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FIVEBRANE STRUCTURES

HISHAM SATI, URS SCHREIBER AND JIM STASHEFF

Abstract. We study the cohomological physics of fivebranes in type II and heterotic string theory. We give
an interpretation of the one-loop term in type IIA, which involves the first and second Pontrjagin classes of
spacetime, in terms of obstructions to having bundles with certain structure groups. Using a generalization
of the Green-Schwarz anomaly cancelation in heterotic string theory which demands the target space to have
a String structure, we observe that the “magnetic dual” version of the anomaly cancelation condition can be
read as a higher analog of String structure, which we call Fivebrane structure. This involves lifts of orthogonal
and unitary structures through higher connected covers which are not just 3- but even 7-connected. We
discuss the topological obstructions to the existence of Fivebrane structures. The dual version of the anomaly
cancelation points to a relation of String and Fivebrane structures under electric-magnetic duality.
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1. Introduction

Cohomological physics began with Gauss in 1833, if not sooner (cf. Kirchoff’s laws). The cohomology
referred to in Gauss’ work was that of differential forms, div, grad, curl and especially Stokes Theorem (the
de Rham complex). Gauss explicitly defined the linking number of two circles imbedded in 3-space by an
integral defined in terms of the electromagnetic effect of a current circulating in one of the circles

Although Maxwell’s equations were for a long time expressed only in coordinate dependent form, they
were recast in a particularly attractive way in terms of differential forms on Minkowski space. More subtle
differential geometry and implicitly characteristic classes occurred visibly in Dirac’s magnetic monopole [23],
which lived in a U(1) bundle over R3 − 0. The magnetic charge was given by the first Chern number;
for magnetic charge 1, the monopole lived in the Hopf bundle, introduced that same year 1931 by Hopf
[45], though it seems to have taken some decades for that coincidence to be recognized [42]. Thus were
characteristic classes (and by implication the cohomology of Lie algebras and of Lie groups) introduced into
physics.

In the case of electromagnetic theory, the Lie group was just U(1), but more general Lie groups were
involved in Yang-Mills theory. There was a linguistic barrier between physicists and mathematicians (see
Yang’s reminiscences [76]), which was breached when it was realized that the physicist’s gauge potential and
field strength were, respectively, the mathematicians connection and curvature from differential geometry.

A major development occurred when Dirac’s theory of the electron required – in modern language– lifting
from the special orthogonal group SO(n) to the spinor group Spin(n), which corresponds to “killing” the
first homotopy group π1(SO(n)) of SO(n).
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Figure 1. Homotopy groups of O(n) and its higher connected covers for n > k + 1.

Much later it was found that in string theory a further step is needed, namely lifting the spinor group
to the String group String(n), giving rise to String structures. Such structures interpreted in terms of the
vanishing condition of the worldsheet anomaly of a superstring were first identified by Killingback [49] and
shortly afterwards amplified by Witten [73] in the context of the index theory of Dirac operators on loop
space. A nice review and differential geometric description can be found in [54]. In all these articles, the
String structure is regarded as a lift of an LSpin(n)-bundle over the free loop space LX through the Kac-

Moody central extension L̂Spin(n)-bundle. It was in [66] where it was pointed out that this lift can also
be interpreted as a lift of the original Spin(n)-bundle down on target space X to a principal bundle for the
topological group called String(n). Then it was realized in [?] (see also [43]) that this topological group is in
fact the realization of the nerve of a smooth (as opposed to just topological) albeit categorified group: the
String 2-group. This paves the way for a differential geometric treatment of String structures on the target
space X .

It was known early on that 2-bundles [9, 7] (aka “crossed module bundle gerbes” [47]) with structure
2-group the String 2-group have the same classification as that of the String-bundles considered by Stolz-
Teichner (compare [47] and [?]), and hence, rationally [21], as that of the bundles on loop space originally
considered by Killingback and by Witten. Detailed proofs of this have recently appeared [6] [8]. Note that
the String condition is closely related to the condition on vanishing of the integral seventh Stiefel-Whitney
class, W7 = 0, observed in [22] and studied in connection to generalized cohomology in [50]. In particular,
the string condition implies the vanishing of W7 as W7 = Sq3(1

2p1), where Sq3 is the Steendrod square that
raises the cohomology degree by three.

The word string being well established for maps from 1-dimensional manifolds, higher dimensional analogs
are referred to as branes (originally, membranes). The “surface” formed by an evolving string is called
the worldsheet and, analogously, the higher-dimensional volumes of evolving branes are referred to as the
worldvolumes. The most studied types of branes in string theory are the famous D-branes, which couple to
the Ramond-Ramond (RR) fields. We will not be dealing with D-branes, and hence with RR fields, in this
paper. In addition to D-branes, there are the Neveu-Schwarz (NS) branes that couple to the NSNS fields.
The fundamental string couples to the B-field B2, whose curvature is H3 ( = dB2+ non-exact, locally). The
Hodge dual of H3 in ten dimensions is H7, which can be viewed as the curvature of a degree six ‘potential’ B6,
to which couples an extended object, called the NS 5-brane. Thus, the 5-brane is the magnetic dual to the
string (in the sense familiar in String theory, which mathematicians can find nicely described in [34] in terms
of differential characters, which are just another way of talking about higher line bundles with connections).
It is to be expected that anomaly freedom of the spinors on the fivebrane’s worldvolume require the target
to carry an analog of a spin structure even more strict than a String structure. There is a known formula
for the dual to the Green-Schwarz anomaly. This formula is discussed in section 3. The same formula can
be deduced from anomaly freedom of the worldvolume theory of the super 5-brane [51, 27].

We observe that this known formula can be read as saying that target space X needs to admit a lift of the
structure group of TX from SO(n) through Spin(n), through String(n) and then further to the 7-connected
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cover of SO(n) which we dub Fivebrane(n). We define a Fivebrane structure, which is obtained by killing all
up to and including the seventh homotopy group of the orthogonal group. This is entirely analogous to the
process of killing the third homotopy group in going from the Spin group to the String group. Generally,
one could wonder what the even higher connected covers of SO(n) would correspond to in terms of higher
brane physics. While the notions of higher lifts are of course known in homotopy theory, we here discuss the
topological structure associated with the physics of fivebranes, much the same as in the known String case.

Definition 1. An n-dimensional manifold X has a fivebrane structure if the classifying map X → (BO)(n)
of the tangent bundle TX lifts to BFivebrane := (BO)〈9〉.

BO(n)〈9〉

��
M

f
//

f̂
::

BO(n) .

One point we make is that the fivebrane – as opposed to branes of other dimensions– is distinguished in 10-
dimensional spacetime since it does indeed lead to a structure that naturally generalizes the string structure,
due to the existence of the field H7, the dual field to H3. The importance of H7 will be highlighted in section
3. Notice that the existence of this lift implies lifts through all the lower connected covers, which says that
for X to have a Fivebrane structure it must also have an orientation, a Spin structure and a String structure.

Our aim is to

• understand the topological nature of such fivebrane structures, i.e. identify the relevant bundles
and the corresponding characteristic classes;

• understand their differential geometric nature in terms of characteristic forms of such bundles
(e.g. generalized connections) analogous to what is done for String theory.

This paper will focus more on the first, while a sequel [61] will emphasize the second. We shall show the
following:

Theorem 1. The obstruction to lifting a String structure on X to a Fivebrane structure on X is the fractional
second Pontrjagin class 1

6p2(TX).

This is our Proposition 1.

• Here the fractional coefficient 1/6 is the crucial subtle point. It is explained in 4.4.2.
• Inequivalent Fivebrane structures on X are classified by a quotient of H7(X, Z). This is proposition

3.

But this is not the full story yet. String structures are in general carried not just by a manifold X , but
by a complex vector bundle E → X (e.g. the gauge bundle on the target space of the heterotic string): this
vector bundle has String structure if its second Chern class 1 cancels the fractional first Pontrjagin class of
the Spin bundle X :

E → X has Spin structure ⇐⇒






E is orientable
and
w2(E) = 0

E → X has String structure ⇐⇒






E has Spin structure
and
1
2p1(TX) = ch2(E)

.

If the second Chern character of E vanishes, this reduces to saying that X itself has String structure. (The
fractional first Pontrjagin class is reviewed in section 4.4.1.)

1We review characteristic classes and characters in Appendix A.
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This situation generalizes. A Fivebrane structure should be assigned, more generally, to a vector bundle
E → X . The dual Green-Schwarz mechanism indicates that the condition on E to have a Fivebrane
structure is essentially that the fourth Chern class of E cancels the second Pontrjagin class of X , but there
are corrections by decomposable classes (because ch2 = c2 + decomposable classes):

E → X has Fivebrane structure ⇐⇒






E has String structure
and
1
6p2(TX) = ch4(E) + decomposable classes

.

higher spin-like structure defining condition

Spin structure on manifold X orientation and w2(TX) = 0

Spin structure on gauge bundle E → X orientation and w2(E) = 0

String structure on manifold X Spin structure and 1
2p1(TX) = 0

String structure on gauge bundle E → X Spin structure and 1
2p1(TX) = ch2(E)

Fivebrane structure on manifold X String structure and 1
6p2(TX) = 0

Fivebrane structure on gauge bundle E → X String structure and 1
6p2(TX) = 8ch4(E) + decomposables

Table 1. Higher Spin-like structures on manifolds and on “gauge bundles” over a
manifold X . Here “gauge bundle” technicaly just means: complex vector bundle. The first
four entries are well established; we are concerned here with the last two entries.

We will study fivebrane structures arising from anomaly polynomials in two theories: in type IIA string
theory and in heterotic string theory. In the first, we will have a fivebrane structure for the tangent bundle of
the space itself, since there is no gauge bundle. We address this in full detail. In the second theory, we have,
in addition, a gauge bundle. The corresponding condition will involve both the tangent bundle and this gauge
bundle. We are still able to give a description when the two separate conditions are imposed: that separately
the tangent bundle and the gauge bundle admit a fivebrane structure. In the general case we encounter
a difficulty, namely that the factors – the second Pontrjagin classes– come with different coefficients. We
explain this difficulty and provide (partial) solutions in section 4.6 and towards the end of section 4.7. We
will be concerned in this paper primarily with the cohomological aspects of Fivebrane structures rather than
the more subtle aspects related to K-theory which we hope to address elsewhere.

The presence of the decomposable cohomology classes (products of nontrivial cohomology classes) ap-
pearing on the right can be deduced from the dual Green-Schwarz formula. Notice that a decomposable
characteristic class necessarily suspends to a trivial group cocycle. So despite the appearance of those de-
composable classes, Fivebrane structures are essentially controlled just by the 7th Lie algebra cohomology
of so(n), just as String structures are controlled by the third Lie algebra cohomology (compare [60]). We
shall discuss in [61] that the decomposable characteristic classes in the dual Green-Schwarz formula affect
the differential class (the connection) but not the integral class of the smooth Chern-Simons 7-bundle whose
non-triviality obstructs the existence of Fivebrane structures. The description in terms of anomalies will be
given in section 3.1.

The notion of and notation for connected covers is explained towards the end of section 4.1.

Outlook: differential geometric interpretation. Just as String 2-bundles with connection provide a
differential geometric realization of String structure, the higher analog of a Spin bundle with connection,
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there are analogous higher bundles with connection giving a differential geometric realization of Fivebrane
structures. Following the counting pattern these deserve to be called Fivebrane-6-bundles or Fivebrane-5-
gerbes with connection, but the reader might want to think of them just as a nonabelian version of differential
cocycles with top degree curvature form a 7-form. As will be described in [61], these nonabelian differential
cocycles can be obtained from integrating the L∞-algebra connections of [60]. There the Lie 2-algebra
string(n) (an L∞-algebra concentrated in the lowest two degrees) governing String bundles with connection
had been accompanied by the Lie 6-algebra fivebrane(n) (concentrated in the lowest six degrees) which plays
the corresponding role for Fivebrane structures.

In the sense of integration of Lie algebras to Lie groups, the string(n) Lie 2-algebra had been integrated in
[43, ?] to the String(n) Lie 2-group, the structure Lie 2-group of String 2-bundles. This integration procedure
can be thought of as follows: for any L∞-algebra g there is a notion of g-valued differential forms [60] and
there is a generalized smooth space, S(CE(g)), which is the classifying space for g-valued forms in that
smooth maps from any other smooth space Y into it are in bijection with g-valued forms on Y :

(1) HomSmoothSpaces(Y, S(CE(g))) ≃ Ω•(Y, g) := HomDGCAs(CE(g), Ω•(Y )) .

The ∞-groups integrating given L∞-algebras g considered in [38, 43] are obtained essentially by forming the
∞-path groupoid in the sense of Kan complexes of this classifying space, which is nothing but the singular
simplicial complex of S(CE(g)). This corresponds to a “maximally weakened” integration. Alternatively, one
can form the strict globular (instead of simplicial) n-path groupoid Πn (whose n-morphisms are homotopy
classes of n-paths and whose (k < n)-morphisms are thin homotopy classes of k-paths) which yields the
“maximally strictified” n-group integrating the given Lie n-algebra. This way one obtains a strict version of
the String Lie 2-group

(2) BString(n) := Π2 (S(CE(string(n))))

and the strict version of the Fivebrane Lie 6-group

(3) BFivebrane(n) := Π6(S(CE(fivebrane(n)))) .

Here on the left the notation BG indicates a (strict) n-groupoid with a single object corresponding to the
(strict) n-group G. The notation is such that taking geometric realization of nerves | · | to produce topological
spaces we have

(4) |BG| = B|G| ,

where on the right |G| is a topological group and B|G| its classifying space [8]. The strict realizations of
the String and Fivebrane Lie n-groups allow us to employ Ross Street’s general theory of descent [69] to
formulate String 2- and Fivebrane 6-bundles with connection in terms of nonabelian differential cocycles
[62].

2. The context

Before getting to our main discussion, we first indicate the general context in which these questions
arise. The word string being well established for maps from 1-dimensional manifolds, higher dimensional
analogs are referred to as branes (originally, membranes). The “surface” formed by an evolving string is
called the worldsheet and, analogously, the higher-dimensional volumes of evolving branes are referred to as
the worldvolumes. We have an “n-particle”, otherwise known as an (n − 1)-brane, whose worldvolume is
an n-dimensional manifold Σ, or rather the image of that n-dimensional manifold under a sufficiently well
behaved map

(5) φ : Σ → X

into a target space (usually to be thought of as physical spacetime) X . On that spacetime, we have a
(generalized, higher) bundle (thought of as an n-bundle or (n − 1)-gerbe) with (generalized) connection.
Henceforth, we will drop the ‘generalized’ and the n unless crucial. Thinking of an ordinary bundle with
connection should be sufficient. This bundle with connection encodes the data specifying the “background
field” to which that (n− 1)-brane “couples”. Just as with ordinary connections, connections on an n-bundle
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can be expressed either in terms of local (p ≤ n)-forms on the base manifold or in terms of global (p ≤ n)-
forms on the total space [60]. The local representatives of these forms are often referred to as a “background
field”, though technically speaking the background field is that differential form datum together with the
descent/gluing data that makes it a differential cocycle. In particular, we have the 3-form curvature H3 of
the Kalb-Ramond field in string theory, which is, in this sense, the curvature of a “background field”, the
“B-field”, of a string theory. Likewise, we have the 7-form H7 which is the curvature of a background field
for the fivebrane.

2.1. Σ-models. We are concerned with the mathematical structure which is supposed to model the physics
of charged n-particles, usually known as charged (n− 1)-branes or as quantum field theories of Σ-model type.
Such a Σ-model is specified by choosing

• a “space” X , called the target space;
• a “space” (or class of such) Σ, called the parameter space or called the worldvolume;
• the mapping space Maps(Σ, X) called the space of fields or the configuration space or sometimes the

moduli space (the latter is usually a quotient);
• on the target space a differential n-cocycle ∇, i.e. a higher generalization of a fiber bundle with

connection, called the background field ;
• a prescription for how to interpret the push-forward of the the pullback ev∗∇ along the projection

pr1 onto Σ in the correspondence diagram

(6)

Σ × Maps(Σ, X)
pr1

xxqqqqqqqqqqqq
ev

&&NNNNNNNNNNN

Σ X

called the path integral or the quantization of the Σ-model.

When the parameter space Σ is n-dimensional, one thinks of this data as encoding the physics of n-fold
higher analogs of particles, “n-particles”, that propagate on X . The field configuration (5) is thought of as
the trajectory of such an n-particle in X .

fundamental
object

dimension of
worldvolume Σ

background
field

curvature/
field strength

n-particle n n-bundle (n + 1)-form

(n − 1)-brane n (n − 1)-gerbe (n + 1)-form

Table 2. The two schools of counting higher dimensional structures. Here n = dim(Σ)
is in N = {1, 2, · · · }. The n = 1 case: A particle is a 0-dimensional spatial object moving
in time, so that the ‘worldvolume’ Σ is (0 + 1)-dimensional and hence 1-dimensional in our
terminology. The corresponding background field is encoded in a 1-bundle or 0-gerbe with
curvature 2-form. The generalization to strings (n = 2) and higher extended objects, i.e.
the n-particles, works analogously. One can also include the case n = 0 corresponding to
“instantons”, although the corresponding geometric description will be different.

One says that the n-particle couples to the background field ∇ or that it is charged under the background
field. The terminology is entirely motivated from the familiar case of ordinary electromagnetically charged
1−particles: the electromagnetic background field ∇ which they couple to is modeled by a vector bundle
(a line bundle in this case) with connection. For n = 2 one speaks of “strings”. String theory strictly is
the study of those n = 2 Σ-models with a special restriction for what the “path integral” is allowed to be.
Technically, string theory is required to encode a 2-dimensional superconformal field theory of central charge
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15. This condition, however, is of no real relevance for our discussion here, which pertains to all Σ-models
which generalize the “spinning 1- particle”.

Some of the most interesting ideas concerning such Σ-models have originally been thought by Dan Freed:
The interpretation of background fields and of charges as differential cocycles is nicely described and worked
out in [34, 46], where the mathematically inclined reader can find rigorous interpretations, in terms of differ-
ential cohomology, of the abelian kinds of “background fields” and related “anomalies” in string theory with
which we are concerned here, which include the Chern-Simons 3- and 7-bundles with connection obstructing
the String(n) and Fivebrane(n) lifts, but not these lifts themselves. (For those, one would need nonabelian
differential cohomology [61]).

Integration as pushforward. The interpretation of quantization and of the path integral as an operation
on higher categorical structures has first been explored in [32, 33]. Integration as a push-forward operation
plays a promint role in recent developments by Stolz and Teichner and by Hopkins et al. Let us take for
instance the simple toy example case where the background field ∇ is a vector bundle (without connection)
and where Σ is a point, i.e. n = 0. In this case pr1 is the map from pt × Maps(pt, X) = X to the point.
Integration over the fiber in this case is just integration over X itself, and the ordinary push-forward gives
the space of sections of the original vector bundle, as the point is varied over X . That reproduces indeed the
desired “quantization over the point” and can, following [32, 33], be regarded as the codimension 1 part of the
full path integral for n = 1. Stolz and Teichner describe a variation of this which involves push-forward of K-
theory classes to the point, which then classifies connected components of all (supersymmetric) 1-dimensional
Σ-models. This shows that, while a fully satisfactory mathematical interpretation of the quantization of
Σ-models is to date still an open question, a coherent picture, revolving around the correspondence (6),
is beginning to emerge. The “higher spin-like structures” on target space X discussed here are believed
to ensure the existence of the quantization step in the case that the Σ-model generalizes that describing
spinning 1-particles.

The sigma model for the string (i.e. Σ = string worldsheet) has been studied extensively in the literature
and provides a consistent model both at the classical and the quantum levels. Due to string/fivebrane
duality in ten dimensions [70] [15] [30] [31], one expects that there should be a formulation of string theory
via fivebrane sigma models (i.e. Σ = fivebrane worldvolume). While this is expected, we point out that
such a program has not been fully completed. However, there are works that point in that direction [27]. At
the least for the gravitational parts– i.e. without the gauge bundle– for the fivebrane, there are models in
which the anomalies from the worldvolume theory match the expression of the polynomials in the Pontrjagin
classes [27] [51]. That is enough for our purposes since our main focus is the cohomological structure resulting
from lifts of the tangent bundle of spacetime and, after all, it is not our aim to write down a full quantum
fivebrane sigma model action. The paper [51] also highlights some of the difficulties encountered, but also
gives partial resolutions.

The reader not further concerned with string theoretic reasoning might proceed to section 4.

2.2. Background fields. Independently of how the “background field” ∇ is modeled, it should locally be
encoded by differential form data. See table 3

All the relevant background fields that have been considered are locally controlled by some L∞-algebra
g, and the local differential form data can always be considered as encoding differential forms A ∈ Ω•(Y, g)
with values in the Lie algebra g [60]. In the case of abelian differential cocycles, these L∞-algebras are all of
the form bn−1u(1): the higher dimensional versions of u(1).

2.3. Charges. Just as an ordinary 1-bundle may be trivialized by a non-trivial section, which one may
think of as a “twisted 0-bundle”, higher n-bundles may be trivialized by “higher sections” which are called
“twisted (n−1)-bundles”. One says the twisted (n−1)-bundle is “twisted by” the corresponding n-bundle. A
beautiful description of this situation for abelian n-bundles with connection in terms of differential characters
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n-particle background field global model
local differential

form data

(1−)particle electromagnetic field
line bundle with connection/
Cheeger-Simons differential 2-character/
Deligne 2-cocycle

connection 1-form:
A ∈ Ω1(Y )
curvature 2-form:
F2 := dA ∈ Ω2

closed(Y )

string
(2-particle)
(1-brane)

Kalb-Ramond field

line 2-bundle with connection/
bundle gerbe with connection (“and curving”)/
Cheeger-Simons differential 3-character/
Deligne 3-cocycle

connection 2-form:
B ∈ Ω2(Y )
curvature 3-form:
H3 := dB ∈ Ω3

closed(Y )

membrane
(3-particle)
(2-brane)

supergravity
3-form field

line 3-bundle with connection/
bundle 2-gerbe with connection (“and curving”)/
Cheeger-Simons differential 4-character/
Deligne 4-cocycle

connection 3-form:
C ∈ Ω3(Y )
curvature 4-form:
G4 := dC ∈ Ω4

closed(Y )

Table 3. Simple (abelian) examples for n-particles and the background fields
they couple to. The background fields are often addressed in terms of the symbols used
for their local form data: the Kalb-Ramond field is known as the “B-field” with its “H3

field strength” . Similarly one speaks of the “C3-field” and its field strength “G4”, etc. This
reflects the historical development, where the local differential form data was discovered
first and its global interpretation only much later. (See also the remark on anomalies at the
beginning of section 3).

is given in [34, 46]. Twisted nonabelian 1-bundles have been studied in detail under the term “bundle gerbe
modules” [12]. Twisted non-abelian 2-bundles have first been considered in [5, 47] under the name “twisted
crossed module bundle gerbes”. In terms of the L∞-connections considered in [60] twisted n-bundles with
connections are the connections for L∞-algebras arising as mapping cone L∞-algebras (bn−1u(1) → ĝ).

By comparing the formalism here with the situation of ordinary electromagnetism, one can regard the
twisting n-bundle as encoding the presence of “magnetic charge”. This, too, is nicely explained at the
beginning of [34]. Accordingly, where an untwisted (n − 1)-bundle has a curvature n-form Hn which is
closed, a twisted (n − 1)-bundle has a curvature n-form which is “twisted by” the curvature (n + 1)-form
G(n+1) of the twisting n-bundle

(7) dHn = Gn+1 .

Indeed, for a twisted (n − 1)-bundle the curvature Hn is locally no longer the differential of the connection,
dBn−1 = Hn, but receives a contribution from the connection n-form Bn of the twisting n-bundle

(8) Hn = dBn−1 + Bn .

The archetypical example is that of ordinary magnetic charge: as Maxwell discovered in the 19th century,
in the presence of magnetic charge, which in four dimensions is modelled by a 3-form H3 = ⋆j1, the electric
field strength 2-form F2 is no longer closed

(9) dF2 = H3 .

When Dirac later discovered at the beginning of the 20th century that H3 has to have integral periods
(“quantization of magentic charge”), the first 2-categorical structure in physics had appeared: the magnetic
torsion 2-bundle / bundle-gerbe with deRham class H3. It seems that this was first explicitly realized in
[34].
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The next example of this kind received such a great amount of attention that it came to be known as the
initiation of the “first superstring revolution”: the Green-Schwarz anomaly cancelation mechanism [40]. The
interaction of gauge theory with type I supergravity theory leads to the (low energy limit of the) heterotic
theory which has a rich mathematical structure. The Chapline-Manton coupling [18] amounts essentially
to equating the curvature H3 of the B-field in type I with the Chern-Simons 3-form of the connection on
the gauge bundle. More precisely, in terms of the the virtual difference of two Chern-Simons 3-bundles
(Chern-Simons 2-gerbes), locally, one has

(10) dH3 = dCS(ω) − dCS(A)

for ω and A the local connection 1-forms of a Spin and complex vector bundle, respectively and CS(−)
denoting the corresponding Chern-Simons 3-forms. Thus this leads to nontrivial and rich structures both
physically and mathematically. See for instance [34] [11] and [20] for geometric treatments.

As nicely explained by [34], in the “higher gauge theory” given by the effective supergravity target space
theory of the heterotic string, the supergravity C-field with curvature 4-form 2 G4 had to be “trivialized” by
the Kalb-Ramond field with curvature 3-form H3, or conversely the Kalb-Ramond field had to be “twisted”
by the supergravity curvature 4-form dH3 = G4 Moreover, G4 has to be the curvature of the virtual difference
implicit in (10). The Green-Schwarz anomaly cancelation condition can hence be read, equivalently, as saying
that

• the supergravity C-field trivializes over the 10-dimensional target of the heterotic string;
• G4 is the magnetic 5-brane charge which the electric heterotic string couples to;
• the Kalb-Ramond field is twisted by the supergravity C-field.

This anomaly cancelation has an interesting description in terms of a string structure [49] [21]. This can
also be interpreted as a spin structure on the (free) loop space of the ten-dimensional spacetime [73] [64]
[66]. This free loop space can be viewed as the configuration space of the string. From a topological point
of view, the string structure is equivalent to lifting the structure group of the tangent bundle of spacetime
from Spin(10) to its three-connected cover String(10), obtained by killing the first three homotopy groups.
The latter is infinite-dimensional but can be captured by some finite-dimensional constructions [66] [?].

There is no particular reason to prefer “electric charge” over “magnetic charge”: in the presence of a
Riemannian structure, the Hodge star dual of an “electric” field strength Hn+1 may be interpreted as a
field strength itself, in which case it is called the “magnetic field strength” Hd−n−1 := ⋆Hn+1. Just as the
original field strength Hn coupled to an “electric” n-particle, the dual field strength couples to a “magnetic”
(d−n− 2)-particle. Such electric-magnetic duality is at the heart of what is known as “S-duality” for super
Yang-Mills theory, which has recently been argued [48] to be the heart of geometric Langlands duality. It is
only for electric 1-particles in d = 4 dimensions that their magnetic dual is again a 1-particle. The magnetic
dual of the 2-particle in 10 dimensions is the 6-particle. In other words: the magnetic dual of the string is
the 5-brane.

Here our starting point is to look at the above situation with the electric string in the presence of
magnetic 5-brane charge in the dual formulation, where the magnetic 5-brane couples to a 6-form field with
field strength H7 in the presence of electric string charge, which is then given by an 8-form I8.

Type I supergravity admits a formulation in terms of the potential B6 corresponding to the field H7, which
is Hodge dual to H3 in ten dimensions [17]. There is also a corresponding anomaly cancelation procedure
for this dual theory which makes use of a degree seven analog of the Chapline-Manton coupling [37] [58].
This process is also mathematically rich and has been treated in [34] from a K-theoretic point of view and,
in fact, in a duality-symmetric fashion, i.e. including both fields on equal footing and at the same time. The

2In all of this paragraph, what we mean by the C-field and its corresponding curvature G4 is their topological part, i.e. the
shift of G4 in the formula [G4]−

1

4
p1 = a ∈ H4(Y 11, Z) [75], and not the fields themselves –the ‘p1 part’ and not the ‘G4 part’

of a.
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electric
field strength
coupled to

fundamental
electric

(n − 1)-brane

magnetic
(d − n − 3)-brane

current

magnetic
field strength
coupled to

fundamental
magnetic

(d − n − 3)-brane

electric
(n − 1)-brane

current

d Fn+1 = jB d ⋆Fn+1 = jE

electric
KR field

coupled to
fundamental

string

magnetic
5-brane
current

magnetic
dual KR field

coupled to
fundamental

5-brane

electric
string
current

d H3 =
1

2
p1(ω) − ch2(A)

︸ ︷︷ ︸
=I4

d H7 = 1
48p2(ω) − ch4(A)
+decomposables︸ ︷︷ ︸

I8

Table 4. The Green-Schwarz formula and its dual version, with its interpretation in terms
of electric strings and their magnetic 5-brane duals. The electric current I4 and the magnetic
current I8 are both fixed such that the anomaly they produce cancels the anomaly from the
fermions in the theory (see section 3.1).

magnetic dual discussion of the Green-Schwarz mechanism [37] [58] leads us to consideration of a twisted
6-bundle with field strength H7 = ⋆H3, which is twisted by a certain 7-bundle whose field strength eight-form
is a sum of two higher characteristic classes plus some mixed terms – see equation (16). This is the formula
which we shall refer to as the dual Green-Schwarz anomaly cancellation condition and take as the starting
point of our discussion.

3. The Dual Green-Schwarz Mechanism and Higher Chern-Simons Forms

Here we recall the string theoretic results which indicate which characteristic classes of a manifold X
have to vanish in order for the manifold to qualify as the target for the propagation of a 5-brane. For the
main mathematical point that we make in section 4, it is sufficient to note here that there is motivation,
from formal high energy physics, for studying the condition (16), below, on characteristic classes of complex
vector bundles over X . The reader not further concerned with string theoretic reasoning might just want to
note this equation and the observations following it and then proceed to section 4.

3.1. Anomaly cancelation in string theory. There are several somewhat different phenomena which
are called anomalies in physics, but they usually all refer to issues of global topological twists. Physicists
are used to develop their concepts in terms of local data and many times implicitly assume that this is
sufficient. Generically, the anomaly in our context refers to an inconsistency in the topological assumptions
taken for the underlying space or for bundles on that space. For instance, if one accepts that spinors are
sections of Spin bundles, then it is obvious that their existence requires the underlying manifold to have a
Spin structure. But one way to discover this from the point of view of physics is, as nicely described in
[74], to start with a naive action functional for a spinning particle and then to discover that it is ill defined
globally unless the target has a Spin structure. Entirely analogous considerations lead to String structures
as the “anomaly cancelation conditions” for superstrings, known as the Green-Schwarz anomaly cancelation
mechanism.
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From the target space perspective, these kinds of anomalies manifest themselves in the fact that the action
functional of the theory, supposed to be a function on configuration space, happens to be, in fact, a section
of a line bundle. There are (at least) two reasons why this may happen:

• the path integral over the fermionic fields is to be interpreted not as a function over the configuration
space of the remaining bosonic fields, but as a section in a Pfaffian line bundle over that space
(reviewed in [35]);

• the standard action functional for higher abelian gauge fields in the presence of electric and magnetic
charges is also in general just a section of a line bundle over configuration space (discussed in [34]).

If the tensor product of these two line bundles, namely of the Pfaffian and Charge line bundles, is a nontrivial
bundle with nontrivial connection then the action is anomalous. The Green-Schwarz anomaly cancelation
mechanism is to introduce electric string and magnetic 5-brane charges in precisely such a way that the line
bundle on configuration space thus introduced cancels the nontriviality of the given Pfaffian line bundle due
to the fermions in the theory.

The complex anomaly line bundle with connec-
tion over the space confbos of bosonic fields is the
tensor product of a Pfaffian line bundle Pfaff from
the fermionic path integral and another line bundle,
Charge, due to the presence of electric and magnetic
charges.

Pfaff ⊗ Charge

��
confbos

The action funcional e−S is supposed to be a com-
plex function on confbos, but is in general, in fact, a
section of the anomaly line bundle.

Pfaff ⊗ Charge

��
confbos

e−S

[[

In order for the starting point of quantization to be
well defined one needs anomaly cancelation: the
anomaly line bundle needs to be trivializable and one
needs a choice of trivialization that identifies it with
the trivial line bundle with trivial connection.

Pfaff ⊗ Charge
≃ // (confbos × C,∇ = 0)

The obstruction to this trivialization is the anom-
aly. The curvature of the connection on Pfaff ⊗
Charge is called the local anomaly, its holonomy
the global anomaly.

local anomaly: curv(Pfaff ⊗ Charge)
global anomaly: Hol(Pfaff ⊗ Charge)

Table 5. Anomalies arising from the fact that the bosonic action functional is, a priori,
not a function on the bosonic configuration space of fields confbos, but a section of a line
bundle over that space.

In the following we describe the anomaly cancelation condition known as the dual Green-Schwarz mech-
anism [37] [58] [34] and related to super 5-branes [51]. It can be obtained from the worldvolume perspective
of the super 5-brane again as a generalization of how the Spin-condition for the target of a spinning particle
is found. Alternatively, it can be found from the condition that the index of the total Dirac operator (on
the fermionic fields called “dilatino”, “gravitino” and “gaugino”) of the effective target space field theory of
the heterotic string vanishes.

In String theory, the need for String structures was originally found in terms of anomaly cancelations,
either from the target space perspective or from the worldsheet perspective: The effective field theory of
the heterotic string on a Spin target space X involves the the (pseudo-)Riemannian metric structure on X
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with Levi-Civita SO(10) connection ω (needed for gravity) and a gauge bundle E → X with connection A.
The spinorial field content of the heterotic background theory consists of sections of three different bundles:
the Spin bundle S associated to the principal Spin bundle over the Spin manifold X , as well as its tensor
products with TX and with the gauge bundle E. Sections of S are states of the the dilatino field, those of
S ⊗TX correspond to the gravitino field, and those of S ⊗E correspond to the the gaugino field. There is a
Dirac operator associated with all three of these fields, denoted D, DTX and DE , respectively. The anomaly
cancellation condition, which ensures that the action functional for these fields is a well defined function on
configuration space, is that a particular linear combination of the indices of these Dirac operators vanishes.

Spin bundle name of field
symbol for

Dirac operator
contribution to anomaly

S dilatino D I1/2(R) := Index(D) = Â

S ⊗ TX gravitino DTX I3/2(R) := Index(DTX) = 1
8L(R) + I1/2(R)

S ⊗ E gaugino DE I1/2(R, F ) := Index(DE) = ch(E) ∧ Â

Table 6. Anomaly contributions from the three different fermionic fields (sections of
spin bundles) of the target space theory. L(R) is the Hirzebruch L-polynomial.

In the notation of table 6, the anomaly cancelation formula involves the degree twelve form part of the
identity [3] [40] [41]

(11) I := I3/2(R) − I1/2(R) + I1/2(F, R) = 0.

Here R and F are the curvature 2-forms of the tangent bundle TX and of the gauge bundle E, respectively.

The second of the three terms in the middle is Index(D) = Â, the index of the uncoupled Dirac operator
given in terms of the A-genus via the index theorem. The first term is Index(DTM ), the index of the Dirac
operator coupled to the tangent vector bundle, i.e. S ⊗ TM . The third term is Index(DE) is the index
of the Dirac operator coupled to the gauge vector bundle, whose curvature is F, i.e. the vector bundle is

Spin(M) ⊗ E. This is equal to ch(E) ∧ Â, by the index theorem.

This fermionic anomaly corresponds to a line bundle with connection on configuration space whose cur-
vature 2-form is the integral of a certain 12-form (see [63] for more detail) over target space X

(12) curv(Pfaff) = −

∫

X

I4 ∧ I8 .

A similar integral encodes the curvature of the anomaly line bundle due to electric string current jE (a
4-form) and magnetic current jB (an 8-form):

(13) curv(Charge) =

∫

X

jE ∧ jB .

Anomaly cancellation demands that we identify I4 (right hand of equation (14) below) and I8 (right hand of
equation (16) below), respectively, as the magnetic currents for the field strengths H3 and H7 that appear
in the direct and the dual Green-Schwarz anomaly cancelation conditions.

3.2. Anomalies in terms of H3 and H7. Here we summarize the two pictures we have emphasized.

The standard Green-Schwarz mechanism via H3. The H-fields appear in two theories of interest to
us: Type II and heterotic theories on ten-dimensional X , respectively. In type II, the expression involves the
Ramond-Ramond (RR) fields. The direct Green-Schwarz formalism [40] on a ten-dimensional manifold X
leads to the appearance of the three-dimensional Chern-Simons term via the Chapline-Manton coupling [18]
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which makes H3 no longer closed. Mathematically, this means we assume in that case that in the heterotic
theory there is the usual H-field, a priori an R-valued differential form – as presented by supergravity –
which gets modified from being closed to

(14)
1

2π
dH3 = ch2(A) −

1

2
p1(ω),

where A is the gauge connection for an E8 × E8 or Spin(32)/Z2 vector bundle E and ω is the metric
connection, so that p1(ω) is the first Pontrjagin form of the tangent bundle TX . Recall [49] that the right
hand side of (14) is the (the image in real cohomology of the) obstruction to having a String structure on
the virtual difference bundle TM −E, and that (14) therefore says that this obstruction class has to vanish.
Note the contrast of (14) in heterotic string theory to the case of type II string theory on X , where dH3 = 0.

The dual Green-Schwarz mechanism via H7. The H-field H3 can be viewed as the dual of a field H7

where. rationally, this is just Hodge duality H7 := ⋆H3 The ‘Bianchi identity’ of H7 depends on the specific
string theory, i.e. heterotic vs. type II, as was the case for H3. The reason we say “rationally” is because
these fields, like other fields in string theory, can give integral and even torsion elements in cohomology
in the quantum theory. In such a case, appropriate notions of Hodge duality will be needed to clarify the
relationship between H3 and H7. We address this in detail in a separate paper.

Let us now also consider type II string theory on X in the absence of any Ramond-Ramond fields. This
theory also has a degree seven dual, H7, of the H-field H3. While H3 in this case is closed, H7 is not.
Instead, from the dimensional reduction from M-theory, H7 satisfies (cf. [29] and [36] [52])

(15) dH7 =
p2(ω) −

(
1
2p1(ω)

)2

48
,

where pi are the Pontrjagin classes of the tangent bundle TX . Observe that this only involves the topology
of spacetime without any gauge bundles.

On the other hand, in the heterotic case, we have a principal bundle with connection, the corresponding
modified Bianchi identity will fail by the Chern characters of E. The expression is (see [34])

(16) dH7 = 2π

(
ch4(A) −

1

48
p1(ω)ch2(A) +

1

64
p1(ω)2 −

1

48
p2(ω)

)
.

Here ω denotes the Levi-Civita connection on the Spin-lift of the tangent bundle, and A is the connection on
the gauge vector bundle E. We interpret this “dual Green-Schwarz mechanism” as saying that H7 trivializes
the obstruction to having a Fivebrane structure on the pair (TX , E)

Observations: It is useful to see how (16) simplifies in various special cases.
1. If we have a String structure on TX − E coming from String structures on both bundles separately, in
that p1(TX) = 0 = ch2(E), then, at the level of cohomology, equation (16) is replaced by

(17)

[
ch4(E) −

1

48
p2(TX)

]
= 0 .

This holds in general when X is 4-connected, in which case the cohomology of X is only in degrees 0, 5 and
10.
2. If in addition to ch2(E) = 0 we require that c2

1 and c2 be equal to zero, then in this case, using

(18) ch4 =
1

24

(
c4
1 − 4c2

1c2 + 4c1c3 + 2c2
2 − 4c4

)
,

we have that ch4(E) = −1
6 c4(E) so that

(19)

[
−

1

6
c4(E) −

1

48
p2(TX)

]
= 0 .
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3. We can write a formula in terms of either the Chern classes or the Pontrjagin classes for both factors in
(19), thus giving specialization of the general formula. For this we can consider the complexification of the
tangent bundle to the ten-dimensional spacetime. We use

(20) pj(TM) = (−1)jc2j(TMC)

to write the differential form representative of (19) as

(21) dH7 =
−2π

6

(
c4(A) +

1

8
c4(ω)

)
,

where now it is understood that c4(ω) is the fourth Chern class of the complexified tangent bundle with
corresponding connection ω, for which, with an abuse of notation, we use the same symbol as for the real
connection.

It will follow from our results in section 4 that fivebrane structures for a pair (TM, E) with connections
(ω, A) require ch4(A) − 1

48p2(ω) to vanish on top of the string structure.

3.3. The Chern-Simons forms. For a principal G-bundle p : P → X , a characteristic class Kj(F ),
expressed as a polynomial in the g-valued curvature F of polynomial degree j, is closed and pulled up to the
total space is exact

(22) Kj(F ) = dQ2j−1(A, F ),

where Q2j−1(A, F ) ∈ g⊗Λ2j−1(M) is a ‘ Chern-Simons form’ for Kj(F ). This applies to the Chern character
as well as the Pontrjagin classes. Thus, we can use this to solve equation (16) on the total space. We denote
a specific choice (e.g. by the specific homotopy in the remark below) as CS7(A, F ). Using the expressions

ch4(F ) = dCS7(A, F )(23)

ch4(R) = dCS7(ω, R),(24)

equation (21) becomes

(25) dH7 = 2π

[
dCS7(A, F ) +

1

8
dCS7(ω, R)

]
.

This means that H7 can be taken to be of the form

(26) H7 = 2π

(
CS7(A, F ) +

1

8
CS7(ω, R)

)
.

We view this setting of H7 equal to the degree seven Chern-Simons forms as the degree seven analog of the
Chapline-Manton coupling.

Remarks. 1. A specific formula for the Chern-Simons form corresponding to the Chern character can be
obtained by using the homotopy formula [19] (or in the physics literature [77] [2])

(27) CS2j−1(A, F ) =
1

(j − 1)!

(
i

2π

)j ∫ 1

0

dt Str(A, F j−1
t ),

where Str is the symmetrized trace and At is a connection that interpolates between connections A0 and A1

(28) At = A0 + t(A1 − A0),

with corresponding curvature

Ft = dAt + A2
t

= tdA + t2A2

= tF + (t2 − t)A2.(29)

For j = 4,

(30) CS7(A, F ) =
1

6(2π)4

∫ 1

0

dt Str
(
A, F 3

t

)
,
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where Ft is the curvature of the connection At = tA that interpolates between the zero connection at t = 0
and the connection A at t = 1. An analogous formula holds for CS7(ω, R).
2. Unlike the Chern character, the Chern-Simons form is not gauge-invariant. Under a transformation
A → Ag = g−1(A + d)g,

(31) CS7(A
g, F g) − CS7(A, F ) = −

3!

7!

(
i

2π

)4

tr
[
(g−1dg)7

]
+ dβ6,

where β6 is a six-form which can be chosen by applying the chosen homotopy operator on the gauge-
transformed Chern-Simons form.
3. Alternatively, we see that (19) is obtained from (16) by setting all decomposable characteristic forms (all
nontrivial wedge products of two characteristic forms) to 0, which is the same as saying that all characteristic
classes suspending to 0 are set to 0. Recall that a characteristic form P (FA) on a G-bundle p : P → X is

said to suspend to the form µ(i∗A) on G
i
→֒ P if there is a form CSP (A, FA) on P such that

(32) dCSP (A, FA) = p∗P (FA)

and

(33) i∗CSP (A, FA) = µ(i∗A) .

Put more simply, recall that a form ω ∈ H∗(X) on the base of a bundle p : E → X is said to suspend to the

form µ on F
i
→֒ E if there is a form ν on E such that dν = p∗ω and i∗ν = µ. A decomposabe characteristic

form P (FA) ∧ P ′(FA) necessarily suspends to a 0-form, since

(34) p∗(P (FA) ∧ P ′(FA)) = dCSP∧P ′(A, FA)) := d (CSP (A, FA) ∧ P ′(FA))

and since

(35) i∗ (CSP (A, FA) ∧ P (FA)) = 0,

because i∗FA = 0, and hence i∗P ′(FA) = 0.

4. Fivebrane Structures

We recall how String structures are lifts of Spin bundles through the 3-connected cover of Spin(n) and how
this lift is obstructed by the fractional first Pontrjagin class called 1

2p1. Then we define Fivebrane structures
as lifts of the resulting String bundles through the 7-connected cover of Spin(n). We demonstrate that this
lift is obstructed by a degree 8 characteristic class of String bundles, which is a fractional second Pontrjagin
class, 1

6p2, of the String bundle.

4.1. The homotopy groups of SO(n). The homotopy groups of the orthogonal group O(n), for n suffi-
ciently large, are

(36) πk (O(n)) =






Z2 for k = 0, 1 mod 8
Z for k = 3, 7 mod 8
0 otherwise

.

See also the first two rows of figure 1. The condition on n is best understood by considering the stable
orthogonal group, also know as the infinite orthogonal group, which is defined as the direct limit of the
sequence of inclusions

(37) O(1) ⊂ O(2) ⊂ · · · ⊂ O =

∞⋃

k=0

O(k).

That the homotopy groups of O(n) stabilize, i.e. that for n > k +1, one has πk(O) = πk(O(n)), follows from
the fact that the inclusion O(n) →֒ O(n + 1) is (n − 1)-connected (see below for notation) as we have the
fiber bundle

(38) O(n) → O(n + 1) → Sn,

i.e. Sn is the homogeneous space O(n + 1)/O(n).
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Below the stable range, i.e. for n ≤ k + 1, the description of the homotopy groups of SO(n) becomes
incomplete because one is essentially looking at the homotopy groups of spheres, which are not completely
known. For example, the homotopy groups of SO(3) are the same as the homotopy groups of the sphere S3

which are known only in specific degrees (but nonetheless in a range sufficient for most practical purposes).
But in the applications of all these considerations to string theory which we have in mind, the base manifold
X from which one wishes to consider homotopy classes of maps into B(SO(n)〈k〉) is (n = 10)-dimensional.
Therefore in this application figure 1 is fully applicable. One obtains a sequence of topological groups from
O(n) by successively passing to its k-connected covers. This process is known as the “killing of homotopy
groups”. See the third row of figure 1.

The description of the unitary group is analogous but much simpler due to the fact that Bott periodicity
in this case has period two instead of period eight. In the stable range, i.e. for i < 2n, the inclusion U(n)
into U(n+1) induces an isomorphism between the homotopy groups πi(U(n)) and πi(U(n+1)). The infinite
unitary group U is defined in an analogous way as the orthogonal group above. The Bott periodicity theorem
implies that the homotopy groups of U are particularly simple: πi(U) is trivial if i is even and isomorphic
to Z if i is odd.

The standard notation for the k-connected cover of a space X for which all the homotopy groups vanish up
to and including πk is X〈k+1〉. Thus the groups U〈2k〉 and O〈2k〉 denote the connected covers of the unitary
and orthogonal group, respectively, having the first potentially nontrivial homotopy group in dimension 2k.
For example, O〈3〉 refers to the orthogonal group having first homotopy group in dimension three, which
means that the first three homotopy groups are killed (starting with π0) and therefore is 2-connected. The
result of killing the first two homotopy groups of O(n) are very familiar: these are the groups SO(n) and
Spin(n), respectively. The group SO(n) is the connected component of the group O(n) and Spin(n) is the
simply-connected cover of SO(n). Less familiar but by now well known is the result of killing the next
nontrivial homotopy group beyond that, π3: this is the String group String(n).

It is noteworthy that O(n), SO(n) and Spin(n) are not just topological groups, but of course carry the
structure of a Lie group. On the other hand, there is no known model for String(n) as a group with a manifold
structure. Notice that since all compact Lie groups G have π3(G) = Z or several copies of Z, String(n) has
no chance of being a compact Lie group. The known models for String(n) are “huge” topological spaces.
Notice however that [?] give a Lie model for String(n) when regarded not as a mere group, but as a Lie
2-group (a 2-group whose space of objects and of morphisms is a Fréchet) manifold.

Caveat: notation for higher connected covers. A comment on the notation used for the connected
covers of the corresponding classifying spaces is in order. In another approach, the connected covers of the
groups are defined not directly but via the corresponding classifying space

(39) G〈n〉 := ΩBG〈n〉,

where Ω denotes the based loop space. However, for our purposes we are also interested in the classifying
space itself. To avoid confusion (hopefully), we will use the notation

(40) B(G〈n〉) = (BG)〈n + 1〉.

Note the shift in n compared to (39). For example, (BO)〈4〉 = B(O〈3〉) refers to the classifying space having
first homotopy group in dimension four, which means that the first four homotopy groups are killed, and
therefore is 3-connected.

4.2. String structures revisited. Recall how the group String(n) can be constructed from Spin(n) via
the sequence

(41) 1 → K(Z, 2) → String(n) → Spin(n) → 1,

where Spin(n) is the simply connected cover of SO(n) and, in fact, the first nonzero homotopy group of the
Lie group Spin(n) is π3 = Z. It follows from the Hurewicz theorem that the first nonzero cohomology group
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occurs at the same degree, i.e. H3(Spin(n), Z) = Z. This singles out the (homotopy class of a) map

(42) f : Spin(n) → K(Z, 3) ≃ BK(Z, 2)

that generates H3(Spin(n), Z) under the identification H3(X, Z) ≃ [X, K(Z, 3)], the set of homotopy classes
of maps X → K(Z, 3). This map classifies a principal K(Z, 2)-bundle over Spin(n)

(43)

String(n) := f∗EK(Z, 2) //

��

EK(Z, 2)

��
Spin(n)

f // K(Z, 3) ≃ BK(Z, 2)

and this bundle is the extension (41). Applying the classifying functor on (41) leads to a weakly exact
(homotopy exact) sequence

(44) K(Z, 3) → BString(n) → BSpin(n).

The corresponding complex analog is

(45) K(Z, 3) → (BU)〈6〉 → BSU

and on into K(Z, 4) obtained by mapping from BSU by the Chern class c2. The structures are summarized
in the following diagram

(46)

(BU)〈6〉 //

��

BString = (BO)〈8〉

��
BSU = (BU)〈4〉 //

��

BSpin = (BO)〈4〉

��

1

2
p1 // K(Z, 4)

BU ////

''PPPPPPPPPPPPP BSO = (BO)〈2〉

��

w2 // K(Z2, 2)

K(Z, 2)

eeeeeeeeeeee
mod2

22eeeeeeeeeeeeeeeeeeee

BO = (BO)〈1〉
w1 // K(Z2, 1).

Remarks. 1. (BU)〈6〉 and (BO)〈8〉 are the homotopy fibers of the respective maps to K(Z, 4).
2. The map from BSU to BSpin is an isomorphism on fourth cohomology H4. This comes from the
isomorphism

(47) Spin(3) ∼= SU(2) ∼= S3.

3. The composite map from BSU to K(Z, 4) in the second row is given by the second Chern class c2.
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4. The composite map from BU to K(Z2, 2) in the third row is given by c1 followed by reduction mod 2.
That is, we have the following commutative diagram

(48) BU
c1 //

��

K(Z, 2)

mod 2

��
BU

w2 // K(Z2, 2).

4.3. Cohomology of the connected covers.

4.3.1. In characteristic 0. In this section we work in characteristic zero and we (briefly) address torsion in
(4.3.2). The definition of String(n) as the extension of Spin(n) in (41) induced by the map (42) allows us to
compute the cohomology of String(n). It is easier to compute first the cohomology of BString(n) from the
homotopy fibration sequence

(49) K(Z, 3) → BString(n) → BSpin(n),

since in characteristic 0 we have (all coefficients are rational)

(50) H∗(K(Z, 3)) ≃ H∗(S3)

and we can apply the long exact Gysin sequence

(51) · · · −→ Hn(E) −→π∗ Hn−k(M) −→e∧ Hn+1(M) −→π
∗

Hn+1(E) −→ · · ·

where e∧ is the wedge product of a differential form with the Euler class e. The result is

(52) H∗(BString) ≃ P [p2, p3, . . . ],

from which it readily follows that H∗(String) is an exterior algebra on generators xi of degree 4i−1 starting
with i = 2.

A very close analog of the above can be carried over starting with BU. The result is

(53) H∗((BU)〈2k〉) ≃ P [ck, ck+1, · · · ] /(ck) = P [ck+1, · · · ] .

Except for the change in indexing, the proof is the same as for BString = BSpin〈4〉.

Remarks. 1. The rational cohomology of (BU)〈k〉 can be calculated in several ways, for example using
the Gysin sequence, as we saw above, or by induction on k using the Leray-Serre spectral sequence. While
the first method is more straightforward, we include the second one in Appendix B because it is likely to be
needed for applications in future work where torsion is important.
2. In the geometric description of K(Z, 2) as PU(H), the projective unitary group on an infinite-dimensional
Hilbert space H, the H-field H3 occurs as the canonical degree three class x1 of PU(H) bundles. In the
operator algebra language this is called the Dixmier-Douady class [24]. From a physical point of view if X
is ten-dimensional, it is natural to ask whether a similar interpretation of the dual field H7 can be given.
From a mathematical point of view, it is natural to ask whether a similar construction to the degree three
case can be carried out with the first non-trivial homotopy group π7 of String.

4.3.2. Over the integers and the integers mod p. 1. The cohomology for all connected covers for the classi-
fying spaces of the orthogonal and the unitary groups are also known. At p = 2 this is a result of Stong [68].
For general p, this is a result of W. Singer [65], in terms of generators and relations, and Giambalvo [39].
2. H∗ ((BU)〈6〉; Z) is calculated as a ring in [4]. It is torsion-free and concentrated in even degrees. From
this the cohomology can be read via

(54) H∗ = hom(H∗((BU)〈6〉; Z),−) ,
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as a map from rings to sets. This is related in an interesting way to the what are known as cubical structures
on the additive group [4].

4.4. Fractional Pontrjagin classes. When our manifold X has extra structure, such that it admits a
lift of the structure group of its tangent bundle to a higher connected cover of O(n), we can refine the
Pontrjagin classes of X to fractional Pontrjagin classes. For X a d-dimensional orientable manifold, its kth
Pontrjagin class pk is taken to be the Pontrjagin class of the tangent bundle TX , regarded as an associated
SO(d)-bundle. So it is given by a map

(55) X
f // BSO(d)

pk // K(Z, 4k) .

4.4.1. Spin structures and the first Pontrjagin class. Saying that a d-dimensional manifold X is spin means

we can lift the classifying map f of its tangent bundle TX to a map f̂ : X → BSpin(d). Since Spin is
2-connected and π3(Spin) = Z, it follows that H4(BSpin, Z) = Z. If we denote the generator of this fourth
cohomology group by ω, the situation looks as follows:

(56)

BSpin(d)

π

��

ω // K(Z, 4)

X
f //

f̂

<<yyyyyyyyyyyyyyyyyy
BSO(d)

p1 // K(Z, 4) .

Since, by assumption, ω is a generator, it must be true that π∗p1 is an integral multiple of ω. One finds that
ω can be chosen so that

(57) π∗p1 = 2ω ,

i.e.

(58)

BSpin(d)

π

��

ω // K(Z, 4)

·2

��
X

f //

f̂

<<yyyyyyyyyyyyyyyyyy
BSO(d)

p1 // K(Z, 4) .

This motivates the notation

(59) ω :=
1

2
p1

for the generator of H4(BSpin, Z). Accordingly, the pullback

(60)
1

2
p1(X) := f̂∗

1

2
p1 : X

f̂ // BSpin
1

2
p1 // K(Z, 4)

is “half the Pontrjagin class” of the spin-manifold X . Notice that for 1
2p1(X) to be zero, the vanishing of

p1(X) is a necessary but not a sufficient condition: 1
2p1(X) might be non-vanishing but 2-torsion.

4.4.2. String structures and the second Pontrjagin class. The same kind of reasoning continues to apply as
we keep killing homotopy groups of O(d). We say that X admits a string structure or that X is string if the
classifying map f for TX lifts to BString(d). Now BString is 7-connected and H8(BString, Z) ≃ Z. Let ν
denote the corresponding generator. The pullback π∗p2 of the second Pontrjagin class has to be an integer
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multiple of this generator. In the next section (see Proposition 1 section 4.5), we will show that the integer
multiple is 6:

(61)

BString(d)

π

��

ν // K(Z, 8)

·6

��
X

f //

f̂

<<xxxxxxxxxxxxxxxxxx
BSO(d)

p2 // K(Z, 8) .

Therefore we should give the generator ν the name p2/6 and define

(62)
1

6
p2(X) := f̂∗

1

6
p2,

the fractional second Pontrjagin class of the String manifold X . Later (see equation (93)) we will make use
of the spin characteristic classes, which better describe spin bundles than do Pontrjagin classes.

4.5. Fivebrane Structures. The point of view we take is that in the same way that H3 was part of the
obstruction to lifting a Spin bundle to a String bundle, we would like to interpret H7 as another obstruction.
Further, H7 serves as a higher obstruction in the sense that it makes sense to talk about it once the ‘lower’
obstructions vanish. The next task is to make this more precise.

The first nonzero homotopy group of the topological group String(n) is π7 ≃ Z. Then, again, the Hurewicz
theorem implies that the first nonzero cohomology group occurs in degree 7. As H7(X, Z) = [X, K(Z, 7)]
and K(Z, 7) = BK(Z, 6), it follows that K(Z, 6) is a fiber in a nontrivial fibration sequence with String(n)
as the base. From the structure of the homotopy groups (36), the extension will be O〈8〉. Thus (compare
also Def. 1)

Definition 2. The extension 1 −→ K(Z, 6) −→ O〈8〉 −→ String −→ 1, classified by the canonical map
String → K(Z, 7), which replaces the sequence (41), we call the Fivebrane-extension Fivebrane := O〈8〉.

Remarks. 1. The fact that String occurs as the base of the sequence in Def. 2 is compatible with the
interpretation of the classes of H3 and H7 as corresponding to the fibrations being pulled back from K(Z, 3)
and K(Z, 7) respectively.
2. When the space is Spin, the first Pontrjagin class p1 is divisible by 2, and the obstruction to lifting Spin to
String is 1

2p1. When the space is String, the second Pontrjagin class p2 is divisible by 6, and the obstruction

to lifting String to Fivebrane is 1
6p2.

Proposition 1. The obstruction to lifting a String bundle to an O〈8〉 bundle is given by 1
6p2.

Proof. The classifying spaces of the above sequences induce a map from BString → BSpin. The composite
map BString → BSpin → BSO will map p2 to a multiple of the generator of H8(BString, Z). This multiple
is obtained by noticing that the map from BString to (BU)〈7〉 is an isomophism on π8 and that the fourth
Chern class c4 restricts to 6 times the generator of π8 on the complex side.

The complex vector bundle on S2k that represents the generator of π2k(BU) is the k-fold (external) tensor
product of (1 − L), where 1 is the tautological (trivial) line bundle and L is the Hopf line bundle on S2.
All that needs to be done is find the value of ck on this bundle. Using the multiplicative properties of the
Chern character, this is just (k−1)! (see e.g. [56], Theorem 5.1). Thus for k = 4, the answer is 6 as claimed. �

It follows from connectivity that there is a commutative pullback diagram (BO)〈9〉 → (BU)〈10〉 sitting
over (BO)〈8〉 → (BU)〈8〉. The map (BU)〈10〉 → (BU)〈8〉 is the fibration corresponding to 1

6c4, which

restricts to 1
6p2 in (BO)〈8〉. The map (BO)〈8〉 → (BU)〈8〉 is an isomorphism on π8 and lifts to (BO)〈9〉 →
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(BU)〈10〉, which is also an isomorphism on π8. Thus we have the following diagram, where BFivebrane is
as in Def. 1,

(63)

BFivebrane = (BO)〈9〉 //

��

(BU)〈10〉

��
BString = (BO)〈8〉 //

��

(BU)〈8〉

��

1

6
c4 // K(Z, 8)

BSpin = (BO)〈4〉 //

��

BSU = (BU)〈4〉

��

c2 // K(Z, 4)

BSO = (BO)〈2〉 //

��

BU

BO = (BO)〈1〉

Remarks. 1. In order for a bundle to be lifted from String to O〈8〉, it has already to be Spin. Thus
the first Pontrjagin classes in expressions (15) and (16) are set to zero and then dH7 in both cases is some
linear combination of the second Pontrjagin classes, corresponding to the (lifts of the) tangent and the gauge
bundles, TX and E (cf. [49]).
2. That the first column in (63) is real and the second column is complex follows the complexification map
KO → KU on bundles, since we are interested in the divisibility properties of the Pontrjagin classes, and
those are considered as the pullback of the complexification, i.e. the Chern classes.
3. The map from BO to BU is an isomorphism on π8k and is multiplication by 2 on π8k+4. In particular,
the map is an isomorphism on π8 and is multiplication by 2 on π4 (see e.g. [57]).
4. In the second row, we could have written (BU)〈6〉 in the second entry. The reason for having (BU)〈8〉
instead is because we would then have the map from the real to the complex side, (BO)〈8〉 → (BU)〈8〉 to
be an isomorphism on π8. In contrast, the map BSpin → BSU is not an isomorphism on π4 but is in fact
given by multiplication by 2 (by part 3 above) – see [57] for instance.
5. In the first row, we wrote (BU)〈10〉 instead of (BU)〈9〉 because there are no homotopy groups of odd
degree in BU , i.e. killing the homotopy in degree eight automatically gets us to degree ten.
6. In both cases, BString and BFivebrane, we are killing a Z in the homotopy groups.
7. The map from (BO)〈8〉 to (BU)〈8〉 in the second row is an isomorphism in degree eight because the
generator of π8 for both spaces is v4

1 , where v1 is the Bott generator whose degree is two.
8. The map from BSpin to BSU in the third row is given by multiplication by two.

Real vs. Complex. In diagram (46) we had the complex spaces in the first column and the real spaces
in the second column. In diagram (63) we had instead the real spaces in the first column and the complex
spaces in the second column. We describe this further here. Consider the composite map from BSU to itself
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factoring through BSpin

(64) BSU
∼= in deg 4 // BSpin

×2 // BSU.

The composition is given by multiplication by 2 in degree 4 and acts on vector bundles via

(65) V 7→ V ⊕ V = 2V,

so that c2(2V ) = 2c2(V ). Note that since we have SU bundles then c1(V ) = 0.

Next going from BU to BSO we have

(66) Z × BU
×2, ∼= in deg 0

forget
// Z × BSO

∼= deg 0

complexify
// Z × BU // Z × BSO.

The first map amounts to forgetting the complex structure and the second to complexifying. The map from
second to the fourth term is V 7→ 2V , and that from the first to the third is V 7→ V ⊕ V .

4.6. Congruence. Remarks.
1. At the integral level, there is a very crucial difference between p2 being zero and 1

6p2 being zero, due

to the possible existence of very important 2- and 3-torsion. In other words, 1
6p2 = 0 certainly implies that

p2 is zero, but the converse is not necessarily true – and in fact in most interesting cases it is not true. This
gives us the important conclusion that: Unlike the String case, both two- and three-torsion are important
for (BO)〈9〉 structures.
2. Note that π∗O has only 2-torsion so that in the stable range there is no 4-torsion, so there is no difference
between 1

2p1 and 1
4p1 as obstructions. The latter is the shift in the quantization condition of the field strength

G4 in M-theory [75] (cf. footnote 2).
3. Likewise, in the fivebrane case – again assuming the stable range– there is no difference, as far as the type
of torsion is concerned, between the obstructions 1

6p2 and 1
48p2. This is because they are both of the form

1
2n3m p2, i.e. involve 2− and 3-torsion. This leads to the following conclusion: In the stable range (hence no
8-torsion) for the tangent bundle, our definition of the fivebrane structure captures the physical condition for
a fivebrane structure, i.e. that 1

6p2 is essentially the same as 1
48p2 in the sense that has just been explained.

4. In both case we can avoid subtleties of division by 2 and 3, by inverting those two primes. Thus if we
invert 2 in the string case, starting with a ring R (e.g. Z) we can work with the ring R[12 ], and if we invert

6 = 2 × 3 in the fivebrane case, we can work with the ring R[16 ].

The division by 8. We have seen that the obstruction to the fivebrane structure is given by 1
6p2, while

the expression appearing in the anomaly is 1
48p2. Here we give a description of this further division by 8,

which, by the above remark, does not generate any new torsion. In particular this means that the situation
in the fivebrane case is better than that in the string case, where there was a crucial difference between p1

vanishing and 1
2p1 vanishing, namely that coming from 2-torsion.

What we would like to describe is a space, which we will call F , that sits in the fibration

(67) F // (BO)〈9〉
×8 // (BO)〈9〉

where the second map takes p2

48 to p2

6 . The question is then: what is F? As a warm-up, consider a degree
two class, in which case we have

(68) F // K(Z, 2)
×n // K(Z, 2),
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and the answer is F = K(Zn, 1). We then seek a lift

(69) K(Z, 2)

×n

��
X //

?

==

K(Z, 2)
αn // K(Zn, 2),

which exists if and only if the pullback of the map αn to X is zero, where αn is ‘reduction mod 2’. For a
String structure on a space Y we have the following diagram

(70) Y
x //

##FFFFFFFFFFFFFFFFFFF F = StringF //

��

K(Z, 8)

×8

��
(BO)〈8〉

1

6
p2

// K(Z, 8) // K(Z8, 8),

where x is our class 1
48p2 which naturally lives not in (BO)〈8〉 but rather in the desired space F . The above

diagram specifies F . The modification of Proposition 1 is then

Proposition 2. The class 1
48p2 is the obstruction to lifting a StringF bundle, defined by diagram (70), to

a Fivebrane bundle.

We conclude this section with a caveat. The formula that arise from the anomaly cancelation, e.g. (16),
involve different coefficients for each of the second Pontrjagin classes of the two bundles. Had we had the
same factor or a just minus sign, then we could have simply applied the formulae in the discussion at the
end of section 4.7. However, we have relative factors of 48, so how can one make sense of such factors?
For instance, in the case when the string condition applies to all bundles, is p2(E) + 1

np2(F ) the second

Pontrjagin class of some combination of the bundles E and F? It does not make sense to talk about E + 1
nF ,

but one can talk about nE+F . But then, we would have the issue of torsion, especially that n = 48 includes
both the important 2- and 3-torsion. We can thus say that, away from such torsion, the Fivebrane class of
48TM −E is equal to 48 times the Fivebrane class of TM minus the Fivebrane class of E. In the case when
H8(X, Z) has 2- or 3-torsion we cannot draw such a conclusion.

4.7. Inequivalent Fivebrane Structures: The Fivebrane Class. In this section we consider the set of
inequivalent Fivebrane structures on our manifold or on a pair consisting of a manifold with a gauge bundle,
In order to do so, let us first recall the situation for String structures on manifolds. The complex version of
the fibration

(71) K(Z, 3) → BString → BSpin

is

(72) K(Z, 3) → (BU)〈6〉 → BSU,
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where the space (BU)〈6〉 is the 5-connected cover of BU . A choice of String structure on a space X is a lift

f̂ of the classifying map f in the diagram

(73)

(BO)〈8〉

��
X

f //

f̂

==

(BO)〈4〉
1

2
p1 // K(Z, 4).

A choice of (BU)〈6〉 structure on a space X is a lift in the diagram

(74)

B(U)〈6〉

��
X

f //

f̂

==

BSU
c2 // K(Z, 4).

The appearance of the factor 1
2 in (73) vs. (79) is a reflection of the fact mentioned earlier that the map

from BSpin to BSU is given by multiplication by two. The fibration sequences

(75)

K(Z, 3) // (BO)〈8〉 // (BO)〈4〉

K(Z, 3) // (BU)〈6〉 // BSU

show that two String or (BU)〈6〉 structures differ by a map to K(Z, 3) for a fixed Spin or BSU structure,
respectively. Therefore, the set of lifts, i.e. the set of String structures for a fixed Spin structure in the real
case, or the set of (BU)〈6〉 structures for a fixed BSU structure in the complex case, is a torsor 3 for a
quotient of the third integral cohomology group H3(X ; Z). The elements of the torsor are the string classes,
corresponding to the NS degree three H-field in string theory.

Now we are ready to study the set of Fivebrane structures. The complex version of the fibration

(76) K(Z, 7) → BFivebrane → BString,

obtained by applying the classifying functor on the sequence in Def. 2, is

(77) K(Z, 7) → (BU)〈10〉 → (BU)〈8〉,

where the space (BU)〈8〉 is the 7-connected cover of BU . A choice of Fivebrane structure on a space X is a
lift in the diagram

(78) (BO)〈9〉

��
X

f //

f̂

==

(BO)〈8〉
1

2
p1 // K(Z, 8).

3Here a torsor is a set with a group action which is free and transitive. So as a set it is the same as the group. The group
acts but there is no canonical identification of the set with the group.



26 HISHAM SATI, URS SCHREIBER AND JIM STASHEFF

A choice of (BU)〈9〉 structure on a space X is a lift in the diagram

(79) (BU)〈10〉

��
X

f //

f̂

<<

(BU)〈8〉
1

6
c4 // K(Z, 8).

The fibration sequences (76) (77) show that two Fivebrane or (BU)〈9〉 structures differ by a map to K(Z, 7)
for a fixed String or (BU)〈7〉 structure, respectively.

Remarks.
1. A degree seven class X → K(Z, 7) that corresponds to the fivebrane structure cannot be specified.

Consider the diagram

(80)

K(Z, 7)

��
(BO)〈9〉

��
X

f //

f̂

==
g

FF

(BO)〈8〉

and note that f and g do not determine f̂ since BO〈9〉 6= BO〈8〉 × K(Z, 7). This means that there is no

degree seven class that picks f̂ .
2. For a given string structure, the set of compatible fivebrane structures has a transitive action by degree
seven cohomology. We have

Proposition 3. The set of lifts, i.e. the set of Fivebrane structures for a fixed String structure in the real
case, or the set of (BU)〈9〉 structures for a fixed (BU)〈7〉 structure in the complex case, is a torsor for a
quotient (to be described below) of the seventh integral cohomology group H7(X ; Z).

We call the elements of the latter the fivebrane classes, corresponding to the (dual) NS degree seven
H-field in string theory. We now explain the quotient in the proposition. Whether or not we have a free
action depends on whether the map

(81) [X, (Ω(BO))〈8〉] → [X, K(Z, 7)]
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coming from the diagram

(82)

(Ω(BO))〈8〉

��
K(Z, 7)

��
(BO)〈9〉

��
X f //

f̂

66
g

==

BO〈8〉

is the zero map. Note that (81) is just the map of homotopy classes induced by the top arrow in (82).

However, the intention is to consider two lifitngs f̂i for i = 1, 2 which therefore differ by a map g as in (80).
Since the maps of homotopy classes give long exact sequences for any three of the target spaces, then if
(81) were the zero map then the next one would be onto. Failure to be onto is measured by the failure of
[X, (BO)〈8〉] → [X, K(Z, 7)] to be zero. The set of lifts is a torsor over the quotient

(83) H7(X, Z)/ [X, Ω(BO)〈8〉] .

3. The fibration (76) is a map of infinite loop spaces so we can think of it in terms of a map

(84) K(Z, 7) × BFivebrane → BFivebrane,

realizing an action of K(Z, 7) on the space of inequivalent fivebrane structures.
4. At the level of spectra, which are objects whose homotopy groups represent generalized cohomology
theories [1], we have

(85) Σ7HZ × ko〈9〉 → ko〈9〉,

where ko〈9〉 is the connective version of real K-theory KO, i.e. the version with no negative degrees, of the
K-theory corresponding to BO〈9〉.
5. Addition of vector bundles is encoded in a product

(86) BSO × BSO → BSO,

which has a lift to

(87) BFivebrane × BFivebrane → BFivebrane.

This gives us a way of adding Fivebrane bundles; for example, in our setting of heterotic string theory, we
have the virtual difference of the tangent bundle and the gauge bundle. In fact lifts such as (87) work for
even higher connected covers as well.
6. The bundles we have are the tangent bundle and the gauge vector bundle E, with the total bundle being
the K-theoretic virtual difference. Hence it is natural to ask about the fivebrane structure of sums and
differences of bundles. There is a distinction here according to whether the bundles are spin or not. For the
two possible gauge bundles, the E8 × E8 bundle is Spin, while the Spin(32)/Z2 bundle is not, as its second
Stiefel-Whitney class is non-vanishing. The (integral) Pontrjagin classes for two bundles E1 and E2 satisfy
[53]

(88) pk(E1 ⊕ E2) =
∑

i+j=k

pi(E1) ∪ pi(E2) mod elements of order 2.

Thus, applying to our case,

(89) p2(TM ⊕ E) = p1(TM) ∪ p1(E) + p2(TM) + p2(E) mod 2 − torsion.
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But we are assuming p1(TM) to be zero – recall that in general, we have to have a String structure on a
bundle to talk about Fivebrane structure as we have to have a Spin structure on a bundle to talk about
String structure. Hence we get:

(90) p2(TM ⊕ E) = p2(TM) + p2(E) mod 2 − torsion,

so

(91) 2[p2(TM ⊕ E) − p2(TM) − p2(E)] = 0.

We have worked out the case of a direct sum, but the case of virtual difference should be analogous. Indeed,
since V ⊕ (−V ) is equivalent to a trivial bundle, p1(E1 − E2) = p1(E1) − p1(E2) and p2(E1 − E2) =
p2(E1) − p2(E2), and hence we get

(92) 2[p2(TM − E) − p2(TM) + p2(E)] = 0.

We can actually give a better description by using special characteristic classes more adapted for covers of
the tangent bundle and, in addition, use integral coefficients.

Note that, making use of the fact that the bundles are not just real but also spin,

(93) H∗(BSpin; Z) = Z[Q1, Q2, · · · ] ⊕ γ,

with γ a 2-torsion factor, i.e. 2γ = 0 [72], concentrated in degrees not congruent to 0 mod 4. The two
degrees relevant to our discussion are

H4(BSpin; Z) ∼= Z with generator Q1

H8(BSpin; Z) ∼= Z ⊕ Z with generators Q2
1, Q2,(94)

where Q1 and Q2 are determined by their relation to the Pontrjagin classes

p1 = 2Q1

p2 = Q2
1 + 2Q2.(95)

Then the spin generators are given in terms of the Pontrjagin classes by Q1 = 1
2p1 and Q2 = 1

2p2−
1
2

(
1
2p1

)2
.

Note that Q2 = 1
2p2 holds when Q1 vanishes. Their importance in the study of anomalies was emphasized

in [59]. For two Spin bundles E and F , such as the spinor bundle and the E8 × E8 bundle

Q2(E ⊕ F ) =
∑

i+j=2

Qi(E) ∪ Qj(F )

= Q2(E) + Q2(F ),(96)

where again the condition Q1(TM) = 0 is used.

4.8. Overview.

• We considered the notion of a “Fivebrane structure” on a manifold, which generalizes that of a String
structure: as a String structure is defined to be a lift of the tangent bundle of a Spin-manifold to the
3-connected cover of Spin, a Fivebrane structure is the further lift to a 7-connected cover. We showed
that Fivebrane structures exist when a fractional second Pontrjagin class vanishes. This holds for
the tangent bundle as well as gauge bundles. When considering direct sums or K-theoretic virtual
bundles, as in the case of heterotic string theory where we have both TX and E, the obstructions
are given by the sums and differences of the individual fivebrane structures, respectively.

• In analogy to how String structures appear in terms of the vanishing of a worldsheet anomaly for the
superstring, Fivebrane structures are related to the vanishing of an anomaly in the 6-dimensional
worldvolume theory of the fivebranes. In M-theory and type IIA string theory, this is the anomaly of
the M-theory fivebrane [25] [26] [55] [10] [16], while in heterotic string theory this is the worldvolume
anomaly of the heterotic fivebrane [51]. Note that the electric-magnetic duality between Strings and
5-branes in ten dimensions relates String structures and Fivebrane structures:
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• We notice that string theory suggests that String structures and Fivebrane structures are related by
a duality which generalizes Hodge duality. Apart from the well-known fact (see, for instance, [28] for
a survey) that NS 5-branes are magnetic duals to strings, we notice that there is a known formula
for the Hodge dual of the 3-form curvature which appears in the Green-Schwarz mechanism which
relates to Fivebrane structures as the former relates to String structures. We leave the detailed study
of this duality for a separate treatment.

Appendix A. Recollection of characteristic classes

We recall elements of the theory of characteristic classes.

A.1. Universal characteristic classes. For any topological group G, there is a classifying space BG and
a universal principal G-bundle

(97) EG → BG

such that equivalence classes of (numerable) G-bundles E → B are in 1-1 correspondence with homotopy
classes of maps B → BG.

For G a Lie group, elements of the cohomology H•(BG) (with any coefficients) are called the universal
characteristic classes for G-bundles. Given a G-bundle E → B, its characteristic classes are the pull-backs
of the universal characteristic classes via the classifying map B → BG. It is a classical theorem that, for
G compact connected, the image in real cohomology, H•(BG, R), of this cohomology ring is finitely freely
generated in even degree and is isomorphic to the the ring of invariant polynomials on g = Lie(G). Moreover,
the real cohomology ring of G itself H•(G, R) ≃ H•(g, R) is isomorphic to the Lie algebra cohomology ring
of g, which is generated in odd degree. The relation between H∗(G, R) and H∗(BG, R) is as follows:

• H∗(G) is isomorphic to an exterior algebra Λ(x1, · · · , xn), where the xi are all of odd degree.
• H∗(BG) is isomorphic to a polynomial algebra P [y1, · · · , yn] where

(98) degree yi = degree xi + 1.

The isomorphism of the respective vector spaces of generators can in fact be expressed invariantly: Let
PH∗(G) denote the subspace of primitive elements, i.e. those x ∈ H∗(G) such that

(99) m∗(x) = 1 ⊗ x + x ⊗ 1

where m : G × G → G is the group multiplication. Let QH∗(BG) denote the quotient space of indecompos-
ables, i.e. H+(BG)/H+(BG) · H+(BG) where H+ denotes the subalgebra of elements of positive degree.
The isomorphism we have described in terms of generators is in fact

(100) τ : PH∗(G) → QH∗+1(BG).

The isomorphism says that the two vector spaces are transgressively related. Unfortunately the name
transgression is sometimes applied in algebraic topology to τ (cf. H. Cartan, Borel, Serre) and some-
times in differential geometry to its inverse (cf. Chern and disciples). In algebraic topology, the map
σ : H∗(BG) → H∗−1(G) is always defined whereas τ is defined only on primitive elements.

An element c in Hn(BG, Z) can be identified with a (homotopy class of a) map f from BG to the
Eilenberg-MacLane space K(Z, n) (and similarly for R), then the characteristic class f∗c of a G-bundle E
corresponding to the characteristic class c of G is given simply by the composite map

(101) B
f // BG

c // K(Z, n) .
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A.2. The cohomology of BSO and BU . We are particularly concerned in this paper with H∗(BSO) and
H∗(BU). See [53]. In characteristic 0,

(102) H∗(BSO) ≃ P [y4, y8, · · · ],

where now the indexing is by the degree of the (Pontrjagin) class. In any characteristic,

(103) H∗(BU) ≃ P [c1, c2, · · · ],

where we have used the traditonal notation for the Chern classes ci. The basic definitions and properties of
Chern and Pontrjagin classes are recalled next.

A.3. Chern-Weil homomorphism. Given a G-bundle P → X with connection A, the Chern-Weil homo-
morphism

(104) inv(g) → H•(X, R)

sends each degree n invariant polynomial k ∈ inv(g) on the Lie algebra g = Lie(G) to the differential form

(105) k 7→ k(FA) := k(FA ∧ · · · ∧ FA)

obtained by wedging n copies of the curvature 2-form and evaluating its Lie algebra value in k. This k(FA)
is a closed form. The corresponding class [k(FA)] in deRham cohomology is the characteristic class of P
corresponding to k. This class is independent of the choice of connection on P .

inv(g) //

Chern-Weil homomorphism

44
Ω•(X) // H•(X, R)

k
� // k(FA)

� // [k(FA)]

invariant
polynomial

characteristic
form

characteristic
class

Table 7. The Chern-Weil homomorphism sends, for each G-bundle P → X , any
degree n invariant polynomial on g = Lie(G) to the deRham class of the differential form
k(FA) = k(FA ∧ · · · ∧ FA) obtained by inserting the curvature 2-form of any connection on
P into k.

A.4. Polynomials and classes for matrix Lie algebras. Given a matrix Lie algebra g ⊂ gl(n), the trace
and the determinant operation on matrices provide families of g-invariant polynomials.

• The assignment

(106) X 7→ ch(X) := Tr(exp(X))

defines the invariant polynomials chk(X) as

(107) ch(X) :=

∞∑

k=0

tkchk(X, · · · , X) .

The expression ch(X) is the total Chern-character.
• Let g ⊂ gl(c, C) be a Lie algebra of complex matrices. Then the assignment

(108) X 7→ c(X) := det(t + iX)
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defines the invariant polynomials ck as

(109) c(X) =

n∑

k=0

tn−kck(X, · · · , X) .

These are the Chern Polynomials. The corresponding class [ck(FA)] is the kth Chern class.
• Let g ⊂ gl(n, R) be a Lie algebra of real matrices. Then the assignment

(110) X 7→ c(X) := det(t − X)

defines the invariant polynomials pk/2 as

(111) c(X) =
n∑

k=0

tn−kpk/2(X, · · · , X) .

These are the Pontrjagin polynomials. The corresponding classes [pk/2(FA)] are the Pontrjagin
classes.

• The restrictions of the ck from gl(n, C) to gl(n, R) satisfy

(112) ikck(X, · · · , X) = pk/2(X, · · · , X) .

• When g ⊂ sl(n) all elements are traceless and various cancellations occur. In particular for g = so(n)
the Pontrjagin classes have relatively simple relation to the Chern characters.

Lie algebra g ⊂ gl(n, C) g ⊂ gl(n, C) g ⊂ gl(n, R)

invariant
polynomial

chk ck pk/2

definition

ch(X)
= tr(exp(itX))
=

∑
k

tkchk(X, · · · , X)

c(X)
= det(t + iX)
=

∑
k

tn−kck(X, · · · , X)
det(t − X)
=

∑
k

tn−kpk/2(X, · · · , X)

characteristic
class

Chern character Chern class Pontrjagin class

Table 8. Characteristic classes for matrix Lie algebras obtained from the trace and
the determinant.

Appendix B. The Leray-Serre spectral sequence

Suppose that H∗ ((BU)〈2k〉; Q) = P [ck, ck+1, · · · ]. Corresponding to the fibration

(113) K(Z, 2k − 1) // (BU)〈2k + 2〉

��
(BU)〈2k〉 // K(Z, 2k)

we have

(114) H∗ ((BU)〈2k〉; H∗ (K(Z, 2k − 1); Q)) =⇒ H∗ ((BU)〈2k + 2〉) .
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Here the shift in 2 in the degree of the Eilenberg-MacLane space comes from Bott periodicity. The coho-
mology H∗ (K(Z, 2k − 1); Q) is an exterior algebra Λ(e2k−1) on a generator of degree 2k − 1, e2k−1, which
satisfies e2

2k−1 = 0. The differential in the sequence takes this generator to the k-th Chern class ck. Modding
out by this class gives (53). In fact, the spectral sequence collapses from here and there is no extension
problem for the E∞ term.

Since G is simply connected, the E2 term of this spectral sequence is in bidegree (p, q)

(115) Ep,q
2 = Hp(G) ⊗ Hq(K(Z, 2)

The cohomology of K(Z, 2) is a polynomial algebra on one generator y in degree 2: H(K(Z, 2)) = R[y], and

the differential d2 : Ep,q
2 → Ep+2,q−1

2 raises total degree by 1.

(116) Ep,q
2 =

{
Hp(G) ⊗ Ryk if q = 2k is even

0 if q is odd.

Moreover, since we are dealing with real coefficients, the cohomology of G is an exterior algebra H(G) =
Λ(x3, x5, . . .). So we are computing the cohomology of a complex which looks like

(117) ΛV ⊗ R[y],

where E is a graded vector space concentrated in odd degrees and x is of degree 2. Clearly the differential
d2 is zero so that E3 = E2. The new differential d3 : Ep,q

3 → Ep+3,q−2
3 sends y to x3 = H , the generator of

H3(G). Since d3 is a derivation with respect to the algebra structure of Ep,q
3 . It follows that

(118) d3(z ⊗ yk) = kHz ⊗ yk−1

where z ∈ H(G).
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