is indeed the universal object with this property,

hence is the kernel of t∗ (of course up to equivalence).
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Proposition 38 Let CE(h) CE(g)
t∗oooo CE(f)? _u∗

oo be a sequence of qDGCAs with t∗ normal, as above,

and with the property that u∗ restricts, on the underlying vector spaces of generators, to the kernel of the

linear map underlying t∗. Then there is a unique morphism f : CE(f)→ CE(h
t
→֒ g) such that

CE(h) CE(g)
t∗oo CE(h

t
→֒ g)oo

CE(f)

u∗

OO

f

99s
s

s
s

s

. (340)

Proof. The morphism f has to be in components the same as CE(g)← CE(f). By the assumption that this
is in the kernel of t∗, the differentials are respected. �

Remark. There should be a generalization of the entire discussion where u∗ is not restricted to be the
kernel of t∗ on generators. However, for our application here, this simple situation is all we need.

Proposition 39 For a string-like extension gµ from definition 23, the morphism

CE(bn−1u(1)) CE(gµ)
t∗oooo (341)

is normal in the sense of definition 38.

Proposition 40 In the case that the sequence

CE(h) CE(g)
t∗oooo CE(f)? _u∗

oo (342)

above is a String-like extension

CE(bn−1u(1)) CE(gµ)
t∗oooo CE(g)? _u∗

oo (343)

from proposition 20 or the corresponding Weil-algebra version

W(bn−1u(1))

=

W(gµ)

=

t∗oooo W(g)

=

? _u∗

oo

CE(inn(bn−1u(1))) CE(inn(gµ))
t∗oooo CE(inn(g))? _u∗

oo

(344)

the morphisms f : CE(f)→ CE(h
t
→֒ g) and f̂ : W(f) →W(h

t
→֒ g) have weak inverses f−1 : CE(h

t
→֒ g)→

CE(f) and f̂−1 : W(h
t
→֒ g)→W(f) , respectively. .

Proof. We first construct a morphism f−1 and then show that it is weakly inverse to f . The statement for
f̂ the follows from the functoriality of forming the Weil algebra, proposition 7. Start by choosing a splitting
of the vector space V underlying g∗ as

V = ker(t∗)⊕ V1 . (345)

This is the non-canonical choice we need to make. Then take the component map of f−1 to be the identity
on ker(t∗) and 0 on V1. Moreover, for a ∈ V1 set

f−1 : σt∗(a) 7→ −(dCE(g)a)|∧•ker(t∗) , (346)
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where the restriction is again with respect to the chosen splitting of V . We check that this assignment,
extended as an algebra homomorphism, does respect the differentials.

For a ∈ ker(t∗) we have

a � dt //
_

f−1

��

dCE(g)a
_

f−1

��
a � dCE(f)// dCE(g)a

(347)

using the fact that t∗ is normal. For a ∈ V1 we have

a � dt //
_

f−1

��

dCE(g)a+ σt∗(a)
_

f−1

��
0

� dCE(f)// (dCE(g)a)|∧•ker(t∗) − (dCE(g)a)|∧•ker(t∗)

. (348)

and

σt∗(a) � dt //
_

f−1

��

−σt∗(dCE(g)a)
_

f−1

��
−(dCE(g)a)|∧•ker(t∗)

� dCE(f)// −dCE(f)((dCE(g)a)|ker(t∗))

. (349)

This last condition happens to be satisfied for the examples stated in the proposition. The details for that
are discussed in 8.1.1 below. By the above, f−1 is indeed a morphism of qDGCAs.

Next we check that f−1 is a weak inverse of f . Clearly

CE(f) CE(h
t
→֒ g)oo CE(f)oo (350)

is the identity on CE(f). What remains is to construct a homotopy

CE(h
t
→֒ g) CE(f)oo CE(h

t
→֒ g)oo

Id

ee
τ��

. (351)

One checks that this is accomplished by taking τ to act on σV1 as τ : σV1
≃
→ V1 and extended suitably. �

8.1.1 Examples

Weak cokernel for the String-like extension. Let our sequence

CE(h) CE(g)
t∗oooo CE(f)? _u∗

oo (352)

be a String-like extension

CE(bn−1u(1)) CE(gµ)
t∗oooo CE(g)? _u∗

oo (353)

from proposition 20. Then the mapping cone Chevalley-Eilenberg algebra

CE(bn−1u(1) →֒ gµ) (354)
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is
∧• (g∗ ⊕ R[n]⊕ R[n+ 1]) (355)

with differential given by

dt|g∗ = dCE(g) (356)

dt|R[n] = −µ+ σ (357)

dt|R[n+1] = 0 . (358)

(As always, σ is the canonical degree shifting isomorphism on generators extended as a derivation.) The
morphism

CE(g) CE(bn−1u(1) →֒ gµ)
f−1

≃
oo (359)

acts as

f−1|g∗ = Id (360)

f−1|R[n] = 0 (361)

f−1|R[n+1] = µ . (362)

To check the condition in equation 349 explicitly in this case, let b ∈ R[n] and write b := t∗b for simplicity
(since t∗ is the identity on R[n]). Then

σb
� dt //

f−1

��

0

f−1

��
µ �dCE(g) // 0

(363)

does commute.

Weak cokernel for the String-like extension in terms of the Weil algebra. We will also need the
analogous discussion not for the Chevalley-Eilenberg algebras, but for the corresponding Weil algebras. To
that end consider now the sequence

W(bn−1u(1)) W(gµ)
t∗oooo W(g)? _u∗

oo . (364)

This is handled most conveniently by inserting the isomorphism

W(gµ) ≃ CE(csP (g)) (365)

from proposition 21 as well as the identitfcation

W(g) = CE(inn(g)) (366)

such that we get

CE(inn(bn−1u(1))) CE(csP (g))
t∗oooo CE(inn(g))? _u∗

oo . (367)

Then we find that the mapping cone algebra CE(bn−1u(1) →֒ csP (g)) is

∧• (g∗ ⊕ g∗[1]⊕ (R[n]⊕ R[n+ 1])⊕ (R[n+ 1]⊕ R[n+ 2])) . (368)

Write b and c for the canonical basis elements of R[n]⊕ R[n+ 1], then the differential is characterized by
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dt|g∗⊕g∗ = dW(g) (369)

dt : b 7→ c− cs + σb (370)

dt : c 7→ P + σc (371)

dt : σb 7→ −σc (372)

dt : σc 7→ 0 . (373)

Notice above the relative sign between σb and σc. This implies that the canonical injection

CE(bn−1u(1) →֒ csP (g)) W(bnu(1))
ioo (374)

also carries a sign: if we denote the degree n+ 1 and n+ 2 generators of W(bnu(1)) by h and dh, then

i : h 7→ σb (375)

i : dh 7→ −σc . (376)

This sign has no profound structural role, but we need to carefully keep track of it, for instance in order for
our examples in 8.3.1 to come out right. The morphism

CE(bn−1u(1) →֒ csP (g)) W(g)
f−1

≃
oo (377)

acts as

f−1|g∗⊕g∗[1] = Id (378)

f−1 : σb 7→ cs (379)

f−1 : σc 7→ −P . (380)

Again, notice the signs, as they follow from the general prescription in proposition 40. We again check
explicitly equation (349):

σb
� dt //

_

f−1

��

−σc
_

f−1

��
cs � dW(g) // P

. (381)

8.2 Lifts of g-descent objects through String-like extensions

We need the above general theory for the special case where we have the mapping cone CE(bn−1u(1) →֒ gµ)
as the weak kernel of the left morphism in a String-like extension

CE(bn−1u(1)) CE(gµ)oooo CE(g)? _oo (382)

coming from an (n+ 1) cocycle µ on an ordinary Lie algebra g. In this case CE(bn−1u(1) →֒ gµ) looks like

CE(bn−1u(1) →֒ gµ) = (∧•(g∗ ⊕ R[n]⊕ R[n+ 1]), dt) . (383)

By chasing this through the above definitions, we find

Proposition 41 The morphism

f−1 : CE(bn−1u(1) →֒ gµ)→ CE(g) (384)
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acts as the identity on g∗

f−1|g∗ = Id , (385)

vanishes on R[n]
f−1|R[n] : b 7→ 0, (386)

and satisfies
f−1|R[n+1] : σt∗b 7→ µ . (387)

Therefore we find the (n+ 1)-cocycle

Ω•
vert(Y ) CE(bnu(1))

Âvertoo (388)

obstructing the lift of a g-cocycle

Ω•
vert(Y ) CE(g)

Avertoo , (389)

according to 2.3 given by

CE(bn−1u(1) →֒ gµ)

ssffffffffffffffffffffffffff

f−1
nnnn

wwnnn
nn

CE(bnu(1))? _
joo

Âvert

jjjjjjjjjjjjjjjjjj

uujjjjjjjjjjjjjjjjjjCE(bn−1u(1)) CE(gµ)
i∗oooo

""

CE(g)? _oo

Avert
{{

{

}}{{
{

Ω•
vert(Y )

, (390)

to be the (n+ 1)-form
µ(Avert) ∈ Ωn+1

vert (Y ) . (391)

Proposition 42 Let Avert ∈ Ω1
vert(Y, g) be the cocycle of a G-bundle P → X for g semisimple and let

µ = 〈·, [·, ·]〉 be the canonical 3-cocycle. Then gµ is the standard String Lie 3-algebra and the obstruction to
lifting P to a String 2-bundle, i.e. lifitng to a gµ-cocycle, is the Chern-Simons 3-bundle with cocycle given
by the vertical 3-form

〈Avert ∧ [Avert ∧Avert]〉 ∈ Ω3
vert(Y ) . (392)

In the following we will express these obstruction in a more familiar way in terms of their characteristic
classes. In order to do that, we first need to generalize the discussion to differential g-cocycle. But that is
now straightforward.

8.2.1 Examples

The continuation of the discussion of 6.3.1 to coset spaces gives a classical illustration of the lifting construc-
tion considered here.

Cohomology of coset spaces. The above relation between the cohomology of groups and that of their
Chevalley-Eilenberg qDGCAs generalizes to coset spaces. This also illustrates the constructions which are
discussed later in 8. Consider the case of an ordinary extension of (compact connected) Lie groups:

1→ H → G→ G/H → 1 (393)
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or even the same sequence in which G/H is only a homogeneous space and not itself a group. For a closed
connected subgroup t : H →֒ G, there is the induced map Bt : BH → BG and a commutative diagram

W(g)
dt∗ // W(h)

∧•PG
dt∗ //?�

OO

∧•PH
?�

OO
. (394)

By analyzing the fibration sequence

G/H → EG/H ≃ BH → BG, (395)

Halperin and Thomas [42] show there is a morphism

∧• (PG ⊕QH)→ Ω•(G/K) (396)

inducing an isomorphism in cohomology. It is not hard to see that their morphism factors through

∧• (g∗ ⊕ h∗[1]). (397)

In general, the homogeneous space G/H itself is not a group, but in case of an extension H → G→ K, we
also have BK and the sequences K → BH → BG and BH → BG → BK. Up to homotopy equivalence,
the fiber of the bundle BH → BG is K and that of BG→ BK is BH. In particular, consider an extension
of g by a String-like Lie ∞-algebra

CE(bn−1u(1)) CE(gµ)
ioooo CE(g)? _oo . (398)

Regard g now as the quotient gµ/b
n−1u(1) and recognize that corresponding to BH we have bnu(1). Thus

we have a quasi-isomorphism
CE(bn−1u(1) →֒ gµ) ≃ CE(g) (399)

and hence a morphism
CE(bnu(1))→ CE(g). (400)

Given a g-bundle cocycle

CE(g)

Avertyyttttttttt

Ω•
vert(Y )

(401)

and given an extension of g by a String-like Lie ∞-algebra

CE(bn−1u(1)) CE(gµ)
ioooo CE(g)? _oo (402)

we ask if it is possible to lift the cocycle through this extension, i.e. to find a dotted arrow in

CE(bn−1u(1)) CE(gµ)oooo

""

CE(g)? _oo

Avert}}{{
{{

{{
{{

Ω•
vert(Y )

. (403)

In general this is not possible. Indeed, consider the map A′
vert given by CE(bnu(1))→ CE(g) composed with

Avert. The nontriviality of the bnu(1)-cocycle A′
vert is the obstruction to constructing the desired lift.
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8.3 Lifts of g-connections through String-like extensions

In order to find the obstructing characteristic classes, we would like to extend the above lift 403 of g-descent
objects to a lift of g-connection descent objects extending them, according to 7.2. Hence we would like first
to extend Avert to (A,FA)

CE(bn−1u(1)) oo
OO

CE(gµ) ooOO
CE(g)

OO

Ω•
vert(Y )

yy
Averttttt

tttt

OO

W(bn−1u(1)) oo
OO

W(gµ) ooOO
W(g)

OO

Ω•(Y )
yy

(A,FA)
tttt

tttt

OO

inv(bn−1u(1)) oo inv(gµ) oo inv(g)

Ω•(X)
yy

{Ki}tttt

tttt

(404)

and then lift the resulting g-connection descent object (A,FA) to a gµ-connection object (Â, F
Â
)

CE(bn−1u(1)) oo
OO

CE(gµ) ooOO
CE(g)

OO

Ω•
vert(Y )

yy
Averttttt

tttt

OO

%%
ÂvertK

K

K
K

W(bn−1u(1)) oo
OO

W(gµ) ooOO
W(g)

OO

Ω•(Y )
yy

(A,FA)
tttt

tttt

OO

%%
(Âvert,FÂvert

)K
K

K
K

inv(bn−1u(1)) oo inv(gµ) oo inv(g)

Ω•(X)
yy

{Ki}tttt

tttt

%%
{K̂i}K

K

K
K

. (405)

The situation is essentially an obstruction problem as before, only that instead of single morphisms, we are
now lifting an entire sequence of morphisms. As before, we measure the obstruction to the existence of the
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lift by precomposing everything with the a map from a weak cokernel:

CE(bnu(1))
OO

CE(bn−1u(1)→ gµ)
vv

lllllllllllll

OO

CE(bn−1u(1)) oo
OO

CE(gµ) ooOO
rr

i
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

CE(g)
OO

ww
≃nnnnnn

nnnnn

W(bnu(1))
OO

Ω•
vert(Y )

zz

tttttttttt%%

K
K

K
K

K

OO
W(bn−1u(1)→ gµ)

vv

lllllllllllll

OO

W(bn−1u(1)) oo
OO

W(gµ) ooOO
W(g)

ww
≃nnnnnn

nnnnn

OO
inv(bnu(1))

Ω•(Y )
zz

(A,FA)
tttt

tttt

%%
(Â,FÂ)K

K

K
K

OO
inv(bn−1u(1)→ gµ)

vv

lllllllllllll

inv(bnU(1)) oo inv(gµ) oo inv(g)
ww

≃nnnnnn

nnnnn

Ω•(X)
yy

{Ki}tttt

tttt

%%

K
K

K
K

K

The result is a bnu(1)-connection object. We will call (the class of) this the generalized Chern-Simons
(n+ 1)-bundle obstructing the lift.

In order to construct the lift it is convenient, for similar reasons as in the proof of proposition 23, to work
with CE(csP (g)) instead of the isomorphic W(gµ), using the isomorphism from proposition 21. Furthermore,
using the identity

W(g) = CE(inn(g)) (406)

mentioned in 6.1, we can hence consider instead of

W(bn−1) W(gµ)oooo W(g)? _oo (407)

the sequence

CE(inn(bn−1)) CE(csP (g))oooo CE(inn(g))? _oo . (408)

Fortunately, this still satisfies the assumptions of proposition 38. So in complete analogy, we find the
extension of proposition 41 from g-bundle cocyces to differential g-cocycles:

Proposition 43 The morphism

f−1 : CE(inn(bn−1u(1)) →֒ CE(csP (g))→ CE(inn(g)) (409)

constructed as in proposition 41 acts as the identity on g∗ ⊕ g∗[1]

f−1|g∗⊕g∗[1] = Id (410)

and satisfies
f−1|R[n+2] : c 7→ P . (411)
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CE(bnu(1))
OO

CS(A)vert

qq

CE(bn−1u(1)→ gµ)
vv

lllllllllllll

OO

CE(bn−1u(1)) oo
OO

CE(gµ) ooOO
rr

i
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

CE(g)
OO

ww
≃nnnnnn

nnnnn

W(bnu(1))
OO

(CS(A),P (FA))

qq

Ω•
vert(Y )

zz

tttttttttt%%

K
K

K
K

K

OO
W(bn−1u(1)→ gµ)

vv

lllllllllllll

OO

W(bn−1u(1)) oo
OO

W(gµ) ooOO
W(g)

ww
≃nnnnnn

nnnnn

OO
inv(bnu(1))

{P (FA)}

qq

Ω•(Y )
zz

(A,FA)
tttt

tttt

%%
(Â,FÂ)K

K

K
K

OO
inv(bn−1u(1)→ gµ)

vv

lllllllllllll

inv(bnU(1)) oo inv(gµ) oo inv(g)
ww

≃nnnnnn

nnnnn

Ω•(X)
yy

{Ki}tttt

tttt

%%

K
K

K
K

K

Figure 12: The generalized Chern-Simons bnu(1)-bundle that obstructs the lift of a given g-bundle
to a gµ-bundle, or rather the descent object representing it.

This means that, as an extension of proposition 42, we find the differential bnu(1) (n+ 1)-cocycle

Ω•(Y ) W(bnu(1))
Âoo (412)

obstructing the lift of a differential g-cocycle

Ω•(Y ) W(g)
(A,FA)oo , (413)

according to the above discussion

CE(inn(bn−1u(1)) →֒ inn(gµ))

ssfffffffffffffffffffffffffff

f−1llll
ll

uulllllll

W(bnu(1))? _
joo

(Â,FÂ)
iiiiiiiiiiiiiiiiiiii

ttiiiiiiiiiiiiiiiiiiiiiiW(bn−1u(1)) W(gµ)
i∗oooo

  

W(g)? _oo

(A,FA)
��
�

�����

Ω•(Y )

, (414)

to be the connection (n+ 1)-form
Â = CS(A) ∈ Ωn+1(Y ) (415)
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with the corresponding curvature (n+ 2)-form

F
Â

= P (FA) ∈ Ωn+2(Y ) . (416)

Then we finally find, in particular,

Proposition 44 For µ a cocycle on the ordinary Lie algebra g in transgression with the invariant polynomial
P , the obstruciton to lifting a g-bundle cocycle through the String-like extension determined by µ is the
characteristic class given by P .

Remark. Notice that, so far, all our statements about characteristic classes are in deRham cohomology.
Possibly our construction actually obtains for integral cohomology classes, but if so, we have not extracted
that yet. A more detailed consideration of this will be the subject of [77].

8.3.1 Examples

Chern-Simons 3-bundles obstructing lifts of G-bundles to String(G)-bundles. Consider, on a base
space X for some semisimple Lie group G, with Lie algebra g a principal G-bundle π : P → X . Identify our
surjective submersion with the total space of this bundle

Y := P . (417)

Let P be equipped with a connection, (P,∇), realized in terms of an Ehresmann connection 1-form

A ∈ Ω1(Y, g) (418)

with curvature
FA ∈ Ω2(Y, g) (419)

i.e. a dg-algebra morphism

Ω•(Y ) W(g)
(A,FA)oo (420)

satisfying the two Ehresmann conditions. By the discussion in 7.2.1 this yields a g-connection descent object
(Y, (A,FA)) in our sense.

We would like to compute the obstruction to lifting this G-bundle to a String 2-bundle, i.e. to lift the
g-connection descent object to a gµ-connection descent object, for

0→ bu(1)→ gµ → g→ 0 (421)

the ordinary String extension from definition 24. By the above discussion in 8.3, the obstruction is the (class
of the) b2u(1)-connection descent object (Y, (H(3), G(4))) whose connection and curvature are given by the
composite

W(b2u(1))

(H(3),G(4))

pp

(W(bu(1))→ CE(csP (g)))
uu

kkkkkkkkkkkkkk

W(g)
vv

≃lllllll

llllll

Ω•(Y )
{{
(A,FA)
vvv

vvv

, (422)
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where, as discussed above, we are making use of the isomorphism W(gµ) ≃ CE(csP (g)) from proposition 21.
The crucial aspect of this composite is the isomorphism

W(g) (W(bu(1))→ CEP (g))
f−1

≃
oo (423)

from proposition 40. This is where the obstruction data is picked up. The important formula governing
this is equation 346, which describes how the shifted elements coming from W(bu(1)) in the mapping cone
(W(bu(1))→ CEP (g)) are mapped to W(g).

Recall that W(b2u(1)) = F(R[3]) is generated from elements (h, dh) of degree 3 and 4, respectively, that
W(bu(1)) = F(R[2]) is generated from elements (c, dc) of degree 2 and 3, respectively, and that CE(csP (g))
is generated from g∗ ⊕ g∗[1] together with elements b and c of degree 2 and 3, respectively, with

dCE(csP (g))b = c− cs (424)

and
dCE(csP (g))c = P , (425)

where cs ∈ ∧3(g∗⊕g∗[1]) is the transgression element interpolating between the cocycle µ = 〈·, [·, ·]〉 ∈ ∧3(g∗)
and the invariant polynomial P = 〈·, ·〉 ∈ ∧2(g∗[1]). Hence the map f−1 acts as

f−1 : σb 7→ −(dCE(csP (g))b)|∧•(g∗⊕g∗[1]) = +cs (426)

and
f−1 : σc 7→ −(dCE(csP (g))c)|∧•(g∗⊕g∗[1]) = −P . (427)

Therefore the above composite (H(3), G(4)) maps the generators (h, dh) of W(b2u(1)) as

hB

(H(3),G(4))

pp

σb

uu

,
llllllllllllllll

cs uu

≃kkkkkkkkk

+
kkkkk

CSP (FA)
zz
(A,FA)
uuu

5
uuuu

(428)

and
dhC

(H(3),G(4))

pp

-σc
uu

,
lllllllllllllll

P
uu

≃lllllllll

,
llllll

P (FA)
||
(A,FA)
yyy

9
yyyy

. (429)

Notice the signs here, as discussed around equation 374. We then have that the connection 3-form of the
Chern-Simons 3-bundle given by our obstructing b2u(1)-connection descent object is the Chern-Simons form

H(3) = −CS(A,FA) = −〈A ∧ dA〉 −
1

3
〈A ∧ [A ∧A]〉 ∈ Ω3(Y ) (430)
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of the original Ehresmann connection 1-form A, and its 4-form curvature is therefore the corresponding
4-form

G(4) = −P (FA) = 〈FA ∧ FA〉 ∈ Ω4(Y ) . (431)

This descends down to X , where it constitutes the characteristic form which classifies the obstruction.
Indeed, noticing that inv(b2u(1)) = ∧•(R[4]), we see that (this works the same for all line n-bundles, i.e., for
all bn−1u(1)-connection descent objects) the characteristic forms of the obstructing Chern-Simons 3-bundle

inv(b2u(1))

{G(4)}

pp

inv(bu(1)→ gµ)
vv

nnnnnnnnnnnn

inv(g)
ww

≃ppppp

ppppp

Ω•(X)
zz

{Ki}uuu

uuu

(432)

consist only and precisely of this curvature 4-form: the second Chern-form of the original G-bundle P .

9 L∞-algebra parallel transport

One of the main points about a connection is that it allows to do parallel transport. Connections on ordinary
bundles give rise to a notion of parallel transport along curves, known as holonomy if these curves are closed.

Higher connections on n-bundles should yield a way to obtain a notion of parallel transport over n-
dimensional spaces. In physics, this assignment plays the role of the gauge coupling term in the non-kinetic
part of the action functional: the action functional of the charged particle is essentially its parallel transport
with respect to an ordinary (1-)connection, while the action functional of the string contains the parallel
transport of a 2-connection (the Kalb-Ramond field). Similarly the action functional of the membrane
contains the parallel transport of a 3-connection (the supergravity “C-field”).

There should therefore be a way to assign to any one of our g-connection descent objects for g any Lie
n-algebra

• a prescription for parallel transport over n-dimensional spaces;

• a configuration space for the n-particle coupled to that transport;

• a way to transgress the transport to an action functional on that configuration space;

• a way to obtain the corresponding quantum theory.

Each point separately deserves a separate discussion, but in the remainder we shall quickly give an
impression for how each of these points is addressed in our context.

9.1 L∞-parallel transport

In this section we indicate briefly how our notion of g-connections give rise to a notion of parallel transport
over n-dimensional spaces. The abelian case (meaning here that g is an L∞ algebra such that CE(g) has
trivial differential) is comparatively easy to discuss. It is in fact the only case considered in most of the
literature. Nonabelian parallel n-transport in the integrated picture for n up to 2 is discussed in [9, 68, 69, 70].
There is a close relation between all differential concepts we develop here and the corresponding integrated
concepts, but here we will not attempt to give a comprehensive discussion of the translation.
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Given an (n − 1)-brane (“n-particle”) whose n-dimensional worldvolume is modeled on the smooth pa-
rameter space Σ (for instance Σ = T 2 for the closed string) and which propagates on a target space X in
that its configurations are given by maps

φ : Σ→ X (433)

hence by dg-algebra morphisms

Ω•(Σ) Ω•(X)
φ∗

oo (434)

we can couple it to a g-descent connection object (Y, (A,FA)) over X pulled back to Σ if Y is such that for
every map

φ : Σ→ X (435)

the pulled back surjective submersion has a global section

φ∗Y

π

��
Σ

Id //

φ̂
=={{{{{{{{
Σ

. (436)

Definition 40 (parallel transport) Given a g-descent object (Y, (A,FA)) on a target space X and a pa-
rameter space Σ such that for all maps φ : Σ → X the pullback φ∗Y has a global section, we obtain a
map

tra(A) : HomDGCA(Ω•(X),Ω•(Σ))→ HomDGCA(W(g),Ω•(Σ)) (437)

by precomposition with

Ω•(Y ) W(g)
(A,FA)oo . (438)

This is essentially the parallel transport of the g-connection object (Y, (A,FA)). A full discussion is beyond
the scope of this article, but for the special case that our L∞-algebra is (n−1)-fold shifted u(1), g = bn−1u(1),
the elements in

Homdgca(W(g),Ω•(Σ)) = Ω•(Σ, bn−1u(1)) ≃ Ωn(Σ) (439)

are in bijection with n-forms on Σ. Therefore they can be integrated over Σ. Then the functional
∫

Σ

traA : Homdgca(Ω
•(Y ),Ω•(Σ))→ R (440)

is the full parallel transport of A.

Proposition 45 The map tra(A) is indeed well defined, in that it depends at most on the homotopy class of

the choice of global section φ̂ of φ.

Proof. Let φ̂1 and φ̂2 be two global sections of φ∗Y . Let φ̂ : Σ × I → φ∗Y be a homotopy between them,
i.e. such that φ̂|0 = φ̂1 and φ̂|1 = φ̂2. Then the difference in the parallel transport using φ̂1 and φ̂2 is the
integral of the pullback of the curvature form of the g-descent object over Σ× I. But that vanishes, due to
the commutativity of

Ω•(φ∗Y )

φ̂∗
��

��
��

�

����
��

��
�

W(g)
(A,FA)oo

Ω•(Σ× I) Ω•(Σ)? _oo
?�

OO

φ∗

oo inv(bn−1u(1)) = bnu(1)

0

ii

?�

OO

Koo

(441)

83



The composite of the morphisms on the top boundary of this diagram send the single degree (n+1)-generator
of inv(bn−1u(1)) = CE(bnu(1)) to the curvature form of the g-connection descent object pulled back to Σ.
It is equal to the composite of the horizontal morphisms along the bottom boundary by the definition of
g-descent objects. These vanish, as there is no nontrivial (n+ 1)-form on the n-dimensional Σ. �

9.1.1 Examples.

Chern-Simons and higher Chern-Simons action functionals

Proposition 46 For G simply connected, the parallel transport coming from the Chern-Simons 3-bundle
discussed in 8.3.1 for g = Lie(G) reproduces the familiar Chern-Simons action functional [31]

∫

Σ

(

〈A ∧ dA〉+
1

3
〈A ∧ [A ∧A]〉

)

(442)

over 3-dimensional Σ.

Proof. Recall from 8.3.1 that we can build the connection descent object for the Chern-Simons connection
on the surjective submersion Y coming from the total space P of the underlying G-bundle P → X . Then
φ∗Y = φ∗P is simply the pullback of that G-bundle to Σ. For G simply connected, BG is 3-connected and
hence any G-bundle on Σ is trivializable. Therefore the required lift φ̂ exists and we can construct the above
diagram. By equation 430 one sees that the integral which gives the parallel transport is indeed precisely
the Chern-Simons action functional. �

Higher Chern-Simons n-bundles, coming from obstructions to fivebrane lifts or still higher lifts, similarly
induce higher dimensional generalizations of the Chern-Simons action functional.

BF-theoretic functionals From proposition 19 it follows that we can similarly obtain the action func-
tional of BF theory, discussed in 6.6, as the parallel transport of the 4-connection descent object which arises

as the obstruction to lifting a 2-connection descent object for a strict Lie 2-algebra (h
t
→ g) through the

string-like extension

b2u(1)→ (h
t
→ g)d

CE(h
t
→g)

µ → (h
t
→ g) (443)

for µ the 3-cocycle on µ which transgresses to the invariant polynomial P on g which appears in the BF-action
functional.

9.2 Transgression of L∞-transport

An important operation on parallel transport is its transgression to mapping spaces. This is familiar from
simple examples, where for instance n-forms on some space transgress to (n− 1)-forms on the corresponding
loop space. We should think of the n-form here as a bn−1u(1)-connection which transgresses to an bn−2u(1)
connection on loop space.

This modification of the structure L∞-algebra under transgression is crucial. In [69] it is shown that for
parallel transport n-functors (n = 2 there), the operation of transgression is a very natural one, corresponding
to acting on the transport functor with an inner hom operation. As shown there, this operation automatically
induces the familiar pull-back followed by a fiber integration on the corresponding differential form data,
and also automatically takes care of the modification of the structure Lie n-group.

The analogous construction in the differential world of L∞ algebras we state now, without here going
into details about its close relation to [69].
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Definition 41 (transgression of g-connections) For any g-connection descent object

F CE(g)
Avertoo

P

i∗

OOOO

W (g)

OOOO

(A,FA)oo

Pbasic

?�

π∗

OO

inv(g)
?�

OO

{Ki}
oo

(444)

and any smooth space par, we can form the image of the above diagram under the functor

maps(−,Ω•(par)) : DGCAs→ DGCAs (445)

from definition 4 to obtain the generalized g-connection descent object (according to definition 36)

maps(F,Ω•(par) maps(CE(g),Ω•(par)
tgpar(Avert)oo

maps(P,Ω•(par)

tgpari
∗

OOOO

maps(W (g),Ω•(par)

OOOO

tgpar(A,FA)
oo

maps(Pbasic,Ω
•(par)

?�

tgpar(π
∗)

OO

maps(inv(g),Ω•(par)
?�

OO

tgpar({Ki})oo

. (446)

This new maps(CE(g),Ω•(par))-connection descent object we call the transgression of the original one to
par.

The operation of transgression is closely related to that of integration.

9.2.1 Examples

Transgression of bn−1u(1)-connections. Let g be an L∞-algebra of the form shifted u(1), g = bn−1u(1).
By proposition 17 the Weil algebra W(bn−1u(1)) is the free DGCA on a single degree n-generator b with
differential c := db. Recall from 6.5.1 that a DGCA morphism W(bn−1u(1)) → Ω•(Y ) is just an n-form on
Y . For every point y ∈ par and for every multivector v ∈ ∧nTypar we get a 0-form on the smooth space

maps(W(bn−1u(1)),Ω•(par)) (447)

of all n-forms on par, which we denote

A(v) ∈ Ω(maps(W(bn−1u(1)),Ω•(par))) . (448)
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This is the 0-form on this space of maps obtained from the element b ∈ W(bn−1u(1)) and the current δy
(the ordinary delta-distribution on 0-forms) according to proposition 1. Its value on any any n-form ω is the
value of that form evaluated on v.

Since this, and its generalizations which we discuss in 9.3.1, is crucial for making contact with standard
constructions in physics, it may be worthwhile to repeat that statement more explicitly in terms of compo-
nents: Assume that par = R

k and for any point y let v be the unit in ∧T nR
n ≃ R. Then A(v) is the 0-form

on the space of forms which sends any form ω = ωµ1µ2...µn
dxµ1 ∧ · · · ∧ dxµn to its component

A(v) : ω 7→ ω(y)12,···n . (449)

This implies that when a bn−1u(1)-connection is transgressed to the space of maps from an n-dimensional
parameter space par, it becomes a map that pulls back functions on the space of n-forms on par to the space
of functions on maps from parameter space into target space. But such pullbacks correspond to functions
(0-forms) on the space of maps par→ tar with values in the space of n-forms on tra.

9.3 Configuration spaces of L∞-transport

With the notion of g-connections and their parallel transport and transgression in hand, we can say what it
means to couple an n-particle/(n − 1)-brane to a g-connection.

Definition 42 (the charged n-particle/(n− 1)-brane) We say a charged n-particle/(n − 1)-brane is a
tuple (par, (A,FA)) consisting of

• parameter space par: a smooth space

• a background field (A,FA): a g-connection descent object involving

– target space tar: the smooth space that the g-connection (A,FA) lives over;

– space of phases phas: the smooth space such that Ω•(phas) ≃ CE(g)

From such a tuple we form

• configuration space conf = homS∞(par, tar);

• the action functional exp(S) := tgpar: the transgression of the background field to configuration
space.

The configuration space thus defined automatically comes equipped with a notion of vertical derivations as
described in 5.3.

maps(F,Ω•(par)) maps(F,Ω•(par))

[d,ρ′]

ii

0

uu

maps(P,Ω•(par))

OOOO

maps(P,Ω•(par))

OOOO

[d,ρ]

ii

0

uu

ρ′

��

ρ

��

. (450)

These form

• the gauge symmetries ggauge: an L∞-algebra.

These act on the horizontal elements of configuration space, which form
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• the anti-fields and anti-ghosts

in the language of BRST-BV-quantization [74].
We will not go into further details of this here, except for spelling out, as the archetypical example, some

details of the computation of the configuration space of ordinary gauge theory.

9.3.1 Examples

Configuration space of ordinary gauge theory. We compute here the the configuration space of ordi-
nary gauge theory on a manifold par with respect to an ordinary Lie algebra g. A configuration of such a the-
ory is a g-valued differential form on par, hence, according to 6.5, an element in HomDGCAs(W(g),Ω•(par)).
So we are interested in understanding the smooth space

maps(W(g),Ω•(par)) =: Ω•(par, g) (451)

according to definition 4, and the differential graded-commutative algebra

maps(W(g),Ω•(par)) =: Ω•(Ω•(par, g)) (452)

of differential forms on it.
To make contact with the physics literature, we describe everything in components. So let par = R

n and
let {xµ} be the canonical set of coordinate functions on par. Choose a basis {ta} of g and let {ta} be the
corresponding dual basis of g∗. Denote by

δyι ∂
∂xµ

(453)

the delta-current on Ω•(par), according to definition 5, which sends a 1-form ω to

ωµ(y) := ω(
∂

∂xµ
)(y) . (454)

Summary of the structure of forms on configuration space of ordinary gauge theory. Recall
that the Weil algebra W(g) is generated from the {ta} in degree 1 and the σta in degree 2, with the differential
defined by

dta = −
1

2
Cabct

b ∧ tc + σta (455)

d(σta) = −Cabct
b ∧ (σtc) . (456)

We will find that maps(W(g),Ω•(par)) does look pretty much entirely like this, only that all generators
are now forms on par. See table 6.

fields
{
Aaµ(y), (FA)µν(y) ∈ Ω0(Ω(par, g)) | y ∈ par, µ, ν ∈ {1, · · · , dim(par), a ∈ {1, . . . ,dim(g)}}

}

ghosts
{
ca(y) ∈ Ω1(Ω(par, g)) | y ∈ par, a ∈ {1, . . . ,dim(g)}}

}

antifields
{

ι(δAa
µ(y)) ∈ Hom(Ω1(Ω(par, g)),R) | y ∈ par, µ ∈ {1, · · · , dim(par), a ∈ {1, . . . ,dim(g)}}

}

anti-ghosts
{
ι(βa(y)) ∈ Hom(Ω2(Ω(par, g)),R) | y ∈ par, dim(par), a ∈ {1, . . . ,dim(g)}}

}

Table 6: The BRST-BV field content of gauge theory obtained from our almost internal hom of dg-
algebras, definition 4. The dgc-algebra maps(W(g),Ω•(par)) is the algebra of differential forms on a smooth
space of maps from par to the smooth space underlying W(g). In the above table β is a certain 2-form that
one finds in this algebra of forms on the space of g-valued forms.
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Remark. Before looking at the details of the computation, recall from from 5.1 that an n-form ω in
maps(W(g),Ω•(par)) is an assignment

U

φ

��

HomDGCAs(W(g),Ω•(par× U))
ωU // Ω•(U)

V HomDGCAs(W(g),Ω•(par× V ))
ωV //

φ∗

OO

Ω•(V )

φ∗

OO
(457)

of forms on U to g-valued forms on par× U for all plot domains U (subsets of R ∪ R
2 ∪ · · · for us), natural

in U . We concentrate on those n-forms ω which arise in the way of proposition 1.

0-Forms. The 0-forms on the space of g-value forms are constructed as in proposition 1 from an element
ta ∈ g∗ and a current δyι ∂

∂xµ
using

taδyι ∂
∂xµ

(458)

and from an element σta ∈ g∗[1] and a current

δyι ∂
∂xµ

ι ∂
∂xν

. (459)

This way we obtain the families of functions (0-forms) on the space of g-valued forms:

Aaµ(y) : (Ω•(par× U)←W(g) : A) 7→ (u 7→ ι ∂
∂xµ

A(ta)(y, u)) (460)

and
F aµν(y) : (Ω•(par× U)←W(g) : FA) 7→ (u 7→ ι ∂

∂xµ
ι ∂

∂xν
FA(σta)(y, u)) (461)

which pick out the corresponding components of the g-valued 1-form and of its curvature 2-form, respectively.
These are the fields of ordinary gauge theory.

1-Forms. A 1-form on the space of g-valued forms is obtained from either starting with a degree 1
element and contracting with a degree 0 delta-current

taδy (462)

or starting with a degree 2 element and contracting with a degree 1 delta current:

(σta)δy
∂

∂xµ
. (463)

To get started, consider first the case where U = I is the interval. Then a DGCA morphism

(A,FA) : W(g)→ Ω•(par)⊗ Ω•(I) (464)

can be split into its components proportional to dt ∈ Ω•(I) and those not containing dt. We can hence write
the general g-valued 1-form on par× I as

(A,FA) : ta 7→ Aa(y, t) + ga(y, t) ∧ dt (465)

and the corresponding curvature 2-form as

(A,FA) : σta 7→ (dpar + dt)(A
a(y, t)+ ga(y, t)∧ dt)+

1

2
Cabc(A

a(y, t)+ ga(y, t)∧ dt)∧ (Ab(y, t)+ gb(y, t)∧ dt)
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= F aA(y, t) + (∂tA
a(y, t) + dparg

a(y, t) + [g,A]a) ∧ dt . (466)

By contracting this again with the current δy
∂
∂xµ we obtain the 1-forms

t 7→ ga(y, t)dt (467)

and
t 7→ (∂tA

a
µ(y, t) + ∂µg

a(y, t) + [g,Aµ]
a)dt (468)

on the interval. We will identify the first one with the component of the 1-forms on the space of g-valued
forms on par called the ghosts and the second one with the 1-forms which are killed by the objects called
the anti-fields.

To see more of this structure, consider now U = I2, the unit square. Then a DGCA morphism

(A,FA) : W(g)→ Ω•(par)⊗ Ω•(I2) (469)

can be split into its components proportional to dt1, dt2 ∈ Ω•(I2). We hence can write the general g-valued
1-form on Y × I as

(A,FA) : ta 7→ Aa(y, t) + gai (y, t) ∧ dt
i , (470)

and the corresponding curvature 2-form as

(A,FA) : σta 7→ (dY + dI2)(A
a(y, t) + gai (y, t) ∧ dt

i)

+
1

2
Cabc(A

a(y, t) + gai (y, t) ∧ dt
i) ∧ (Ab(y, t) + gbi (y, t) ∧ dt

i)

= F aA(y, t) + (∂tiA
a(y, t) + dY g

a
i (y, t) + [gi, A]a) ∧ dti

+ (∂ig
a
j + [gi, gj ]

a)dti ∧ dtj . (471)

By contracting this again with the current δy
∂
∂xµ we obtain the 1-forms

t 7→ gai (y, t)dt
i (472)

and
t 7→ (∂tA

a
µ(y, t) + ∂µg

a
i (y, t) + [gi, Aµ]

a)dti (473)

on the unit square. These are again the local values of our

ca(y) ∈ Ω1(Ω•(par, g)) (474)

and
δAaµ(Y ) ∈ Ω1(Ω•(par, g)) . (475)

The second 1-form vanishes in directions in which the variation of the g-valued 1-form A is a pure gauge
transformation induced by the function ga which is measured by the first 1-form. Notice that it is the sum
of the exterior derivative of the 0-form Aaµ(y) with another term.

δAaµ(y) = d(Aaµ(y)) + δgA
a
µ(y) . (476)

The first term on the right measures the change of the connection, the second subtracts the contribution to
this change due to gauge transformations. So the 1-form δAaµ(y) on the space of g-valued forms vanishes
along all directions along which the form A is modfied purely by a gauge transformation. The δAaµ(y) are
the 1-forms the pairings dual to which will be the antifields.
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2-Forms. We have already seen the 2-form appear on the standard square. We call this 2-form

βa ∈ Ω2(Ω•(par, g)) , (477)

corresponding on the unit square to the assignment

βa : (Ω•(par× I2)←W(g) : A) 7→ (∂ig
a
j + [gi, gj ]

a)dti ∧ dtj . (478)

There is also a 2-form coming from (σta)δy. Then one immediately sees that our forms on the space of
g-valued forms satisfy the relations

dca(y) = −
1

2
Cabcc

b(y) ∧ cc(y) + βa(y) (479)

dβa(y) = −Cabcc
b(y) ∧ βc(y) . (480)

The 2-form β on the space of g-valued forms is what is being contracted by the horizontal pairings called
the antighosts. We see, in total, that Ω•(Ω•(par, g)) is the Weil algebra of a DGCA, which is obtained from
the above formulas by setting β = 0 and δA = 0. This DGCA is the algebra of the gauge groupoid, that
where the only morphisms present are gauge transformations.

The computation we have just performed are over U = I2. However, it should be clear how this extends
to the general case.

Chern-Simons theory. One can distinguish two ways to set up Chern-Simons theory. In one approach
one regards principal G-bundles on abstract 3-manifolds, in the other approach one fixes a given principal
G-bundle P → X on some base space X , and pulls it back to 3-manifolds equipped with a map into X .
Physically, the former case is thought of as Chern-Simons theory proper, while the latter case arises as the
gauge coupling part of the membrane propagating on X . One tends to want to regard the first case as a
special case of the second, obtained by letting X = BG be the classifying space for G-bundles and P the
universal G-bundle on that.

In our context this is realized by proposition 34, which gives the canonical Chern-Simons 3-bundle on
BG in terms of a b2u(1)-connection descent object on W(g). Picking some 3-dimensional parameter space
manifold par, we can transgress this b2u(1)-connection to the configuration space maps(W(g),Ω•(par)),
which we learned is the configuration space of ordinary gauge theory.

CE(g) CE(bn−1u(1))
µoo

W(g)

i∗

OOOO

W (bn−1u(1))

OOOO

(cs,P )oo

inv(g)
?�

OO

inv(bnu(1))
?�

OO

P
oo

7→

maps(CE(g),Ω•(par) maps(CE(bn−1u(1)),Ω•(par))
tgparµoo

maps(W(g),Ω•(par))

i∗

OOOO

maps(W (bn−1u(1)),Ω•(par))

OOOO

tgpar(cs,P )
oo

maps(inv(g),Ω•(par))
?�

OO

maps(CE(bn−1u(1)),Ω•(par))
?�

OO

tgparPoo

.

Proposition 46 says that the transgressed connection is the Chern-Simons action functional.
Further details of this should be discussed elsewhere.
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Transgression of p-brane structures to loop space It is well known that obstructions to String
structures on a space X – for us: Chern-Simons 3-bundles as in 8 – can be conceived

• either in terms of a 3-bundle on X classified by a four class on X obstructing the lift of a 1-bundle on
X to a 2-bundle;

• or in terms of a 2-bundle on LX classified by a 3-class on LX obstructing the lift of a 1-bundle on LX
to another 1-bundle, principal for a Kac-Moody central extension of the loop group.

In the second case, one is dealing with the transgression of the first case to loop space.
The relation between the two points of views is carefully described in [56]. Essentially, the result is that

rationally both obstructions are equivalent.

Remark. Unfortunately, there is no universal agreement on the convention of the direction of the operation
called transgression. Both possible conventions are used in the iterature relevant for our purpose here. For
instance [18] say transgression for what [2] calls the inverse of transgression (which, in turn, should be called
suspension).

We will demonstrate in the context of L∞-algebra connections how Lie algebra (n+ 1)-cocycles related
to p-brane structures on X transgress to loop Lie algebra n-cocycles on loop space. One can understand this
also as an alternative proof of the strictification theorem of the String Lie 2-algebra (proposition 25), but
this will not be further discussed here.

So let g be an ordinary Lie algebra, µ an (n+1)-cocycle on it in transgression with an invariant polynomial
P , where the transgression is mediated by the transgression element cs as described in 6.3.

According to proposition 34 the corresponding universal obstruction structure is the bnu(1)-connection

CE(g) CE(bnu(1))
µoo

W(g)

OOOO

W(bnu(1))
(cs,P )oo

OOOO

inv(g)
� ?

OO

inv(bnu(1)) = CE(bn+1u(1))
{P}oo

� ?

OO (481)

to be thought of as the universal higher Chern-Simons (n + 1)-bundle with connection on the classifying
space of the simply connected Lie group integrating g.

We transgress this to loops by applying the functor maps(−,Ω•(S1)) from definition 4 to it, which can
be thought of as computing for all DGC algebras the DGC algebra of differential forms on the space of maps
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from the circle into the space that the original DGCA was the algebra of differential forms of:

maps(CE(g),Ω•(S1)) maps(CE(bnu(1)),Ω•(S1))
tgS1µoo

maps(W(g),Ω•(S1))

OOOO

maps(W(bnu(1)),Ω•(S1))
tgS1(cs,P )oo

OOOO

maps(inv(g),Ω•(S1))
� ?

OO

maps(CE(bn+1u(1)),Ω•(S1))
{tgS1P}

oo
� ?

OO . (482)

We want to think of the result as a bn−1u(1)-bundle. This we can achieve by pulling back along the inclusion

CE(bn−1u(1)) →֒ maps(CE(bnu(1)),Ω•(S1)) (483)

which comes from the integration current
∫

S1 on Ω•(S1) according to proposition 1.
(This restriction to the integration current can be understood from looking at the basic forms of the loop

bundle descent object, which induces integration without integration essentially in the sense of [51]. But this
we shall not further go into here.)

We now show that the transgressed cocycles tgS1µ are the familiar cocycles on loop algebras, as appearing
for instance in Lemma 1 of [2]. For simplicity of exposition, we shall consider explicitly just the case where
µ = 〈·, [·, ·]〉 is the canonical 3-cocycle on a Lie algebra with bilinear invariant form 〈·, ·〉.

Proposition 47 The transgressed cocycle in this case is the 2-cocycle of the Kac-Moody central extension
of the loop Lie algebra Ωg

tgS1µ : (f, g) 7→

∫

S1

〈f(σ), g′(σ)〉dσ + (a coboundary) (484)

for all f, g ∈ Ωg .

Proof. We compute maps(CE(g),Ω•(S1)) as before from proposition 1 along the same lines as in the above
examples: for {ta} a basis of g and U any test domain, a DGCA homomorphism

φ : CE(g)→ Ω•(S1)⊗ Ω•(U) (485)

sends

ta
� φ //

_

dCE(g)

��

ca +Aaθ
_

dS1+dU

��

− 1
2C

a
bct

b ∧ tc
� φ // θ∧( ∂

∂σ
ca)+dUc

a+dUA
a∧θ

=− 1
2C

a
bccb∧cc−Ca

bccb∧Ab∧θ

. (486)

Here θ ∈ Ω1(S1) is the canonical 1-form on S1 and ∂
∂σ

the canonical vector field; moreover ca ∈ Ω0(S1) ⊗
Ω1(U) and Aaθ ∈ Ω1(S1)⊗ Ω0(U).
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By contracting with δ-currents on S1 we get 1-forms ca(σ), ∂
∂σ
ca(σ) and 0-forms Aa(σ) for all σ ∈ S1 on

maps(CE(g),Ω•(S1)) satisfying

dmaps(··· )c
a(σ) +

1

2
Cabcc

b(σ) ∧ cc(σ) = 0 (487)

and

dmaps(··· )A
a(σ) − CabcA

b(σ) ∧ cc(σ) =
∂

∂σ
ca(σ) . (488)

Notice the last term appearing here, which is the crucial one responsible for the appearance of derivatives
in the loop cocycles, as we will see now.

So Aa(σ) (a “field”) is the function on (necessarily flat) g-valued 1-forms on S1 which sends each such
1-form for its ta-component along θ at σ, while ca(σ) (a “ghost”) is the 1-form which sends each tangent
vector field to the space of flat g-valued forms to the gauge transformation in ta direction which it induces
on the given 1-form at σ ∈ S1.

Notice that the transgression of our 3-cocycle

µ = µabct
a ∧ tb ∧ tc = Cabct

a ∧ tb ∧ tc ∈ H3(CE(g)) (489)

is

tgS1µ =

∫

S1

CabcA
a(σ)cb(σ) ∧ cc(σ) dσ ∈ Ω2(Ω1

flat(S
1, g) . (490)

We can rewrite this using the identity

dmaps(··· )

(∫

S1

PabA
a(σ)cb(σ)dσ

)

=

∫

S1

Pab (∂σc
a(σ)) ∧ cb(σ) +

1

2

∫

S1

CabcA
a(σ)cb(σ) ∧ cc(σ) , (491)

which follows from 487 and 488, as

tgS1µ =

∫

S1

Pab (∂σc
a(σ)) ∧ cb(σ) + dmaps(··· )(· · · ) . (492)

Then notice that

• equation 487 is the Chevalley-Eilenberg algebra of the loop algebra Ωg;

• the term
∫

S1 Pab(∂σc
a(σ)) ∧ cb(σ) is the familiar 2-cocycle on the loop algebra obtained from trans-

gression of the 3-cocycle µ = µabct
a ∧ tb ∧ tc = Cabct

a ∧ tb ∧ tc .

�

A Appendix: Explicit formulas for 2-morphisms of L∞-algebras

To the best of our knowledge, the only place in the literature where 2-morphisms between 1-morphisms of
L∞-algebras have been spelled out in detail is [5], which gives a definition of 2-morphisms for Lie 2-algebras,
i.e. for L∞-algebras concentrated in the lowest two degrees. Our definition 17 provides an algorithm
for computing 2-morphisms between morphisms of arbitrary (finite dimensional) L∞-algebras. We had
already demonstrated in 6.2 one application of that algorithm, showing explicitly how it allows to compute
transgression elements (Chern-Simons forms).

For completeness, we demonstrate that the formulas given in [5] for the special case of Lie 2-algebras
also follow as a special case from our general definition 17. This is of relevance to our discussion of the
String Lie 2-algebra, since the equivalence of its strict version with its weak skeletal version, mentioned in
our proposition 25, has been established in [7] using these very formulas. First we quickly recall the relevant

93



definitions from [5, 7]: A “2-term” L∞-algebra is an L∞-algebra concentrated in the lowest two degrees. A
morphism

ϕ : g→ h (493)

of 2-term L∞-algebras g and h is a pair of maps

φ0 : g1 → h1 (494)

φ1 : g2 → h2 (495)

together with a skew-symmetric map
φ2 : g1 ⊗ g1 → h2 (496)

satisfying
φ0(d(h)) = d(φ1(h)) (497)

as well as

d(φ2(x, y)) = φ0(l2(x, y)) − l2(φ0(x), φ0(y)) (498)

φ2(x, dh) = φ1(l2(x, h)) − l2(φ0(x), φ1(h)) (499)

and finally

l3(φ0(x), φ0(y), φ0(z))− φ1(l3(x, y, z)) = φ2(x, l2(y, z)) + φ2(y, l2(z, x)) + φ2(z, l2(x, y)) +

l2(φ0(x), φ2(y, z)) + l2(φ0(y), φ2(z, x)) + l2(φ0(z), φ2(x, y)) .

for all x, y, z ∈ g1 and h ∈ g2. This follows directly from the requirement that morphisms of L∞-algebras be
homomorphisms of the corresponding codifferential coalgebras, according to definition 13. The not quite so
obvious aspect are the analogous formulas for 2-morphisms:

Definition 43 (Baez-Crans) A 2-morphism

g

φ

��

ψ

BB h
τ

��

(500)

of 1-morphisms of 2-term L∞-algebras is a linear map

τ : g1 → h2 (501)

such that
ψ0 − φ0 = tW ◦ τ (502)

ψ1 − φ1 = τ ◦ tv (503)

and
φ2(x, y)− ψ2(x, y) = l2(φ0(x), τ(y)) + l2(τ(x), ψ0(y))− τ(l2(x, y)) (504)

Notice that [d, τ ] := dh ◦ τ + τ ◦ dg and that it restricts to dh ◦ τ on g1 and to τ ◦ dg on g2.

Proposition 48 For finite dimensional L∞-algebras, definition 43 is equivalent to the restriction of our
definition 17 to 2-term L∞-algebras.

94



Proof. Let g = g1 ⊕ g2 and h = h1 ⊕ h2 be any two 2-term L∞-algebras. Then take

ψ, φ : g→ h (505)

to be any two L∞ morphisms with

CE(g) CE(h)
ψ∗,φ∗

oo (506)

the corresponding DGCA morphisms. We would like to describe the collection of all 2-morphisms

CE(g) CE(h)

φ∗

}}

ψ∗

aa
τ

��

(507)

according to definition 17. We do this in terms of a basis. With {ta} a basis for h1 and {bi} a basis for h2,
and accordingly {t′a} and {b′i} a basis of g1 and g2, respectively, this comes from a map

τ∗ : h∗1 ⊕ h∗2 ⊕ h∗1[1]⊕ h∗2[1]→ ∧•g∗ (508)

of degree -1 which acts on these basis elements as

τ∗ : bi 7→ τ iat
′a (509)

and
τ∗ : aa 7→ 0 (510)

for some coefficients {τ ia}. Now the crucial requirement 149 of definition 17 is that 148 vanishes when
restricted

CE(h)
φ∗

��
CE(g) W(h)

ccccHHHHHHHHH

{{{{vv
vv

vv
vv

v
h∗[1]? _oo

CE(h)ψ∗

WW

x� xxxxxxxxxxxx

xxxxxxxxxxxx

(511)

to generators in the shifted copy of the Weil algebra. This implies the following. For τ∗ to vanish on all σta

we find that its value on dW(h)t
a = − 1

2C
a
bct

a ∧ tb − taib
i + σta is fixed to be

τ∗ : dW(g)t
a 7→ −taiτ

i
bt

′b (512)

and on dW(h)b
i = −αiajt

a ∧ bj + ci to be

τ∗(dbi) = τ∗(−αiajt
a ∧ bj) . (513)

The last expression needs to be carefully evaluated using formula 145. Doing so we get

[d, τ∗] : ta 7→ −taiτ
i
bt

′b (514)

and

[d, τ∗] : bi 7→ −
1

2
τ iaC

′a
bct

′bt′c − τ iat
′a
jb

′j + αiaj
1

2
(φ+ ψ)abτ

j
ct

′bt′c . (515)
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Then the expression
φ∗ − ψ∗ = [d, τ∗] (516)

is equivalent to the following ones

(ψab − φ
a
b)t

′b = taiτ
i
bt

′b (517)

(ψij − φ
i
j)b

′j = τ iat
′a
jb

′j (518)

1

2
(φiab − ψ

i
ab)t

′at′b = −
1

2
τ iaC

′a
bct

′bt′c + αiaj
1

2
(φ + ψ)abτ

j
ct

′bt′c . (519)

The first two equations express the fact that τ is a chain homotopy with respect to t and t′. The last equation
is equivalent to

φ2(x, y)− ψ2(x, y) = −τ([x, y]) + [q(x) +
1

2
t(τ(x)), τ(y)] − [q′(y)−

1

2
t(τ(y)), τ(x)]

= −τ([x, y]) + [q(x), τ(y)] + [τ(x), q′(y)] (520)

This is indeed the Baez-Crans condition on a 2-morphism. �
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sometimes outright invaluable discussion concerning the ideas presented here and plenty of related issues.

We have gratefully received useful comments on earlier versions of this document from Gregory Ginot
and David Roberts. Evan Jenkins and Todd Trimble have provided useful help with references to literature
on smooth function algebras.

While this article was being written, the preprints [76], [54] and [35] (based on [36]) appeared, which are
closely related to our discussion here in that they address the issues of characteristic classes and extensions
of n-bundles in one way or another. We are thankful to Amnon Yekutieli and to Gregory Ginot for pointing
out their work to us and for further discussion.

Finally, we thank Bertfried Fauser and the organizers of the conference “Recent developments in QFT”
in Leipzig.

U. S. thankfully acknowledges financial support from the DAAD German-Croatian bilateral project
“Nonabelian cohomology and applications”.

96



References

[1] M. Alexandrov, M. Kontsevich, A. Schwarz and O. Zaboronsky, The Geometry of the Master Equation
and Topological Quantum Field Theory, [http://arxiv.org/refs/hep-th/0608150]

[2] A. Asada, Characteristic classes of loop group bundles and generalized string classes, Differential
geometry and its applications (Eger, 1989), 33-66, Colloq. Math. Soc. János Bolyai, 56, North-Holland,
Amsterdam, (1992)

[3] P. Aschieri and B. Jurco, Gerbes, M5-brane anomalies and E8 gauge theory J. High Energy Phys.
0410 (2004) 068, [arXiv:hep-th/0409200v1].
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