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AbstratWe introdue transport 2-funtors as a new way to desribe onnetions on gerbeswith arbitrary strit struture 2-groups. On the one hand, transport 2-funtors providea manifest notion of parallel transport and holonomy along surfaes. On the otherhand, they have a onrete loal desription in terms of di�erential forms and smoothfuntions.We prove that Breen-Messing gerbes, abelian and non-abelian bundle gerbes withonnetion, as well as further onepts arise as partiular ases of transport 2-funtors,for appropriate hoies of the struture 2-group. Via suh identi�ations transport2-funtors indue well-de�ned notions of parallel transport and holonomy for all thesegerbes. For abelian bundle gerbes with onnetion, this indued holonomy oinideswith the existing de�nition. In all other ases, �nding an appropriate de�nition of holo-nomy is an interesting open problem to whih our indued notion o�ers a systematialsolution.
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IntrodutionThe study of gerbes has a long tradition in geometry and topology. The subjet was startedin the seventies by Giraud to ahieve a geometrial understanding of non-abelian ohomo-logy [Gir71℄. In the nineties, Brylinski extended the study of gerbes to their di�erentialgeometry with the de�nition of onnetions on abelian gerbes [Bry93℄. Later Breen andMessing introdued onnetions on ertain non-abelian gerbes [BM05℄. Ironially, one of themost interesting onsequene of onnetions, their holonomy, ould so far only be treatedin the abelian ase.The reason for this may be the lak of a general underlying onept, what a onnetionon a gerbe is, and around what its holonomy has to be taken. In this artile we introduesuh a onept. It is based on an alternative desription of ordinary onnetions in ordinary�bre bundles hosen suh that the generalization to onnetions in gerbes is evident. Thealternative desription of onnetions in �bre bundles � transport funtors � has beenintrodued by the authors in [SW07℄. The relation between transport funtors and severallasses of �bre bundles with onnetion has been established in terms of equivalenes ofategories.For the purposes of this introdution let us immediately desribe the result of the evidentgeneralization to onnetions in gerbes � transport 2-funtors. Their desription splits intoan algebraial and an analytial part. The algebraial part requires that parallel transportalong surfaes has the struture of a 2-funtor
tra : P2(M) // T ,hene the name transport 2-funtors. These 2-funtors are de�ned on the path 2-groupoidof a smooth manifold M and take values in some �target� 2-ategory T . For a moment wemay assume T to be the 2-ategory of ategories. An objet in the path 2-groupoid is justa point x in M , so that the transport 2-funtor attahes a ategory tra(x) to eah suhpoint. The 1-morphisms between two points x and y are smooth urves onneting x with

y, and the transport 2-funtor assigns to suh a urve γ a funtor
tra(γ) : tra(x) // tra(y).Finally, a 2-morphism in the path 2-groupoid is a smooth homotopy between two urveswith �xed endpoints, whih sweeps out a dis inX bounded by the two paths. The transport2-funtor assigns to it a natural transformation:

tra : x

γ

��

γ′

BBΣ

��

y � // tra(x)

tra(γ)

##

tra(γ′)

;;
tra(Σ)

��

tra(y).3



This natural transformation tra(Σ) is the parallel transport along the surfae Σ, whih isthus manifestly inluded in the nature of a transport 2-funtor.These assignments of ategories to points, funtors to paths and natural transforma-tions to diss have to obey the axioms of a 2-funtor. For the onveniene of the reader, wehave inluded an appendix with the basis about 2-ategories and 2-funtors. For a trans-port 2-funtor, the axioms pratially desribe how the funtors tra(γ) and the naturaltransformations tra(Σ) ompose when paths or diss are glued together.The analyti properties of a transport 2-funtor demand that the above assignmentsare smooth in an appropriate sense. It is most natural to disuss smoothness loally: werequire that a transport 2-funtor is loally trivial. Like for ordinary �bre bundles, a loaltrivialization is de�ned with respet to a over V of the base manifold by open sets Uα,and to a typial �bre: this is here a partiular �struture� 2-groupoid Gr together witha 2-funtor i : Gr // T indiating how this struture is realized in the target 2-ategoryof the transport 2-funtor. We introdue a loal trivialization as a olletion of �trivial�2-funtors trivα : P2(Uα) // Gr and of equivalenes
tα : tra|Uα

∼= // i ◦ trivαbetween 2-funtors de�ned on Uα. We show that, like for �bre bundles, loal trivializationsindue �transition� transformations
gαβ : i ◦ trivα // i ◦ trivβby omposing an inverse of tα with tβ. These transition transformations satisfy the usualoyle onditions only up to morphisms between transformations, so-alled modi�ations.That is, modi�ations

fαβγ : gβγ ◦ gαβ +3 gαβ and ψα : id +3 gαα.These modi�ations again satisfy higher oherene onditions. We all the olletion of the2-funtors trivα, the transformations gαβ and the modi�ations fαβγ and ψα the desentdata of the transport 2-funtor tra extrated from the loal trivializations tα.It is these desent data on whih we impose smoothness onditions. First of all, werequire that the 2-funtors trivα are smooth. This makes sense when we also require that thestruture 2-groupoid Gr has smooth manifolds of objets, 1-morphisms and 2-morphisms.Thus, in other words, transport 2-funtors fator loally through smooth funtors to thestruture 2-groupoid.The remaining desent data gαβ , fαβγ and ψα is treated in the following way. We makea ruial observation in abstrat 2-ategory theory: a transformation g : F // G between2-funtors F and G between 2-ategories S and T an itself be seen a funtor
F (g) : S′ // ΛT4



for S′ and ΛT appropriate ategories onstruted out of S and T , respetively. Similarly,modi�ations η : g +3 g′ between suh transformations indue natural transformations
F (η) between the funtors F (g) and F (g′).We apply this abstrat onsideration to the remaining desent data of a transport 2-funtor. The result is a olletion of funtors

F (gαβ) : P1(Uα ∩ Uβ) // ΛTand of natural transformations
F (fαβγ) : F (gβγ) ⊗ F (gαβ) +3 F (gαγ) and F (ψα) : id +3 F (gαα).Now, the smoothness ondition on these desent data is the requirement that the funtors

F (gαβ) are transport funtors and that the modi�ations F (fαβγ) and F (ψα) are mor-phisms between transport funtors. Aording to the orrespondene between transportfuntors and �bre bundles with onnetion established in [SW07℄, we thus require that er-tain strutures are a smooth �bre bundle with onnetion, or smooth bundle morphismsthat respet the onnetions.A detailed development of transport 2-funtors is the ontent of the �rst part of thepresent artile, inluding the Setions 1 to 3. In Setion 1 we review the path 2-groupoid
P2(M) of a smooth manifold M and list some features of 2-funtors de�ned on them. Weintrodue loal trivializations of 2-funtors and their desent data. This disussion alsoinorporates transformations between the 2-funtors and modi�ations between those, sothat the desent data is naturally arranged in a 2-ategory Des2(i)∞M assoiated to the2-funtor i : Gr // T that realizes the struture 2-groupoid Gr in the target 2-ategory T .Setion 2 is devoted to the reonstrution of globally de�ned 2-funtors from loaldesent data. This turns out to be a di�ult problem that involves lifts of paths and liftsof homotopies between paths to a �eh-like overing of the path 2-groupoid that ombinesthe path 2-groupoids P2(Uα) of the open sets with � jumps� between those. The result isan equivalene of 2-ategories

Trans2Gr(M,T ) ∼= Des2(i)∞Mbetween the 2-ategory of globally de�ned transport 2-funtors with Gr-struture and the2-ategory of loally de�ned desent data. Setion 3 ontains a detailed disussion of thesmoothness onditions we have imposed on the desent data.The seond part of the present artile onerns the relation between transport 2-funtorsand other gerbes and the impat of our onept for these gerbes. The following observationmay illuminate what transport 2-funtors have to do with gerbes. The transformation gαβwhih is part of the desent data orresponds by de�nition to a transport funtor
F (gαβ) : P1(Uα ∩ Uβ) // ΛT5



on the two-fold intersetion Uα ∩ Uβ, whereas transport funtors are equivalent to �brebundles with onnetion. Hene, transport 2-funtors equip the two-fold intersetions of anopen over with �bre bundles � one of the signi�ant ingredients of a gerbe, see e.g. [Hit03℄.Whih partiular kind of �bre bundle it is depends on the target 2-ategory T and thestruture 2-groupoid Gr. Mostly, the latter will be of the form Gr = BG: this is the one-objet 2-groupoid whih is indued from a (strit) Lie 2-group G. Lie 2-groups play thesame role for gerbes as Lie groups do for �bre bundles [SW08℄. They an onveniently beunderstood as rossed modules of ordinary Lie groups: two Lie groups G and H, a Lie grouphomomorphism H // G and a ompatible ation of G on H. Several natural examplesof rossed modules are available, and via their assoiated Lie 2-groupoids they give rise toimportant lasses of transport 2-funtors. In Setion 4 we prove the following list of resultsthat relate some of these lasses of transport 2-funtors to existing realizations of gerbeswith onnetion:I.) If G is some Lie 2-group, we prove that there is a anonial bijetion




Isomorphism lasses oftransport 2-funtors
tra : P2(M) → BGwith BG-struture 




∼= Ȟ2(M,G)between transport 2-funtors and a set that we identify as the degree two di�erential non-abelian ohomology of the manifold M with oe�ients in the Lie 2-group G [BS07℄. Itpurely onsists of olletions of smooth funtions and di�erential forms with respet toopen overs of M in suh a way that forgetting the di�erential forms the usual non-abelianohomology H2(M,G) [Gir71, Bre94, Bar04, Wo08℄ is reprodued. We show that the set
Ȟ2(M,G) also identi�es with existing disussions of di�erential ohomology for partiularhoies of G:(a) The (abelian) Lie 2-group G = BS1 indued from the rossed module S1 // 1. Inthis ase the di�erential ohomology is the same as the degree two Deligne ohomology[Del91℄,

Ȟ2(M,BBS1) = H2(M,D(2)).Indeed, Deligne ohomology lassi�es abelian gerbes with onnetion [Bry93℄.(b) The Lie 2-group G = AUT(H) assoiated to an ordinary Lie group H and induedby the rossed module H // Aut(H). In this ase we �nd
Ȟ2(M,BAUT(H)) =




Equivalene lasses of loal dataof Breen-Messing H-gerbes over
M with (fake-�at) onnetions  .Breen-Messing gerbes are a realization of non-abelian gerbes on whih onnetionsan be de�ned [BM05℄. Our approah infers a new ondition on these onnetions,6



namely the vanishing of the so-alled �fake-urvature�. This ondition is not presentin [BM05℄ but arises here from the algebrai properties of a transport 2-funtor.II.) Let BS1 again be the Lie 2-group from (Ia), but now we onsider transport 2-funtors whose target is the monoidal ategory S1-Tor of manifolds with free and transitive
S1-ation, regarded as a 2-ategory B(S1-Tor) with a single objet. We show that there isa anonial equivalene of 2-ategories





Transport 2-funtors
tra : P2(M) → B(S1-Tor)with BBS1-struture 




∼=

{
S1-bundle gerbes withonnetion over M } .This equivalene arises by realizing that the transport funtor F (gαβ) from the desentdata of a transport 2-funtor orresponds � in the present situation � to an S1-bundle withonnetion over the two-fold intersetion of an open over. After generalizing open oversto surjetive submersions, this S1-bundle, together with the bundle morphisms from thedesent data, reprodue exatly Murray's de�nition [Mur96℄ of a bundle gerbe.III.) Let H be a Lie group and let AUT(H) be the assoiated Lie 2-group from (Ib).Now we onsider transport 2-funtors whose target is the monoidal ategory H-BiTor ofsmooth manifolds with ommuting free and transitive H-ations from the left and from theright, onsidered as a 2-ategory B(H-BiTor). We show that there is a anonial equivaleneof 2-ategories





Transport 2-funtors
tra : P2(M) → B(H-BiTor)with BAUT(H)-struture  ∼=

{Non-abelian H-bundle gerbeswith onnetion over M } .Non-abelian bundle gerbes are a generalization of S1-bundle gerbes introdued by Ashieri,Cantini and Juro [ACJ05℄, and the above equivalene arises in the same way as in theabelian ase. In partiular, we prove that the transport funtor F (gαβ) orresponds toa prinipal H-bibundle with twisted onnetion, a key ingredient of a non-abelian bundlegerbe.Apart from these relations to existing gerbes with onnetion, transport 2-funtorsallow to understand further onepts of gerbes and 2-bundles with onnetion, or to �ndthe orret onepts of onnetions in ases when only the underlying gerbe is known sofar. We indiate how this an be done in the ase of 2-vetor bundles, in partiular string2-bundles [BBK06, ST04℄, and prinipal 2-bundles [Bar04, Wo08℄.In the last Setion 5 we give a deeper disussion of the notion of parallel transport, whihis manifestly inluded in the onept of a transport 2-funtor. Most importantly, we unoverwhat the holonomy of a transport 2-funtor around a surfae is. Via the equivalenes (Ib)7



and (III) above, we thereby equip onnetions on non-abelian gerbes with a well-de�nednotion of holonomy.Existing disussions of holonomy of onnetions in abelian gerbes indiate that suh aholonomy should be taken around losed and oriented surfaes. For the non-abelian asewe observe a subtlety whih also arises in the disussion of ordinary �bre bundles. Namely,while the holonomy of a onnetion in an S1-bundle an be taken around a losed andoriented line, a onnetion in a non-abelian prinipal bundle requires the hoie of a basepoint. We prove that the holonomy of a non-abelian gerbe around a losed and orientedsurfae requires the hoie of a base point plus the hoie of a ertain loop based at thispoint. More preisely, the loop has to be hosen together with a ontration whih sweepsout the whole surfae in a way ompatible with the orientation. We show that any losedsurfaes admits suh hoies.Now suppose that S is a losed and oriented surfae, tra : P2(M) // T is a transport2-funtor on a smooth manifold M and φ : S // M is a smooth map. With the hoies ofa base point x ∈ S, a loop τ : x // x and a ontration Σ : τ +3 idx, understood as anobjet, a 1-morphism and a 2-morphism in the path 2-groupoid of S, the holonomy of traaround the surfae S is
Holtra(φ,Σ) := tra(φ∗Σ),where φ∗ : P2(S) // P2(M) is a 2-funtor indued by the smooth map φ. The surfaeholonomy of a transport 2-funtor is thus a 2-morphism in its target 2-ategory T .We study the dependene of this surfae holonomy on the hoies of the base point,the loop and the ontration. The �rst result is that it is independent of the hoie ofthe ontration. The dependene on the base point turns out to be a �onjugation� ofthe 2-morphism Holtra(φ,Σ) by another 2-morphism, very similar to the dependene ofthe holonomy of a onnetion in an ordinary �bre bundle on the hoie of the base point.Thus, the surfae holonomy in general depends on the base point and on the loop, but thedependene an be ontrolled in a preise way.Finally, we apply the general onept of the surfae holonomy of a transport 2-funtorto onnetions on (non-abelian) gerbes using the equivalenes (I), (II) and (III) derivedin the �rst part of the present artile. We show that in the abelian ases (Ia) and (II)the dependene on the base point and the loop drops out, and that the surfae holonomy

Holtra(φ,Σ) oinides with the usual notion [Gaw88, Mur96℄ of holonomy of abelian ger-bes. In the other ases (Ib) and (III) we obtain new, well-de�ned quantities assoiated toonnetions in non-abelian gerbes and surfaes.Aknowledgements. The projet desribed here has some of its roots in ideas by JohnBaez and in his joint work with US, and we are grateful for all disussions and suggestions.We are also grateful for opportunities to give talks about this projet at an un�nished state,namely at the Fields Institute, at the Physikzentrum Bad Honnef, and at the MedILS inSplit. In addition, we thank the Hausdor� Researh Center for Mathematis in Bonn for8



kind hospitality and support.1 Loal Trivializations of 2-FuntorsThe gerbes we want to onsider in this artile are ertain 2-funtors. These 2-funtors arede�ned on the path 2-groupoid of a smooth manifold. We review this 2-groupoid in Setion1.1. Like for �bre bundles, one of the most important properties of our 2-funtors is thatthey are loally trivializable. In Setion 1.2 we desribe loal trivializations for 2-funtorson path 2-groupoids. Again, like for �bre bundles, loal trivializations of 2-funtors admitto extrat loal data similar to transition funtions. This is the ontent of Setions 1.2 and1.3. For the basis on 2-ategories we refer the reader to Appendix A.1.1 The Path 2-Groupoid of a smooth ManifoldThe basi idea of the path 2-groupoid is very simple: for a smooth manifold X, it is astrit 2-ategory whose objets are the points of X, whose 1-morphisms are smooth pathsin X, and whose 2-morphisms are smooth homotopies between these paths. Its onreterealization needs, however, a more detailed disussion.For points x, y ∈ X, a path γ : x // y is a smooth map γ : [0, 1] // X with γ(0) = xand γ(1) = y. Sine the omposition γ2 ◦ γ1 of two paths γ1 : x // y and γ2 : y // zshould again be a smooth map we require sitting instants for all paths: a number 0 < ǫ < 1
2with γ(t) = γ(0) for 0 ≤ t < ǫ and γ(t) = γ(1) for 1 − ǫ < t ≤ 1. The set of these paths isdenoted by PX. In order to make the omposition assoiative and to make paths invertible,we need to introdue an equivalene relation on PX.De�nition 1.1. Two paths γ, γ′ : x // y are alled thin homotopy equivalent if there existsa smooth map h : [0, 1]2 // X suh that(1) h is a homotopy from γ to γ′ through paths x // y with sitting instants at γ and γ′.(2) the di�erential of h has at most rank 1.The set of equivalene lasses is denoted by P 1X. We remark that any path γ is thinhomotopy equivalent to any orientation-preserving reparameterization of γ. The omposi-tion of paths indues a well-de�ned assoiative omposition on P 1X for whih the onstantpaths idx are identities and the reversed paths γ−1 are inverses. These are the axioms ofa groupoid P1(X) whose set of objets is X and whose set of morphisms is P 1X. Thisgroupoid is alled the path groupoid of X, see [SW07℄ for a more detailed disussion.Remark 1.2. If we drop ondition (2) in De�nition 1.1, we still obtain a groupoid

Π1(X) together with a projetion funtor P1(X) // Π1(X). The groupoid Π1(X) isalled the fundamental groupoid of X. Funtors F : P1(X) // T whih fator through
P1(X) // Π1(X) are alled �at : they depend only on the homotopy lass of the path.9



A homotopy h between two paths γ0 and γ1 like in De�nition 1.1 but without ondition(2) on the rank of its di�erential is alled a bigon in X and denoted by Σ : γ0
+3 γ1. Thesebigons form the 2-morphisms of the path 2-groupoid of X. We denote the set of bigons in

X by BX. Bigons an be omposed in two natural ways. For two bigons Σ : γ1
+3 γ2and Σ′ : γ2

+3 γ3 we have a vertial omposition
Σ′ • Σ : γ1

+3 γ3.If two bigons Σ1 : γ1
+3 γ′1 and Σ2 : γ2

+3 γ′2 are suh that γ1(1) = γ2(0), we havehorizontal omposition
Σ2 ◦ Σ1 : γ2 ◦ γ1

+3 γ′2 ◦ γ
′
1.Like in the ase of paths, we need to de�ne an equivalene relation on BX in order tomake the ompositions above assoiative and to make bigons invertible.De�nition 1.3. Two bigons Σ : γ0

+3 γ1 and Σ′ : γ′0
+3 γ′1 are alled thin homotopyequivalent if there exists a smooth map h : [0, 1]3 // X suh that(1) h is a homotopy from Σ to Σ′ through bigons and has sitting instants at Σ and Σ′.(2) the indued homotopies γ0

+3 γ′0 and γ1
+3 γ′1 are thin.(3) the di�erential of h has at most rank 2.Condition (1) assures that we have de�ned an equivalene relation on BX, and ondition(2) asserts that two thin homotopy equivalent bigons Σ : γ0

+3 γ1 and Σ′ : γ′0
+3 γ′1 startand end on thin homotopy equivalent paths γ0 ∼ γ′0 and γ1 ∼ γ′1. We denote the set ofequivalene lasses by B2X. The ompositions ◦ and • between bigons indue a well-de�ned omposition on B2X. The path 2-groupoid P2(X) is now the 2-ategory whose setof objets is X, whose set of 1-morphisms is P 1X and whose set of 2-morphisms is B2X, see[SW08℄ for a more detailed disussion. The path 2-groupoid is strit and all 1-morphismsare stritly invertible.If we drop ondition (3) from De�nition 1.3 we still have a strit 2-groupoid, whih isdenoted by Π2(X) and is alled the fundamental 2-groupoid of X. The projetion de�nesa strit 2-funtor P2(X) // Π2(X).In this artile we desribe gerbes as ertain (not neessarily strit) 2-funtors

F : P2(M) // T .We all the objet F (x) for x ∈M the �bre of F over x. If T is for instane the 2-ategoryof ategories, the �bre over any point is a ategory. Our 2-funtors an be pulled bak alongsmooth maps f : X // M : suh maps indue strit 2-funtors f∗ : P2(X) // P2(M), andwe write
f∗F := F ◦ f∗.10



Analogously to Remark 1.2 we say that a 2-funtor F : P2(M) // T is �at if it fatorsthrough the 2-funtor P2(M) // Π2(M). See Setions 3.3 and 3.4 for further disussionsof �at 2-funtors.1.2 Loal Trivializations and Desent DataLet T be a 2-ategory, the target 2-ategory . To de�ne loal trivializations of a 2-funtor
F : P2(M) // T , we �x three attributes:1. A strit 2-groupoid Gr, the struture 2-groupoid . In Setion 3 we will require that

Gr is a Lie 2-groupoid, i.e. it has smooth manifolds of objets, 1-morphisms and2-morphisms.2. A 2-funtor i : Gr // T that indiates how the struture 2-groupoid is realized inthe target 2-ategory. In Setions 1 and 2 there will be no further ondition on this2-funtor, but in Setion 3 we require i to be full and faithful. In all examples wepresent in Setion 4, i will even more be an equivalene of 2-ategories.3. A surjetive submersion π : Y // M , whih serves as an open over of the basemanifold M .Indeed, surjetive submersions behave in many aspets like open overs, but generalizethem essentially [Mur96℄. If M is overed by open sets Uα, the projetion from theirdisjoint union to M de�nes a surjetive submersion π : Y // M . Notie that for anysurjetive submersion π : Y // M the �bre produts Y [k] := Y ×M ... ×M Y are againsmooth manifolds in suh a way that the anonial projetions πi1...ip : Y [k] // Y [k] aresmooth maps. In terms of open overs, the k-fold �bre produt Y [k] is the disjoint union ofall k-fold intersetions of the open sets Uα.De�nition 1.4. A π-loal i-trivialization of a 2-funtor
F : P2(M) // Tis a pair (triv, t) of a strit 2-funtor triv : P2(Y ) // Gr and a pseudonatural equivalene

P1(Y )
π∗ //

triv

��

P1(M)

tuuuuuu
uuuuuu

v~ uuuuuu
uuuuuu F

��
Gr

i
// T .In other words, a 2-funtor F is loally trivializable, if its pullbak π∗F to the overingspae fatorizes � up to pseudonatural equivalene� through the �xed Lie 2-groupoid Gr.In terms of an open over, π∗F is a olletion of restritions F |Uα : P1(Uα) // T . The11



2-funtor triv is a olletion of �trivial� strit 2-funtors trivα : P1(Uα) // Gr suh that
i ◦ trivα ∼= F |Uα .To abbreviate the notation, we write trivi instead of i◦triv in the following. We de�ne a2-ategory Triv2

π(i) of 2-funtors with π-loal i-trivialization: an objet is a triple (F, triv, t)of a 2-funtor F : P2(M) // T together with a �xed π-loal i-trivialization (triv, t). A1-morphism
(F, triv, t) // (F ′, triv′, t′)is just a pseudonatural transformation F // F ′ between the two 2-funtors, and a 2-morphism is just a modi�ation between those. In other words, the 2-ategory Triv2

π(i)is just a sub-2-ategory of Funct(P2(M), T ), where every objet is additionally deoratedwith a π-loal i-trivialization.Now we de�ne a 2-ategory Des2
π(i) of desent data. This 2-ategory is supposed tobe equivalent to Triv2

π(i) and does yet only ontain loal data, i.e. struture de�ned on
Y instead of M . This disussion should be onsidered as being analogous to replaing aglobally de�ned �bre bundle with onnetion by a olletion of transition funtions andloal 1-forms. We will see in Setion 4.1 how the funtions and the forms enter.De�nition 1.5. A desent objet is a family (triv, g, ψ, f) onsisting of1. a strit 2-funtor triv : P2(Y ) // Gr2. a pseudonatural equivalene g : π∗1trivi

// π∗2trivi3. an invertible modi�ation ψ : idtrivi
+3 ∆∗g4. an invertible modi�ation f : π∗23g ◦ π

∗
12g

+3 π∗13gsuh that the diagrams
idπ∗

2trivi ◦ g
π∗
2ψ◦id +3

r

�%
BBBBBBBBBB

BBBBBBBBBB
∆∗

22g ◦ g

∆∗
122f

{� ���������

���������

g

, g ◦ idπ∗
1trivi

id◦π∗
1ψ +3

l

�%
BBBBBBBBBB

BBBBBBBBBB
g ◦ ∆∗

11g

∆∗
112f

{� ���������

���������

g

(1.1)and
(π∗34g ◦ π

∗
23g) ◦ π

∗
12g

a

t| rrrrrrrrrrrrrrr

rrrrrrrrrrrrrrr
π∗
234f◦id

"*MMMMMMMMMMMMMMM

MMMMMMMMMMMMMMM

π∗34g ◦ (π∗23g ◦ π
∗
12g)

id◦π∗
123f

��
666666666

666666666
π∗24g ◦ π

∗
12g

π∗
124f

{� ����������

����������

π∗34g ◦ π
∗
13g id◦π∗

134f
+3 π∗14g. (1.2)

12



are ommutative.In these diagrams, r, l and a are the right and left uni�ers and the assoiator of the2-ategory T , ∆ : Y // Y [2] is the diagonal map, and ∆112,∆122 : Y [2] // Y [3] are themaps dupliating the �rst or the seond fator, respetively. Let us brie�y rephrase theabove de�nition in ase that Y is the union of open sets Uα: �rst there are strit 2-funtors
trivα : P2(Uα) // Gr, just like in a loal trivialization. To ompare the di�erene between
trivα and trivβ on a two-fold intersetion Uα ∩ Uβ there are pseudonatural equivalenes
gαβ : (trivα)i // (trivβ)i. If we assume for a moment, that gαβ was the transition funtionof some �bre bundle, one would demand that 1 = gαα on every Uα and that gβγgαβ = gαγ onevery three-fold intersetion Uα∩Uβ∩Uγ . In the present situation, however, these equalitieshave been replaed by modi�ations: the �rst one by a modi�ation ψα : id(trivα)i

+3 gααand the seond one by a modi�ation fαβγ : gβγ ◦ gαβ +3 gαγ . Finally we have demandedthat these modi�ations satisfy the two oherene onditions (1.1) and (1.2).De�nition 1.6. Let (triv, g, ψ, f) and (triv′, g′, ψ′, f ′) be desent objets. A desent1-morphism (triv, g, ψ, f) // (triv′, g′, ψ′, f ′) is a pair (h, ǫ) of a pseudonatural transfor-mation
h : trivi // triv′

iand an invertible modi�ation
ǫ : π∗2h ◦ g +3 g′ ◦ π∗1hsuh that the diagrams

π∗23g
′ ◦ (π∗2h ◦ π∗12g)

a +3

id◦π∗
12ǫ

��

(π∗23g
′ ◦ π∗2h) ◦ π

∗
12g

π∗
23ǫ

−1◦id
����

π∗23g
′ ◦ (π∗12g

′ ◦ π∗1h)

a−1

��

(π∗3h ◦ π∗23g) ◦ π
∗
12g

a

�� ��
(π∗23g

′ ◦ π∗12g
′) ◦ π∗1h

f ′◦id
��

π∗3h ◦ (π∗23g ◦ π
∗
12g)

id◦f

��
π∗13g

′ ◦ π∗1h π∗
13ǫ

+3 π∗3h ◦ π∗13g.
(1.3)

and
idtriv′

i
◦ h

lh +3

ψ′◦idh
��

h
r−1
h +3 h ◦ idtrivi

idh◦ψ

��
∆∗g′ ◦ h

∆∗ǫ
+3 h ◦ ∆∗g. (1.4)are ommutative. 13



We leave it as an exerise to the reader to write out this struture in the ase that thesurjetive submersion omes from an open over. Finally, we introdueDe�nition 1.7. Let (h1, ǫ1) and (h2, ǫ2) be desent 1-morphisms from a desent ob-jet (triv, g, ψ, f) to another desent objet (triv′, g′, ψ′, f ′). A desent 2-morphism
(h1, ǫ1) +3 (h2, ǫ2) is a modi�ation

E : h1
+3 h2suh that the diagram

g′ ◦ π∗1h1

id◦π∗
1E

��

ǫ1 +3 π∗2h1 ◦ g

π∗
2E◦id

��
g′ ◦ π∗1h2 ǫ2

+3 π∗2h2 ◦ g. (1.5)is ommutative.In onrete examples of the target 2-ategory T these strutures have natural interpre-tations, see Setion 4. Desent objets, 1-morphisms and 2-morphisms form a 2-ategory
Des2

π(i), alled the desent 2-ategory . Let us desribe its struture along the lines ofDe�nition A.1.1. The omposition of two desent 1-morphisms
(h1, ǫ1) : (triv, g, ψ, f) // (triv′, g′, ψ′, f ′)and

(h2, ǫ2) : (triv′, g′, ψ′, f ′) // (triv′′, g′′, ψ′′, f ′′)is the pseudonatural transformation h2 ◦ h1 : trivi // triv′′
i and the modi�ation

π∗2(h2 ◦ h1) ◦ g
a +3 π∗2h2 ◦ (π∗2h1 ◦ g)

id◦ǫ1
��

π∗2h2 ◦ (g′ ◦ π∗1h1)
a−1

+3 (π∗2h2 ◦ g
′) ◦ π∗1h1

ǫ2◦id
��

(g′′ ◦ π∗1h2) ◦ π
∗
1h1 a

+3 g′′ ◦ π∗1(h2 ◦ h1).2. The assoiators are those of the 2-ategory Funct(P2(Y ), T ).14



3. The identity desent 1-morphism assoiated to a desent objet (triv, g, ψ, f) is givenby the pseudonatural transformation idtrivi and the modi�ation
π∗2 idtrivi ◦ g

rg +3 g
lg +3 g ◦ π∗1idtrivi ,where rg and lg are the right and left uni�ers of the 2-ategory Funct(P2(Y

[2]), T ).4. The right and left uni�ers are those of Funct(P2(Y ), T ).5. Vertial omposition of desent 2-morphisms is the one of modi�ations.6. The identity desent 2-morphism assoiated to a desent 1-morphism (h, ǫ) is theidentity modi�ation idh.7. Horizontal omposition of desent 2-morphisms is the one of modi�ations.All axioms for the 2-ategory Des2
π(i) de�ned like this follow from the axioms of the2-ategories Funct(P2(Y ), T ) and Funct(P2(Y

[2]), T ).We remark that the desent 2-ategory omes with a strit 2-funtor
V : Des2

π(i) // Funct(P2(Y ), T ).From a desent objet (triv, g, ψ, f) it keeps only the 2-funtor triv and from a desent 1-morphism (h, ǫ) only the pseudonatural transformation h. Thus, in terms of an open over,the 2-funtor V keeps the struture de�ned on the pathes Uα, and forgets the gluing data.Remark 1.8. Without onsequenes for the remaining artile, let us brie�y onsider thedesent 2-ategory Des2
π(i) in the partiular ase in whih the manifolds M and Y are justpoints and π is the identity. Let C be a tensor ategory, let Gr be the trivial 2-groupoid(one objet, one 1-morphism and one 2-morphism), and let i : Gr // BC be the anonial2-funtor. Here, BC is the 2-ategory with one objet assoiated to C, see Example A.2.Then, a desent objet is preisely a one-dimensional speial symmetri Frobenius algebraobjet in C.1.3 Desent Data of a 2-FuntorWe have so far introdued a 2-ategory Triv2

π(i) of 2-funtors with π-loal i-trivializationsand a desent 2-ategory assoiated to the surjetive submersion π and the 2-funtor i :
Gr // T . Now we de�ne a 2-funtor

Exπ : Triv2
π(i) // Des2

π(i)between these 2-ategories. This 2-funtor extrats desent data from 2-funtors with loaltrivializations. 15



Let F : P2(M) // T be a 2-funtor with a π-loal i-trivialization (triv, t). We hoosea weak inverse t̄ : trivi // π∗F together with invertible modi�ations
it : t̄ ◦ t +3 idπ∗F and jt : idtrivi

+3 t ◦ t̄ (1.6)satisfying the identities (A.1). We de�ne a pseudonatural equivalene
g : π∗1trivi

// π∗2trivias the omposition g := π∗2t ◦ π
∗
1 t̄. This omposition is well-de�ned sine π∗1π∗F = π∗2π

∗F .We obtain ∆∗g = t ◦ t̄, so that the de�nition ψ := jt yields an invertible modi�ation
ψ : idtrivi

+3 ∆∗g.Finally, we de�ne an invertible modi�ation
f : π∗23g ◦ π

∗
12g +3 π∗13gas the omposition

(π∗3t ◦ π
∗
2 t̄) ◦ (π∗2t ◦ π

∗
1 t̄)

+3 π∗3t ◦ ((π∗2 t̄ ◦ π
∗
2t) ◦ π

∗
1 t̄)

id◦(π∗
2 it◦id)

��
π∗3t ◦ (idπ∗F ◦ π∗1 t̄) id◦rπ∗

1
t̄

+3 π∗3t ◦ π
∗
1 t̄where r is the right uni�er of Funct(P2(Y

[2]), T ), and the �rst arrow summarizes two obviousourrenes of assoiators.Lemma 1.9. The modi�ations ψ and f make the diagrams (1.1) and (1.2) ommutative,so that
Exπ(F, triv, t) := (triv, g, ψ, f)is a desent objet.Proof. We prove the ommutativity of the diagram on the left hand side of (1.1) bypathing it together from ommutative diagrams:

idπ∗
2trivi ◦ (π∗2t ◦ π

∗
1 t̄)

/. -,() *+C

/. -,() *+B

r

� 
99999999999999999999999999

99999999999999999999999999
a−1

PPPP
PPPP

$,PPP
PPP

jt◦(id◦id) +3 ∗

/. -,() *+A

a−1

��

a +3 π∗2t ◦ (π∗2 t̄ ◦ (π∗2t ◦ π
∗
1 t̄))

id◦a−1
~~~~~~

~~~~~~

{� ~~~~~~

~~~~~~∗

/. -,() *+D

r◦id

))))))))

))))))))

��
)))))))

)))))))

(jt◦id)◦id +3 ∗

a◦id
��
∗

(id◦it)◦id
��

a +3
/. -,() *+B

∗

id◦(it◦id)x� xxxxxx
xxxxxx

∗

l◦id
����

}� ����

a +3 ∗

id◦rs{ ooooooooo

ooooooooo

π∗2t ◦ π
∗
1 t̄ 16



The six subdiagrams are ommutative: A is the Pentagon axiom (C4) of T , B's are thenaturality of the assoiator, C and D are diagrams that follow from the oherene theoremfor the 2-ategory T , and the remaining small triangle is axiom (C2). The ommutativityof the seond diagram in (1.1) and the one of diagram (1.2) an be shown in the same way. �Now let A : F // F ′ be a pseudonatural transformation between two 2-funtors with
π-loal i-trivializations t : π∗F // trivi and t′ : π∗F ′ // triv′

i. Let it, jt and it′ , jt′ be themodi�ations (1.6) we have hosen for the weak inverses t̄ and t̄′. We de�ne a pseudonaturaltransformation
h : trivi // triv′

iby h := (t′ ◦ π∗A) ◦ t̄, and an invertible modi�ation ǫ by
π∗2h ◦ g +3 (π∗2t

′ ◦ π∗2π
∗A) ◦ ((π∗2 t̄ ◦ π

∗
2t) ◦ π

∗
1 t̄)

(π∗
2 l

−1
t′

◦id)◦(π∗
2 it◦id)

��
((π∗2t

′ ◦ id) ◦ π∗2π
∗A) ◦ (id ◦ π∗1 t̄)

((id◦π∗
1 i

−1
t′

)◦id)◦π∗
1rt

��
((π∗2t

′ ◦ (π∗1 t̄
′ ◦ π∗1t

′)) ◦ π∗1π
∗A) ◦ π∗1 t̄

+3 g′ ◦ π∗1h.Here, the unlabelled arrows summarize the de�nitions of h and g and several obviousourrenes of assoiators. Arguments similar to those given in the proof of Lemma 1.9inferLemma 1.10. The modi�ation ǫ makes the diagrams (1.3) and (1.4) ommutative, so that
Exπ(A) := (h, ǫ) is a desent 1-morphism

Exπ(A) : Exπ(F ) // Exπ(F
′).In order to ontinue the de�nition of the 2-funtor Exπ we onsider a modi�ation

B : A1
+3 A2 between pseudonatural transformations A1, A2 : F // F ′ of 2-funtors with

π-loal i-trivializations t : π∗F // trivi and t′ : π∗F ′ // triv′
i. Let (hk, ǫk) := Exπ(Ak) bethe assoiated desent 1-morphisms for k = 1, 2. We de�ne a modi�ation E : h1

+3 h2by
h1 = (t′ ◦ π∗A1) ◦ t̄

(id◦π∗B)◦id +3 (t′ ◦ π∗A2) ◦ t̄ = h2.Lemma 1.11. The modi�ation E makes the diagram (1.5) ommutative so that Exπ(B) :=
E is a desent 2-morphism

Exπ(B) : Exπ(A1) +3 Exπ(A2).17



To �nish the de�nition of the 2-funtor Exπ we have to de�ne its ompositors andunitors. We onsider two omposable pseudonatural transformations A1 : F // F ′ and
A2 : F ′ // F ′′ and the extrated desent 1-morphisms (hk, ǫk) := Exπ(Ak) for k = 1, 2and (h̃, ǫ̃) := Exπ(A2 ◦A1). The ompositor

cA1,A2 : Exπ(A2) ◦ Exπ(A2) +3 Exπ(A2 ◦A1)is the modi�ation h2 ◦ h1
+3 h̃ de�ned by

((t′′ ◦ π∗A2) ◦ t̄
′) ◦ ((t′ ◦ π∗A1) ◦ t̄) +3 (t′′ ◦ (π∗A2 ◦ ((t̄′ ◦ t′) ◦ π∗A1))) ◦ t̄

(id◦(id◦(it′◦id)))◦id

��
(t′′ ◦ (π∗A2 ◦ (id ◦ π∗A1))) ◦ t̄ +3 (t′′ ◦ π∗(A2 ◦A1)) ◦ t̄,whih is indeed a desent 2-morphism.For a 2-funtor F : P2(M) // T we �nd Exπ(idF ) = t ◦ t̄. So, the unitor
uF : Exπ(idF ) +3 idtriviis the modi�ation uF := j−1

t . The identities (A.1) for it and jt show that this modi�ationis a desent 2-morphism. With arguments similar to those given in the proof of Lemma1.9, we haveLemma 1.12. The struture olleted above furnishes a 2-funtor
Exπ : Triv2

π(i) // Des2
π(i).We have now desribed how globally de�ned 2-funtors indue loally de�ned struturein terms of the 2-funtor Exπ. Going in the other diretion is more involved; this is theontent of the following setion.2 Reonstrution from Desent DataIn Setion 1 we have introdued 2-funtors on the path 2-groupoid of a smooth manifold,loal trivializations and desent data. We have further desribed a proedure how to extratdesent data from a loally trivialized 2-funtor in terms of a 2-funtor Exπ. In this setionwe proveTheorem 2.1. The 2-funtor

Exπ : Triv2
π(i)

// Des2
π(i)is an equivalene of 2-ategories. 18



We prove this theorem in a onstrutive way: we introdue a 2-funtor
Recπ : Des2

π(i) // Triv2
π(i)in the opposite diretion, whih reonstruts a 2-funtor from a given desent objet, suhthat Exπ and Recπ form a pair of equivalenes of 2-ategories. The main ingredient is aertain 2-groupoid that we all the odesent 2-groupoid . Its de�nition is the ontent ofSetion 2.1. The odesent 2-groupoid joins two important properties. First, it is equivalentto the path 2-groupoid of the underlying manifoldM ; this is shown in Setion 2.2. Seondly,it is �dual� to the desent 2-ategory Des2

π(i) introdued in the previous setion; this dualityis worked out in Setion 2.3. In Setion 2.4 we put the two piees together and de�ne the2-funtor Recπ.2.1 A Covering of the Path 2-GroupoidIn the following we introdue the odesent 2-groupoid Pπ
2 (M) assoiated to a surjetivesubmersion π : Y // M . It ombines the path 2-groupoid of Y with additional jumpsbetween the �bres. This onstrution generalizes the one of the groupoid Pπ

1 (M) from[SW07℄.The objets of Pπ
2 (M) are all points a ∈ Y . There are two �basi� 1-morphisms:(1) Paths: thin homotopy lasses of paths γ : a // a′ in Y .(2) Jumps: points α ∈ Y [2] onsidered as 1-morphisms from π1(α) to π2(α).The set of 1-morphisms of Pπ

2 (M) is freely generated from these two basi 1-morphisms,i.e. we have a formal omposition ∗ and a formal identity id∗
a (the empty omposition)assoiated to every objet a ∈ Y . We introdue six �basi� 2-morphisms:(1) Four of essential type:(a) Thin homotopy lasses of bigons Σ : γ1

+3 γ2 in Y going between paths.(b) Thin homotopy lasses of paths Θ : α // α′ in Y [2] onsidered as 2-isomorphisms
Θ : α′ ∗ π1(Θ) +3 π2(Θ) ∗ α,going between 1-morphisms mixed from jumps and paths.() Points Ξ ∈ Y [3] onsidered as 2-isomorphisms
Ξ : π23(Ξ) ∗ π12(Ξ) +3 π13(Ξ)going between jumps. 19



(d) Points a ∈ Y onsidered as 2-isomorphisms
∆a : id∗

a
+3 (a, a)relating the formal identity with the trivial jump.In (b) to (d) we demand that the 2-morphisms Θ, Ξ and ∆a ome with formal inverses,denoted by Θ−1, Ξ−1 and ∆−1

a .(2) Two of tehnial type:(a) assoiators for the formal omposition, i.e. 2-isomorphisms
a∗β1,β2,β3

: (β3 ∗ β2) ∗ β1
+3 β3 ∗ (β2 ∗ β1)for βk either paths or jumps, and uni�ers

lβ : β ∗ id∗
a

+3 β and rβ : id∗
b ∗ β +3 β.(b) for points a ∈ Y and omposable paths γ1 and γ2 2-isomorphisms

u∗a : ida +3 id∗
a and c∗γ1,γ2 : γ2 ∗ γ1

+3 γ2 ◦ γ1expressing that the formal omposition restrited to paths ompares to the usualomposition of paths.Now we onsider the set whih is freely generated from these basi 2-morphisms invirtue of a formal horizonal omposition ∗ and a formal vertial omposition ⊛. Theformal identity 2-morphisms are denoted by id⊛

β : β +3 β for any 1-morphism β. Theset of 2-morphisms of the 2-ategory Pπ
2 (M) is this set, subjet to the following list ofidenti�ations:(I) Identi�ations of 2-ategorial type. The formal ompositions ∗ and ⊛, and the 2-isomorphisms of type (2a) form the struture of a 2-ategory and we impose all iden-ti�ations required by the axioms (C1) to (C4).(II) Identi�ations of 2-funtorial type. We have the struture of a 2-funtor

ι : P2(Y ) // Pπ
2 (M).This 2-funtor regards points, paths and bigons in Y as objets, 1-morphisms of type(1) and 2-morphisms of type (1a), respetively. Its ompositors and unitors are the2-isomorphisms c∗ and u∗ of type (2b). We impose all identi�ation required by theaxioms (F1) to (F4) for this 2-funtor.20



(III) Identi�ations of transformation type. We have the struture of a pseudonaturaltransformation
Γ : π∗1ι // π∗2ιbetween 2-funtors de�ned over Y [2]. Its omponent at a 1-morphism Θ : α // α′ in

P1(Y
[2]) is the 2-isomorphism Θ of type (1b). We impose all identi�ations requiredby the axioms (T1) and (T2) for this pseudonatural transformation.(IV) Identi�ation of modi�ation type. We have the struture of a modi�ation

π∗23Γ ◦ π∗12Γ +3 π∗13Γ (2.1)between pseudonatural transformations of 2-funtors de�ned over Y [3]. Its omponentat an objet Ξ ∈ Y [3] is the 2-isomorphism Ξ of type (1). We have the struture ofanother modi�ation
idι +3 ∆∗Γ (2.2)between pseudonatural transformations of 2-funtors over Y , whose omponent at anobjet a ∈ Y is the 2-isomorphism ∆a of type (1d). We impose all identi�ationsrequired by the ommutativity of diagram (A.2) for both modi�ations.(V) Identi�ations of essential type:1. For every point Ψ ∈ Y [4] we impose the ommutativity of the diagram

(π34(Ψ) ∗ π23(Ψ)) ∗ π12(Ψ)

a∗

t| ppppppppppppppp

ppppppppppppppp
π234(Ψ)∗id∗

"*MMMMMMMMMMMMMMM

MMMMMMMMMMMMMMM

π34(Ψ) ∗ (π23(Ψ) ∗ π12(Ψ))

id∗∗π123(Ψ)

��
222222222

222222222
π24(Ψ) ∗ π12(Ψ)

π124(Ψ)

}� ����������

����������

π34(Ψ) ∗ π13(Ψ)
π134(Ψ)

+3 π14(Ψ)of ompositions of jumps.2. For every point α ∈ Y [2] we impose the ommutativity of the diagrams
id∗
b ∗ α

b∗id∗
α +3

r∗α
�#

>>>>>>>>>

>>>>>>>>>
(b, b) ∗ α

(a,b,b)
z� ~~~~~~~~~

~~~~~~~~~

α

and α ∗ id∗
a

id∗
α◦a +3

l∗α
�#

>>>>>>>>>

>>>>>>>>>
α ∗ (a, a)

(a,a,b)
z� |||||||||

|||||||||

α.21



Aording to (I) we have de�ned a 2-ategory Pπ
2 (M). We show in Appendix B that itis atually a 2-groupoid (Lemma B.1). We also have a 2-funtor

ι : P2(Y ) �

� // Pπ
2 (M),a pseudonatural transformation Γ and modi�ations (2.1) and (2.2) laimed by identi�a-tions (II), (III) and (IV).As we shall see next, the odesent 2-groupoid joins two important features: the �rstrelates it to the path 2-groupoid of M and is desribed in the next subsetion. The seondrelates it to the desent 2-ategory from Setion 1 and is desribed in Setion 2.3.2.2 Lifts of Paths and BigonsThere is a anonial strit 2-funtor

pπ : Pπ
2 (M) // P2(M)whose omposition with the 2-funtor ι is equal to the 2-funtor π∗ : P2(Y ) // P2(M)indued from the projetion,
pπ ◦ ι = π∗. (2.3)It sends all 1-morphisms and 2-morphisms whih are not in the image of ι to identities. Inthis setion we showProposition 2.2. The 2-funtor pπ is an equivalene of 2-ategories.To prove this proposition we introdue an inverse 2-funtor

s : P2(M) // Pπ
2 (M).Sine the 2-funtor pπ is surjetive on objets, we all s the setion 2-funtor . To de�ne s,we lift points, paths and bigons in M along the surjetive submersion π, and use the jumpsand the several 2-morphisms of the odesent 2-groupoid whenever suh lifts do not exist.For preparation we need the following tehnial lemma whose proof is postponed toAppendix B.Lemma 2.3. Let γ : x // y be a paths in M , and let x̃, ỹ ∈ Y be lifts of the endpoints,i.e. π(x̃) = x and π(ỹ) = y.(a) There exists a 1-morphism γ̃ : x̃ // ỹ in Pπ

2 (M) suh that pπ(γ̃) = γ.(b) Let γ̃ : x̃ // ỹ and γ̃′ : x̃ // ỹ be two suh 1-morphisms. Then, there exists a unique2-isomorphism A : γ̃ +3 γ̃′ in Pπ
2 (M) suh that pπ(A) = idγ .22



To onstrut the 2-funtor s we �x hoies of an open over {Ui}i∈I of M togetherwith setions σi : Ui // Y , and of lifts s(p) ∈ Y for all points p ∈ M . We also �x, forevery path γ : x // y in M , a 1-morphism s(γ) : s(x) // s(y) in Pπ
2 (M). Suh lifts existaording to Lemma 2.3 (a). For the identity 1-morphisms idx we may hoose the identity1-morphisms id∗

s(x). This de�nes s on objets and 1-morphisms.Now let Σ : γ1
+3 γ2 be a bigon in M . Its image Σ([0, 1]2) ⊂ M is ompat andhene overed by open sets indexed by a �nite subset J ⊂ I. We hoose a deompositionof Σ in a vertial and horizontal omposition of bigons {Σj}j∈J suh that Σj([0, 1]

2) ⊂ Uj .Then we de�ne s(Σ) to be omposed from the 2-morphisms s(Σj) in the same way as Σwas omposed from the Σj . It remains to de�ne the 2-funtor s on bigons Σ whih areontained in one of the open sets U whih has a setion σ : U // Y . We de�ne for suh abigon
s : x

γ1

��

γ2

BBΣ

��

y � // s(x)

s(γ2)

CC

s(γ1)

��
// σ(x)

σ(γ1)

��

σ(γ2)

??
σ(Σ)

��

σ(y) // s(y)

��
�

��
�

��
����

��
�

��
�

��
� ���where the unlabelled 1-morphisms are the obvious jumps, and the unlabelled 2-morphismsare the unique 2-isomorphisms from Lemma 2.3 (b).The 2-funtor s : P2(M) // Pπ

2 (M) de�ned like this is not strit. While its unitoris trivial beause we have by de�nition s(idx) = id∗
s(x), its ompositor cγ1,γ2 : s(γ2) ◦

s(γ1) +3 s(γ2 ◦ γ1) is de�ned to be the unique 2-isomorphism from Lemma 2.3 (b). Allaxioms for the 2-funtor s follow from the uniqueness of these 2-isomorphisms.Now we an proeed with theProof of Proposition 2.2. By onstrution we �nd pπ ◦ s = idP2(M). It remains toonstrut a pseudonatural equivalene
ζ : s ◦ pπ // idPπ2 (M).We de�ne ζ on both basi 1-morphisms. Its omponent at a path is

ζ : a
γ // b

� //

s(π(a))
s(π∗γ) //

��

s(π(b))

tttttt
tttttt

v~ ttttttt

ttttttt

��
a

γ
// b23



where the unlabelled 1-morphisms are again the obvious jumps, and the 2-isomorphism isthe unique one. Notie that if s(π∗γ) happens to be just a path, this 2-isomorphism is justof type (1b). The omponent of ζ at a jump is
ζ : π1(α)

α // π2(α)
� //

s(x)

��777777777

π1(α)

CC���������
// π2(α)

��with x := π(π1(α)) = π(π2(α)), this is just one 2-isomorphism of type (1). For somegeneral 1-morphism, ζ puts the 2-isomorphisms above next to eah other; this way axiom(T1) is automatially satis�ed. Axiom (T2) follows again from the uniqueness of the 2-morphisms we have used.In order to show that ζ is invertible we need to �nd another pseudonatural transforma-tion ξ : idPπ2 (M)
// s ◦ pπ together with invertible modi�ations iζ : ξ ◦ ζ +3 ids◦pπ and

jζ : ididPπ2 (M)
+3 ζ ◦ ξ that satisfy the zigzag identities. The pseudonatural transformation

ξ an be de�ned in the same way as ζ just by turning the diagrams upside down, using theformal inverses. The modi�ations iζ and jζ assign to a point a ∈ Y the 2-isomorphisms
a ξ(a)

""
s(π(a)) ∆(s(π(a))) //

id∗
s(π(a))

;;
��

��

ζ(a) 00

s(π(a)) and a ∆(a) //

id∗
a

""

��

��

ζ(a) **

a

s(π(a)) ξ(a)

==that ombine 2-isomorphisms of type (1) and (1d). The zigzag identities are satis�ed dueto the uniqueness of 2-isomorphisms we have used. �Corollary 2.4. The setion 2-funtor s : P2(M) // Pπ
2 (M) is independent (up to pseu-donatural equivalene) of all hoies, namely the hoie of lifts of points and 1-morphisms,the hoie of the open over, and the hoie of loal setions.This follows from the fat that any two weak inverses of a 1-morphism in a 2-ategoryare 2-isomorphi.2.3 Pairing with Desent DataIn this setion we relate the odesent 2-groupoid Pπ

2 (M) to the desent 2-ategory Des2
π(i)de�ned in Setion 1.2 in terms of a strit 2-funtor

R : Des2
π(i) // Funct(Pπ

2 (M), T ).24



This 2-funtors expresses that the 2-groupoid Pπ
2 (M) is �T -dual� to the desent 2-ategory;this justi�es the notion odesent 2-groupoid.The 2-funtor R labels the struture of the odesent 2-groupoid by desent data in aertain way. To start with, let (triv, g, ψ, f) be a desent objet. Its image under R is a2-funtor

R(triv,g,ψ,f) : Pπ
2 (M) // Twhih is de�ned as follows. To an objet a ∈ Y it assigns the objet trivi(a) in T . On basi1-morphisms it is de�ned by the following assignments:

a
γ // a′

� //
trivi(a)

trivi(γ) // trivi(a
′)

π1(α)
α // π2(α)

� // π∗1trivi(α)
g(α) // π∗2trivi(α).To a formal omposition of basi 1-morphisms it assigns the omposition of the respetiveimages and to the formal identity id∗

a at a point a ∈ Y it assigns idtrivi(a). On the basi2-morphisms of essential types (1a) to (1d) it is de�ned by the following assignments:
a

γ1
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γ2

BBΣ

��

b
� // trivi(a)

trivi(γ1)

$$

trivi(γ2)

::
trivi(Σ)

��

trivi(b)

π1(α)

α

��

π1(Θ)// π1(α
′)

α′

��

Θ
|||||

|||||

y� ||||
||||

π2(α)
π2(Θ)

// π2(α
′)

� //

π∗1trivi(α)

g(α)

��

π∗
1trivi(Θ)

// π∗1trivi(α
′)

g(α′)

��

g(Θ)
qqqqqq

qqqqqq

t| qqqqq
qqqqq

π∗2trivi(α)
π∗
2trivi(Θ)

// π∗2trivi(α
′)

π2(Ξ)

π∗
23(Ξ)
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π1(Ξ)

π12(Ξ)

BB���������

π13(Ξ)
// π3(Ξ)

Ξ

��

� //

π∗2trivi(Ξ)

π∗
23g

∗(Ξ)
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π∗1trivi(Ξ)

π∗
12g(Ξ)

CC���������

π∗
13g(Ξ)

// π∗3trivi(Ξ)

f(Ξ)

��

id∗
a

∆a +3 ∆(a)
� // idtrivi(a)

ψ(a) +3 ∆∗g(a).To the basi 2-morphisms of tehnial type (2a) it assigns assoiators and uni�ers of the2-ategory T . To those of type (2b) it assigns unitors and ompositors of the 2-funtor i,i.e.
ida

u∗a +3 id∗
a

� //
trivi(ida)

ui
triv(a) +3 idtrivi(a)25



γ2 ∗ γ1
c∗γ1,γ2 +3 γ2 ◦ γ1

� //
trivi(γ2) ◦ trivi(γ1)

ci
triv(γ1),triv(γ2) +3 trivi(γ2 ◦ γ1).Finally, some formal horizontal and vertial omposition of 2-morphisms is assigned to theomposition of the images of the respetive basi 2-morphisms, the formal horizontal om-position replaed by the horizontal omposition ◦ of T , and the formal vertial ompositionreplaed by the vertial omposition • of T .By onstrution, all these assignments are well-de�ned under the identi�ations we havedelared under the 2-morphisms of Pπ

2 (M):
• They are well-de�ned under the identi�ations (I) due to the axioms of the 2-ategory
T .

• They are well-de�ned under identi�ations (II) due to the axioms of the 2-funtors
triv and i.

• They are well-de�ned under identi�ations (III) due to the axioms of the pseudona-tural transformation g.
• They are well-de�ned under identi�ations (IV) due to the axioms of the modi�ations
ψ and f ,

• They are well-de�ned under the identi�ations (V) beause these are expliitly as-sumed in the de�nition of desent objets, see diagrams (1.1) and (1.2).We have now de�ned the 2-funtor R(triv,g,ψ,f) on desent objets, 1-morphisms and 2-morphisms. Sine for all points a ∈ Y

R(triv,g,ψ,f)(id
∗
a) = idtrivi(a) = idR(triv,g,ψ,f)(a),it has a trivial unitor. Furthermore,

R(triv,g,ψ,f)(γ) ◦R(triv,g,ψ,f)(β) = R(triv,g,ψ,f)(γ ∗ β)for all omposable 1-morphisms β and γ of any type, so that it also has a trivial ompositor.Hene, the 2-funtor R(triv,g,ψ,f) is strit, and it is straightforward to see that the remainingaxioms (F1) and (F2) are satis�ed.So far we have introdued a 2-funtor assoiated to eah desent objet. Let us nowintrodue a pseudonatural transformation
R(h,ǫ) : R(triv,g,ψ,f)

// R(triv′,g′,ψ′,f ′)assoiated to any desent 1-morphism
(h, ǫ) : (triv, g, ψ, f) // (triv′, g′, ψ′, f ′).26



Its de�nition is as straightforward as the one of the 2-funtor given before. Its omponentat an objet a ∈ Y is the 1-morphism
h(a) : trivi(a) // triv′

i(a).Its omponents at basi 1-morphisms are given by the following assignments:
a

γ // a′
� //

trivi(a)

h(a)

��

trivi(γ) // trivi(a
′)

h(γ)
ttttt

ttttt

v~ ttttt
ttttt h(a′)

��
triv′i(a) triv′

i(γ)
// triv′i(a

′)

π1(α)
α // π2(α)

� //

π∗1trivi(α)

π∗
1h(α)

��

g(α) // π∗2trivi(α)

ǫ(α)
rrrrrr

rrrrrr

t| rrrrr
rrrrr π∗

2h(α)

��
π∗1triv

′
i(α)

g′(α)
// π∗2triv

′
i(α)For ompositions of 1-morphisms, R(h,ǫ) puts the diagrams for the involved basi 1-morphisms next to eah other. For example, to a omposition γ ∗ α of a jump α = (x, y)with a path γ : y // z it assigns the 2-isomorphism

h(z) ◦ (trivi(γ) ◦ g(α)) +3 (triv′
i(γ) ◦ g(α)) ◦ h(x)whih is (up to the obvious assoiators) obtained by �rst applying h(γ) and then ǫ(α). Thisway, axiom (T1) for the pseudonatural transformation R(h,ǫ), namely the ompatibility withthe omposition of 1-morphisms, is automatially satis�ed. It remains to proveLemma 2.5. The assignments R(h,ǫ) are ompatible with the 2-morphisms of the odesent2-groupoid in the sense of axiom (T2).Proof. We hek this ompatibility separately for eah basi 2-morphism. For theessential 2-morphisms it omes from the following properties of the desent 1-morphism

(h, ǫ):
• For type (1a) it omes from axiom (T2) for the pseudonatural transformation h.
• For type (1b) it omes from the axiom for the modi�ation ǫ and from axiom (T2)for the pseudonatural transformation h.
• For types (1) and (1d) it omes from the onditions (1.3) and (1.4) on the desent1-morphism (h, ǫ). 27



For the tehnial 2-morphisms it omes from properties of the 2-ategory T and the one ofthe 2-funtor i: for type (2a) it is satis�ed beause the assoiators and uni�ers of T are nat-ural, and for type (2b) it is satis�ed beause the ompositors and unitors of i are natural. �We have now desribed a 2-funtor assoiated to eah desent objet and a pseudo-natural transformation assoiated to eah desent 1-morphism. Now let (triv, g, ψ, f) and
(triv′, g′, ψ′, f ′) be desent objets and let (h1, ǫ1) and (h2, ǫ2) be two desent 1-morphismsbetween these. For a desent 2-morphism

E : (h1, ǫ1) +3 (h2, ǫ2)we introdue now a modi�ation
RE : R(h1,ǫ1)

+3 R(h2,ǫ2).Its omponent at an objet a ∈ Y is the 2-morphism E(a) : h1(a) +3 h2(a). The axiom for
RE , the ompatibility with 1-morphisms, is satis�ed for paths beause E is a modi�ation,and for jumps beause of the diagram (1.5) in the de�nition of desent 2-morphisms.It is now straightforward to seeProposition 2.6. The assignments de�ned above furnish a strit 2-funtor

R : Des2
π(i) // Funct(Pπ

2 (M), T ).The 2-funtor R represents the desent 2-ategory in a 2-ategory of 2-funtors;in fat in a faithful way. We reall from Setion 1.2 that there is a 2-funtor V :
Des2

π(i) // Funct(P2(Y ), T ) whih is also a representation of the same kind (but not faith-ful). The relation between these two representations is the simple observationLemma 2.7. R ◦ ι∗ = V .From this point of view, the odesent 2-groupoid enlarges the path 2-groupoid P2(Y )by additional 1-morphisms (the jumps) and additional 2-morphisms in suh a way that itarries a faithful representation of the desent 2-ategory.2.4 Equivalene TheoremNow we put the two main aspets of the odesent 2-groupoid together, namely the repre-sentation 2-funtor R and its equivalene with the path 2-groupoid in terms of the setion2-funtor s. The reonstrution 2-funtor Recπ is now introdued as the omposition
Des2

π(i)
R // Funct(Pπ

2 (M), T )
s∗ // Funct(P2(M), T ) .28



Here, s∗ is the omposition with s. Aording to Corollary 2.4, the reonstrution 2-funtor is anonially attahed to the surjetive submersion π : Y // M and the 2-funtor
i : Gr // T .In order to show that the reonstrution ends in the 2-ategory Triv2

π(i) instead ofjust Funct(P2(M), T ) it remains to equip, for eah desent objet (triv, g, ψ, f), the reon-struted 2-funtor
F := R(triv,g,ψ,f) ◦ swith a π-loal i-trivialization (triv, t). Clearly, we take the given 2-funtor triv as the �rstingredient and are left with the onstrution of a pseudonatural equivalene
t : π∗F // trivi. (2.4)This equivalene is simply de�ned by

P2(Y )
π∗ //

triv

��

ι %%KKKKKKKK
P2(M)

s

��

Pπ
2 (M)

id %%KKKKKKKK

pπ
99ssssssss

Pπ
2 (M)

R(triv,g,ψ,f)

��
Gr

i
// T

ζ




�
 


where ζ is the pseudonatural equivalene from Setion 2.2. The triangle on the top of thelatter diagram is equation (2.3), and the remaining subdiagram expresses the equation
ι∗R(triv,g,ψ,f) = triviwhih follows from Lemma 2.7.We reall that the aim of the present Setion 2 was to prove that the extration ofdesent data, the 2-funtor

Exπ : Triv2
π(i) // Des2

π(i),yields an equivalene of 2-ategories (Theorem 2.1). We have so far introdued a anonial2-funtor
Recπ : Des2

π(i)
// Triv2

π(i)in the opposite diretion. To prove Theorem 2.1 it remains to show that the 2-funtors Exπand Recπ form a pair of equivalenes. This is done in the following two lemmata.Lemma 2.8. We have a pseudonatural equivalene Exπ ◦ Recπ ∼= id
Des

2
π(i).29



Proof. Given a desent objet (triv, g, ψ, f) let us pass to the reonstruted 2-funtor andextrat its desent data (triv′, g′, ψ′, f ′). We �nd immediately triv′ = triv. Furthermore,the pseudonatural transformation g′ has the omponents
g′ : α Θ // α′

� //

π∗1trivi(α)

��������

��

π∗
1trivi(Θ)

// π∗1trivi(α
′)

g(Θ)
rrrrrrrrr

rrrrrrrrr

t| rrrrrrrrr

rrrrrrrrr
  BBBBBB

��

cα

��?????? cα′

~~||||||

π∗2trivi(α)
π∗
1trivi(Θ)

// π∗2trivi(α
′)

f(Ξα)−1ks f(Ξα′ )
ks

where we have introdued an objet cα := trivi(s(p)) where p = π(π1(α)) = π(π2(α)) anda 2-morphism Ξα := (π1(α), s(p), π2(α)). It is useful to notie that this means that f is amodi�ation f : g′ +3 g. The modi�ation ψ′ has the omponent
trivi(a)

idtrivi(a)

##

""EEEEEEEE
// trivi(a)

c∆(a)

<<yyyyyyyy

ψ(a)
��

f(Ψ)

��at a point a ∈ Y . Finally, the modi�ation f ′ has the omponent
π∗2trivi(Ξ)

π∗
23g

′(Ξ)

��

��<<<<<<<

cΞ //

idcΞ

??
ψ(p)−1

��

@@�������
cΞ

��<<<<<<<

π∗1trivi(Ξ)

π∗
13g

′(Ξ)

55

π∗
12g

′(Ξ)

77

//
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cΞ // π∗3trivi(Ξ)

f(Ψ)

��

at a point Ξ ∈ Y [3], where we have introdued the 2-morphism Ψ := (cΞ, π
∗
2trivi(Ξ), cΞ),and p is again the projetion of Ξ to M . Now it is straightforward to onstrut a desent1-morphism

ρ(triv,g,ψ,f) : (triv, g′, ψ′, f ′) // (triv, g, ψ, f)whih onsists of the identity pseudonatural transformation h := idtriv and of a modi�ation
ǫ : π∗2h ◦ g′ +3 g ◦ π∗1h indued from the modi�ation f : g′ +3 g and the left and30



right uni�ers. This desent 1-morphism is the omponent of the pseudonatural equivalene
ρ : Exπ ◦ Recπ // id we have to onstrut, at the objet (triv, g, ψ, f).Let us now de�ne the omponent of ρ at a desent 1-morphism

(h, ǫ) : (triv1, g1, ψ1, f1) // (triv2, g2, ψ2, f2).It is useful to introdue a modi�ation ǫ̃ : ḡ2◦π
∗
2h◦g1

+3 π∗1h where ḡ2 is the pullbak of g2along the map Y [2] // Y [2] that exhanges the omponents. It is de�ned as the followingomposition of modi�ations:
ḡ2 ◦ π

∗
2h ◦ g1

id◦ǫ +3 ḡ2 ◦ g2 ◦ π
∗
1h

∆∗
121f2◦id

��
π∗1∆

∗g ◦ π∗1h
π∗
1ψ

−1
2 ◦id

+3 π∗1 id ◦ π∗1h lπ∗1h

+3 π∗1hNow, if we reonstrut and extrat loal data (h′, ǫ′), the pseudonatural transformation h′has the omponents
h′ : a

γ // b
� //

i(triv1(a))

zzvvvvvvv

h(a)
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i(triv1(γ)) // i(triv2(b))

h(γ)
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h(b)
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i(π∗2triv1(α))

π∗
2h(α)
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i(π∗2triv1(β))

π∗
2h(β)

��
i(π∗2triv2(α))2
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i(π∗2triv2(β))

{{wwwwwww

i(triv2(a))
i(triv2(γ))

// i(triv2(b))

ǫ̃(α)−1 ______ks ______ ǫ̃(β)________ks ______

with α := (a, s(π(a))) and β = (b, s(π(b))). Like above we observe that ǫ̃ is hene amodi�ation ǫ̃ : h′ +3 h. Now, the omponent ρ(h,ǫ) we have to de�ne is a desent 2-morphism
(triv′

1, g
′, ψ′, f ′)

ρ(triv1,g1,ψ1,f1)

��

(h′,ǫ′) // (triv′
2, g

′
2, ψ

′
2, f

′
2)

ρ(h,ǫ)
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ρ(triv2,g2,ψ2,f2)

��
(triv1, g1, ψ1, f1)

(h,ǫ)
// (triv2, g2, ψ2, f2),this is just a modi�ation id ◦ h′ +3 h ◦ id sine the vertial arrows are the identitypseudonatural transformations. We de�ne ρ(h,ǫ) from ǫ̃ and right and left uni�ers in theobvious way. It is straightforward to see that this de�nes indeed a desent 2-morphism.31



Finally, we observe that the de�nitions ρ(triv,g,ψ,f) and ρ(h,ǫ) furnish a pseudonaturalequivalene as required. �The seond part of the proof of Theorem 2.1 isLemma 2.9. There exists a pseudonatural equivalene idTriv2
π(i)

∼= Recπ ◦ Exπ.Proof. For a 2-funtor F : P2(X) // T and a π-loal i-trivialization (triv, t), let
(triv, g, ψ, f) be the assoiated desent data. We �nd a pseudonatural transformation

ηF : F // s∗R(triv,g,ψ,f)in the following way. Its omponent at a point x ∈ X is the 1-morphism t(s(x)) :
F (x) // trivi(s(x)) in T . To de�ne its omponent at a path γ : x // y we reall that
s(γ) is a omposition of paths γi : ai // bi and jumps αi, so that we an ompose ηF (γ)from the piees

π∗F (ai)

ηF (ai)
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π∗F (γi) // π∗F (bi)

t(γi)
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s{ nnnnnnnn ηF (bi)
��

trivi(ai)
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// trivi(bi)
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π∗1trivi(α)

g(α)

88π∗
1 t̄(α)

// F (p)
π∗
2t(α)

// π∗2trivi(α)where it : t̄ ◦ t +3 id is the modi�ation hosen to extrat desent data. This de�nes thepseudonatural transformation ηF assoiated to a 2-funtor F .Now let A : F1
// F2 be a pseudonatural transformation between two 2-funtors withloal trivializations (triv1, t1) and (triv2, t2). Let (h, ǫ) the assoiated desent 1-morphism.It is now straightforward to see that

ηA := i−1
t1

: ηF2 ◦ A
+3 s∗R(h,ǫ) ◦ ηF1de�nes a modi�ation in suh a way that both de�nitions together yield a pseudonaturaltransformation η : idTriv2

π(i)
// Recπ ◦ Exπ. It is lear that η is even a pseudonaturalequivalene. �We have now derived a orrespondene between the globally de�ned 2-funtors andtheir desent data. This orrespondene is important beause we an now haraterize thetransport 2-funtors we are aiming at, by imposing onditions on their desent data in aonsistent way. This is the subjet of the next setion.32



3 Smoothness ConditionsIn the foregoing two setions we have introdued the algebraial setting for loally trivial2-funtors de�ned on the path 2-groupoid of a smooth manifold. In this setion we imposeadditional smoothness onditions on these 2-funtors that yield the appropriate notion of(parallel) transport 2-funtors.In Setion 3.1 we review how to deide if a 2-funtor on a path 2-groupoid is smooth ornot. In Setion 3.2 we use this notion of smoothness to haraterize smooth desent dataamong all desent data. Transport 2-funtors are de�ned in Setion 3.3 as 2-funtors whihadmit loal trivializations with smooth desent data. We disuss several examples of Lie2-groupoids Gr that orrespond to important lasses of transport 2-funtors. In Setion3.4 we onstrut an example of a transport 2-funtor, the urvature 2-funtor assoiated toany �bre bundle with onnetion.3.1 Smooth FuntorsLet us start with a review on smooth funtors between ordinary ategories. The generalidea of smooth funtors is to onsider them internal to smooth manifolds. That is, the setsof objets and morphisms of the involved ategories are smooth manifolds, and a smoothfuntor onsists of a smooth map between the objets and a smooth map between themorphisms. Categories internal to smooth manifolds are alled Lie ategories. However, inthe situation of a funtor
F : P1(X) // Sde�ned on the path groupoid of a smooth manifold X we enounter the problem that

P1(X) is not a Lie ategory: the set P 1X of morphisms of the path groupoid is not asmooth manifold.One generalization of smooth manifolds whih is appropriate here is the �onvenientsetting� of di�eologial spaes [Sou81℄. Di�eologial spaes and di�eologial maps form aategory D∞ that enlarges the ategory C∞ of smooth manifolds by means of a faithfulfuntor
C∞ // D∞.This means: any smooth manifold an be regarded as a di�eologial spae in suh a waythat a map between two smooth manifolds is smooth if and only if it is di�eologial. Foran introdution to di�eologial spaes we refer the reader to the reent paper [BH08℄ or toAppendix A.2 of [SW07℄.Di�eologial spaes admit many onstrutions that are not possible in the ategoryof smooth manifolds. We need two of them. If X and Y are di�eologial spaes, the set

D∞(X,Y ) of di�eologial maps from X to Y forms again a di�eologial spae. In partiular,the set of smooth maps between smooth manifolds is a di�eologial spae. This is relevantfor the set PX of paths in a smooth manifold X whih is a subset (due to the requirementof sitting instants) of C∞([0, 1],X), and hene a di�eologial spae.33



The seond onstrution that we need is taking quotients. That is, if X is a di�eologialspae and ∼ is an equivalene relation on X, the set X/ ∼ of equivalene lasses is again adi�eologial spae. This is relevant sine the set of morphisms of the path groupoid of X isthe set P 1X := PX/ ∼, where ∼ is thin homotopy equivalene; thus P 1X is a di�eologialspae.Summarizing, the path groupoid P1(X) is a ategory internal to di�eologial spaes.We all a funtor F : P1(X) // S smooth if it is also internal to di�eologial spaes.Expliitly, a smooth funtor onsists of a smooth map F0 : X // S0 on objets, and ofa di�eologial map F1 : P 1X // S1 on morphisms. Similarly, a natural transformation
η : F // F ′ is alled smooth if its omponents at points x ∈ X form a smooth map
X // S1. The ategory of smooth funtors and smooth natural transformations is denotedby Funct∞(P1(X), S).In order to illuminate that this notion of smooth funtors is appropriate for onnetionsin �bre bundles we reall a entral result of [SW07℄ about smooth funtors with values inthe Lie groupoid BG assoiated to a Lie group G. This groupoid has just one objet, and
G is its set of morphisms. The omposition is g2 ◦ g1 := g2g1. Thus, BG is obviously aLie groupoid. Assoiated to the smooth manifold X and the Lie group G is a well-knownategory Z1

X(G)∞ of G-onnetions on X whose objets are 1-forms A ∈ Ω1(X, g) withvalues in the Lie algebra g of G and whose morphisms are smooth funtions g : X // Gating as gauge transformations on the 1-forms in the usual way.Theorem 3.1 (Proposition 4.5 in [SW07℄). There is a anonial isomorphism of ategories
Funct∞(P1(X),BG) ∼= Z1

X(G)∞.Expliitly, the smooth funtors F : P1(X) // BG orrespond one-to-one to 1-forms
A ∈ Ω1(X, g), and the smooth natural transformations η : F1

// F2 orrespond one-to-one to gauge transformations between the assoiated 1-forms A1 and A2. Thus, the notionof di�eologial spaes is able to reover well-known di�erential-geometri struture.We an go even further. The ategory Z1
X(G)∞ an be seen as the ategory of loal dataof trivial prinipal G-bundles with onnetion, so that the smooth funtors orrespond totrivial prinipal G-bundles with onnetion. This is just the loal version of the followingglobal relation:Theorem 3.2 (Theorem 5.8 in [SW07℄). Let X be a smooth manifold. There is a anonialsurjetive equivalene

Trans1BG(X,G-Tor) ∼= Bun∇G(X)between the ategory of transport funtors on X with BG-struture and the ategory ofprinipal G-bundles with onnetion over X.Transport funtors have been introdued in [SW07℄ as an alternativ reformulation of�bre bundles with onnetion, and the latter theorem is one possible manifestation. We34



omit to give a review on transport funtors at this plae; for the following disussion itis only important to keep in mind that there is a ategory of funtors F : P1(X) // Tquali�ed by �struture groupoids� Gr, suh that for ertain hoies, e.g. T = G-Tor and
Gr = BG like above, onrete di�erential-geometri struture is obtained.Summarizing, di�eologial spaes are appropriate to desribe di�erential-geometristruture in ategory-theoretial terms. We will therefore also use di�eologial spaes tode�ne smooth 2-funtors.First we extend the notion of smoothness from funtors to 2-funtors. The set B2X ofthin homotopy lasses of bigons in X is a di�eologial spae in the same way as the set P 1Xexplained above. We shall all a strit 2-funtor F : P2(X) // S with values in a Lie 2-ategory S smooth, if it onsists of a smooth map F0 : X // S0 on objets, of a di�eologialmap F1 : P 1X // S1 on 1-morphisms and of a di�eologial map F2 : B2X // S2 on 2-morphisms. A pseudonatural transformation ρ : F // F ′ is alled smooth if its omponents
ρ(x) at points x ∈ X and ρ(γ) at paths γ in X furnish a smooth map X // S1 anda di�eologial map P 1X // S2. A modi�ation A : ρ1

+3 ρ2 is alled smooth if itsomponents A(x) form a smooth map X // S0. All these form a strit 2-ategory denoted
Funct∞(P2(X), S).We already have evidene that this de�nition is appropriate: the orrespondene ofTheorem 3.1 between smooth funtors and di�erential forms extends to 2-funtors [SW08℄in the following way [SW08℄. First, the notion of a Lie group has to be generalized.De�nition 3.3. A Lie 2-group is a strit monoidal Lie ategory (G,⊠, 1) together with asmooth funtor i : G // G suh that

X ⊠ i(X) = 1 = i(X) ⊠X and f ⊠ i(f) = id1 = i(f) ⊠ ffor all objets X and all morphisms f in G.We desribed in Appendix A, Example A.2, how the strit monoidal ategory (G,⊠, 1)de�nes a strit 2-ategory BG with a single objet. The additional funtor i assures that
BG is a strit 2-groupoid.We infer that every Lie 2-group an be obtained from a smooth rossed module [BS76℄,also see [BL04℄ for a review. These rossed modules are the di�erential geometri ounter-part of the ategory theoreti de�nition of a Lie 2-group.De�nition 3.4. A smooth rossed module is a olletion (G,H, t, α) of Lie groups G and
H, and of a Lie group homomorphism t : H // G and a smooth map α : G ×H // Hwhih de�nes a left ation of G on H by Lie group homomorphisms suh thata) t(α(g, h)) = gt(h)g−1 for all g ∈ G and h ∈ H.b) α(t(h), x) = hxh−1 for all h, x ∈ H. 35



The onstrution of a Lie 2-group G = G(G,H, t, α) from a given smooth rossed module
(G,H, t, α) an be found in the Appendix of [SW08℄. Combining this onstrution with theone of Lie 2-groupoids out of Lie 2-groups, we obtain a Lie 2-groupoid BG assoiated toeah rossed module G = (G,H, t, α). Here it will su�e to desribe this resulting Lie2-groupoid BG: it has one objet denoted ∗, a 1-morphism is a group element g ∈ G, theidentity 1-morphism is the neutral element, and the omposition of 1-morphisms is themultipliation, g2 ◦ g1 := g2g1. The 2-morphisms are pairs (g, h) ∈ G ×H, onsidered as2-morphisms
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∗.All these omposition laws are uniquely determined by the rossed module, up to twoonventional hoies that enter the onstrutions mentioned above.Now we are in the position to onsider the 2-ategory Funct∞(P2(X),BG) of smooth2-funtors, smooth pseudonatural transformations and smooth modi�ations with values inthe Lie 2-groupoid BG. We have shown [SW08℄:1. Any smooth 2-funtor F : P2(X) // BG indues a pair of di�erential forms: a 1-form A ∈ Ω1(X, g) with values in the Lie algebra of G, and a 2-form B ∈ Ω2(X, h)with values in the Lie algebra of H. 36



2. Any smooth pseudonatural transformation ρ : F // F ′ gives rise to a 1-form ϕ ∈
Ω1(X, h) and a smooth map g : X // G. The identity id : F // F has ϕ = 0 and
g = 1. If ρ1 and ρ2 are omposable pseudonatural transformations, the 1-form oftheir omposition ρ2 ◦ ρ1 is (αg2)∗ ◦ ϕ1 + ϕ2, and their map is g2g1 : X // G.3. Any smooth modi�ation A : ρ +3 ρ′ gives rise to a smooth map a : X // H. Theidentity modi�ation idρ has a = 1. If two modi�ations A1 and A2 are vertiallyomposable, A2 • A1 has the map a2a1. If two modi�ations A1 : ρ1

+3 ρ′1 and
A2 : ρ2

+3 ρ′2 are horizontally omposable, A2 ◦ A1 has the map a2α(g2, a1).It has been a straightforward but tedious alulation to onvert the axioms of 2-funtors,pseudonatural transformations and modi�ations into relations among these forms andfuntions. The results are the following [SW08℄: the axioms of a 2-funtor F infer
dA+ [A ∧A] = t∗ ◦B. (3.1)The axioms for a pseudonatural transformation ρ : F // F ′ infer

A′ + t∗ ◦ ϕ = Adg(A) − g∗θ̄ (3.2)
B′ + α∗(A

′ ∧ ϕ) + dϕ+ [ϕ ∧ ϕ] = (αg)∗ ◦B. (3.3)Similar results have been derived in [MP07℄. Finally, the axioms for a modi�ation A :
ρ +3 ρ′ infer

g′ = (t ◦ a) · g and ϕ′ + (r−1
a ◦ αa)∗(A

′) = Ada(ϕ) − a∗θ̄. (3.4)This struture made of di�erential forms and smooth funtions naturally forms a strit2-ategory Z2
X(G)∞: the objets are pairs (A,B) satisfying (3.1) et. This 2-ategorygeneralizes the ategory Z1

X(G)∞ from above, and has hene to be understood as theategory of G-onnetions on X [SW08℄. Moreover, the proedure desribed above furnishesa strit 2-funtor
D : Funct∞(P2(X),BG) // Z2

X(G)∞. (3.5)The main result of [SW08℄ is nowTheorem 3.5 (Theorem 2.20 in [SW08℄). The strit 2-funtor D is an isomorphism
Funct∞(P2(X),BG) ∼= Z2

X(G)∞,and has a anonial strit inverse 2-funtor.This theorem generalizes Theorem 3.1, and shows that the notion of di�eologial spaesis also appropriate to qualify smooth 2-funtors.In the following setion we use smooth 2-funtors and transport funtors to imposesmoothness onditions on the desent data of 2-funtors. The relation to di�erential formswill again be important in Setion 4. 37



3.2 Smooth Desent DataIn this setion we selet a sub-2-ategory Des2
π(i)

∞ of smooth desent data in the 2-ategory
Des2

π(i) of desent data. Transport 2-funtors will then be de�ned as 2-funtors with smoothdesent data. Certainly, if (triv, g, ψ, f) is a desent objet, we demand that the strit 2-funtor triv : P2(Y ) // Gr has to be smooth in the sense disussed in the previous setion.The question what the smoothness ondition for the pseudonatural transformation g andthe modi�ations ψ and f is, is more di�ult sine they take their values not in the Lie2-ategory Gr but in the 2-ategory T whih is in most appliations not a Lie 2-ategory.As antiipated in Setion 6.2 of [SW07℄, the de�nition of a �transport n-funtor� issupposed to rely on a reursive priniple in the sense that it uses the notion of transport
(n − 1)-funtors. Aordingly, we will now use transport funtors to state the remainingsmoothness onditions. Namely, the pseudonatural transformation

g : π∗1trivi // π∗2trivian be viewed as a ertain funtor de�ned on P1(Y
[2]), and the smoothness ondition on gwill be that it is a transport 1-funtor on Y [2]. A little motivation might be the observationthat g orresponds by Theorem 3.2 to a �bre bundle over Y [2] � one of the well-knowningredients of a bundle gerbe, see Setions 4.2 and 4.3.Let us �rst explain in whih way a pseudonatural transformation between two 2-funtorsan be viewed as a funtor. We onsider 2-funtors F and G between 2-ategories S and T .Sine a pseudonatural transformation ρ : F // G assigns 1-morphisms in T to objets in Sand 2-morphisms in T to 1-morphisms in S, the general idea is to onstrut a ategory S0,1onsisting of objets and 1-morphisms of S and a ategory ΛT onsisting of 1-morphismsand 2-morphisms of T suh that ρ yields a funtor

F (ρ) : S0,1
// ΛT .If S is strit, forgetting its 2-morphisms yields immediately the ategory S0,1. The onstru-tion of the ategory ΛT is more involved. If T is strit, its objets are the 1-morphismsof T . A morphism between f : Xf

// Yf and g : Xg
// Yg is a pair of 1-morphisms

x : Xf
// Xg and y : Yf // Yg and a 2-morphism

Xf
x //

f

��

Xg

ϕ||||||

z� |||||| g

��
Yf y

// Yg. (3.6)This gives indeed a ategory ΛT , whose omposition is de�ned by putting the diagrams nextto eah other. Clearly, any strit 2-funtor f : T ′ // T indues a funtor Λf : ΛT ′ // ΛT .For a more detailed disussion of these onstrutions we refer the reader to Setion 4.2 of[SW08℄. 38



Now let ρ : F // G be a pseudonatural transformation between two strit 2-funtorsfrom S to T . Sending an objet X in S to the 1-morphism ρ(X) and sending a 1-morphism
f in S to the 2-morphism ρ(X) now yields a funtor

F (ρ) : S0,1
// ΛT .It respets the omposition due to axiom (T1) for ρ and the identities due to LemmaA.9. Moreover, a modi�ation A : ρ1

+3 ρ2 de�nes a natural transformation F (A) :
F (ρ1) +3 F (ρ2), so that the result is a funtor

F : Hom(F,G) // Funct(S0,1,ΛT ) (3.7)between the ategory of pseudonatural transformations between F and G and the ategoryof funtors from S0,1 to ΛT , for S and T strit 2-ategories and F and G strit 2-funtors.In the ase that the 2-ategory T is not strit, the onstrution of ΛT su�ers from thefat that the omposition is not longer assoiative. The situation beomes treatable if onerequires the objets Xf , Yf and Xg, Yg and the 1-morphisms x and y in (3.6) to be ontainedthe image of a strit 2-ategory T str under some 2-funtor i : T str // T . The result is a
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Figure 1: Objets, morphisms and the omposition of the ategory
ΛiT (the diagram on the right hand side ignores the assoiators andthe braketing of 1-morphisms). Here, c is the ompositor of the2-funtor i.ategory ΛiT , in whih the assoiativity of the omposition is restored by axiom (F3) onthe ompositor of the 2-funtor i. We omit a more formal de�nition and refer the readerto Figure 1 for an illustration. For any 2-funtor f : T // T ′, a funtor

ΛF : ΛiT // ΛF◦iT
′39



is indued by applying f to all involved objets, 1-morphisms and 2-morphisms. If S is thestrit 2-ategory from above, we may now onsider strit 2-funtors F and G from S to
T str. Then, the funtor 3.7 generalizes straightforwardly to a funtor

F : Hom(i ◦ F, i ◦G) // Funct(S0,1,ΛiT )between the ategory of pseudonatural transformations between i ◦ F and i ◦ G and theategory of funtors from S0,1 to ΛiT .The following properties of F are easy to see. It is natural with respet to strit2-funtors f : S′ // S in the sense that the diagram
Hom(i ◦ F, i ◦G)

f∗

��

F // Funct(S0,1,ΛiT )

f∗

��
Hom(i ◦ F ◦ f, i ◦G ◦ f)

F

// Funct(S′
0,1,ΛiT )

(3.8)is ommutative. It also preserves omposition: if F,G,H : S // T str are three strit2-funtors, the diagram
Hom(i◦G, i◦H)×Hom(i◦F, i◦G)

◦

��

F×F // Funct(S0,1,ΛiT )×Funct(S0,1,ΛiT )

⊗

��
Hom(i ◦H, i ◦ F )

F

// Funct(S0,1,ΛiT )

(3.9)is ommutative. Here, the tensor produt ⊗ has the following meaning. The omposition ofmorphisms in ΛiT was de�ned by putting the diagrams (3.6) next to eah other as shown inFigure 1. But one an also put the diagrams of appropriate morphisms on top of eah other,provided that the arrow on the bottom of the upper one oinides with the arrow on thetop of the lower one. This is indeed the ase for the morphisms in the image of omposablepseudonatural transformations under F ×F , so that the above diagram makes sense. In amore formal ontext, the tensor produt ⊗ an be disussed in the formalism of weak doubleategories, but we will not stress this point. However, it will obtain a onrete meaning inSetion 4.2 and 4.3.In what follows the strit 2-ategory S will be the path 2-groupoid of some smoothmanifold, and the strit 2-funtors f : S′ // S will be indued by smooth maps. Notiethat for S = P2(X) we obtain S0,1 = P1(X), the path 1-groupoid of the manifold X.Now we begin the disussion of smooth desent data of 2-funtors P2(M) // T with
π-loal i-trivializations, for π : Y // M a surjetive submersion and i : Gr // T a 2-funtor. Let (triv, g, ψ, f) be a desent objet in the assoiated desent 2-ategory Des2

π(i).Now, the strit Lie 2-groupoid Gr plays the role of the strit 2-ategory T str in the abovesetting, and the path 2-groupoid P2(Y
[2]) the one of S. The two 2-funtors F and G are40



π∗1triv and π∗2triv. Aordingly, the pseudonatural transformation g : π∗1trivi
// π∗2triviindues a funtor

F (g) : P1(Y
[2]) // ΛiT .Similarly, the modi�ation ψ : idtrivi

// ∆∗g indues a natural transformation
F (ψ) : F (idtrivi)

+3 ∆∗
F (g),and here we have used the ommutativity of diagram (3.8). Finally, the modi�ation findues a natural transformation

F (f) : π∗23F (g) ⊗ π∗12F (g) +3 π∗13F (g)where we have again used the ommutativity of diagram (3.8) and also the one of (3.9).We have now onverted a desent objet into a 2-funtor triv, a funtor F (g) and twonatural transformations F (ψ) and F (f). In order for the funtor F (g) to qualify as atransport funtor we need a Lie groupoid and a funtor to its target ategory ΛiT . Thiswill be the funtor
Λi : ΛGr // ΛiT ,and ΛGr is indeed a Lie groupoid beause Gr is a Lie 2-groupoid. Summarizing,De�nition 3.6. A desent objet (triv, g, ψ, f) is alled smooth provided the 2-funtor triv :

P2(Y ) // Gr is smooth, the funtor F (g) is a transport funtor with ΛGr-struture andthe natural transformations ψ and f are morphisms of transport funtors.In the same way we qualify smooth desent 1-morphisms and desent 2-morphisms. Adesent 1-morphism
(h, ǫ) : (triv, g, ψ, f) // (triv′, g′, ψ′, f ′)is onverted into a funtor

F (h) : P1(Y ) // ΛiTand a natural transformation
F (ǫ) : π∗2F (h) ⊗ F (g) +3 F (g′) ⊗ π∗1F (h).We all the desent 1-morphism (h, ǫ) smooth, provided the funtor F (h) is a transportfuntor with ΛGr-struture and the natural transformation F (ǫ) is a 1-morphism of trans-port funtors. A desent 2-morphism E : (h, ǫ) +3 (h′, ǫ′) is onverted into a naturaltransformation

F (E) : F (h) +3 F (h′),and we all E smooth, provided the natural transformation F (E) is a 1-morphism oftransport funtors. Compositions of smooth desent 1-morphisms and smooth desent 2-morphisms are again smooth, so that we obtain a sub-2-ategory Des2
π(i)

∞ of Des2
π(i),41



alled the 2-ategory of smooth desent data. The following disussion shows that one anonsistently haraterize globally de�ned 2-funtors by smooth desent data.Using the equivalene Exπ from Setion 1.3 we obtain a sub-2-ategory Triv2
π(i)

∞ ofthe 2-ategory Triv2
π(i) of 2-funtors with π-loal i-trivialization onsisting only of thoseobjets, 1-morphisms and 2-morphisms whose assoiated desent data is smooth.Lemma 3.7. The 2-funtors Exπ and Recπ restrit to equivalenes of 2-ategories,

Triv2
π(i)

∞ ∼= Des2
π(i)

∞.Proof. First of all, it is lear that the restrition of Exπ to Triv2
π(i)

∞ is a 2-funtorwhose image is ontained in Des2
π(i)

∞. To prove that the image of the restrition of Recπis ontained in Triv2
π(i)

∞ we have to show that Exπ ◦ Recπ restrits to an endo-2-funtorof Des2
π(i)

∞. Indeed, by Lemma 2.8 this 2-funtor is pseudonaturally equivalent to theidentity, and going through the proof of this lemma shows that the omponents of thepseudonatural equivalene ρ we have onstruted there are smooth desent 1-morphismsand smooth desent 2-morphisms.Seondly, the pseudonatural equivalene η : idTriv2
π(i)

// Recπ ◦Exπ onstruted in theproof of Lemma 2.9 has omponents η(F ) in smooth pseudonatural transformations and
η(A) in smooth modi�ations, i.e. those with smooth desent data. Namely, for a funtor
F with trivialization (π, t, triv) and the anonial trivialization (2.4) of 2-funtors in theimage of Recπ, the desent 1-morphism orresponding to the pseudonatural transformation
η(F ) is given by the pseudonatural transformation g of the desent objet (triv, g, ψ, f)orresponding to F and a modi�ation omposed from the modi�ations f and ψ. Thedesent objet is by assumption smooth, and so is η(F ). The same argument shows thatthe omponent η(A) of a pseudonatural transformation A : F // F ′ with smooth desentdata is smooth. �We have now generalized Theorem 2.1, the equivalene between 2-funtors with loaltrivialization and desent objets, to the smooth ase. This will be an important part ofthe equivalene between smooth desent data and transport 2-funtors that we introduein the following setion.3.3 Transport 2-FuntorsNow we ome to the main point of Setion 3.De�nition 3.8. Let M be a smooth manifold, Gr a strit Lie 2-groupoid, T a 2-ategoryand i : Gr // T a 2-funtor.1. A transport 2-funtor on M with Gr-struture is a 2-funtor

tra : P2(M) // T42



suh that there exists a surjetive submersion π : Y // M and a π-loal i-trivialization (triv, t) whose desent objet Exπ(tra, triv, t) is smooth.2. A transport transformation between transport 2-funtors tra and tra′ is a pseudona-tural transformation
A : tra // tra′suh that there exists a surjetive submersion π together with π-loal i-trivializationsof tra and tra′ for whih the desent 1-morphism Exπ(A) is smooth.3. A transport modi�ation is a modi�ation B : A1

+3 A2 suh that the desent 2-morphism Exπ(B) is smooth.Transport 2-funtor tra : P2(M) // T with Gr-struture, transport transformationsand transport modi�ations form a 2-ategory that we denote by Trans2Gr(M,T ). Weemphasize that in the struture of a transport 2-funtor no surjetive submersion or openover is �xed: transport 2-funtors are manifest globally de�ned strutures.We want to establish an equivalene between these globally de�ned transport 2-funtorsand their smooth desent data. For this purpose we remark that the 2-ategories Triv2
π(i)

∞of 2-funtors with smooth loal trivializations and Des2
π(i)

∞ of smooth desent data formdireted systems with respet to the surjetive submersion π : Y // M and re�nementsof those: surjetive submersions ζ : Y ′ // Y suh that π′ = π ◦ ζ. Namely, for eah suhre�nement ζ there are anonial 2-funtors
resζ : Triv2

π(i)
∞ // Triv2

π′(i)∞ and resζ : Des2
π(i)

∞ // Des2
π′(i)∞.These 2-funtors just pullbak all the struture along the re�nement map ζ : Y ′ // Y . Itis thus lear that they ompose stritly for iterated re�nements. Now we take the diretlimit over all surjetive submersions and their re�nements. This diret limit is to be takenin the ategory of 2-ategories, in order to make things as easiest as possible.In general, suppose that S(π) are 2-ategories, one for eah surjetive submersion π :

Y // X, and F (ζ) : S(π) // S(π′) are 2-funtors, one for eah re�nement ζ : Y ′ // Y ,suh that F (ζ ′ ◦ ζ) = F (ζ ′) ◦ F (ζ) for repeated re�nements. In this situation, the diretlimit is a 2-ategory
SM := lim

→
π

S(π)together with 2-funtors G(π) : S(π) // SM suh that(a) G(π) = G(π′) ◦ F (ζ) for every re�nement ζ : Y ′ // Y and(b) the following universal property is satis�ed: for any other 2-ategory S′ and 2-funtors
G′(π) : S(π) // S′ satisfying (a) there exists a unique 2-funtor

C : SM // S′suh that G′(π) = C ◦G(π). 43



In the ategory of 2-ategories, these (o)limits always exist and are uniquely determinedup to strit equivalenes of 2-ategories.In the present situation, we obtain 2-ategories
Triv2(i)∞M := lim

→
π

Triv2
π(i)

∞ and Des2(i)∞M := lim
→
π

Des2
π(i)

∞.Sine the 2-funtors Exπ and Recπ ommute with the 2-funtors recζ above, it is easyto dedue from the universal property and Lemma 3.7 that these two 2-ategories areequivalent.Next we want to show that the 2-ategories Triv2(i)∞M and Trans2Gr(M,T ) are equivalent.From the universal property we obtain a unique 2-funtor
v∞ : Triv2(i)∞M // Trans2Gr(X,T )indued by (tra, π, triv, t) � // tra, i.e. by forgetting the hosen trivialization. In order toprove that v∞ is an equivalene we have to make a slight assumption on the 2-funtor i.We all a 2-funtor i : Gr // T full and faithful , if it indues an equivalene on Hom-ategories. In partiular, i is full and faithful if it is an equivalene of 2-ategories, whihis the ase in all examples we are going to disuss.Lemma 3.9. Under the assumption that the 2-funtor i is full and faithful, the 2-funtor

v∞ is an equivalene of 2-ategories.Proof. It is lear that an inverse funtor w∞ piks a given transport 2-funtor andhooses a smooth loal trivialization for some surjetive submersion π : Y // M . It followsimmediately that v∞ ◦ w∞ = id. It remains to onstrut a pseudonatural equivalene
id ∼= w∞ ◦ v∞, i.e. a 1-isomorphism

A : (tra, π, triv, t) // (tra, π′, triv′, t′)in Triv2(i)∞M , where the original π-loal trivialization (triv, t) has been forgotten and re-plaed by a new π′-loal trivialization (triv′, t′). But sine the 1-morphisms in Triv2(i)∞Mare just pseudonatural transformation between the 2-funtors ignoring the trivializations,we only have to prove that the identity pseudonatural transformation
A := idtra : tra // traof a transport 2-funtor tra has smooth desent data (h, ǫ) with respet to any two trivial-izations (π, triv, t) and (π′, triv′, t′).The �rst step is to hoose a re�nement ζ : Z // Y ×M Y ′ of the ommon re�nementof the to surjetive submersions. One an hoose Z suh that is has ontratible onnetedomponents. If c : Z × [0, 1] // Z is suh a ontration, it de�nes for eah point z ∈ Za path cz : z // zk that moves z to the distinguished point zk to whih the omponent44



of Z that ontains z is ontrated. It further de�nes for eah path γ : z1 // z2 a bigon
cγ : γ +3 c−1

z2
◦ cz1 . Axiom (T2) for the pseudonatural transformation

h := t′ ◦ t̄ : trivi // triv′iapplied to the bigon cγ yields the ommutative diagram
h(z2) ◦ trivi(γ)

h(γ) +3

id◦trivi(cγ)

��

triv′
i(γ) ◦ h(z1)

triv′
i(cγ)◦id

��
h(z2) ◦ trivi(c

−1
z2

◦ cz1)
h(c−1

z2
◦cz1)

+3 triv′
i(c

−1
z2

◦ cz1) ◦ h(z1).Notie that the 1-morphisms h(zj) : trivi(zj) // triv′
i(zj) have by assumption preimages

κj : triv(zj) // triv′(zj) under i in Gr, and that the 2-morphism h(c−1
z2

◦ cz1) also has apreimage Γ in Gr. Thus,
h(γ) = i

(
(triv′(cγ) ◦ id)−1 • Γ • (id ◦ triv(cγ))

) .This is nothing but the Wilson line WF (h),Λi
z1,z2 of the funtor F (h) and it is smooth sine trivand triv′ are smooth 2-funtors. Hene, by Theorem 3.12 in [SW07℄, F (h) is a transportfuntor with ΛGr-struture.It remains to prove that the modi�ation ǫ : π∗2h ◦ g +3 g′ ◦ π∗1h indues a mor-phism F (ǫ) of transport funtors. This simply follows from the general fat that underthe assumption that the funtor i : Gr // T is full, every natural transformation ηbetween transport funtors with Gr-struture is a morphism of transport funtors. Wehave not shown this in [SW07℄ but it an easily be dedued from the naturality on-ditions on trivializations t and t′ and on η, evaluated for paths with a �xed starting point. �The �nal onsequene of the latter lemma is the following important result on transport2-funtors.Theorem 3.10. Let M be a smooth manifold, and let i : Gr // T be a full and faithful2-funtor. There is a anonial equivalene

Trans2Gr(M,T ) ∼= Des2(i)∞Mbetween the 2-ategory of globally de�ned transport 2-funtors on M and the 2-ategory ofsmooth desent data.In the following we introdue several features of transport 2-funtors, whih make on-tat between the abstrat setting and some more onrete notions.45



Operations on Transport 2-Funtors. It is straightforward to see that transport 2-funtors allow a list of natural operations.1. Pullbaks: Let f : M // N be a smooth map. The pullbak f∗tra of any transport2-funtor on N is a transport 2-funtor on M .2. Tensor produts: Let ⊗ : T×T // T be a monoidal struture on a 2-ategory T . Fortransport 2-funtors tra1, tra2 : P2(M) // T with Gr-struture, the pointwise tensorprodut tra1 ⊗ tra2 : P2(M) // T is again a transport 2-funtor with Gr-struture,and makes the 2-ategory Trans2Gr(M,T ) a monoidal 2-ategory.3. Change of the target 2-ategory : Let T and T ′ be two target 2-ategories equippedwith 2-funtors i : Gr // T and i′ : Gr // T ′, and let F : T // T ′ be a 2-funtortogether with a pseudonatural equivalene
ρ : F ◦ i // i′.If tra : P2(M) // T is a transport 2-funtor with Gr-struture, F ◦ tra is also atransport 2-funtor with Gr-struture. In partiular, this is the ase for i′ := F ◦ iand ρ = id.4. Change of the struture 2-groupoid : Let tra : P2(M) // T be a transport 2-funtorwith Gr-struture, for a 2-funtor i : Gr // T whih is a omposition

Gr
F // Gr′

i′ // Tin whih F is a smooth 2-funtor. Then, tra is also a transport 2-funtor with
Gr′-struture, sine for any loal i-trivialization (triv, t) of tra we have a loal i′-trivialization (F ◦ triv, t). Conversely, if tra′ : P2(M) // T is a transport 2-funtorwith Gr′-struture, it is not neessarily a transport 2-funtor with Gr-struture.Struture Lie 2-Groups. As we have desribed in Setion 3.1, a Lie 2-group G givesrise to a Lie 2-groupoid BG, and hene to important examples of struture 2-groupoids.Transport 2-funtors with BG-struture play the role of gerbes with onnetion, as Setion4 will prove. The Lie 2-group G is the struture 2-group of these gerbes. In the followingwe list important examples of suh struture 2-groups.(a) Let A be an abelian Lie group. A smooth rossed module is de�ned by G = {1}and H := A. This �xes the maps to t(a) := 1 and α(1, a) := a. Notie that axiomb) is only satis�ed beause A is abelian. The assoiated Lie 2-group G is denotedby BA. Transport 2-funtors with BBA-struture play the role of abelian gerbes withonnetion, see Setion 4.2. 46



(b) Let G be any Lie group. A smooth rossed module is de�ned by H := G, t = idand α(g, h) := ghg−1. The assoiated Lie 2-group is denoted by EG. This notationis devoted to the fat that the geometri realization of the nerve of the ategory EGyields the universal G-bundle EG. Transport 2-funtors with BEG-struture arise asthe urvature of transport 1-funtors, see Setion 3.4.() Let H be a onneted Lie group, so that the group of Lie group automorphismsof H is again a Lie group G := Aut(H). The de�nitions t(h)(x) := hxh−1 and
α(ϕ, h) := ϕ(h) yield a smooth rossed module whose assoiated Lie 2-group G isdenoted by AUT(H). Transport 2-funtors with BAUT(H)-struture play the rolenon-abelian gerbes with onnetion, see Setion 4.3.(d) Let

1 // N
t // H

p // G // 1be an exat sequene of Lie groups denoted by N. There is a anonial ation α of Hon N de�ned by requiring
t(α(h, n)) = ht(n)h−1.This de�nes a smooth rossed module, whose assoiated Lie 2-group we also denote

N. Transport 2-funtors with BN-struture orrespond to (non-abelian) lifting gerbes.They generalize the abelian lifting gerbes [Bry93, Mur96℄ for entral extensions toarbitrary short exat sequenes of Lie groups.Transgression to Loop Spaes. Let us brie�y indiate that transport 2-funtors on asmooth manifold M indue tautologially struture on the loop spae LM . This omesfrom the fat that there is a anonial di�eologial funtor
ℓ : P1(LM) // ΛP2(M)expressing the fat that a point in LM is just a partiular path in M , and that a path in

LM is just a partiular bigon in M [SW08℄. The omposition of ℓ with
Λtra : ΛP2(M) // ΛtraTyields a funtor

Tgr(tra) := Λtra ◦ ℓ : P1(LM) // ΛtraTthat we all the transgression of tra to the loop spae. In order to ut the disussion of thefuntor Tgr(tra) short we make two simplifying assumptions:1. We assume that there exists a surjetive submersion π : Y // M for whih traadmits smooth loal trivializations and for whih Lπ : LY // LM is also a surjetivesubmersion. 47



2. We assume that the target 2-ategory T is strit, so that ΛT is the target ategoryof the funtor Tgr(tra).We also restrit the following onsideration to the based loop spae ΩpM , for p ∈ Many point, and identify Tgr(tra) with its pullbak along the embedding ιp : ΩpM // LM .Proposition 3.11. Let tra : P2(M) // T be a transport 2-funtor with Gr-struture suhthat the two simplifying assumptions above are satis�ed. Then,
Tgr(tra) : P1(ΩpM) // ΛTis a transport funtor with ΛGr-struture.Proof. Let t : π∗tra // trivi be a π-loal i-trivialization of tra for π a surjetivesubmersion satisfying the simplifying assumption. A loal trivialization t̃ of Tgr(tra) isgiven by

P1(LY )

ℓ
��

(Lπ)∗ // P1(LM)

ℓ
��

ΛP2(Y )

Λtriv

��

π∗ // ΛP2(M)

Λt
qqqqqqqq

t| qqqqqqqq Λtra

��
ΛGr

Λi
// ΛTin whih the upper subdiagram is ommutative on the nose. If g : π∗1trivi

// π∗2trivi isthe pseudonatural transformation in the smooth desent objet Exπ(tra, t, triv), and g̃ isthe natural transformation in the desent objet Exπ(Tgr(tra), t̃, ℓ∗Λtriv) assoiated to theabove trivialization, we �nd
g̃ = ℓ∗Λg.Sine F (g) is a transport 2-funtor with ΛGr-struture, it has smooth Wilson lines[SW07℄: for a �xed point α ∈ Y [2] there exists a smooth natural transformation

g′ : π∗1ℓ
∗Λtriv // π∗2ℓ

∗Λtriv with g = i(g′). This shows that g̃ fators through a smoothnatural transformation ℓ∗Λg′, so that Tgr(tra) is a transport funtor. �With a view to the equivalene of Theorem 3.1 between transport funtors and �brebundles with onnetion, this means that transport 2-funtors on a manifold M naturallyindue �bre bundles with onnetion on the loop spae LM . In general, these are so-alled groupoid bundles [MM03, SW07℄ with onnetion, whose struture groupoid is ΛGr.However, in the abelian ase, i.e. Gr = BBA for an abelian Lie group A, we �nd ΛGr ∼= BA(see Lemma 4.7 below), so that the transgression Tgr(tra) is a prinipal A-bundle withonnetion over ΩpM . 48



Curvature Forms. Suppose tra : P2(M) // T is a transport 2-funtor with BG-struture, for G some Lie 2-group oming from a smooth rossed module (G,H, t, α). Sinesuh 2-funtors play the role of gerbes with onnetion, one wants to assign a 3-form ur-vature to tra. Sine we also apture non-abelian gerbes, it is not to be expeted that theurvature will be a globally de�ned 3-form on the base manifold M .However, sine transport 2-funtors have a manifest loal behaviour, it is easy to produea loally de�ned 3-form. Let π : Y // M be a surjetive submersion, and let (triv, t) bea π-loal trivialization assoiated to whih we �nd a smooth desent objet. In partiular,we have a smooth 2-funtor
triv : P2(Y ) // BG,whih orresponds aording to Theorem 3.5 to a pair (A,B) of a 1-form A ∈ Ω1(Y, g) anda 2-form B ∈ Ω2(Y, h), for g and h the Lie algebras of G and H, respetively. The urvatureof tra is now de�ned (see Remark A.12 in [SW08℄) to be the 3-form

curv(tra) = dB + α∗(A ∧B) ∈ Ω3(Y, h). (3.10)We reall that we proposed to all a 2-funtor tra : P2(M) // T �at if it fators throughthe projetion P2(M) // Π2(M) of thin homotopy lasses of bigons to homotopy lasses.Now we obtainProposition 3.12. Suppose that the 2-funtor i : BG // T is injetive on 2-morphisms.A transport 2-funtor tra : P2(M) // T with BG-struture is �at if and only if its lo-al urvature 3-form curv(tra) ∈ Ω3(Y, h) with respet to any smooth loal trivializationvanishes.Proof. We proeed in two parts. (a): curv(tra) vanishes if and only if triv is a �at2-funtor, and (b): tra is �at if and only if triv is �at. The laim (a) follows from LemmaA.11 in [SW08℄. To see (b) onsider two bigons Σ1 : γ +3 γ′ and Σ2 : γ +3 γ′ in Y whihare smoothly homotopi so that they de�ne the same element in Π2(Y ). Suppose tra is �atand let Σ := Σ−1
2 • Σ1. Axiom (T2) for the trivialization t is then

t(y) ◦ π∗tra(γ)
t(γ) +3

idt(y)◦π
∗tra(Σ)

��

trivi(γ) ◦ t(x)

trivi(Σ)◦idt(x)

��
t(y) ◦ π∗tra(γ)

t(γ)
+3 trivi(γ) ◦ t(x)and sine π∗tra(Σ) = id by assumption it follows that trivi(Σ) = id, i.e. triv is �at.Conversely, assume that triv is �at. The latter diagram shows that tra is then �at onall bigons in the image of π∗. This is atually enough: let h : [0, 1]3 // M be a smoothhomotopy between two bigons Σ1 and Σ2 whih are not in the image of π∗. Like explained49



in Appendix A.3 of [SW08℄ the ube [0, 1]3 an be deomposed into small ubes suhthat h restrits to smooth homotopies between small bigons that bound these ubes. Thedeomposition an be hosen so small that eah of these bigons is ontained in the imageof π∗, so that tra assigns the same value to the soure and the target bigon of eah smallube. By 2-funtorality of tra, this infers tra(Σ1) = tra(Σ2). �We hene see that the two notions of �atness, namely the one given on the level of2-funtors, and the one given on the level of di�erential forms, oinide. It is, however,lear that the �rst notion is muh more general: it makes sense for struture Lie 2-groupoid
Gr whih are not of the form Gr = BG, and even for any 2-funtor de�ned on the path 2-groupoid of a smooth manifold M , without putting smoothness onditions on the 2-funtoritself.3.4 An Example: Curvature 2-FuntorsIf P is a prinipal G-bundle with onnetion ω over M , one an ompare the paralleltransport maps along two paths γ1, γ2 : x // y,

Px

τγ1

""

τγ2

<<
Py,by an automorphism of Py, namely the holonomy around the loop γ2 ◦ γ

−1
1 ,

τγ2 = Hol∇(γ2 ◦ γ
−1
1 ) ◦ τγ1 .If the paths γ1 and γ2 are the soure and the target of a bigon Σ : γ1

+3 γ2, this holonomyis immediately related to the urvature of ∇. So, a prinipal G-bundle with onnetiondoes not only assign �bres Px to points x ∈M and parallel transport maps τγ to paths, italso assigns a urvature-related quantity to bigons Σ.Under the equivalene between prinipal G-bundles with onnetion and transport fun-tors on X with BG-struture (Theorem 3.2), the prinipal bundle (P,ω) orresponds to thetransport funtor
traP : P1(M) // G-Torthat assigns the �bres Px to points x ∈ M and the parallel transport maps τγ to paths γ.Adding an assignment for bigons is supposed to yields a �urvature 2-funtor�

K(traP ) : P2(M) // Ĝ-Torwhere Ĝ-Tor is the ategory G-Tor regarded as a strit 2-ategory with a unique 2-morphismbetween eah pair of 1-morphisms. The uniqueness of the 2-morphisms expresses the fatthat the urvature is already determined by the parallel transport.50



The goal of this setion is to de�ne a urvature 2-funtor assoiated to any transportfuntor, and to prove that these are transport 2-funtors. This proedure is able to apturethe urvature of onnetions on prinipal bundles, but is in priniple more general.We start with a given transport funtor tra : P1(M) // T with BG-struture for someLie group G and some funtor i : BG // T . We reall from [SW07℄ that this means thatthere exists a surjetive submersion π : Y // M , a funtor triv : P1(Y ) // BG and anatural equivalene
t : π∗tra // trivisuh that its desent data is smooth: the funtor triv is smooth, and the naturaltransformation g : π∗1trivi

// π∗2trivi fators through a smooth natural transformation
g̃ : π∗1triv

// π∗2triv, i.e. g(α) = i(g̃(α)) for every α ∈ Y [2].The urvature 2-funtor assoiated to tra is the strit 2-funtor
K(tra) : P2(M) // T̂whih does on objets and 1-morphisms the same as tra and is on 2-morphisms determinedby the fat that T̂ has a only one 2-morphism between eah pair of 1-morphisms. In thesame way, we obtain a strit 2-funtor
K(i) : B̂G // T̂whih sends the unique 2-morphisms on the left hand side to the unique ones on the right.We observe that the Lie 2-groupoids B̂G and BEG are anonially isomorphi under theassignment

∗

g1

��

g2

CC
��

∗ � // ∗

g1

��

g2

BBg2g
−1
1

��

∗.Now we an hek thatLemma 3.13. The urvature 2-funtor K(tra) is a transport 2-funtor with BEG-struture.Proof. We onstrut a loal trivialization of K(tra) starting with a loal trivial-ization (triv, t) of tra with respet to some surjetive submersion π : Y // M . Let
dtriv : P2(Y ) // BEG be the derivative 2-funtor assoiated to triv [SW08℄: on objetsand 1-morphisms it is given by triv, and it sends every bigon Σ : γ1

+3 γ2 in Y to theunique 2-morphism in BEG between the images of γ1 and γ2 under triv. A pseudonaturalequivalene
K(t) : π∗K(tra) // K(i) ◦ dtrivis de�ned as follows. Its omponent at a point a ∈ Y is the 1-morphism
K(t)(a) := t(a) : tra(π(a)) // i(∗)51



in T . Its omponent t(γ) at a path γ : a // b is the unique 2-morphism in T̂ . Notie thatsine t is a natural transformation, we have a ommutative diagram
tra(π(a))

tra(π(γ)) //

t(a)
��

tra(π(b))

t(b)
��

i(∗)
trivi(γ)

// i(∗)meaning that t(γ) = id. This de�nes the pseudonatural transformation t as required.Now we assume that the desent data (triv, gt) assoiated to the loal trivialization
(triv, t) is smooth, and show that then also the desent objet (dtriv, gK(t), ψ, f) is smooth.As observed in [SW08℄, the derivative 2-funtor dtriv is smooth if and only if triv is smooth.To extrat the remaining desent data aording to the proedure desribed in Setion 1.3,we have to hoose a weak inverse K(t) of the trivialization t(K). It is lear that for t−1 thenatural transformation inverse to t, K(t) := K(t−1) is even a strit inverse. This meansthat the 2-isomorphisms it and jt are identities, and in turn, the modi�ations ψ and f areidentities. The only non-trivial desent datum is the pseudonatural transformation

gK(t) : π∗1dtrivK(i)
// π∗2dtrivK(i).Its omponent at a point α ∈ Y [2] is given by gK(t)(α) := gt(α), and its omponent at somepath Θ : α // α′ is again the identity.The last step is to show that

F (gK(t)) : P1(Y
[2]) // ΛK(i)T̂is a transport funtor with ΛBEG-struture. To do so we have to �nd a loal trivializationwith smooth desent data. This is here partiulary simple: the funtor F (gK(t)) is globallytrivial in the sense that it fators through the funtor

ΛK(i) : ΛBEG // ΛK(i)T̂ .To see this we use the smoothness ondition on the natural transformation gt, namely thatit fators through a smooth natural transformation g̃t. We obtain a smooth pseudonaturaltransformation g̃K(t) : π∗1dtriv // π∗2dtriv suh that gK(t) = K(i)(g̃K(t)). This �nally givesus
F (gK(t)) = ΛK(i) ◦ F (g̃K(t))meaning that F (gK(t)) is a transport funtor with ΛBEG-struture. �We have now obtained a �rst example of a transport 2-funtor. In terms of gerbes, itis a non-abelian gerbe with struture 2-group BEG, and is hene neither equivalent to an52



abelian or non-abelian bundle gerbe nor to a Breen-Messing gerbe. In the remainder of thissetion we ollet some properties of urvature 2-funtors.Sine the value of the urvature 2-funtor K(tra) on bigons does not depend on thebigon itself but only on its soure and target path, it is in partiular independent of thethin homotopy lasses of the bigon. Hene,Proposition 3.14. The urvature 2-funtor K(tra) assoiated to any transport funtor is�at.This proposition gains a very nie interpretation when we relate the urvature of aonnetion ω in a prinipal G-bundle p : P // M to the urvature 2-funtor K(traP )assoiated to the orresponding transport funtor traP . We identify the urvature of ωwith a 2-form curv(ω) ∈ Ω2(P, g).Lemma 3.15. The urvature 2-funtor K(traP ) : P2(M) // Ĝ-Tor has a anonialsmooth p-loal trivializations (p, t, triv). If B ∈ Ω2(P, g) is the 2-form assoiated to trivby Theorem 3.5,
B = curv(ω).Proof. As desribed in detail in Setion 5.1 of [SW07℄, traP admits loal trivializationswith respet to the surjetive submersion p : P // M and with smooth desent data

(triv′, g) suh that the onnetion 1-form ω ∈ Ω1(P, g) of the bundle P orresponds to thesmooth funtor triv′ : P1(P ) // BG under the bijetion of Theorem 3.2. Then, by Lemma3.5 in [SW08℄, the 2-form B′ assoiated to dtriv′ is given by
B′ = dω + [ω ∧ ω].This is indeed the urvature of the onnetion ω. �The announed interpretation of Proposition 3.14 is now as follows: using Lemma 3.15one an now alulate the 3-form urvature (3.10) curv(K(traP )) of the urvature 2-funtorof traP . The alulation involves the seond Bianhi identity for the onnetion ω on theprinipal G-bundle P , and the result is
curv(K(traP )) = 0,whih is aording to Proposition 3.12 an independent proof of Proposition 3.14. In otherwords, Proposition 3.14 is equivalent to the seond Bianhi identity for onnetions on �brebundles.In ase that G is an abelian Lie group A the situation is simpli�ed by the fat thatthere exists a anonial smooth 2-funtor prA : BEA // BBA given by

prA : ∗

g1

��

g2

CCg2g
−1
1

��

∗ � // ∗
��
CCg2g

−1
1

��
∗53



The omposition of prA with K(i) yields a 2-funtor BBA // T̂ . We leave it to the readerto prove the following lemma.Lemma 3.16. If tra : P1(M) // T is a transport funtor with BA-struture, the urvature2-funtor K(tra) is a globally trivial transport 2-funtor with BBA-struture.As a onsequene, if P is a prinipal A-bundle over M with onnetion ω, its urva-ture curv(ω) ∈ Ω2(M, a) is preisely the 2-form whih orresponds to K(traP ) under thebijetion of Theorem 3.5.4 Relation to Gerbes with ConnetionWe have now developed the general theory of transport 2-funtors. In this setion, weredue it to speial ases by piking partiular target 2-ategories T , struture 2-groups Gand appropriate 2-funtors
i : BG // T .We laim that every reasonable onept of a �2-bundle with onnetion� an be obtainedlike this. We provide proofs of this laim for di�erential oyles arising from Breen-Messinggerbes [BM05℄ in Setion 4.1, for abelian bundle gerbes [Mur96℄ in Setion 4.2 and for non-abelian bundle gerbes [ACJ05℄ in Setion 4.3. Setion 4.4 ontains an outlook on furtherrelations between transport 2-funtors and 2-bundles with onnetion, in partiular string2-bundles.4.1 Di�erential non-abelian CohomologyLet G be a Lie 2-group. In this setion we onsider transport 2-funtors

tra : P2(M) // BG (4.1)with BG-struture, for i := idBG : BG // BG the identity 2-funtor. Notie that suhtransport 2-funtors an be produed from a transport 2-funtor t̃ra with BG-struture andtarget 2-ategory T , whenever the 2-funtor ĩ : BG // T is an equivalene of 2-ategories.This is the ase in all examples that appear in this artile. Then, for F : T // BG a weakinverse to ĩ, the 2-funtor F ◦ t̃ra is a transport 2-funtor (4.1) aording to Setion 3.3.In this setion we prove that the desent 2-ategory Des2
π(idBG)∞ an be replaedby a 2-ategory of degree two di�erential G-oyles, whenever the surjetive submersion

π : Y // M is two-ontratible: both Y and the two-fold �bre produt Y [2] have on-tratible onneted omponents. For example, any good open over of M de�nes suh atwo-ontratible surjetive submersion. The di�erential oyles we want to substitute forthe desent data are very onrete objets: they onsist solely of ordinary smooth funtionsand di�erential forms de�ned on Y an �bre produts of Y . One might thus onsider dif-ferential oyles as �loal data� of transport 2-funtors. Degree two di�erential G-oyles54



have �rst been onsidered in [BS07℄. We will here retrieve their de�nition in a systematialway. In order to onvert desent data into suh smooth funtions and di�erential forms, weuse the 2-funtor D from (3.5),
D : Funct∞(P2(X),BG) // Z2

X(G)∞,whih is an isomorphism of 2-ategories, see Theorem 3.5.Let us start with a smooth desent objet (triv, g0, ψ0, f0). It ontains a smooth 2-funtor triv : P2(Y ) // BG and a pseudonatural transformation
g0 : π∗1trivi // π∗2triviwhose assoiated funtor F (g0) is a transport funtor over the ontratible spae Y [2]. ByCorollary 3.13 in [SW07℄ we an hene assume that g0 is equivalent to a smooth pseudona-tural transformation g∞ : π∗1triv

// π∗2triv. Similarly, the modi�ations ψ0 and f0 induesmooth modi�ations ψ∞ and f∞. Now we apply the 2-funtor D to all this struture andobtain(a) an objet (A,B) := D(triv) in Z2
Y (G)∞, i.e. di�erential forms A ∈ Ω1(Y, g) and

B ∈ Ω2(Y, h) satisfying relation (3.1).(b) a 1-morphism
(g, ϕ) := D(g∞) : π∗1(A,B) // π∗2(A,B)in Z2

Y [2](G)∞, i.e. a smooth funtion g : Y [2] // G and a 1-form ϕ ∈ Ω1(Y [2], h)satisfying the relations (3.2) and (3.3).() a 2-morphism
f := D(f∞) : π∗23(g, ϕ) ◦ π∗12(g, ϕ) +3 π∗13(g, ϕ)in Z2

Y [3](G)∞ and a 2-morphism
ψ := D(ψ∞) : id(A,B)

+3 ∆∗(g, ϕ)in Z2
Y (G)∞; these are smooth funtions f : Y [3] // H and ψ : Y // H satisfyingrelations (3.4).Furthermore, the two onditions (1.1) and (1.2) on desent objets translate into orre-sponding onditions, whih are, expressed by pasting diagrams
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and
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����The olletion (a), (b), () satisfying these two relations is alled a di�erential G-oylein degree two. Notie that the diagrams above still involve the omposition laws of the2-ategories Z2

Y [4](G)∞ and Z2
Y [2](G)∞, respetively. We will write out all relations in aseond step on the next page.First we proeed similarly with a desent 1-morphism. The result is a 1-morphismbetween di�erential G-oyles in degree two: a 1-morphism

(h, φ) : (A,B) // (A′, B′)in Z2
Y (G)∞, i.e. a smooth funtion h : Y // G and a 1-form φ ∈ Ω1(Y, h) satisfyingrelations (3.2) and (3.3), and a 2-morphism

ǫ : π∗2(h, φ) ◦ (g, ϕ) +3 (g′, ϕ′) ◦ π∗1(h, φ)in Z2
Y [2](G)∞, i.e. a smooth funtion ǫ : Y [2] // H satisfying (3.4). Conditions (1.3) and(1.4) for desent 1-morphisms result in the identities
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Finally, a desent 2-morphism indues a 2-morphism E : (h, φ) +3 (h′, φ′) in Z2
Y (G)∞, i.e.a smooth funtion E : Y // H that satis�es (3.4), and ondition (1.5) infers
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(g′,ϕ′)
// π∗2(A

′, B′).It is lear that di�erential oyles together with their 1-morphisms and 2-morphismsform a 2-ategory, whih we denote by Z2
π(G)∞, the 2-ategory of degree two di�erential

G-oyles. It is also lear that the 2-funtor D indues a strit 2-funtor between thedesent 2-ategory and this 2-ategory. Sine D is stritly invertible by Theorem 3.5, wehave even moreProposition 4.1. Let G be a Lie 2-group and let π : Y // M be a two-ontratiblesurjetive submersion. Then, the 2-funtor D indues an isomorphism of 2-ategories
Des2

π(idBG)∞ ∼= Z2
π(G)∞.The 2-ategory Z2

π(G)∞ of degree two di�erential G-oyles an, however, be onsid-ered for an arbitrary surjetive submersion. As mentioned above, it plays the role of loaldata of transport 2-funtors. To make this more transparent, let us now write out di�er-ential oyles in terms of smooth funtions and di�erential forms whih are impliit inthe ategories Z2
Y [k](G)∞ appearing above. Let us additionally assume that the surjetivesubmersion π omes from an open over V of M , in whih ase we write Z2

V
(G)∞.A di�erential G-oyle in degree two ((A,B), (g, ϕ), ψ, f) has the following smoothfuntions and di�erential forms:(a) On every open set Vi,

ψi : Vi // H , Ai ∈ Ω1(Vi, g) and Bi ∈ Ω2(Vi, h).(b) On every two-fold intersetion Vi ∩ Vj,
gij : Vi ∩ Vj // G and ϕij ∈ Ω1(Vi ∩ Vj, h).() On every three-fold intersetion Vi ∩ Vj ∩ Vk,

fijk : Vi ∩ Vj ∩ Vk // H.The oyle onditions are the following: 57



1. Over every open set Vi,
dAi + [Ai ∧Ai] = t∗(Bi) (4.2)

gii = t(ψi)

ϕii = −(r−1
ψi

◦ αψi)∗(Ai) − ψ∗
i θ̄.2. Over every two-fold intersetion Vi ∩ Vj ,

Aj = Adgij (Ai) − g∗ij θ̄ − t∗(ϕij)

Bj = (αgij )∗(Bi) − α∗(Aj ∧ ϕij) − dϕij − [ϕij ∧ ϕij ]

1 = fijjψj = fiij αgij (ψi).3. Over every three-fold intersetion Vi ∩ Vj ∩ Vk,
gik = t(fijk)gjkgij

Adfijk(ϕik) = (αgjk)∗(ϕij) + ϕjk + (r−1
fijk

◦ αfijk)∗(Ak) + f∗ijkθ̄.4. Over every four-fold intersetion Vi ∩ Vj ∩ Vk ∩ Vl,
fiklα(gkl, fijk) = fijlfjkl.Additionally, the urvature of the di�erential oyle is aording to (3.10) given by

Hi := dBi + α∗(Ai ∧Bi) ∈ Ω3(Vi, h).We remark that partiular examples of di�erential oyles, namely those with ψi = 1,
ϕij = 0 and fijk = 1 have been onsidered in [MP07℄ as ategorial onnetions on ordinarypriniple G-bundles whose lassifying oyle is given by gij .A 1-morphism ((h, ǫ), φ) between di�erential oyles has the following struture:(a) On every open set Vi,

hi : Vi // G and φi ∈ Ω1(V, h).(b) On every two-fold intersetion Vi ∩ Vj,
ǫij : Vi ∩ Vj // H.The following onditions have to be satis�ed:58



1. Over every open set Vi,
B′
i = (αhi)∗(Bi) − α∗(A

′
i ∧ φi) − dφi − [φi ∧ φi] (4.3)

A′
i = Adhi(Ai) − t∗(φi) − h∗i θ̄

ψ′
i = ǫiiα(hi, ψi).2. Over every two-fold intersetion Vi ∩ Vj ,

g′ij = t(ǫij)hjgijh
−1
i

ϕ′
ij = Adǫij((αhj )∗(ϕij) + φj) − (αg′ij )∗(φi) − (r−1

ǫij
◦ αǫij )∗(A

′
ij) − ǫ∗ij θ̄3. Over every three-fold intersetion Vi ∩ Vj ∩ Vk,

f ′ijk = ǫikα(hk, fijk)α(g′ik, ǫ
−1
ij )ǫ−1

jk .Finally, a 2-morphism E between di�erential oyles has, for any open set Vi, a smoothfuntion Ei : Vi // H suh that on every open set Vi
h′i = t(Ei)hi

φ′i = AdEi(φi) − (r−1
Ei

◦ αEi)∗(A
′) − E∗

i θ̄and, on every 2-fold intersetion Vi ∩ Vj ,
ǫ′ij = α(g′ij , Ei)ǫijE

−1
j .Remark 4.2. The struture and the relations listed above are diret onsequenes of thestruture and axioms of 2-funtors, pseudonatural transformations and modi�ations; nei-ther hoies nor additional assumptions had to be made.Summarizing, we may have started with a transport 2-funtor t̃ra : P2(M) // Twith BG-struture, and ĩ : BG // T an equivalene of 2-ategories. With the hoieof a weak inverse 2-funtor F : T // BG, we have formed the assoiated 2-funtor

F ◦ t̃ra :P2(M) // BG with BG-struture. For V a good open over, and π : Y // Mthe assoiated 2-ontratible surjetive submersion, it de�nes a smooth desent objet in
Des2

π(idBG)∞, and in turn, via the 2-funtor D, a degree two di�erential G-oyle in
Z2

V
(G)∞. This di�erential oyle onsists of smooth funtions and di�erential forms,yielding loal data for the transport 2-funtor tra.In order to relate di�erential G-oyles to the ohomology of the underlying manifold

M we onsider the set of isomorphism lasses of di�erential G-oyles, i.e. the set ofobjets in Z2
V

(G)∞ subjet to the equivalene relation aording to whih two elements areequivalent if and only if there exists a 1-morphism between them. We remark that every59



di�erential G-oyle is equivalent to a di�erential G-oyle with trivial �normalizationfuntion� ψi, i.e. ψi = 1 for all i. We denote the set of equivalene lasses of di�erential
G-oyles by Ȟ2(V,G).We make the following observation. If one drops all di�erential forms from the abovedata and only keeps the smooth funtions, the set Ȟ2(V,G) oinides with the non-abelianohomology H2(V,G), as it appears for instane in [Gir71, Bre94, Bar04, Wo08℄. Thisjusti�es the followingDe�nition 4.3. The set Ȟ2(V,G) of isomorphism lasses of degree two di�erential G-oyles is alled the degree two di�erential non-abelian ohomology of the over V withvalues in the Lie 2-group G. The diret limit

Ȟ2(M,G) := lim
→

V

Ȟ2(V,G)is alled the degree two di�erential non-abelian ohomology of M with values in G.Combining Proposition 4.1 with Theorem 3.10 we obtainTheorem 4.4. Let i : BG // T be an equivalene of 2-ategories. Then, isomorphismlasses of transport 2-funtors tra : P2(M) // T with BG-struture are in bijetion withthe di�erential non-abelian ohomology Ȟ2(M,G).Let us speify two partiular examples of di�erential non-abelian ohomology whihhave been treated in the literature:1. The Lie 2-group G = BS1. We leave it as an easy exerise to the reader to hek thatour di�erential non-abelian ohomology is preisely degree two Deligne ohomology,
Ȟ2(M,BS1) = H2(M,D(2)).Deligne ohomology [Bry93℄ is one of the well-known loal desription of abeliangerbes with onnetion, whih hene appears as a partiular ase of loal data fortransport 2-funtors.2. The Lie 2-group G = AUT(H) for H some ordinary Lie group H. We also leaveit to the reader to hek our di�erential oyles orresponds preisely to the loaldesription of onnetions in non-abelian gerbes given by Breen and Messing [BM05℄(see Remark 4.5 below). Furthermore, the existene of 1-morphisms between dif-ferential oyles orresponds preisely to the equivalene relation used in [BM05℄.Summarizing, we have an equality

Ȟ2(M,AUT(H)) =




Equivalene lasses of loal dataof Breen-Messing H-gerbeswith onnetion over M 


 .Hene, also Breen-Messing gerbes with onnetion appear as a partiular ase oftransport 2-funtors. 60



Remark 4.5. This remark onerns the ondition (4.2) between the 1-form A and the2-form B whih are part of our di�erential G-oyles. It is present neither in the Breen-Messing gerbes [BM05℄ nor in the approah by Ashieri, Cantini and Juro [ACJ05℄ usingnon-abelian bundle gerbes [ACJ05℄, whih is disussed in Setion 4.3. Breen and Messingall the loal 2-form
t∗(Bi) − dAi − [Ai ∧Ai]whih is here zero by (4.2), the fake urvature of the gerbe. In this terminology, transport2-funtors only over Breen-Messing gerbes with vanishing fake urvature.The ruial point is here that neither for the Breen-Messing gerbes nor for the non-abelian bundle gerbes reasonable notions of holonomy or parallel transport are known, whiletransport 2-funtors have suh notions, as we will demonstrate in Setion 5. And indeed,equation (4.2) omes from an important onsisteny ondition on this parallel transport,namely from the target-soure mathing ondition for the transport 2-funtor, whih makesit possible to deompose parallel transport in piees. So we understand equation (4.2) as anintegrability ondition whih has neessarily to be satis�ed if parallel transport is supposedto work. This is a�rmed by Martins-Piken ategorial onnetions [MP07℄, for whihparallel transport plays an important role and where equation (4.2) is also present.4.2 Abelian Bundle Gerbes with ConnetionIn this setion we onsider the target 2-ategory T = B(S1-Tor), the monoidal ategory of

S1-torsors viewed as a 2-ategory with a single objet like in Example A.2. Assoiated tothis 2-ategory is the 2-funtor iS1 : BBS1 // B(S1-Tor) that sends the single 1-morphismof BBS1 to the irle � viewed as an S1-torsor over itself. Now we onsider transport2-funtors
tra : P2(M) // B(S1-Tor)with BBS1-struture. For any surjetive submersion π : Y // M we relate the assoiateddesent 2-ategory Des2

π(iS1)∞ to a 2-ategory BGrb∇(π) of S1-bundle gerbes with onne-tion over M . Let us reall the de�nition of these bundle gerbes following [Mur96, MS00℄.1. A bundle gerbe with onnetion (B,L, ω, µ) is a 2-form B ∈ Ω2(Y ), a irle bundle
L with onnetion ω over Y [2] of urvature curv(ω) = π∗1B− π∗2B, and an assoiativeisomorphism

µ : π∗23L⊗ π∗12L // π∗13Lof irle bundles over Y [3] that respets onnetions.2. A bundle gerbe 1-morphism (B,L, ω, µ) // (B′, L′, ω′, µ′), also known as stable iso-morphism, is a irle bundle A with onnetion ς over Y of urvature curv(ς) = B−B′together with an isomorphism
α : π∗2A⊗ L // L′ ⊗ π∗1A61



of irle bundles that respets the onnetions, suh that the diagram
π∗3A⊗ π∗23L⊗ π∗12L

id⊗µ //

π∗
23α⊗id

��

π∗3A⊗ π∗13L

π∗
13α

��

π∗23L
′ ⊗ π∗2A⊗ L

id⊗π∗
12α

��
π∗23L

′ ⊗ π∗12L
′ ⊗ π∗1A µ′⊗id

// π∗13L
′ ⊗ π∗1A

(4.4)
of isomorphisms of irle bundles over Y [3] is ommutative.3. A bundle gerbe 2-morphism (A, ς, α) +3 (A′, ς ′, α′) is an isomorphism ϕ : A // A′of irle bundles over Y that respets the onnetions, suh that the diagram

π∗2A⊗ L

π∗
2ϕ⊗idL

��

α // L′ ⊗ π∗1A

idL′⊗π∗
1ϕ

��
π∗2A

′ ⊗ L
α′

// L′ ⊗ π∗1A
′

(4.5)of isomorphisms of irle bundles over Y [2] is ommutative.What we have desribed here is a simpli�ed version of the full 2-ategory BGrb∇(M) of
S1-bundle gerbes with onnetion over M , in whih every bundle gerbe has an individualsurjetive submersion, see [Ste00, Wal07℄. We obtain the full 2-ategory bak as the diretlimit

BGrb∇(M) := lim
−→π

BGrb∇(π).We return later to this diret limit. In the following we show �rstTheorem 4.6. For any surjetive submersion π : Y // M there is a anonial surjetiveequivalene of 2-ategories
Des2

π(iS1)∞ ∼= BGrb∇(π).A 2-funtor Des2
π(iS1)∞ // BGrb∇(π) realizing the laimed equivalene is de�nedin the following way. For a desent objet (triv, g, ψ, f), the smooth 2-funtor triv :

P2(Y ) // BBS1 de�nes by Theorem 3.5 a 2-form B ∈ Ω2(Y ), this is the �rst ingredi-ent of the bundle gerbe. The pseudonatural transformation g yields a transport funtor
F (g) : P1(Y

[2]) // ΛiS1B(S1-Tor)62



with ΛBBS1-struture. Let us translate this funtor into familiar language. First of all, wehave evidently ΛBBS1 = BS1. Seond, there is a anonial equivalene of ategories
ΛiS1B(S1-Tor) ∼= S1-Tor. (4.6)This omes from the fat that an objet is in both ategories an S1-torsor. A morphismbetween S1-torsors V and W in Λi

S1B(S1-Tor) is by de�nition a 2-morphism
∗

S1
//

V

��

∗

W

��

f
����

����

{� ������

∗
S1

// ∗in B(S1-Tor), and this is in turn an S1-equivariant map
f : W ⊗ S1 // S1 ⊗ V .It an be identi�ed anonially with an S1-equivariant map f−1 : V // W , i.e. a mor-phism in S1-Tor. It is straightforward to see that (4.6) is even a monoidal equivalene. Inombination with Theorem 3.2 we haveLemma 4.7. For X a smooth manifold, there is a anonial surjetive equivalene of mo-noidal ategories

Bun∇S1(X) ∼= Trans1
ΛBBS1

(X,ΛiS1B(S1-Tor))between irle bundles with onnetion and transport funtors with ΛBBS1-struture.Despite of the heavy notation, this lemma allows us to transform all the remainingdesent data into geometrial data. First, the transport funtor F (g) is a irle bundle Lwith onnetion ω over Y [2]. This irle bundle will be the seond ingredient of the bundlegerbe.Lemma 4.8. The urvature of the onnetion ∇ on the irle bundle L satis�es
curv(ω) = π∗1B − π∗2B.Proof. Let Uα be open sets overing Y [2], and let (t̃riv, t̃) be a loal iS1-trivializationof the transport funtor F (g) onsisting of smooth funtors t̃rivα : P1(Uα) // BS1 andnatural transformations

t̃α : F (g)|Uα // (t̃rivα)i
S1 .We observe that the funtors t̃rivα and the natural transformation t̃α lie in the im-age of the funtor F , suh that there exist smooth pseudonatural transformations ρα :

π∗1triv|Uα
// π∗2triv|Uα and modi�ations tα : g|Uα +3 ρα with

t̃rivα = F (ρα) and t̃α = F (tα).63



As found in [SW08℄ and reviewed in Setion 3.1 of the present artile, assoiated to thesmooth pseudonatural transformation ρα is a 1-form ϕα ∈ Ω1(Uα), and equation (3.3) infersin the present situation
π∗1B − π∗2B = dϕα.It remains to trae bak the relation between ϕα and the urvature of the onnetion ω onirle bundle L. Namely, if Aα is the 1-form orresponding to the smooth funtor t̃rivα, wehave

Aα = ϕα and dAα = curv(ω).This shows the laim. �Seond, the modi�ation f : π∗23g ◦ π
∗
12g

+3 π∗13g indues an isomorphism
F (f) : π∗23F (g) ⊗ π∗12F (g) // π∗13F (g)of transport funtors; again by Lemma 4.7 this de�nes an isomorphism

µ : π∗12L⊗ π∗23L // π∗13Lof irle bundles with onnetion, whih is the last ingredient of the bundle gerbe. Thepentagon identity (1.2) infers the assoiativity ondition on µ. This shows that (B,L,∇, µ)is a bundle gerbe with onnetion. We remark that the desent datum ψ has been forgotten.Using Lemma 4.7 in the same way as just demonstrated it is easy to assign bundlegerbe 1-morphisms to desent 1-morphisms and bundle gerbe 2-morphisms to desent 2-morphisms. Here the onditions (1.3) and (1.5) on the desent 1-morphisms translateone-to-one to the ommutative diagrams (4.4) and (4.5). Most naturally, the ompositionlaw of morphisms between bundle gerbes (whih we have not arried out above) is preiselyreprodued by the omposition laws of the desent 2-ategory Des2
π(iS1)∞.It is evident that the 2-funtor we just have de�ned is an equivalene of 2-ategories,sine all manipulations we have made are equivalenes aording to Lemma 4.7 and Theorem3.5. We only remark that the desent datum ψ an be reprodued in a anonial way froma given bundle gerbe using the existene of dual irle bundles, see Lemma 1 in [Wal07℄.Summarizing, bundle gerbes with onnetion are preisely the desent objets of trans-port 2-funtors with BBS1-struture and values in B(S1-Tor). This equivalene learlyommutes with the re�nement of surjetive submersions. Hene, as a onsequene of The-orem 3.10 we haveCorollary 4.9. We have an equivalene

Trans2
BBS1(M,B(S1-Tor)) ∼= BGrb∇(M)between the 2-ategory of transport 2-funtors and the 2-ategory of bundle gerbes withonnetion over M .In the next setion we proeed similarly for non-abelian bundle gerbes.64



4.3 Non-abelian Bundle Gerbes with ConnetionThe �rst problem one enounters when trying to generalize S1-bundle gerbes to non-abelian
H-bundle gerbes is that the ategory of H-torsors is not monoidal. This problem an besolved using H-bitorsors [BM05℄. More di�ult is to say what onnetions on suh non-abelian bundle gerbes are. In [ACJ05℄ a suitable de�nition was presented involving twistedonnetions on bibundles.We show here that just as abelian S1-bundle gerbes with onnetion are nothing but de-sent objets for i : BBS1 // B(S1-Tor), the non-abelian H-bundle gerbes with onnetionfrom [ACJ05℄ are nothing but desent objets for a 2-funtor

i : BAUT(H) // B(H-BiTor). (4.7)In partiular the urious twist on the onnetions on the bibundles �nds a natural inter-pretation as one omponent of a pseudonatural transformation.4.3.1 Bibundles with twisted ConnetionsThe �rst thing we have to do is to generalize the equivalene between irle bundles withonnetion and ertain transport funtors obtained in Lemma 4.7 to prinipal H-bibundleswith twisted onnetions. For this purpose, let us arry out the details of the ategory ofsuh bibundles, whih are impliit in [ACJ05℄.A prinipal H-bibundle over X is a bundle P // X that is both a left and a rightprinipal H-bundle suh that the two ations ommute with eah other. Morphisms betweentwo prinipal H-bibundles are smooth �brewise bi-equivariant bundle maps.We will denote the left and right ations by an element h ∈ H on a bibundle P by lhand rh, respetively. We remark that measuring the di�erene between the left and theright ation in the sense of lh(p) = rg(h)(p) furnishes a smooth map
g : P // Aut(H). (4.8)In the following we denote by aut(H) the Lie algebra of Aut(H). Like in the onstrutionof the Lie 2-group AUT(H) in Setion 3.3 we denote by t : H // Aut(H) the assignmentof inner automorphisms and by α : Aut(H) ×H // H the evaluation.De�nition 4.10 ([ACJ05℄). Let p : P // X be a prinipal H-bibundle, and let A ∈

Ω1(X, aut(H)) be a 1-form on the base spae. An A-twisted (right) onnetion on P is a1-form φ ∈ Ω1(P, h) satisfying
φρh

(
d

dt
(ρh)

)
= Ad−1

h

(
φρ

(
dρ

dt

))
− (rh ◦ αh)∗ ◦ (p∗A) + θh

(
dh

dt

) (4.9)for all smooth urves ρ : [0, 1] // P and h : [0, 1] // H. A morphism f : P // P ′respets A-twisted onnetions φ on P and φ′ on P ′ if f∗φ′ = φ.65



We write Bibun∇H(X,A) for the ategory of prinipal H-bibundles with A-twisted on-netion over X, and Bibun∇H(X) for the union of these ategories over all 1-forms A.Remark 4.11. For A = 0 an A-twisted right onnetion on P is the same as an ordinaryonnetion on P regarded as a right prinipal bundle. One an give an analogous de�nitionof a twisted left onnetion. Then, a twisted right onnetion gives rise to a twisted leftonnetion, for a di�erent twist, and vie versa. This is disussed in detail in [ACJ05℄, butwill be a manifest onsequene of the reformulation whih we give later.Lemma 4.12. Let A ∈ Ω1(X, aut(H)) be a 1-form and let p : P // X be a prinipal
H-bibundle. For any A-twisted onnetion φ on P there exists a unique 1-form Aφ ∈
Ω1(X, aut(H)) satisfying

p∗Aφ = Adg(p
∗A) − g∗θ̄ − t∗ ◦ φ,where g is the map from (4.8).A twisted onnetion in a prinipal bibundle P gives rise to parallel transport maps

τγ : Px // Pybetween the �bres of P over points x, y assoiated to any path γ : x // y. It is obtainedin the same way as in an ordinary prinipal bundle but using equation (4.9) instead of theusual one. As a result of the twist, the maps τγ are not bi-equivariant; they satisfy
τγ(lFφ(γ)(h)(p)) = lh−1(τγ(p)) and τγ(rh(p)) = rF (γ)−1(h−1)τγ(p) (4.10)where F,Fφ : PX // Aut(H) ome from the funtors assoiated to the 1-forms A and Aφby Theorem 3.1. These ompliated relations have a very easy interpretation, as we willsee in the next setion.Finally, an A-twisted onnetion φ on a prinipal H-bundle P has a urvature: this isthe 2-form

curv(φ) := dφ+ [φ ∧ φ] + α∗(A ∧ φ) ∈ Ω2(P, h).As usual in the non-abelian ase, this 2-form will in general not indue a globally de�ned2-form on the base manifold.For two prinipal H-bibundles P and P ′ over X one an �brewise take the tensorprodut of P and P ′ yielding a new prinipal H-bibundle P ×H P over X. If the twobibundles are equipped with twisted onnetions, the bibundle P ×H P ′ inherits a twistedonnetion only if the two twists satisfy an appropriate mathing ondition. Suppose theprinipal H-bibundle P is equipped with an A-twisted onnetion φ, and P ′ is equippedwith an A′-twisted onnetion φ′, and suppose that the mathing ondition
A′
φ′ = A (4.11)66



is satis�ed. Then, the tensor produt bibundle P ×H P ′ arries an A′-twisted onnetion
φtot ∈ Ω1(P ×H P, h) haraterized uniquely by the ondition that

pr∗φtot = (g ◦ p′)∗ ◦ p
∗φ+ p′∗φ′ ,where pr : P ×XP

′ // P×H P
′ is the projetion to the tensor produt and p and p′ are theprojetions to the two fators. This tensor produt, whih is de�ned only between appro-priate pairs of bibundles with twisted onnetions, turns Bibun∇H(X) into a �monoidoidal�ategory.A better point of view is to see it as a 2-ategory: the objets are the twists, i.e. 1-forms

A ∈ Ω1(X, aut(H)), a 1-morphism A // A′ is a prinipal H-bibundle P with A′-twistedonnetion φ suh that A′
φ′ = A, and a 2-morphism (P, φ) +3 (P ′, φ′) is just a morphismof prinipal H-bibundles that respets the A′-twisted onnetions.4.3.2 Transport Funtors of twisted Connetions in BibundlesWe are now going to identify the ategory Bibun∇H(X) of prinipal H-bibundles with twistedonnetions over X with a (subategory of a) ategory of transport funtors.For preparation, we write H-BiTor for the ategory whose objets are smooth manifoldswith ommuting smooth left and right H-ations, both free and transitive, and whosemorphisms are smooth bi-equivariant maps. Using the produt over H this is naturallya (non-strit) monoidal ategory. As usual we write B(H-BiTor) for the orrespondingone-objet (non-strit) 2-ategory. The announed 2-funtor (4.7),

i : BAUT(H) // B(H-BiTor),is now de�ned as follows. It sends a 1-morphism ϕ ∈ Aut(H) to the H-bitorsor ϕH whih isthe group H on whih an element h ats from the right by multipliation and from the leftby multipliation with ϕ(h). The ompositors of i are given by the anonial identi�ations
cg1,g2 : g1H ×H g2H

//
g2g1H,and the unitor is the identity. The 2-funtor i further sends a 2-morphism h : ϕ1

+3 ϕ2to the bi-equivariant map
ϕ1H

//
ϕ2H : x � // hx.While the bi-equivariane with respet to the right ation is obvious, the one with respet tothe left ation follows from the ondition ϕ2(x) = hϕ1(x)h

−1 we have for the 2-morphismsin AUT(H) for all x ∈ H.Remark 4.13. The 2-funtor i is an equivalene of 2-ategories, and exhibits B(H-BiTor)as a framed biategory in the sense of [Shu07℄.67



As desribed in Setion 3.2, the 2-funtor i admits the onstrution of a ategory
ΛiB(H-BiTor) and of a funtor

Λi : ΛBAUT(H) // ΛiB(H-BiTor).We an now prove the announed generalization of Lemma 4.7 to the non-abelian ase.Proposition 4.14. There exists a anonial funtor
Bibun∇H(X) // Trans1ΛBAUT(H)(X,ΛiB(H-BiTor))whih is surjetive and faithful.Proof. Given a prinipal H-bibundle P with A-twisted onnetion, we de�ne theassoiated transport funtor by

traP : x
γ // y

� //

i(∗)

Px

��

i(F (γ)) // i(∗)

τ−1
γ

xxxxx
xxxxx

x� xxxx
xxxx

Py

��
i(∗)

i(Fφ(γ))
// i(∗).Here F,Fφ : PX // Aut(H) are the maps de�ned by A and Aφ that we have already usedin the previous setion. The de�nition ontains the laim that the parallel transport map

τγ gives a bi-equivariant map
τ−1
γ : Py ×H F (γ)H //

Fφ(γ)H ×H Px;it is indeed easy to hek that this is preisely the meaning of equations (4.10). A morphism
f : P // P ′ between bibundles with A-twisted onnetions indues a natural transforma-tion ηf : traP // traP ′ between the assoiated funtors, whose omponent at a point x isthe bi-equivariant map fx : Px +3 P ′

x. This is a partiular morphism in ΛiB(H-BiTor) forwhih the horizontal 1-morphisms are identities. Here it beomes lear that the assignments
(P, φ) � // traP and f � // ηfde�ne a funtor whih is faithful but not full.It remains to hek that the funtor traP is a transport 2-funtor. We leave it asan exerise for the reader to onstrut a loal trivialization (t, triv) of traP with smoothdesent data. Hint: use an ordinary loal trivialization of the bibundle P and follow theproof of Proposition 5.2 in [SW07℄. �The two ategories appearing in the last proposition have both the feature that theyhave tensor produts between appropriate objets. Conerning the bibundles with twisted68



onnetions, we have desribed this in terms of the mathing ondition (4.11) on the twists.Conerning the ategory of transport funtors, this tensor produt is inherited from theone on ΛiB(H-BiTor), whih has been disussed in Setion 3.2.Lemma 4.15. The mathing ondition (4.11) orresponds to the required ondition fortensor produts in ΛiB(H-BiTor) under the funtor from Proposition 4.14. Furthermore,the funtor respets tensor produts whenever they are well-de�ned.Proof. Suppose that the mathing ondition A′
φ′ = A holds, so that prinipal

H-bibundles P and P ′ with onnetions φ and φ have a tensor produt. It follows thatthe map Fφ′ whih labels the horizontal 1-morphisms at the bottom of the images of traP ′is equal to the map F whih labels the ones at the top of the images of traP ; this is therequired ondition for the existene of the tensor produt traP ′ ⊗ traP . That the tensorproduts are respeted follows from the de�nition of the twisted onnetion φtot on thetensor produt bibundle. �An alternative formulation of Lemma 4.15 would be that the funtor from Proposition4.14 respets the monoidoidal strutures, or, that it is a double funtor between (weak)double ategories.4.3.3 Non-Abelian Bundle Gerbes as Transport 2-FuntorsWe laim that the relation between non-abelian H-bundle gerbes with onnetion andtransport 2-funtors with BAUT(H)-struture is a straightforward generalization of theabelian ase, see Theorem 4.6. Here, a non-abelian H-bundle gerbe with onnetion andsurjetive submersion π : Y // M is a 2-form B ∈ Ω2(Y, h), a prinipal H-bibundle
p : P // Y [2] with twisted onnetion φ suh that

curv(φ) = (π1 ◦ p)
∗B − (αg)∗ ◦ (π2 ◦ p)

∗B, (4.12)and an assoiative morphism
µ : π∗23P ×H π∗12P // π∗13Pof bibundles over Y [3] that respets the twisted onnetions [ACJ05℄. In (4.12), g is thesmooth map (4.8) and α : Aut(H) ×H // H is the evaluation. The de�nitions of bundlegerbe 1-morphisms and bundle gerbe 2-morphisms generalize analogously to the non-abelianase.Theorem 4.16. There is a anonial surjetive and faithful 2-funtor
H-BGrb∇(π) // Des2

π(i)
∞.69



Proof. All relations onerning the bimodules are analogous to those in the abelianase, when generalizing Lemma 4.7 to Proposition 4.14. Relation (4.12) for the 2-form Ban be proven in the same way as in the proof of Lemma 4.8, but now using the full versionof equation (3.3). The omments onerning the desent datum ψ also remain valid. �The last result indues with Theorem 3.10Corollary 4.17. Let M be a smooth manifold. There exists a anonial 2-funtor
H-BGrb∇(M) // Trans2BAUT(H)(M,B(H-BiTor)).Let us lose with a few remarks on non-abelian bundle gerbes.1. The fat that the funtor from Proposition 4.14 from bibundles to transport funtorsis not full means that the bibundle theory developed in [ACJ05℄ oversees a wholelass of morphisms. As a onsequene, one ould onsider a more general version ofnon-abelian bundle gerbes involving suh morphisms over Y [3].2. A non-abelian S1-bundle gerbe is not the same as an abelian S1-bundle gerbe: forthe non-abelian bundle gerbes also the automorphisms are important, and Aut(S1) ∼=

Z2. For transport 2-funtors this is even more obvious: the Lie 2-groups BBS1 and
BAUT(S1) are not equivalent.3. The non-abelian bundle gerbes we have onsidered here are �fake-�at�. See Remark4.5 why this has to be.4.4 Outlook: Connetions on 2-Vetor Bundles and moreAdditionally to the equivalene between transport funtors and prinipal G-bundles withonnetion (Theorem 3.1), [SW07℄ also ontains an analogous equivalene for vetor bun-dles with onnetion. It has an immediate generalization to 2-vetor bundles with manyappliations, on whih we shall give a brief outlook.4.4.1 Models for 2-Vetor SpaesWe �x some 2-ategory 2Vect standing for a 2-ategory of 2-vetor spaes. Given a 2-group

G, a representation of G on suh a 2-vetor spae is a 2-funtor
ρ : BG // 2Vect.A 2-vetor bundle with onnetion and struture 2-group G is nothing but a transport2-funtor tra : P2(X) // 2Vect with BG-struture. Important lasses of 2-vetor bundlesare line 2-bundles and string bundles. 70



Depending on the preise appliation there is some �exibility in what one may want tounderstand under a 2-vetor spae. Usually 2-vetor spaes are abelian module ategoriesover a given monoidal ategory. For k a �eld, two important lasses of examples are thefollowing. First, let k̂ be the disrete monoidal ategory over k. Then, 2Vect is 2-ategoryof module ategories over k̂. This is equivalent to the 2-ategory of ategories internal to k-vetor spaes. These Baez-Crans 2-vetor spaes [BC04℄ are appropriate for the disussionof Lie 2-algebras.The seond model for 2Vect is the 2-ategory of module ategories over the monoidalategory Vect(k) of k-vetor spaes,
2Vect := Vect(k)-Mod.In its totality this is rather unwieldy, but it ontains two important sub-2-ategories:the 2-ategory KV(k) of Kapranov-Voevodsky 2-vetor spaes [KV94℄ and the 2-ategory

Bimod(k), whose objets are k-algebras, whose 1-morphisms are bimodules over these al-gebras and whose 2-morphisms are bimodule homomorphisms [Shu07℄. Indeed, there is aanonial inlusion 2-funtor
ι : Bimod(k) �

� // Vect(k)-Modthat sends a k-algebra A to the ategory A-Mod of ordinary (say, right) A-modules. This isa module ategory over Vect(k) by tensoring a right module from the left by a vetor spae.A 1-morphism, an A-B-bimodule N , is sent to the funtor that tensores a right A-modulefrom the right by N , yielding a right B-module. A bimodule morphism indues evidentlya natural transformation of these funtors.If one restrits the 2-funtor ι to the full sub-2-ategory formed by those algebras thatare diret sums A = k⊕n of the ground �eld algebra, the 2-vetor spaes in the image of
ι are of the form Vect(k)n, i.e. tuples of vetor spaes. The 1-morphisms in the imageare (m × n)-matries whose entries are k-vetor spaes. These form the 2-ategory ofKapranov-Voevodsky 2-vetor spaes [KV94℄.4.4.2 The anonial Representation of a 2-GroupEvery automorphism 2-group AUT(H) of a Lie group H has a anonial representation on2-vetor spaes, namely

BAUT(H)
A // Bimod(k)

ι // Vect(k)-Mod, (4.13)where the 2-funtor A is de�ned similar as the one we have used for the non-abelian bundlegerbes in (4.7). It sends the single objet to k regarded as a k-algebra, it sends a 1-morphism
ϕ ∈ Aut(H) to the bimodule ϕk in the notation of Setion 4.3.2, and it sends a 2-morphism
(ϕ, h) : ϕ +3 ch ◦ ϕ to the multipliation with h from the left.71



Now let G be any smooth Lie 2-group orresponding to a smooth rossed module
(G,H, t, α). We have a anonial 2-funtor

BG // BAUT(H) : ∗

g

��

g′

CCh

��

∗ � // ∗

αg

��

αg′

CCh

��

∗ (4.14)whose omposition with (4.13) gives a representation of G, that we all the anonial k-representation.Example 4.18. A very simple but useful example is the standard C-representation of BC×.In this ase the omposition (4.13) is the 2-funtor
ρ : BBC

× // Vect(C)-Mod : ∗

id

��

id

CCz

��

∗ � // Vect(C)

−⊗C

$$

−⊗C

::
−·z

��

Vect(C)for all z ∈ C×. Notie that Vect(C) is the anonial 1-dimensional 2-vetor spae over C inthe same sense in that C is the anonial 1-dimensional omplex 1-vetor spae. Therefore,transport 2-funtors
tra : P2(M) // Vect(C)-Modwith BBC×-struture deserve to be addressed as line 2-bundles with onnetion. Let usmake two remarks:1. Going through the disussion of abelian bundle gerbes with onnetion in Setion 4.2it is easy to see that line 2-bundles with onnetion are equivalent to bundle gerbeswith onnetion de�ned via line bundles instead of irle bundles.2. The �bre tra(x) of a line 2-bundle tra at a point x is an algebra whih is Moritaequivalent to the ground �eld C. These are exatly the �nite rank operators on aseparable Hilbert spae. Thus, line 2-bundles with onnetion are a form of bundlesof �nite rank operators with onnetion, this is the point of view taken in [BCM+02℄.The anonial 2-funtor A : BAUT(H) // Bimod(k) we have used above an be de-formed to a 2-funtor Aρ using an ordinary representation ρ : BH // Vect(k) of H. Itsends the objet of BAUT(H) to the algebra Aρ(∗) whih is the vetor spae generatedfrom all the linear maps ρ(h). A 1-morphism ϕ ∈ Aut(H) is again sent to the bimodule

ϕA
ρ(∗), and the 2-morphisms as before to left multipliations. The original 2-funtor isreprodued A = Atrivk from the trivial representation of H on k.72



Example 4.19. For G a ompat simple and simply-onneted Lie group, we onsider thelevel k entral extension Hk := Ω̂kG of the group of based loops in G. For a positive energyrepresentation ρ : BΩ̂kG // Vect(k) the algebra Aρ(∗) turns out to be a von Neumann-algebra while the bimodules ϕA
ρ(∗) are Hilbert bimodules. In this in�nite-dimensionalase we have to make the omposition of 1-morphisms more preise: here we take not thealgebrai tensor produt of these Hilbert bimodules but the Connes fusion tensor produt[ST04℄. Connes fusion produt still respets the omposition: for A a von Neumann algebraand ϕA the bimodule struture on it indued from twisting the left ation by an algebraautomorphism ϕ, we have

ϕA⊗ ϕ′A ≃ ϕ′◦ϕAunder the Connes fusion tensor produt. Now let G = Stringk(G) be the string 2-groupde�ned from the rossed module Ω̂kG // P0G of Fréhet Lie groups [BCSS07℄. Togetherwith the projetion 2-funtor (4.14) we obtain an indued representation
i : BStringk(G) // BimodCF(k)The �bres of a transport 2-funtor

tra : P2(M) // BimodCF(k) (4.15)with BStringk(G)-struture are hene von Neumann algebras, and its parallel transportalong a path is a Hilbert bimodule for these �bres. In onjuntion with the result [BS08,BBK06℄ that Stringk(G)-2-bundles have the same lassi�ation as ordinary �bre bundleswhose struture group is the topologial String group, this says that transport 2-funtors(4.15) have to be addressed as String 2-bundles with onnetion, already appearing in[ST04℄.4.4.3 More: Twisted Vetor BundlesVetor bundles overM twisted by a lass ξ ∈ H3(M,Z) are the same thing as gerbe modulesfor a bundle gerbe G whose Dixmier-Douady lass is ξ [BCM+02℄. These modules are inturn nothing else but ertain (generalized) 1-morphisms in the 2-ategory of bundle gerbes
BGrb(M) [Wal07℄. The same is true for onnetions on twisted vetor bundles. Morepreisely, a twisted vetor bundle with onnetion is the same as a 1-morphism

E : G // Iρfrom the bundle gerbe G with onnetion to the trivial bundle gerbe I equipped with theonnetion 2-form ρ ∈ Ω2(M).Now let
tra : P2(M) // Vect(C)-Modbe a transport 2-funtor whih plays the role of the bundle gerbe G, but we allow anarbitrary struture 2-group G and any representation ρ : BG // Vect(C)-Mod. Let tra∞ :73



P2(M) // BG be a smooth 2-funtor whih plays the role of the trivial bundle gerbe. Weshall now onsider transport transformations
A : tra // tra∞ρ .Let π : Y // M be a surjetive submersion for whih tra admits a loal trivializa-tion with smooth desent data (triv, g, ψ, f). The desent data of tra∞ is of ourse

(π∗tra∞, id, id, id). Now the transport transformation A has the following desent data:the �rst part is a pseudonatural transformation h : triv // π∗tra∞ whose assoiated fun-tor F (h) : P1(Y ) // Λρ(Vect(C)-Mod) is a transport funtor with ΛBG-struture. Theseond part is a modi�ation ǫ : π∗2h◦g
+3 id◦π∗1h whose assoiated natural transformation

F (ǫ) : π∗2F (h) ⊗ F (g) // π∗1F (h)is a morphism of transport funtors over Y [2]. Aording to onditions (1.3) and (1.4) ondesent 1-morphisms, it �ts into the ommutative diagram
π∗3F (h) ⊗ π∗23F (g) ⊗ π∗12F (g)

π∗
23F (ǫ)⊗id

//

id⊗F (f)
��

π∗2F (h) ⊗ π∗12F (g)

π∗
12F (ǫ)

��
π∗3F (h) ⊗ π∗13F (g)

π∗
13F (ǫ)

// π∗1F (h)

(4.16)of morphisms of transport funtors over Y [3] and satis�es ∆∗F (ǫ) ◦ F (ψ) = id. Thetransport funtor
F (h) : P1(Y ) // Λρ(Vect(C)-Mod)together with the natural transformation F (ǫ) is the general version of a vetor bundlewith onnetion twisted by a transport 2-funtor tra. Aording to Setions 4.1 and 4.3,the twists an thus be Breen-Messing gerbes or non-abelian bundle gerbes with onnetion.Depending on the hoie of the representation ρ, our twisted vetor bundles an betranslated into more familiar language. Let us demonstrate this in the ase of Example4.18, in whih the twist is a line 2-bundle with onnetion, i.e. a transport 2-funtor

tra : P2(M) // Vect(C)-Modwith BBC×-struture. In order to obtain the usual twisted vetor bundles, we restrit thetarget 2-ategory to BVect(C), the monoidal ategory of omplex vetor spaes onsideredas a 2-ategory. The following Lie ategory Gl is appropriate: its objets are the naturalnumbers N, and it has only morphisms between equal numbers, namely all matries Gln(C).The omposition is the produt of matries. The Lie ategory Gl is stritly monoidal: thetensor produt of two objets m,n ∈ N is the produt nm ∈ N, and the one of two matries
A ∈ Gl(m) and B ∈ Gl(n) is the ordinary tensor produt A ⊗ B ∈ Gl(m × n). In fat,74



Gl arries a seond monoidal struture oming from the sum of natural numbers and thediret sum of matries, so that Gl is atually a bipermutative ategory , see Example 3.1 of[BDR04℄.Notie that we have a anonial inlusion funtor ι : BC× �

� // Gl, whih indues anotherinlusion
ι∗ : Trans2

BBC×(M,BVect(C)) // Trans2BGl(M,BVect(C))of line 2-bundles with onnetion into more general vetor 2-bundles with onnetion. Herewe have used the representation
ρ : BGl // BVectobtained as a generalization of Example 4.18 from C× = Gl1(C) to Gln(C) for all n ∈ N.The omposition ρ ◦ ι reprodues the representation of Example 4.18.Using the above inlusion, the given transport 2-funtor tra indues a transport 2-funtor ι∗ ◦ tra : P2(M) // BVect(C) with BGl-struture, and one an study transporttransformations
A : tra // tra∞ρin that greater 2-ategory Trans2BGl(M,BVect(C)). Along the lines of the general proeduredesribed above, we have transport funtors F (g) and F (h) oming from the desent dataof tra and A, respetively. In the present partiular situation, the �rst one takes values inthe ategory Λρ◦ιBVect1(C) whose objets are one-dimensional omplex vetor spaes andwhose morphisms from V to W are invertible linear maps f : W ⊗C // C⊗V . Similar toLemma 4.7, this ategory is equivalent to the ategory Vect1(C) of one dimensional omplexvetor spaes itself. Thus, the transport funtor F (g) with BC×-struture is a omplexline bundle L with onnetion over Y [2]. The seond transport funtor, F (h), takes valuesin the ategory Λρ◦ιBVect(C). This ategory is equivalent to the ategory Vect(C) itself.It has ΛιBGl-struture, whih is equivalent to Gl. Thus, F (h) is a transport funtor withvalues in Vect(C) and Gl-struture. It thus orresponds to a �nite rank vetor bundle Eover Y with onnetion.Sine all identi�ations we have made so far a funtorial, the morphisms F (f) and F (ǫ)of transport funtors indue morphisms of vetor bundles that preserve the onnetions,namely an assoiative morphism

µ : π∗23L⊗ π∗12L // π∗13Lof line bundles over Y [2], and a morphism
̺ : π∗2E ⊗ L // π∗1Eof vetor bundles over Y whih satis�es a ompatibility ondition orresponding to (4.16).This reprodues the de�nition of a twisted vetor bundle with onnetion [BCM+02℄. We75



remark that the 2-form ρ that orresponds to the smooth 2-funtor tra∞ρ whih was thetarget of the transport transformation A we have onsidered, is related to the urvature ofthe onnetion on the vetor bundle E: it requires that
curv(E) = In · (curv(L) − π∗ρ),where In is the identity matrix and n is the rank of E. This ondition an be derivedsimilar to Lemma 4.8.5 Holonomy of Transport 2-FuntorsFrom the viewpoint of a transport 2-funtor, parallel transport and holonomy are basiallyevaluation on paths or bigons.5.1 Parallel Transport along Paths and BigonsLet tra : P2(M) // T be a transport 2-funtor with BG-struture on M . Its �bres overpoints x, y ∈ M are objets tra(x) and tra(y) in T , and we say that its parallel transportalong a path γ : x // y is given by the 1-morphism

tra(γ) : tra(x) // tra(y)in T , and its parallel transport along a bigon Σ : γ +3 γ′ is given by the 2-morphism
tra(Σ) : tra(γ) +3 tra(γ′)in T .The rules how these 1-morphisms and 2-morphisms behave under the omposition ofpaths and bigons are preisely the axioms of the 2-funtor tra. We make some examples. If

γ1 : x // y and γ2 : y // z are omposable paths, the separate parallel transports alongthe two paths are related to the one along their omposition by the ompositor
cγ1,γ2 : tra(γ2) ◦ tra(γ1) +3 tra(γ2 ◦ γ1). (5.1)If idx is the onstant path at x, the parallel transport along idx is related to the identityat the �bre tra(x) by the unitor

ux : tra(idx) +3 idtra(x).The parallel transports along vertially omposable bigons Σ : γ1
+3 γ2 and Σ′ : γ2

+3 γ3obey for example axiom (F1), namely
tra(Σ′ • Σ) = tra(Σ′) • tra(Σ).76



The omplete list of gluing axioms is preisely the list of axioms of a 2-funtor, see De�nitionA.5.In the previous Setion 4 we have identi�ed di�erential oyles, abelian bundle gerbesand non-abelian bundle gerbes with onnetion with smooth desent data of partiulartransport 2-funtors. Reonstruting the transport 2-funtor from suh desent data likedesribed in Setion 2, and evaluating this 2-funtor on paths and bigons, yields a well-de�ned notion of parallel transport for these gerbes.Let us start with a smooth desent objet (triv, g, ψ, f) in the desent 2-ategory
Des2

π(i)
∞ assoiated to some surjetive submersion π : Y // M and some 2-funtor

i : BG // T . Suppose we want to ompute the parallel transport of the reonstrutedtransport 2-funtor
tra := s∗R(triv,g,ψ,f) : P2(M) // T (5.2)along some path γ : x // y. Applying the setion 2-funtor s to γ we obtain a 1-morphism

s(γ) : s(x) // s(y) in the odesent 2-groupoid P2
π(M). In general this 1-morphism is aomposition of paths γℓ in Y and jumps αℓ in the �bres:

s(γ) = s(x)
α1 // p1

γ1 // p2
α2 // ... // pn

γm // s(y).Then we have to ompute the pairing between s(γ) and the desent objet (triv, g, ψ, f).The pairing proedure presribes the pieewise evaluation of trivi on the paths γℓ and of gon the jumps αℓ. This yields omposable 1-morphisms in T , whose omposition is tra(γ).Example 5.1. Let us give the following three examples for parallel transport along a path.1. Di�erential oyle. We represent the Lie 2-group G as a rossed module (G,H, t, α).The target 2-ategory is now T = BG, has only one objet and the 1-morphismsare group elements g ∈ G. Thus, the parallel transport will be a group element
tra(γ) ∈ G.The di�erential oyle is given by a tuple (B,A,ϕ, ψ, g, f) of whih A is a 1-form
A ∈ Ω1(Y, g) and g is a smooth funtion g : Y [2] // G. Parsing through the relationbetween the di�erential oyle and the assoiated desent objet, we obtain for γℓone of the paths one �nds in s(γ),

trivi(γℓ) = P exp

(∫

γℓ

A

)
∈ G (5.3)where the path-ordered exponential P exp stands for the solution of a di�erentialequation governed by A. The evaluation of g at one of the jumps αℓ is just g(αℓ) ∈ G.Then, the parallel transport tra(γ) ∈ G is the produt of the trivi(γℓ) and the g(αℓ),taken in the same order as the piees appear in s(γ).77



2. Abelian bundle gerbe. Here the target 2-ategory is T = B(S1-Tor), so that theparallel transport will be an S1-torsor tra(γ).The abelian bundle gerbe is given by a tuple (L,∇, µ,B), of whih L is a irlebundle over Y [2]. Sine the struture 2-group is BBS1 it is lear that the 2-funtor
triv : P2(Y ) // BBS1 is onstant on the paths γℓ, so that trivi(γℓ) = S1. Further,the pseudonatural transformation g orresponds to the irle bundle L, so that thepairing between a jump αℓ and g yields the �bre Lαℓ of L over the point αℓ ∈ Y [2].Then, the parallel transport tra(γ) is the tensor produt of S1 viewed as a torsor overitself and the S1-torsors Lαℓ .3. Non-abelian bundle gerbe. Here the target 2-ategory is T = B(H-BiTor), so that theparallel transport will be an H-bitorsor tra(γ).The non-abelian bundle gerbe is given by a tuple (E,ϕ,∇, µ,A,B), of whih Eis a prinipal H-bibundle over Y [2] with ϕ-twisted onnetion ∇. The 2-funtor
triv : P2(Y ) // BAUT(H) assigns to the paths γℓ the automorphisms (5.3) so that
trivi(γℓ) = triv(γℓ)H. Further, the pseudonatural transformation g orresponds to thebibundle E, so that the pairing between a jump αℓ and g yields the �bre Eαℓ of Eover the point αℓ ∈ Y [2].Then, the parallel transport tra(γ) is the tensor produt of the H-bitorsors triv(γℓ)Hand the H-bitorsors Eαℓ .Let us now ompute the parallel transport of transport 2-funtor tra (5.2) that we havereonstruted from given a desent objet (triv, g, ψ, f), around a bigon Σ : γ1

+3 γ2.Aording to the presription, we use again the setion 2-funtor s and obtain some 2-isomorphism s(Σ) : s(γ1) +3 s(γ2). In general, this 2-morphism s(Σ) an be a huge vertialand horizontal omposition of 2-morphisms of Pπ
2 (M) of any kind. The pairing between

s(Σ) and the desent objet (triv, g, ψ, f) evaluates aording to the presription of Setion2.3 the 2-funtor triv on bigons, g on the 2-morphisms of type (1b), f on those of type (1)and ψ on those of type (1d). The result is a 2-morphism tra(Σ) : tra(γ1) +3 tra(γ2).Example 5.2. Let us again go through our three examples.1. Di�erential oyle. The parallel transport along Σ is a group tra(Σ) ∈ H thatsatis�es the equation
tra(γ2) = t(tra(Σ)) · tra(γ1),where tra(γ1), tra(γ2) ∈ G are the parallel transports along the soure path and thetarget path, and t : H // G is the Lie group homomorphism from the rossed module

G.2. Abelian bundle gerbe. The parallel transport along Σ is an equivariant map
tra(Σ) : tra(γ1) // tra(γ2)78



between the S1-torsors tra(γ1) and tra(γ2).3. Non-abelian bundle gerbe. The parallel transport along Σ is a bi-equivariant map
tra(Σ) : tra(γ1) // tra(γ2)between the H-bitorsors tra(γ1) and tra(γ2).In the next setion we onentrate in ertain bigons that parameterize surfaes; theparallel transport along these bigons will be alled the holonomy of the transport 2-funtor

tra.5.2 Holonomy around SurfaesUsually, holonomy is understood as the parallel transport along losed paths. In partiular�holonomy around a losed line� is not a well-de�ned expression sine it depends on thehoie of a base point and of an orientation. In other words, one has to represent the losedline as the image of a losed path.In the same way one annot expet that �holonomy around a losed surfae� is well-de�ned. We infer that one �rst has to represent the losed surfae as the image of a �losedbigon� that generalizes a losed path. Possible generalizations are:(a) Bigons Σ : γ +3 γ from some path γ : x // y to itself.(b) More partiular, bigons Σ : τ +3 τ from some loop τ : x // x to itself.() Even more partiular, bigons Σ : idx +3 idx.The evaluation of a transport 2-funtor tra : P2(M) // T on suh bigons gives indeedrise to interesting struture: in ase (a) one obtains a 2-groupoid whose objets are thepoints in the base manifold and whose 1-morphisms are the images tra(γ) of all paths
γ : x // y. In ase (b) one obtains a (probably weak) Lie 2-group attahed to eah point
x, whose objets are the images tra(τ) of all loops loated at x. In ase () one obtainsan ordinary group attahed to eah point, whose elements are the images tra(Σ) of allbigons Σ : idx +3 idx. These groups are atually abelian: this follows from the same kindof Ekman-Hilton argument whih proves that the seond homotopy group of a spae isabelian.We an thus assoiate a holonomy 2-groupoid, a holonomy 2-group or a holonomy groupto a transport 2-funtor. The investigation of these strutures for partiular examples oftransport 2-funtors ould be an interesting and di�ult problem. In the remainder ofthis artile we shall, however, return to the problem of de�ning the �holonomy around alosed surfae� by representing the given surfae as the image of a partiular bigon. Thisproblem is mainly motivated by the appliations of gerbes with onnetion in onformal79



�eld theory, where these surfae holonomies ontribute terms to ertain ation funtionals,see e.g. [Gaw88℄.It is lear that only surfaes of partiular topology an be represented by bigons fromthe above list. We should hene take a di�erent lass of bigons into aount. These bigonshave the form
Σ : τ +3 idx,starting at a loop τ : x // x and ending at the identity path at x.De�nition 5.3. If S is a losed and oriented surfae, we all a bigon Σ : τ +3 idx in Sa fundamental bigon for S, if its map Σ : [0, 1]2 // S is orientation-preserving, surjetive,and � restrited to the interior (0, 1)2 � injetive.It is easy to see that any losed oriented surfae has a fundamental bigon. First, thesurfae an be represented by a fundamental polygon, whih has an even number of pairwiseidenti�ed edges. Let x be a vertex of this polygon, and let τ : x // x be a parameterizationof the boundary, oriented in the way indued from the orientation of S. If the surfae is ofgenus n, τ has the form

τ = α−1
2n ◦ α−1

2n−1 ◦ α2n ◦ α2n−1 ◦ . . . ◦ α
−1
2 ◦ α−1

1 ◦ α2 ◦ α1for paths αi : x // x that parameterize the edges of the polygon. Now, a fundamentalbigon Σ : τ +3 idx is given by the linear ontration of the polygon to the point x.De�nition 5.4. Let S be a losed and oriented surfae and let φ : S // M be a smoothmap. For a transport 2-funtor tra : P2(M) // T and a fundamental bigon Σ for S weall the 2-morphism
Holtra(φ,Σ) := tra(φ∗Σ) : tra(φ∗τ) +3 tra(idφ(x))in T the holonomy of tra around S.In general, the holonomy around a surfae depends on the hoie of the fundamentalbigon. In the following we want to speify this dependene in more detail.Lemma 5.5. Let S be a losed and oriented surfae with fundamental bigon

Σ : τ +3 idx,let φ : S // M be a smooth map and let tra : P2(M) // T be a transport 2-funtor.(a) If Σ′ : τ +3 idx is another fundamental bigon for S with the same loop τ ,
Holtra(φ,Σ) = Holtra(φ,Σ

′),i.e. the holonomy is � for �xed base point x and �xed loop τ � independent of thehoie of the fundamental bigon. 80



(b) If γ : x // y is a path, τγ := γ ◦ τ ◦ γ−1 is loop based at y and Σγ := idγ ◦ Σ ◦ idγ−1is a fundamental bigon Σγ : τγ +3 idy for S. Then,
Holtra(φ,Σ

γ) = idtra(φ∗γ) ◦ Holtra(φ,Σ) ◦ idtra(φ∗γ−1),i.e. the holonomy beomes onjugated when the base point is moved.() Suppose τ has the form τ = γ2 ◦ α−1 ◦ γ1 ◦ α ◦ γ0 for α : a // b some path, forinstane when τ is like in (5.2) and α is one of the αi. Let α′ : a // b be anotherpath and let ∆ : α′ +3 α be a bigon whose map ∆ : [0, 1]2 // S is injetive restritedto the interior. Then, τ ′ := γ2 ◦ α′−1 ◦ γ1 ◦ α′ ◦ γ0 is another loop based at x, and
Σ′ := Σ • (idγ2 ◦ ∆# ◦ idγ1 ◦ ∆ ◦ idγ0) is another fundamental bigon, and

Holtra(φ,Σ
′) = Holtra(φ,Σ) • (idγ2 ◦ ∆# ◦ idγ1 ◦ ∆ ◦ idγ0),where ∆# : α′−1 +3 α−1 is the �horizontally inverted� bigon given by ∆#(s, t) :=

∆(s, 1 − t).Proof. The �rst assertion follows from the fat that the two fundamental bigons arehomotopy equivalent, and thus, sine S is a manifold of dimension two, even thin homo-topy equivalent. The seond and the third assertion follow from the 2-funtorality of tra. �Summarizing, the holonomy of a transport 2-funtor around a losed and oriented sur-fae S depends on the hoie of a base point x ∈ S and on the hoie of a loop τ based at
x. In the remainder of this setion we disuss this dependene for di�erential G-oylesand abelian bundle gerbes.Holonomy of di�erential oyles. Let tra : P2(M) // BG be a transport 2-funtorwith BG-struture orresponding to a degree two di�erential G-oyle as disussed inSetion 4.1. As always, the Lie 2-group G is represented by a smooth rossed module
(G,H, t, α). Aording to Examples 5.1 and 5.2, the holonomy of this di�erential oylearound a surfae S with fundamental bigon Σ : τ +3 idx is a group element Holtra(φ,Σ) ∈
H suh that

t(Holtra(φ,Σ)) = tra(τ)−1.If the base point is moved along a path γ like investigated in Lemma 5.5 (b), it is hangedby the ation of tra(γ) ∈ G,
Holtra(φ,Σ

γ) = α(tra(γ),Holtra(φ,Σ)).This follows from the horizontal omposition rule of the 2-groupoid BG, see Setion 3.1.If the loop is hanged by a bigon as desribed in Lemma 5.5 () we �nd
Holtra(φ,Σ

′) = Holtra(φ,Σ) · α(g2g
−1, h−1α(g1, h)), (5.4)81



where h := tra(∆), g := tra(α′), g2 := tra(γ2 ◦ α′−1) and g1 := tra(γ1). Here we haveused tra(∆#) = α(g−1, h−1), whih follows from the axioms of the 2-funtor tra. In orderto handle the formula (5.4) let us introdue the following notation. We write [G,H] ⊂ Hfor the Lie subgroup of H whih is generated by all elements of the form h−1α(g, h), for
h ∈ H and g ∈ G. The group [G,H] generalizes the ommutator subgroup [H,H] of H,see Example 5.7 below. The axioms of the rossed module (G,H, t, α) inferLemma 5.6. The subgroup [G,H] of H is invariant under automorphisms αg : H // Hfor all g ∈ G. In partiular, it is invariant under onjugation and hene a normal subgroupof H.Thus, the image of Holtra(φ,Σ) ∈ H in the quotient H/[G,H] is independent of thehoie of the loop τ .Example 5.7. Let us speify to two examples of Lie 2-groups G:(a) In the ase of the 2-group BA for A an ordinary abelian Lie group, the holonomy isan element in A, and sine here α is the trivial ation and [1, A] is the trivial group,the holonomy is independent of both under the hoie of the base point and underhanges of the loop.(b) Let G be an ordinary Lie group and let EG the assoiated 2-group of inner automor-phisms, see Setion 3.3. Sine α here is the onjugation ation of G on itself, theholonomy beomes onjugated when moving the base point, just like in the ase ofordinary holonomy. Further, the subgroup [G,H] we have onsidered above is herejust the ordinary ommutator subgroup [G,G], so that the image of the holonomy in

G/[G,G] is independent of the hoie of the loop.Holonomy of abelian bundle gerbes. Let G be an abelian bundle gerbe with onne-tion over M , and let traG : P2(M) // B(S1-Tor) be the assoiated transport 2-funtor.Aording to Examples 5.1 and 5.2, the holonomy of traG around a surfae S with funda-mental bigon Σ : τ +3 idx is a S1-equivariant map
HoltraG (φ,Σ) : traG(τ) // S1whih one an uniquely identify with an element HoltraG (φ,Σ) ∈ S1. By Lemma 5.5 it islear that it is independent of the hoie of the fundamental bigon, of the hoie of the basepoint and of the hoie of the loop τ . We an thus ompare it with the holonomy of theabelian bundle gerbe G, whih has been de�ned in [Mur96℄, see also [GR02, CJM02℄.Proposition 5.8. Let G be an abelian bundle gerbe with onnetion over M , and let traG :

P2(M) // B(S1-Tor) be the assoiated transport 2-funtor. Then, the holonomies of G and
traG oinide, i.e.

HolG(φ, S) = HoltraG (φ,Σ)82



for S an oriented losed surfae, Σ : τ +3 idx a fundamental for S and φ : S // M asmooth map.Proof. To see this, we have to reall how the holonomy of the bundle gerbe G withonnetion is de�ned. The pullbak φ∗G is by dimensional reasons isomorphi to a trivialbundle gerbe, whih has a onnetion solely given by a 2-form ρ ∈ Ω2(S). Then,
HolG(φ, S) = exp

(
i

∫

S

ρ

) . (5.5)Now, sine Corollary 4.9 infers an equivalene between 2-ategories of bundle gerbes and oftransport 2-funtors, also the pullbak φ∗traG is equivalent to a trivial transport 2-funtor
tra∞ρ , where ρ is the same 2-form as above. We infer that in the present ase of transport2-funtors with BBS1-struture equivalent transport 2-funtors have the same holonomies.The holonomy of the trivial transport 2-funtor tra∞ρ is aording to [SW08℄

tra∞ρ (Σ) = exp

(
i

∫

[0,1]
AΣ

)
= exp

(
i

∫

[0,1]2
Σ∗ρ

) ,where AΣ ∈ Ω1([0, 1]) is the 1-form from equation (2.25) in [SW08℄ redued to the presentabelian ase. Sine Σ is a regular and orientation-preserving parameterization of thesurfae S, the last expression oinides with (5.5). �A Basi 2-Category TheoryWe introdue notions and fats that we need in this artile. For a more omplete introdu-tion to 2-ategories, see, e.g. [Lei98℄.De�nition A.1. A (small) 2-ategory onsists of a set of objets, for eah pair (X,Y ) ofobjets a set of 1-morphisms denoted f : X // Y and for eah pair (f, g) of 1-morphisms
f, g : X // Y a set of 2-morphisms denoted ϕ : f +3 g, together with the followingstruture:1. For every pair (f, g) of 1-morphisms f : X // Y and g : Y // Z, a 1-morphism

g ◦ f : X // Y , alled the omposition of f and g.2. For every triple (f, g, h) of 1-morphisms f : W // X, g : X // Y and h : Y // Z,a 2-morphism
af,g,h : (h ◦ g) ◦ f +3 h ◦ (g ◦ f)alled the assoiator of f , g and h. 83



3. For every objet X, a 1-morphism idX : X // X, alled the identity 1-morphism of
X.4. For every 1-morphism f : X // Y , 2-morphisms lf : f ◦ idX +3 f and rf : idY ◦
f +3 f , alled the left and the right uni�er.5. For every pair (ϕ,ψ) of 2-morphisms ϕ : f +3 g and ψ : g +3 h, a 2-morphism
ψ • ϕ : f +3 h, alled the vertial omposition of ϕ and ψ.6. For every 1-morphism f , a 2-morphism idf : f +3 f , alled the identity 2-morphismof f .7. For every triple (X,Y,Z) of objets, 1-morphisms f, f ′ : X // Y and g, g′ : Y // Z,and every pair (ϕ,ψ) of 2-morphisms ϕ : f +3 f ′ and ψ : g +3 g′, a 2-morphism
ψ ◦ ϕ : g ◦ f +3 g′ ◦ f ′, alled the horizontal omposition of ϕ and ψ.This struture has to satisfy the following list of axioms:(C1) The vertial omposition of 2-morphisms is assoiative,

(φ • ϕ) • ψ = φ • (ϕ • ψ)whenever these ompositions are well-de�ned, while the horizontal omposition is om-patible with the assoiator in the sense that the diagram
(h ◦ g) ◦ f

af,g,h

��

(ψ◦ϕ)◦φ +3 (h′ ◦ g′) ◦ f ′

af ′,g′,h′

��
h ◦ (g ◦ f)

ψ◦(ϕ◦φ)
+3 h′ ◦ (g′ ◦ f ′)is ommutative.(C2) The identity 2-morphisms are units with respet to vertial omposition,

ϕ • idf = idg • ϕfor every 2-morphism ϕ : f +3 g, while the identity 1-morphisms are ompatible withthe uni�ers and the assoiator in the sense that the diagram
(g ◦ idY ) ◦ f

af,idY ,g +3

lg◦idf
�&

EEEEEEEEEE

EEEEEEEEEE
g ◦ (idY ◦ f)

idg◦rf
x� zzzzzzzzzz

zzzzzzzzzz

g ◦ f84



is ommutative. Horizontal omposition preserves the identity 2-morphisms in thesense that
idg ◦ idf = idg◦f .(C3) Horizontal and vertial ompositions are ompatible in the sense that

(ψ1 • ψ2) ◦ (ϕ1 • ϕ2) = (ψ1 ◦ ϕ1) • (ψ2 ◦ ϕ2)whenever these ompositions are well-de�ned.(C4) All assoiators and uni�ers are invertible 2-morphisms and natural in f , g and h, andthe assoiator satis�es the pentagon axiom
((k ◦ h) ◦ g) ◦ f

ag,h,k◦idf

s{ pppppppppppppppp

pppppppppppppppp
af,g,k◦h

#+OOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOO

(k ◦ (h ◦ g)) ◦ f

af,h◦g,k

� 
::::::::::

::::::::::
(k ◦ h) ◦ (g ◦ f)

ag◦f,h,k

}� ����������

����������

k ◦ ((h ◦ g) ◦ f)
idk◦af,g,h

+3 k ◦ (h ◦ (g ◦ f)).In (C4) we have alled a 2-morphism ϕ : f +3 g invertible or 2-isomorphism, if thereexists a 2-morphism ψ : g +3 f suh that ψ •ϕ = idf and ϕ•ψ = idg. The axioms imply aoherene theorem: all diagrams of 2-morphisms whose arrows are labelled by assoiators,right or left uni�ers, and identity 2-morphisms, are ommutative. A 2-ategory is alledstrit , if
(h ◦ g) ◦ f = h ◦ (g ◦ f) and af,g,h = idh◦g◦ffor all triples (f, g, h) of omposable 1-morphisms, and if
f ◦ idX = f = idY ◦ f and rf = lf = idffor all 1-morphisms f . Strit 2-ategories allow us to draw pasting diagrams, sine multipleompositions of 1-morphisms are well-de�ned without putting brakets. Pasting diagramsare often more instrutive than ommutative diagrams of 2-morphisms. Notie that for astrit 2-ategory

• axiom (C1) laims that both vertial and horizontal omposition are assoiative,
• axiom (C2) laims that the 2-morphisms idf are identities with respet to the vertialomposition and preserved by the horizontal omposition,85



• axiom (C3) is as before,
• while axiom (C4) an be dropped.For an expliit disussion of the strit ase the reader is referred our Appendix A.1 in[SW08℄.Example A.2. Let C be a monoidal ategory, i.e. a ategory equipped with a funtor

⊗ : C×C // C, a distinguished objet 1 in C, a natural transformation α with omponents
αX,Y,Z : (X ⊗ Y ) ⊗ Z // X ⊗ (Y ⊗ Z),and natural transformations ρ and λ with omponents

ρX : 1 ⊗X // X and λX : X ⊗ 1 // Xwhih are subjet to the usual oherene onditions, see, e.g. [ML97℄. The monoidalategory C de�nes a 2-ategory BC in the following way: it has a single objet, the 1-morphisms are the objets of C and the 2-morphisms between two 1-morphisms X and Yare the morphisms f : X // Y in C. The omposition of 1-morphisms and the horizontalomposition is the tensor produt ⊗, and the assoiator aX,Y,Z is given by the omponent
αZ,Y,X . The identity 1-morphism is the tensor unit 1, and the uni�ers are given by thenatural transformations ρ and λ. The vertial omposition and the identity are just theones of C. It is straightforward to hek that axioms (C1) to (C4) are either satis�es dueto the axioms of the ategory C, the funtor ⊗, or the natural transformations α, ρ and
λ, or due to the oherene axioms. The 2-ategory BC is strit if and only if the monoidalategory C is strit.In any 2-ategory, a 1-morphism f : X // Y is alled invertible or 1-isomorphism,if there exists another 1-morphism g : Y // X together with natural 2-isomorphisms
i : g ◦ f +3 idX and j : idY +3 f ◦ g suh that the diagrams

(f ◦ g) ◦ f

af,g,f

��

j−1◦idf +3

��

idY ◦ f

rf

��

f ◦ (g ◦ f)

idf◦i

��
f ◦ idX

lf

+3 f

and (g ◦ f) ◦ g

ag,f,g

��

i◦idf +3

��

idX ◦ g

rg

��

g ◦ (f ◦ g)

idg◦j−1

��
g ◦ idY

lg

+3 g

(A.1)
are ommutative. Let us remark that neither in the strit nor in the general ase the inverse1-morphism g is uniquely determined. We all a hoie of g a weak inverse of f .86



Remark A.3. Often a 2-ategory is alled biategory, while a strit 2-ategory is alled2-ategory. Invertible 1-morphisms are often alled adjoint equivalenes.De�nition A.4. A (strit) 2-ategory in whih every 1-morphism and every 2-morphismis invertible, is alled (strit) 2-groupoid.The following de�nition generalizes the one of a funtor between ategories.De�nition A.5. Let S and T be two 2-ategories. A 2-funtor F : S // T assigns1. an objet F (X) in T to eah objet X in S,2. a 1-morphism F (f) : F (X) // F (Y ) in T to eah 1-morphism f : X // Y in S,and3. a 2-morphism F (ϕ) : F (f) +3 F (g) in T to eah 2-morphism ϕ : f +3 g in S.Furthermore, it has(a) a 2-isomorphism uX : F (idX) +3 idF (X) in T for eah objet X in S, and(b) a 2-isomorphism cf,g : F (g) ◦ F (f) +3 F (g ◦ f) in T for eah pair of omposable1-morphisms f and g in S.Four axioms have to be satis�ed:(F1) The vertial omposition is respeted in the sense that
F (ψ • ϕ) = F (ψ) • F (ϕ) and F (idf ) = idF (f)for all omposable 2-morphisms ϕ and ψ, and any 1-morphism f .(F2) The horizontal omposition is respeted in the sense that the diagram

F (g) ◦ F (f)
F (ψ)◦F (ϕ) +3

cf,g

��

F (g′) ◦ F (f ′)

cf ′,g′

��
F (g ◦ h)

F (ψ◦ϕ)
+3 F (g′ ◦ f ′)is ommutative for all horizontally omposable 2-morphisms ϕ and ψ.87



(F3) The ompositor cf,g is ompatible with the assoiators of S and T in the sense thatthe diagram
(F (h) ◦ F (g)) ◦ F (f)

aF (f),F (g),F (h) +3

cg,h◦idF (f)

��

F (h) ◦ (F (g) ◦ F (f))

idF (h)◦cf,g

��
F (h ◦ g) ◦ F (f)

cf,h◦g

��

F (h) ◦ F (g ◦ f)

cg◦f,h

��
F ((h ◦ g) ◦ f)

F (af,g,h)
+3 F (h ◦ (g ◦ f))is ommutative for all omposable 1-morphisms f , g and h.(F4) Compositor and unitor are natural and ompatible with the uni�ers of S and T in thesense that the diagrams

F (f) ◦ F (idX)
cidX,f +3

idF (f)◦uX

��

F (f ◦ idX)

F (lf )

��
F (f) ◦ idF (X)

lF (f)

+3 F (f)

and F (idY ) ◦ F (f)
cf,idY +3

uY ◦idF (f)

��

F (idY ◦ f)

F (rf )

��
idF (Y ) ◦ F (f)

rF (f)

+3 F (f)are ommutative for every 1-morphism f .Sometimes we represent a 2-funtor F : S // T diagrammatially as an assignment
F : X

f

��

g

AA
ϕ

��

Y 7−→ F (X)

F (f)

##

F (g)

<<
F (ϕ)

��

F (Y ) .In ase that the 2-ategory T is strit, and the axioms (F2) to (F4) an be expressed bypasting diagrams in the following way:
• Axioms (F2) is equivalent to the equality

F (Y )

F (g′)
..

F (g)

��
F (X)

F (g′◦f ′)

AA
cf ′,g′

��
��
��
��
� �

��
��
��
� �
��

��
��
�

� �
�

F (f ′)

KK
F (f) 11

F (ϕ)

>>>>

�"
>>>> F (ψ)

����

|� ����

F (Z) =

F (Y ) F (g)

��
F (X)

F (g′◦f ′)

AA
F (g◦f) //

cf,g

����

��
��
�

��
�

F (f) 22

F (Z).
F (ψ◦ϕ)

��88



• Axiom (F3) is equivalent to the tetrahedron identity
F (X)

F (g) //
OO

F (f)

F (Y )

F (h)

��
F (W )

F (g◦f)
zzzzzzz

==zzzzzzz
cf,g

DDDD

�%
DDD

DDD

F (h◦g◦f)
// F (Z)��

cg◦f,h

=

F (X)

F (h◦g)
DDDDDDD

!!DDDDDDD

F (g) //
OO

F (f)

F (Y )

F (h)

��

y�
ch,gzzz zzz

zzzz

F (W )
F (h◦g◦f)

//��
cf,h◦g

F (Z).
• Axiom (F4) is equivalent to the equalities

cidX ,f = idF (f) ◦ uX and cf,idY = uY ◦ idF (f).A 2-funtor F : S // T is alled strit , if
F (g) ◦ F (f) = F (g ◦ f) and cf,g = idF (g◦f)for all omposable 1-morphisms f and g, and if

F (idX) = idF (X) and uX = ididF (X)for all objets X in S. In ase of strit 2-funtors between strit 2-ategories only ax-ioms (F1) and (F2) remain, laiming that both ompositions are respeted. The followingde�nition generalizes a natural transformation between two funtors.De�nition A.6. Let F1 and F2 be two 2-funtors from S to T . A pseudonatural transfor-mation ρ : F1
// F2 assigns1. a 1-morphism ρ(X) : F1(X) // F2(X) in T to eah objet X in S, and2. a 2-isomorphism ρ(f) : ρ(Y ) ◦ F1(f) +3 F2(f) ◦ ρ(X) in T to eah 1-morphism

f : X // Y in S,suh that two axioms are satis�ed:(T1) The omposition of 1-morphisms in S is respeted in the sense that the diagram
(ρ(Z) ◦ F1(g)) ◦ F1(f)

aF1(f),F1(g),ρ(Z) +3

ρ(g)◦idF1(f)

��

ρ(Z) ◦ (F1(g) ◦ F1(f))

idρ(Z)◦(c1)f,g
��

(F2(g) ◦ ρ(Y )) ◦ F1(f)

aF1(f),ρ(Y ),F2(g)

��

ρ(Z) ◦ F1(g ◦ f)

ρ(g◦f)
��

F2(g) ◦ (ρ(Y ) ◦ F1(f))

idF2(g)◦ρ(f)

��

F2(g ◦ f) ◦ ρ(X)

(c2)
−1
f,g

◦idρ(X)

��
F2(g) ◦ (F2(f) ◦ ρ(X))

a−1
ρ(X),F2(f),F2(g)

+3 (F2(g) ◦ F2(f)) ◦ ρ(X)89



is ommutative for all omposable 1-morphisms f and g. Here, a is the assoiatorof the 2-ategory T and c1 and c2 are the ompositors of the 2-funtors F1 and F2,respetively.(T2) It is natural in the sense that the diagram
ρ(Y ) ◦ F1(f)

ρ(f) +3

idρ(Y )◦F1(ϕ)

��

F2(f) ◦ ρ(X)

F2(ϕ)◦idρ(X)

��
ρ(Y ) ◦ F1(g)

ρ(g)
+3 F2(g) ◦ ρ(X)is ommutative for all 2-morphisms ϕ : f +3 g.If one onsiders a version of pseudonatural transformations where the 2-morphisms ρ(f)do not have to be invertible, there is a third axiom related to the value of ρ at the identity1-morphism idX of an objet X in S. In our setup this axiom follows:Lemma A.7. Let ρ : F1

// F2 be a pseudonatural transformation between 2-funtors withunitors u1 and u2, respetively, Then, the diagram
ρ(X) ◦ F1(idX)

ρ(idX) +3

idρ(X)◦u
1
X

��

F2(idX) ◦ ρ(X)

u2
X◦idρ(X)

��
ρ(X) ◦ idF1(X)

lρ(X)

+3 ρ(X)
r−1
ρ(X)

+3 idF2(X) ◦ ρ(X)is ommutative.Proof. One applies axiom (T1) to 1-morphisms f = g = idX . Then one uses axiom(T2) for ρ, axiom (F4) for both 2-funtors, axiom (C2) for T , and the invertibility of the2-morphism ρ(g) and of the 1-morphism F2(idX). �Sometimes we represent a pseudonatural transformation ρ : F1
// F2 diagrammatiallyby

ρ : X
f // Y 7−→

F1(X)
F1(f) //

ρ(X)

��

F1(Y )

ρ(Y )

��

ρ(f)
vvvvv

vvvvv

v~ vvvv
vvvv

F2(X)
F2(f)

// F2(Y ),and the axioms an be expressed by pasting diagrams in the following way:90



• Axiom (T1) is equivalent to
F1(X)

F1(f) //

ρ(X)

��

F1(Y )
F1(g) //

ρ(Y )

��

ρ(f)
vvvvv

vvvvv

w� vvvv
vvvv

F1(Z)

ρ(g)
wwwww

wwwww

w� wwww
wwww ρ(Z)

��
F2(X)

F2(g◦f)

>>F2(f)
// F2(Y )

(c2)f,g

��� �

��
����

F2(g)
// F2(Z)

=
F1(X)

F1(g)◦F1(f)

��

F1(g◦f)
//

(c1)f,g

��

ρ(X)

��

F1(Z)

ρ(Z)

��

ρ(g◦f)
vvvvv

vvvvv

w� vvvv
vvvv

F2(X)
F2(g◦f)

// F2(Z).
• Axiom (T2) is equivalent to

F1(X)
F1(f) //

ρ(X)

��

F1(Y )

ρ(Y )

��

ρ(f)
vvvvv

vvvvv

w� vvvv
vvvv

F2(X)

F2(g)

FF
F2(f) // F2(Y )

F2(ϕ)

��

=
F1(x)

F1(f)

��

F1(g)
//

F1(ϕ)

��

ρ(X)

��

F1(Y )

ρ(Y )

��

ρ(g)
vvvvv

vvvvv

v~ vvvv
vvvv

F2(X)
F2(g)

// F2(Y ).Still for the ase that the 2-ategory T is strit, Lemma A.9 implies
ρ(idX) = ((u2

X)−1 ◦ idρ(X)) ◦ (idρ(X) ◦ u
1
X).If also the 2-funtors F1 and F2 are strit, we obtain ρ(idX) = idρ(X).We need one more de�nition for situations where two pseudonatural transformationsare present.De�nition A.8. Let F1, F2 : S // T be two 2-funtors and let ρ1, ρ2 : F1

// F2 bepseudonatural transformations. A modi�ation A : ρ1
+3 ρ2 assigns a 2-morphism

A(X) : ρ1(X) +3 ρ2(X)in T to any objet X in S suh that the diagram
ρ1(Y ) ◦ F1(f)

ρ1(f) +3

A(Y )◦idF1(f)

��

F2(f) ◦ ρ1(X)

idF2(f)◦A(X)

��
ρ2(Y ) ◦ F1(f)

ρ2(f)
+3 F2(f) ◦ ρ2(X)

(A.2)is ommutative for every 1-morphism f . 91



In the ase that T is a strit 2-ategory, the latter diagram is equivalent to a pastingdiagram, see De�nition A.4 in [SW08℄.As one might expet, 2-Funtors, pseudonatural transformations and modi�ations �tagain into the struture of a 2-ategory:Lemma A.9. Let S and T be 2-ategories. The set of all 2-funtors F : S // T , the setof all pseudonatural transformations ρ : F1
// F2 between these 2-funtors and the set ofall modi�ations A : ρ1

+3 ρ2 between those form a 2-ategory Funct(S, T ).Let us desribe the struture of this 2-ategory:1. The omposition of two pseudonatural transformations ρ1 : F1
// F2 and ρ2 :

F2
// F3 is de�ned by the 1-morphism

(ρ2 ◦ ρ1)(X) := ρ2(X) ◦ ρ1(X)and the 2-morphism (ρ2 ◦ ρ1)(f) whih is the following omposite:
(ρ2 ◦ ρ1)(Y ) ◦ F1(f)

aF1(f),ρ1(Y ),ρ2(Y )

��
ρ2(Y ) ◦ (ρ1(Y ) ◦ F1(f))

idρ2(Y )◦ρ1(f)
+3 ρ2(Y ) ◦ (F2(f) ◦ ρ1(X))

a−1
ρ1(X),F2(f),ρ2(Y )

��
(ρ2(Y ) ◦ F2(f)) ◦ ρ1(X)

ρ2(f)◦idρ1(X)

+3 (F3(f) ◦ ρ2(X)) ◦ ρ1(X)

aρ1(X),ρ2(X),F3(f)

��
F3(f) ◦ (ρ2 ◦ ρ1)(X).2. The assoiator for the above omposition of pseudonatural transformations is themodi�ation de�ned by

aρ1,ρ2,ρ3(X) := aρ1(X),ρ2(X),ρ3(X),where a on the right hand side is the assoiator of T .3. The identity pseudonatural transformation idF : F // F assoiated to a 2-funtor
F is de�ned by idF (X) := idF (X), and idF (f) is the omposite

idF (Y ) ◦ F (f)
rF (f) +3 F (f)

l−1
F (f) +3 F (f) ◦ idF (X).4. The right and left uni�ers are the modi�ations de�ned by

rρ(X) := rρ(X) and lρ(X) := lρ(X).92



5. The vertial omposition of two modi�ations A : ρ1
+3 ρ2 and A′ : ρ2

+3 ρ3 isde�ned by
(A′ • A)(X) := A′(X) • A(X).6. The identity modi�ation assoiated to a pseudonatural transformation ρ : F1

// F2is de�ned by idρ(X) := idρ(X).7. The horizontal omposition of two modi�ations A : ρ1
+3 ρ2 and A′ : ρ′1

+3 ρ′2 isde�ned by
(A′ ◦ A)(X) := A′(X) ◦ A(X).We leave it to the reader to verify that the axioms of a 2-ategory are satis�ed. From 2.and 4. of the above list it is lear that the 2-ategory Funct(S, T ) is strit if and only if Tis strit. In this ase, the omposition of pseudonatural transformations introdued in 1.an be depited as in (A.1) of [SW08℄.Another onsequene of Lemma A.9 is that we know what invertibility means in the2-ategory Funct(S, T ): a 2-isomorphism in the 2-ategory Funct(S, T ) is alled invertiblemodi�ation, and a 1-isomorphism is alled pseudonatural equivalene. This leads to thefollowingDe�nition A.10. Let S and T be 2-ategories.

• A 2-funtor F : S // T is alled an equivalene of 2-ategories, if there exists a 2-funtor G : T // S together with pseudonatural equivalenes ρS : G ◦ F // idS and
ρT : F ◦G // idT .

• If the 2-ategories S and T and the 2-funtor F are strit, and G an be hosen strit,
F is alled a strit equivalene.

• If additionally the pseudonatural equivalenes ρS and ρT are identities, F is alled anisomorphism of 2-ategories.B Lifts to the Codesent 2-GroupoidHere we deliver the proofs of two properties of the odesent 2-groupoid Pπ
2 (M) we haveintrodued in Setion 2.1.Lemma B.1. The ategory Pπ

2 (M) is a 2-groupoid.Proof. All 2-morphisms exept those of type (1a) are invertible by de�nition. But for a2-morphism of type (1a), a bigon Σ : γ +3 γ′, we have
Σ−1

⊛ Σ
(II)
= Σ−1 • Σ = idγ

(II)
= id⊛

γ ,93



and analogously Σ⊛Σ−1 = id⊛

γ′ . Here we have used identi�ation (II); more preisely axiom(F1) of the 2-funtor ι : P2(Y ) // Pπ
2 (M). To see that a path γ : a // b is invertible, welaim that γ−1 is a weak inverse. It is easy to onstrut the 2-isomorphisms iγ and jγ usingthe 2-isomorphisms of type (2b). The required identities (A.1) for these 2-isomorphismsare then satis�ed due to identi�ation (II). To see that a jump α ∈ Y [2] with α = (x, y)is invertible, we laim that ᾱ := (y, x) is a weak inverse. The 2-isomorphisms iα and jαan be onstruted from 2-isomorphisms of types (1) and (1d). The identities (A.1) aresatis�ed du to identi�ations (V1) and (V2). �The proof of the �Lifting� Lemma 2.3 requires some preparation.Lemma B.2. Let p ∈ M be a point and a, b ∈ Y with π(a) = π(b) = p. Let α : a // band β : a // b be 1-morphisms in Pπ
2 (M) whih are ompositions of jumps.(a) There exists a 2-isomorphism Ξ : α +3 β with pπ(Ξ) = ididp .(b) Any 2-isomorphism Ξ : α +3 β with pπ(Ξ) = ididp an be represented by a omposi-tion of 2-morphisms of type (1).() The 2-isomorphism from (a) is unique.Proof. It is easy to onstrut the 2-isomorphism from (a) using only 2-isomorphismsof type (1) and their inverses. To show (b) let Ξ : α +3 β be a 2-isomorphism with

pπ(Ξ) = ididp , represented by a omposition of 2-morphisms of any type. In the followingwe draw pasting diagrams to demonstrate that all 2-morphisms of types (1a), (1b) and (1d)an subsequently be killed.To prepare some mahinery notie that identi�ation (III) imposes axiom (T2) for thepseudonatural transformation Γ, whih is, for any bigon Σ : Θ1
+3 Θ2 in Y [2], the identity:

π1(α)
π1(Θ1) //

α

��

π1(α
′)

α′

��

Θ1
wwwww

wwwww

w� wwwww
wwwww

π2(α)

π2(Θ2)

FF
π2(Θ1) // π2(α

′)

π2(Σ)

��

=
π1(α)

π1(Θ1)

��

π1(Θ2)
//

π1(Σ)

��

α

��

π1(α
′)

α′

��

Θ2
wwwww

wwwww

w� wwwww
wwwww

π2(α)
π2(Θ2)

// π2(α
′)

(B.1)
In the same way, identi�ation (IV) imposes the axiom for the modi�ation idι +3 ∆∗Γ,94



whih is, for any path γ : a // b in Y , the identity
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(B.2)
Using (B.2) we an write the identity 2-morphism assoiated to the path γ in a very fanyway, namely
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(B.3)
Now suppose that Σ : γ +3 γ′ is some 2-morphism of type (1a) that we want to kill.We write Σ = Σ ⊛ id⊛

γ and use (B.3). Using the naturality of the 2-morphism l∗γ laimedby identi�ation (I) we have
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where the seond identity is obtained from (B.1) by taking Θ1 := ∆(γ) and Θ2 := (γ, γ′)whih is only possible beause we have assumed that pπ(Σ) = ididp . We an thus kill every2-morphism of type (1a).Suppose now that Ψ : µ +3 ν is a 2-morphism of type (1b). To kill it we need identi-�ation (IV), namely the axiom for the modi�ation π∗23Γ ◦ π∗12Γ
+3 π∗13Γ. For any path95



Θ : Ξ // Ξ′ in Y [3], the orresponding pasting diagram is
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(B.4)
Here we suppress writing the assoiators and the braketing of the 1-morphisms. Using thisidentity we have
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ks (B.5)
for c ∈ Y an arbitrary �xed point with π(c) = p and Θ := (π1(Ψ), idc, π2(Ψ)) whih is onlypossible beause pπ(Ψ) = ididp .We an so far assume that the 2-morphism Ξ : α +3 β we started with ontains no2-morphism of type (1a) and by (B.5) only those 2-morphism Θ = (γ1, γ2) for whih γ1 or
γ2 is the identity path of the point c. If both γ1 and γ2 are identity paths, we an replae Θaording to (B.2) by two 2-morphisms of type (1d). It is now a ombinatorial task to killall 2-morphisms whih start or end on paths, in partiular all 2-morphisms of type (2b).Then one kills all 2-morphisms of types (1d) and the remaining uni�ers l∗β and r∗β. Finally,all assoiators a∗ an be killed using their naturality with respet to 2-morphisms of type(1).To prove () we assume that Ξ′ : α +3 β is any 2-isomorphism with pπ(Ξ) = ididp . By(b) we an assume that Ξ′ is omposed of 2-isomorphisms of type (1). First we remark that
Ξ and Ξ′ indue triangulations of the dis D2. If we assume that the triangulations induedby Ξ and Ξ′ oinide, we already have Ξ = Ξ′, sine orientations and labels of the edgesand of the triangles of Ξ are uniquely determined. If the triangulations do not oinide,we infer that two triangulations of the Riemann surfae D2 an be transformed into eahother via the so-alled fusion and bubble moves, see [FHK94, FRS02℄. It remains to showthat our identi�ations among the 2-morphisms imply these two moves. The bubble move96



follows from the fat that the 2-morphisms of type (1) are invertible:
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The fusion move follows from identi�ation (V1), whih is in pasting diagrams for a point
Ψ ∈ Y [4]
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π4(Ψ).Analogous identities for inverses Ψ̄ and mixtures of Ψ and Ψ̄ an also be dedued. �Now let γ : x // y be a path in M , and let x̃, ỹ ∈ Y be lifts of the endpoints, i.e.
π(x̃) = x and π(ỹ) = y. We are ready to prove Lemma 2.3 from Setion 2.2, namely(a) There exists a 1-morphism γ̃ : x̃ // ỹ in Pπ

2 (M) suh that pπ(γ̃) = γ.(b) Let γ̃ : x̃ // ỹ and γ̃′ : x̃ // ỹ be two suh 1-morphisms. Then, there exists aunique 2-isomorphism A : γ̃ +3 γ̃′ in Pπ
2 (M) suh that pπ(A) = idγ .The assertion (a) is proven in Lemma 2.15 of [SW07℄. To prove (b), we ompare thetwo lifts γ̃ and γ̃′ of γ in the following way. Let P ⊂ M be the set of points over whose�bre either γ̃1 or γ̃2 has a jump. The set P is �nite and ordered by the orientation of thepath γ, so that we may put P = {p0, ..., pn} with p0 = x and pn = y. Now we write

γ = γn ◦ ... ◦ γ1for paths γk : pk−1
// pk. We also write γ̃ as a omposition of lifts γ̃k : ak // bk of γkand (possibly multiple) jumps bk // αk+1 loated over the points pk; analogously for γ̃′.This de�nes jumps αk := (ak, a

′
k) and βk := (bk, b

′
k). Now, over the paths γk, we take97
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(B.6)with Θ := (γ̃k, γ̃
′
k). Over the points pk we need 2-isomorphisms of the form
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(B.7)the �rst whenever γ̃′ has jumps over pk and γ̃ has not, the seond whenever γ̃ has jumpsand γ̃′ has not, and the third whenever both lifts have jumps. By Lemma B.2 these 2-isomorphisms exist and are unique. Then, all of the four diagrams above an be put nextto eah other; this de�nes a 2-isomorphism γ̃ +3 γ̃′. We all the 2-morphism onstrutedlike this the anonial 2-morphism.It remains to show that every 2-morphism A : γ̃ +3 γ̃′ with pπ(A) = idγ is equal tothis anonial 2-morphism. First, we kill all bigons ontained in A by the argument givenin the proof of Lemma B.2. We onsider two ases:1. A ontains no paths exept those ontained in γ̃ or γ̃′. In this ase A is already equalto the anonial 2-morphism. Namely, eah of the piees γ̃k or γ̃′k an only be targetor soure of a 2-morphism of type (1b). These are now neessarily the piees (B.6).It remains to onsider the 2-morphisms between the jumps. But these are by LemmaB.2 equal to the piees (B.7). This shows that A is the anonial 2-morphism.2. There exists a path γ0 in Pπ
2 (M) whih is target or soure of some 2-morphismontained in A but not ontained in γ̃ or γ̃′. In this ase there exists a 1-morphism

γ̃o : x̃ // ỹ together with 2-morphisms A1 : γ̃ +3 γ̃0 and A2 : γ̃0
+3 γ̃′ suhthat A = A2 • A1. By iteration, we an deompose A in a vertial ompositionof 2-morphisms whih fall into ase 1, i.e. into a vertial omposition of anonial2-morphisms.It remains to onlude with the observation that the vertial omposition A2 • A1 oftwo anonial 2-morphisms is again anonial. �98
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