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DIVIDED POWER STRUCTURES AND CHAIN COMPLEXES

BIRGIT RICHTER

Abstract. We interpret divided power structures on the homotopy groups of simplicial com-
mutative rings as having a counterpart in divided power structures on chain complexes coming
from a non-standard symmetric monoidal structure.

1. Introduction

Every commutative simplicial algebra has a divided power structure on its homotopy groups.
The Dold-Kan correspondence compares simplicial modules to non-negatively graded chain
complexes. It is an equivalence of categories, but its multiplicative properties do not interact
well with commutativity: commutative simplicial algebras are sent to homotopy commutative
differential graded algebras, but in general not to differential graded algebras that are com-
mutative on the nose. The aim of this note is to gain a better understanding when suitable
multiplicative structures on a chain complex actually do give rise to divided power structures.
To this end, we use the equivalence of categories between simplicial modules and non-negatively
graded chain complexes and transfer the tensor product of simplicial modules to a symmetric
monoidal category structure on the category of chain complexes.

We start with a brief overview on divided power algebras in section 2. We prove a general
transfer result for symmetric monoidal category structures in section 6. That such a transfer of
monoidal structures is possible is a folklore result and constructions like ours are used in other
contexts, see for instance [Sch01, p.263] and [Q∞]. We consider the case of chain complexes in
section 7 where we use this monoidal structure to gain our main results: in Corollary 7.2 we
give a criterion when a chain complex has a divided power structure on its homology groups
and in Theorem 7.5 we describe when we can actually gain a divided power structure on the
differential graded commutative algebra that interacts nicely with the differential.

As an example we give an alternative description of the well-known ([C54, BK94]) divided
power structure on Hochschild homology: instead of working with the bar construction in the
differential graded setting, we consider the simplicial bar construction of a commutative algebra.
This is naturally a simplicial commutative algebra and hence the reduced differential graded
bar construction inherits a divided power chain algebra structure from its simplicial relative.

2. Divided power algebras

Let R be a commutative ring with unit and let A∗ be an N0-graded commutative algebra
with A0 = R. We denote the positive part of A∗,

⊕

i>0Ai, by A∗>0.

Definition 2.1. A system of divided powers in A∗ consists of a collection of functions γn for
n > 0 that are defined on Ai for i > 0 such that the following conditions are satisfied.

(a) γ0(a) = 1 and γ1(a) = a for all a ∈ A∗>0.
(b) The degree of γi(a) is i times the degree of a.
(c) γi(a) = 0 if the degree of a is odd and i > 1.
(d) γi(λa) = λiγi(a) for all a ∈ A∗>0 and λ ∈ R.
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(e) For all a ∈ A∗>0

γi(a)γj(a) =

(
i+ j

i

)

γi+j(a).

(f) For all a, b ∈ A∗>0

γi(a+ b) =
∑

k+ℓ=i

γk(a)γℓ(b).

(g) For all a, b ∈ A∗>0

γi(ab) = i!γi(a)γi(b) = aiγi(b) = γi(a)b
i.

(h) For all a ∈ A∗>0

γi(γj(a)) =
(ij)!

i!(j!)i
γij .

If we want to specify a fixed system of divided powers (γi)i>0 on A∗, we use the notation
(A∗, γ). For basics about systems of divided powers see [C54, Exposé 7, 8], [GL69, section 7],
[E95, Appendix 2], [Be74, Chapitre I] and [Ro68].

Some properties. Condition (e) implies that for all i > 1 the i-fold power of an element a ∈ A∗>0

is related to its i-th divided power via

(1) ai = i!γi(a).

Therefore, if the underlying R-modules Ai are torsion-free, then there is at most one system of
divided powers on A∗, and if R is a field of characteristic zero, then the assignment γi(a) = ai/i!
defines a unique system of divided powers on every A∗.

If squares of odd degree elements are zero and if we are in a torsion-free context, then
condition (c) is of course taken care of by condition (e). Some authors (e.g. [C54]) demand
that the underlying graded commutative algebra is strict, i.e., that a2 = 0 whenever a has odd
degree.

Not every N0-graded commutative algebra possesses a system of divided powers. Consider
for instance the polynomial rings Z[x] over Z and F2[x] over F2, where x is a generator in
degree two. In F2[x], x

2 is not zero, but if there were a system of divided powers, the equation
x2 = 2γ2(x) would force x2 to vanish. Over the integers, the existence of γ2(x) would imply
that x2 were divisible by two and that’s not the case.

Note, that the following useful product formula

(2)
(ij)!

i!(j!)i
=

i∏

r=2

(
rj − 1

j − 1

)

holds.
We saw that over the rationals, divided powers can be expressed in terms of the underlying

multiplication of the N0-graded commutative algebra. If the ground ring R is a field of char-
acteristic p for some prime number p > 2, then for any system of divided powers on A∗ the
relation

ap = p!γp(a)

forces the p-th powers of elements in A∗ to be trivial. There are more relations implied by

divided power structures, for instance any iteration of the form γi(γp(a)) is equal to γip
(ip)!
i!(p!)i ,

but using relation (2) it is easy to see that the coefficient of γip is congruent to one and hence

γi(γp(a)) = γip(a).

For a more thorough treatment of divided powers in prime characteristic see [C54, Exposé 7,
§§7,8], [A76], and [G90].
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Divided power structure with respect to an ideal. The occurence of divided power structures is
not limited to the graded setting. In an N0-graded commutative R-algebra A∗ the positive part
is an ideal. In the context of ungraded commutative rings, divided power structures can be
defined relative to an ideal. The following definition is taken from [Be74, Chapitre I Definition
1.1.].

Definition 2.2. Let A be a commutative ring and I and ideal in A. A divided power structure

on I consists of a family of maps

γi : I → A, i > 0

which satisfy the following conditions

(a) For all a ∈ I, γ0(a) = 1 and γ1(a) = a. The image of the γi for i > 2 is contained in I.
(b) For all elements a ∈ A and b ∈ I, γi(ab) = aiγi(b).
(c) Conditions (e), (f) and (h) of Definition 2.1 apply in an adapted sense.

An important example of divided power structures on ungraded rings is the case of discrete
valuation rings of mixed characteristic. If p is the characteristic of the residue field, π is a
uniformizer and p = uπe with u a unit, then for the existence of a divided power structure on
the discrete valuation ring is is necessary and sufficient that the ramification index e is less than
or equal to p− 1 (see [Be74, Chapitre I, Proposition 1.2.2]).

Morphisms and free objects. Morphisms are straightforward to define:

Definition 2.3. Let (A∗, γ) and (B∗, γ
′) be two N0-graded commutative algebras with systems

of divided powers. A morphism of N0-graded commutative algebras f : A∗ → B∗ is a morphism

of divided power structures, if

f(γi(a)) = γ′i(f(a)), for all i > 2.

An analogous definition works in the ungraded case.
We will describe the free divided power algebra generated by a N0-graded module M∗ whose

components Mi are free R-modules.

Definition 2.4. Consider the free R-module generated by an element x of degree m.

• If m is odd, then the free divided power algebra on x over R is the exterior algebra over
R generated by x, ΛR(x). In this case the γi are trivial for i > 2.
• If m is even, the free divided power algebra on x over R is

R[X1,X2, . . .]/I.

Here the Xn are polynomial generators in degree nm and I is the ideal generated by

XiXj −

(
i+ j

i

)

Xi+j .

As the tensor product over R is the coproduct in the category of N0-graded commutative R-
algebras, we get a notion of a free divided power algebra on a finitely generated module M∗

whose Mi are free as R-modules by taking care of Condition (g) of Definition 2.1. If M∗ is
not finitely generated we take the colimit of the free divided power algebras on finitely many
generators. Compare [GL69, Proposition 1.7.6].

If M∗ is an N0-graded module that is freely generated by elements x1, . . . , xn, then it is
common to denote the free divided power algebra over R on these generators by ΓR(x1, . . . , xn).

Occurences of free divided power algebras are ample. For instance, the cohomology ring of
the loop space on a sphere, Ω(Sn), for n > 2 is a free divided power algebra. Using the Serre
spectral sequence for the path-loop fibration ΩS

n → PS
n → S

n one gets

H∗(Ω(Sn); Z) ∼=

{
ΓZ(a) |a| = n− 1, n odd
ΓZ(a, b) ∼= ΛZ(a)⊗ ΓZ(b) |a| = n− 1, |b| = 2n− 2, n even

3



Often, free divided power algebras arise as duals of symmetric algebras. For a N0-graded
R-module M∗, its R-dual, M∗, is the N0-graded R-module with M i = HomR(Mi, R). The
symmetric algebra generated by a N0-graded R-module M∗ is

S(M∗) = TR(M∗)/C

where C is the ideal generated by the graded commutativity relation

ab− (−1)|a||b|ba.

Here, |a| denotes the degree of a and TR(M∗) =
⊕

i>0M
⊗i
∗ is the tensor algebra generated by

M∗.
The diagonal map M∗ →M∗ ⊕M∗, a 7→ (a, a) induces a cocommutative coalgebra structure

∆: S(M∗) −→ S(M∗ ⊕M∗) ∼= S(M∗)⊗ S(M∗).

On the graded dual of S(M∗), S(M∗)
∗, this comultiplication yields a graded commutative

multiplication
m = ∆∗ : S(M∗)

∗ ⊗ S(M∗)
∗ −→ S(M∗)

∗.

If M∗ is a N0-graded R-module whose components are free over R, then S(M∗)
∗ has a system

of divided powers (see for instance [E95, A2.6]).
Let Σn denote the symmetric group on n-letters. If N∗ is an is an N0-graded module with

Σn-action, then we denote by NΣn
∗ the invariants in N∗ with respect to the Σn-action. If M is

a free R-module, then one can describe the free divided power algebra on M as

(3)
⊕

n>0

(M⊗n
∗ )Σn .

This is a classical result and is for instance proved in [C54, Exposé 8, Proposition 4]. See Roby
[Ro68, Remarque p. 103] for an example where the two notions differ if one considers a module
that is not free. Divided power structures can in fact be described via (3): a graded module
with free components, M∗, with M0 = 0 has a divided power structure if there is a map

(4)
⊕

n>1

(M⊗n
∗ )Σn →M∗

that satisfies the axioms of a monad action (see [F00]). The monad structure that is applied in
the desciption via (4) uses the invertibility of the norm map on reduced symmetric sequences
of the form M⊗n

∗ [F00, 1.1.16 and 1.1.18]. The invertibility of the norm map in this case was
discovered earlier by Stover [St93, 9.10].

2.0.1. Divided power structures in the simplicial context. On the homotopy groups of simplicial
commutative rings there are divided power operations and it is this instance of divided power
structures that we will investigate in this paper.

In the context of the action of the Steenrod algebra on cohomology groups of spaces, the
top operation in the p-th power map. On the homotopy groups of simplicial commutative F2-
algebras, there are analogous operations δi of degree i > 2 such that the highest operation is
the divided square. These operations were investigated by Cartan [C54, Exposé no 8] and were
intensely studied by many people ([Bo67, section 8], [D80], [G90, chapter 2], [T99]). In [Bo67,
8.8 onwards] a family of operations for odd primes is discussed as well.

Notation. With ∆ we denote the category whose objects are the sets [n] = {0, . . . , n} with
their natural ordering and morphisms from in ∆ are monotone maps. A simplicial object in a
category C is a functor from the opposite category of ∆, ∆op, to C. We denote the category of
simplicial objects in C by sC.

In the category of simplicial sets, the representable functors

∆(n) : ∆op → Sets

are the ones that send [m] ∈ ∆ to ∆([m], [n]). If δi : [n] → [n + 1] denotes the map that is the
inclusion that misses i and is strictly monotone everywhere else and if σi : [n] → [n − 1] is the
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surjection that sends i and i+ 1 to i and is strictly monotone elsewhere, then we denote their
opposite maps by di = (δi)

op and si = (σi)
op.

If S is a set and R is a ring, then we denote the free R-module generated by S by R[S]. The
tensor product of two R-modules N and M , N ⊗RM , will be abbreviated by N ⊗M .

3. The Dold-Kan correspondence

The Dold-Kan correspondence [Do58, Theorem 1.9] compares the category of simplicial ob-
jects in an abelian category A to the non-negatively graded chain complexes over A via a specific
equivalence of categories. In the following we fix an arbitrary commutative ring with unit R and
we will focus on the correspondence between simplicial R-modules , smodR, and non-negatively
graded chain complexes of R-modules, Ch

R
>0.

The equivalence is given by the normalization functor, N : smodR → Ch
R
>0, and we denote its

inverse by Γ

N : smodR
//
Ch

R
>0 : Γoo

In particular the functor N is a left adjoint to Γ. The value of N on a simplicial R-module X•

in chain degree n is

Nn(X•) =

n⋂

i=1

ker(di : Xn −→ Xn−1)

where the di are the simplicial structure maps. The differential d : Nn(X•) → Nn−1(X•) is
given by the remaining face map d0.

Recall that for a chain complex C∗,

Γn(C∗) =

n⊕

p=0

⊕

̺ : [n]։[p]

C̺p

where ̺ is an order preserving surjection and C̺p = Cp. The normalized chain complex has
an alternative description via a quotient construction where one reduces modulo degenerate
elements [W94, lemma 8.3.7]. There is a canonical identification ϕC∗

: NΓC∗
∼= C∗: if ̺ is

not the identity map, then the simplicial structure of Γ(C∗) identifies elements in C̺p as being
degenerate. For a simplicial R-module A• the isomorphism ψA•

: ΓN(A•) ∼= A• is induced by
the map that sends N(A•)

̺
p ⊂ Ap via ̺ to An.

The tensor product of chain complexes (C∗, d) and (C ′
∗, d

′) is defined as usual via

(C∗ ⊗ C
′
∗)n =

⊕

p+q=n

Cp ⊗ C
′
q

with differential D(c⊗ c′) = (dc) ⊗ c′ + (−1)pc⊗ d′c′ for c ∈ Cp, c
′ ∈ C ′

q. Let (R, 0) denote the
chain complex that has R as degree zero part and that is trivial in all other degrees. There is a
twist isomorphism τC∗,C′

∗
: C∗ ⊗ C

′
∗ → C ′

∗ ⊗ C∗ that is induced by τC∗,C′
∗
(c ⊗ c′) = (−1)pqc′ ⊗ c

for c and c′ as above. The structure (Ch
R
>0,⊗, (R, 0), τ) turns Ch

R
>0 into a symmetric monoidal

category.
For two arbitrary simplicial R-modules A• and B•, let A•⊗̂B• denote the degree-wise tensor

product of A• and B•, i.e., (A•⊗̂B•)n = An ⊗k Bn. Here, the simplicial structure maps are
applied in each component; in particular, the differential on N∗(A•⊗̂B•) in degree n is d0 ⊗ d0.
The constant simplicial object R which consists of R in every degree is the unit with respect to
⊗̂ and the twist

τ̂A•,B•
: A•⊗̂B• −→ B•⊗̂A•, τ̂A•,B•

(a⊗ b) = b⊗ a

gives (smodR, ⊗̂, R, τ̂) the structure of a symmetric monoidal category. Note thatN(R) ∼= (R, 0).
There are natural maps, the shuffle maps,

sh : N(A•)⊗N(B•) −→ N(A•⊗̂B•)
5



(see [ML95, VIII.8]) that turn the normalization into a lax symmetric monoidal functor, i.e.,
the shuffle maps are associative in a suitable sense and the diagram

N(A•)⊗N(B•)
sh

//

τ

��

N(A•⊗̂B•)

N(τ̂ )
��

N(B•)⊗N(A•)
sh

// N(B•⊗̂A•)

commutes for all A•, B• ∈ smodR. However, the inverse of N , Γ, is not lax symmetric monoidal.
In order to compare Γ(C∗)⊗̂Γ(C ′

∗) and Γ(C∗ ⊗ C
′
∗) one uses the Alexander-Whitney map

aw : N(A•⊗̂B•) −→ N(A•)⊗N(B•)

and this natural map is not symmetric, i.e., the diagram

N(A•⊗̂B•)
aw

//

N(τ̃)
��

N(A•)⊗N(B•)

τ

��

N(B•⊗̂A•)
aw

// N(B•)⊗N(A•)

does not commute.
Schwede and Shipley proved, that the Dold-Kan correspondence passes to a Quillen equiva-

lence between the category of associative simplicial rings and the category of differential graded
associative algebras that are concentrated in non-negative degrees. They consider the normal-
ization functor and construct an adjoint on the level of monoids which then gives rise to a
monoidal Quillen equivalence [SchSh03].

If one starts with a differential graded commutative algebra, then Γ sends this algebra to
a simplicial E∞-algebra [R03, Theorem 4.1]. In general, the Dold-Kan correspondence gives
rise to a Quillen adjunction between simplicial homotopy O-algebras and differential graded
homotopy O-algebras for operads O in R-modules [R06, Theorem 5.5.5].

4. The divided power structure on homotopy groups of commutative simplicial

algebras

In the following we view Σni as the group of bijections of the set {0, . . . , ni − 1}. For a
permutation σ we use ε(σ) for its signum. We consider the set of shuffle permutations,

Sh(n, . . . , n
︸ ︷︷ ︸

i

) ⊂ Σni.

This set consists of permutations σ ∈ Σni such that

σ(0) < . . . < σ(n− 1), . . . , σ((i − 1)n) < . . . < σ(ni− 1).

Let j denote the block of numbers (j − 1)n < . . . < jn − 1 for 1 6 j 6 i and let [ni − 1]\j
denote the complement of j with its inherited ordering from the one of [ni − 1]. We use the
abbreviation sσ([ni]\j) for the composition of the degeneracy maps sσ(k) where k ∈ [ni − 1]\j

and the order of the composition uses small indices first. For example, let σ ∈ Sh(2, 2, 2) be the
permutation σ = (0, 2)(1, 4)(3, 5)

0

NNNNNNNNNN 1

TTTTTTTTTTTTTTT 2

pppppppppp 3

OOOOOOOOOO 4

jjjjjjjjjjjjjjj 5

pppppppppp

0 1 2 3 4 5.

In this case, sσ([5]\2) = s4 ◦ s3 ◦ s2 ◦ s1.

LetA• be a commutative simplicial R-algebra, i.e., a commutative monoid in (smodR, ⊗̂, R, τ̂ ).
The homotopy groups of A•, π∗(A•), are the homology groups of the normalization of A•,
H∗(N(A•)). Starting with a cycle a ∈ Nn(A•) we can map a it to its i-fold tensor power

Nn(A•) ∋ a 7→ a⊗i ∈ Nn(A•)
⊗i.

6



The i-fold iterated shuffle map sends a⊗i to
∑

σ∈Sh(n,...,n)

ε(σ)sσ([ni−1]\1)(a)⊗ . . .⊗ sσ([ni−1]\n)(a)

so that the outcome is an element in

Ani ⊗ . . .⊗Ani = (A•⊗̂ . . . ⊗̂A•)ni.

As none of the degeneracy maps arises n times, we consider the image as an element of
Nni(A•⊗̂ . . . ⊗̂A•). If we compose the i-fold diagonal map with the i-fold iterated shuffle map
followed by the commutative multiplication in A•, we can view the composite as a map

Pi : Nn(A•) −→ Nni(A•).

A tedious calculation shows that Pi is actually a chain map. On the level of homology, this
composite sends a homology class to its i-fold power.

The group Σi acts on the set of shuffles Sh(n, . . . , n
︸ ︷︷ ︸

i

) by permuting the i blocks of size n.

If ξ ∈ Σi we denote the corresponding block permutation by ξb. For a σ ∈ Sh(n, . . . , n
︸ ︷︷ ︸

i

) and

ξ ∈ Σi, σ ◦ ξ
b is again an element of Sh(n, . . . , n

︸ ︷︷ ︸

i

). As A• is commutative, we have that the

multiplication applied to a summand sσ([ni−1]\1)(a)⊗ . . .⊗ sσ([ni−1]\n)(a) gives the same output

as the multiplication applied to the summand corresponding to σ ◦ ξb.
If the characteristic of the ground ring is not two, then i-fold powers for i > 2 are trivial

unless n is even. The signum of the permutation σ ◦ ξb is the signum of ξb multiplied by ε(σ).
For each crossing in ξ the block permutation ξb has n2 crossings, so ξb is in the alternating
group in this case. If the characteristic of R is 2, then signs do not matter.

Definition 4.1. For a simplicial commutative R-algebra A•, the i-th divided power of [a] ∈
πn(A•) = Hn(N(A•)) is defined as the class of

µ ◦
∑

σ∈Sh(n,...,n)/Σi

ε(σ)sσ([ni]\1)(a)⊗ . . .⊗ sσ([ni]\n)(a)

where we choose a system of representing elements σ ∈ Sh(n, . . . , n)/Σi. We denote the i-th
divided power of a ∈ πn(A•) by γi(a).

As we know that all elements σ′ in the same coset as σ give rise to the same value under the
map Pi, we obtain that

ai = i!γi(a).

With the conventions γ0(a) = 1 and γ1(a) = a we obtain the following (see for instance [F00,
§2.2] for a proof).

Proposition 4.2. The system of divided powers in the homotopy groups of a commutative

simplicial R-algebra A•, (π∗(A•), γ) satisfies the properties from Definition 2.1.

5. A large symmetric monoidal product on chain complexes

We will use the following product later in order to investigate divided power structures on
chain complexes.

Definition 5.1. We define the large tensor product of two chain complexes C∗ and C ′
∗ to be

C∗⊗̃C
′
∗ := N(Γ(C∗)⊗̂Γ(C ′

∗)).

Note that the large tensor product deserves its name: the degenerate elements in Γ(C∗)⊗̂Γ(C ′
∗)

are only the ones that are images of the maps si⊗̂si, and in general N(Γ(C∗)⊗̂Γ(C ′
∗)) is much

larger than the ordinary tensor product C∗ ⊗ C
′
∗
∼= N(Γ(C∗))⊗N(Γ(C ′

∗)).
7



As a concrete example, consider the normalized chain complex on the standard simplex
Z[∆(1)]. Let us denote a monotone map f : [n] → [1] by an (n + 1)-tupel corresponding to its
image, so that for instance

f : [3]→ [1], f(0) = 0, f(1) = f(2) = f(3) = 1

is represented by (0, 1, 1, 1).
As Z[∆(1)] has non-degenerate simplices only in degrees zero and one corresponding to

the monotone maps (0) and (1) ∈ ∆([1], [0]) and (0, 1) in ∆([1], [1]), its normalization C∗ =
N(Z[∆(1)]) is the chain complex

Z⊕ Z← Z← 0← . . .

and the boundary map sends the generator (0, 1) to (0) − (1). Therefore, C∗ ⊗ C∗ is a chain
complex, that is concentrated in degrees zero, one and two with chain groups of rank four, four
and one respectively. Note that

N(Γ(N(Z[∆(1)]))⊗̂Γ(N(Z[∆(1)]))) ∼= N(Z[∆(1)]⊗̂Z[∆(1)]).

Thus for instance in degree one, C∗⊗̃C∗ is of rank seven.

6. Equivalences of categories and transfer of monoidal structures

If F : C → D and G : D → C is a pair of functors that constitute an equivalence of categories
and if (D, ⊗̂, 1, τ̂ ) is symmetric monoidal, then we can transfer the symmetric monoidal structure
on D to one on C in the following way.

• As for chain complexes, one defines a product ⊗̃ via C1⊗̃C2 = G(FC1⊗̂FC2) for objects
C1, C2 of C.
• As an equivalence

τ̃C1,C2 : C1⊗̃C2 = G(FC1⊗̂FC2)→ G(FC2⊗̂FC1) = C2⊗̃C1

we take G(τ̂FC1,FC2).
• The unit for the symmetric monoidal structure is G(1).

For later reference, we spell out some of the structural isomorphisms. Recall that any equivalence
of categories gives rise to an adjoint equivalence [ML95, IV.4]; in particular the unit and counit
of the adjunction are isomorphisms. We want to denote the natural isomorphism from GFC to
C for C an object of C by ϕC and the one from FGD to D by ψD for all objects D in D. Then
the identities

(5) F (ϕC) = ψFC and G(ψD) = ϕGD

hold for all C and D.
For the left unit we have to identify C with G(1)⊗̃C and to this end we use the morphism

ℓ̃ : C
ϕ−1

//G(F (C))
G(ℓ̂)

//G(1⊗̂F (C))
G(ψ−1⊗̂id)

//G(F (G(1))⊗̂F (C)) = G(1)⊗̃C

where ℓ̂ is the left unit isomorphism for ⊗̂. The right unit is defined similarly.
The associativity isomorphism α̃ is given in terms of the one for ⊗̂, α̂ as

α̃ := G(id⊗̂ψ)−1 ◦G(α̂) ◦G(ψ⊗̂id) :

G(FG(F (C)⊗̂F (C))⊗̂F (C))

G(ψ⊗̂id)

��

α̃
// G(F (C)⊗̂FG(F (C)⊗̂F (C)))

G(id⊗̂ψ)

��

G((F (C)⊗̂F (C))⊗̂F (C))
G(α̂)

// G(F (C)⊗̂(F (C)⊗̂F (C)))

8



Then it is a tedious, but straightforward task to show the following result. A proof in the
non-symmetric setting can be found in [Q∞, Theorem 3].

Proposition 6.1. The category (C, ⊗̃, G(1), τ̃ ) is a symmetric monoidal category.

If C already has a symmetric monoidal structure, then we can compare the old one to the
new one as follows.

Proposition 6.2. If (C,⊗, G(1), τ) is a symmetric monoidal structure and if G : (D, ⊗̂, 1, τ̂ )→
(C,⊗, G(1), τ) is lax symmetric monoidal, then the identity functor

id : (C, ⊗̃, G(1), τ̃ ) −→ (C,⊗, G(1), τ)

is lax symmetric monoidal.

Proof. We have to construct maps λC1,C2 : C1 ⊗ C2 → C1⊗̃C2 that are natural in C1 and C2

and that render the diagrams

C1 ⊗ C2

τ

��

λC1,C2
// C1⊗̃C2

τ̃C1,C2

��

C2 ⊗ C1

λC2,C1
// C2⊗̃C1

commutative for all C1, C2 ∈ C. Let Υ be the transformation that turns G into a lax symmtric
monoidal functor. We define

λC1,C2 : C1 ⊗ C2

ϕ−1
C1

⊗ϕ−1
C2

//GF (C1)⊗GF (C2)
ΥF (C1),F (C2)

//G(F (C1)⊗̂F (C2)) = C1⊗̃C2 .

�

Corollary 6.3. Every commutative monoid in (C, ⊗̃, G(1), τ̃ ) is a commutative monoid in

(C,⊗, G(1), τ).

The functor F compares commutative monoids in the categories C and D as follows.

Theorem 6.4. An object F (C) is a commutative monoid in (D, ⊗̂, 1, τ̂ ) if and only if C is a

commutative monoid in (C, ⊗̃, G(1), τ̃ ). Moreover, the assignment C 7→ F (C) is a functor from

the category of commutative monoids in (C, ⊗̃, G(1), τ̃ ) to the category of commutative monoids

in (D, ⊗̂, 1, τ̂ ).

Proof. If we assume that C is a commutative monoid in (C, ⊗̃, G(1), τ̃ ), then C has an associative
multiplication

µ̃ : C⊗̃C = G(F (C)⊗̂F (C)) −→ C

that satisfies µ̃ ◦ τ̃ = µ̃ and there is a unit map j : G(1) → C. We consider the composition
ϕ−1 ◦ µ̃ : G(F (C)⊗̂F (C)) → GF (C). As G is an equivalence of categories, it is a full functor,
i.e., the morphism ϕ−1 ◦ µ̃ is of the form G(µ̂) for some morphism µ̂ : F (C)⊗̂F (C)→ F (C) in
D. We will show that µ̂ turns F (C) into a commutative monoid. We define the unit map as
i = F (j) ◦ ψ−1 : 1→ F (C).

As τ̃ = G(τ̂ ), the commutativity of µ̂ follows from the one of µ̃ and the fact that the functor
G is faithful.

In order to check the unit property of i we have to show that the following diagram commutes:

(6) F (C)
ℓ̂

// 1⊗̂F (C)
ψ−1⊗̂id

// F (G(1))⊗̂F (C)

F (j)⊗̂id
��

F (C) F (C)⊗̂F (C).
µ̂

oo

As j is a unit for the multiplication µ̃ we know that

µ̃ ◦ (j⊗̃id) ◦G(ψ−1⊗̂id) ◦G(ℓ̂) ◦ ϕ−1
C = idC .

9



Applying the faithful functor F to this identity and using the definition of µ̂, we get that

FG(µ̂) ◦ F (j⊗̃id) ◦ FG(ψ−1⊗̂id) ◦ FG(ℓ̂) = idFGF (C).

By the very definition, F (j⊗̃id) is F (G(F (j)⊗̂id)) and thus via the faithfulness of FG we can
conclude that diagram (6) commutes. The analogous statement for the right unit can be shown
similarly and hence i is a unit.

For the associativity of the multiplication µ̂ we have to show that the inner pentagon in the
following diagram commutes.

G(FG(F (C)⊗̂F (C))⊗̂F (C))

µ̃⊗̃id

''

G(ψ⊗̂id)

��

α̃
// G(F (C)⊗̂FG(F (C)⊗̂F (C)))

G(id⊗̂ψ)

��
id⊗̃µ̃

ww

G((F (C)⊗̂F (C))⊗̂F (C))

G(µ̂⊗̂id)
��

G(α̂)
// G(F (C)⊗̂(F (C)⊗̂F (C)))

G(id⊗̂µ̂)
��

G(F (C)⊗̂F (C))

G(µ̂) ((PPPPPPPPPPPP

µ̃

--

G(F (C)⊗̂F (C))

G(µ̂)vvnnnnnnnnnnnn

µ̃

qq

GF (C)

ϕ

��

C

The outer diagram commutes because µ̃ is associative and the upper square commutes because
α̃ is given in terms of α̂ in this way. The only thing that remains to be proven is that the
outer wings commute. We prove the claim for the left wing. Using the definitions of the maps
involved, we have to show that

G(FG(F (C)⊗̂F (C))⊗̂F (C))

µ̃⊗̃id=G(F (µ̃)⊗̂id) **UUUUUUUUUUUUUUUUU

G(ψF (C)⊗̂F (C)⊗̂id)
// G((F (C)⊗̂F (C))⊗̂F (C))

G(µ̂⊗̂id)ttjjjjjjjjjjjjjjjj

G(F (C)⊗̂F (C))

commutes. We know that

FG(µ̂) = F (ϕ−1
C ) ◦ F (µ̃)

and therefore

ψF (C) ◦ FG(µ̂) = F (µ̃).

The naturality of ψ implies that

ψF (C) ◦ FG(µ̂) = µ̂ ◦ (ψF (C)⊗̂F (C))

and the claim follows.
If F (C) is a commutative monoid with respect to ⊗̂ with multiplication µ̂ and unit i : 1 →

F (C), then we claim that µ̃ := ϕC ◦ G(µ) and j := ϕC ◦ G(i) give C the structure of a
commutative monoid with respect to ⊗̃.

The fact that µ̃ is commutative follows directly because τ̃ = G(τ̂ ). The proof of the unit
axiom and of associativity use the same diagrams as above with the arguments reversed.

It remains to show that a morphism f : C1 → C2 of commutative monoids with respect to ⊗̃
gives rise to a morphism F (f) : F (C1)→ F (C2) of commutative monoids with respect to ⊗̂. It

10



suffices to show that the outer diagram in

G(F (C1)⊗̂F (C1))

G(µ̂)

$$

G(F (f)⊗̂F (f))
//

µ̃

��

G(F (C2)⊗̂F (C2))

µ̃

��

G(µ̂)

zz

C1
f

// C2

GF (C1)

ϕC1

OO

GF (f)
// GF (C2)

ϕC2

OO

commutes. The upper square commutes by assumption, the lower square commutes because ϕ
is natural and the wings commute by the very defintion of µ̂ in terms of µ̃.

�

7. Divided power structures and commutative monoids

If we apply the above results to the Dold-Kan correspondence with Γ = F , N = G, C = Ch
R
>0

and D = smodR and the large tensor product of chain complexes, then we obtain the following
statements that we collect in one theorem.

Theorem 7.1.

(a) The category of chain complexes with the large tensor product is a symmetric monoidal

category with N(R) being the unit of the monoidal structure and

τ̃ = N(τ̂Γ(C∗),Γ(C′
∗)) : N(Γ(C∗)⊗̂Γ(C ′

∗)) −→ N(Γ(C ′
∗)⊗̂Γ(C∗))

as the twist.

(b) The identity functor

id : (Ch
R
>0, ⊗̃, N(R), τ̃ ) −→ (Ch

R
>0,⊗, (R, 0), τ)

is lax symmetric monoidal.

(c) Every commutative monoid in (Ch
R
>0, ⊗̃, N(R), τ̃ ) is a differential graded commutative

R-algebra.

(d) A simplicial R-module Γ(C∗) is a simplicial commutative R-algebra if and only if the

chain complex C∗ is a commutative monoid in (Ch
R
>0, ⊗̃, N(R), τ̃ ). The assignment C∗ 7→

Γ(C∗) is a functor from the category of commutative monoids in (Ch
R
>0, ⊗̃, N(R), τ̃ ) to

the category of simplicial commutative R-algebras.

Corollary 7.2. Every commutative monoid C∗ in (Ch
R
>0, ⊗̃, N(R), τ̃ ) has a divided power struc-

ture on its homology.

The converse of statement (c) of Theorem 7.1 is not true: not every differential graded
commutative algebra possesses a divided power structure on its homology, so these algebras
cannot be commutative monoids in (Ch

R
>0, ⊗̃, N(R), τ̃ ). For instance the polynomial ring Z[x]

over the integers with x of degree two and trivial differential provides an example.

Definition 7.3. We denote by Com⊗̃ the category whose objects are commutative monoids

in (Ch
R
>0, ⊗̃, N(R), τ̃) and whose morphisms are multiplicative chain maps, i.e., if C∗,D∗ are

objects of Com⊗̃ with unit maps jC∗
: N(R)→ C∗ and jD∗

: N(R)→ D∗, then a morphism is a
chain map f : C∗ → D∗ with f ◦ jC∗

= jD∗
and such that the diagram

C∗⊗̃C∗

µ̃C∗

��

f⊗̃f
// D∗⊗̃D∗

µ̃D∗

��

C∗
f

// D∗

commutes.
11



If we start with a C∗ ∈ Com⊗̃, then in particular, C∗ is a differential graded algebra, i.e., the
differential d on the underlying chain complex C∗ is compatible with the product structure: it
satisfies the Leibniz rule

d(ab) = d(a)b+ (−1)|a|ad(b), for all a, b ∈ C∗.

If there are divided power structures on the underlying graded commutative algebra C∗, then
we want these to be compatible with the differential.

Definition 7.4. 1) A commutative differential algebra C∗ with divided power operations is
called a divided power chain algebra, if the differential d of C∗ satisfies

(a)
d(γi(c)) = d(c) · γi−1(c) for all c ∈ C∗

(b) If c is a boundary, then γi(c) is a boundary for all i > 1.

2) A morphism of commutative differential algebras f : C∗ → D∗ is a morphism of divided

power chain algebras, if f satisfies f(γi(c)) = γi(f(c)) for all c ∈ C∗, i > 0.

The first condition in 1) ensures that divided powers respect cycles and together with the
second condition this guarantees that the homology of C∗ inherits a divided power structure
from C∗.

A reformulation of the criterium for a divided power chain algebra is used in [AH86, definition
1.3]: they demand that every element of positive degree is in the image of a morphism of
differential graded commutative algebras with divided power structure f : D∗ → C∗ such that
D∗ satisfies condition (a) of Definition 7.4 and has trivial homology in positive degrees.

For a commutative monoid with respect to ⊗̃, C∗, the i-th power of an element c ∈ NΓ(C∗)
is given via the following composition

c ∈
_

��

NΓ(C∗)n
c 7→c⊗i

// NΓ(C∗)
⊗i
n ⊂ (NΓ(C∗)

⊗i)ni

sh

��

N(Γ(C∗)⊗̂ . . . ⊗̂Γ(C∗))ni = C∗⊗̃ . . . ⊗̃C∗

N(µ̂)

tthhhhhhhhhhhhhhhhhhh

µ̃

��

ci ∈ NΓ(C∗)ni
ϕ

// C∗.

We define a divided power structure on NΓ(C∗) by using a variant of the shuffle map as in
Definition 4.1 sending c⊗i to

∑

σ∈Sh(n,...,n)/Σi

ε(σ)sσ([ni]\1)(c)⊗ . . .⊗ sσ([ni]\n)(c)

and applying N(µ).

Theorem 7.5. The composite NΓ is a functor from the category Com⊗̃ to the category of

divided power chain algebras.

Proof. Let C∗ be a commutative monoid in (Ch
R
>0, ⊗̃, N(R), τ̃ ). Let us first prove that

d(γi(c)) = γi−1(c) · d(c)

for all c ∈ C∗ in positive degrees. If we apply the boundary d = d0 to

(7) γi(c) = N(µ)(
∑

σ∈Sh(n,...,n)/Σi

ε(σ)sσ([ni−1]\1)(c)⊗ . . . ⊗ sσ([ni−1]\n)(c))

then we can use that d0 is a morphism in the simplicial category to obtain

d0 ◦N(µ) = N(µ) ◦ d0 ⊗ . . .⊗ d0.

Only one of the sets σ([ni − 1]\j) does not contain zero. Therefore the simplicial identities
d0 ◦ si = si−1 ◦ d0 for i > 0 and d0 ◦ s0 = id ensure, that in the sum (7) there are i − 1 tensor
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factors containing just degeneracies applied to c and only one term containing degeneracies
applied to d0(c).

A shuffle permutation in Sh(n, . . . , n
︸ ︷︷ ︸

i−1

) tensorized with the identity map followed by a shuffle

in Sh(n(i−1), n) gives a shuffle in Sh(n, . . . , n
︸ ︷︷ ︸

i

) and every shuffle in Sh(n, . . . , n
︸ ︷︷ ︸

i

) is decomposable

in the above way. There are
n∏

j=2

(
nj
n

)

i!

elements in Sh(n, . . . , n
︸ ︷︷ ︸

i

)/Σi and

n−1∏

j=2

(nj
n

)

(i− 1)!
·

(
ni− 1

n− 1

)

elements in the product of Sh(n, . . . , n
︸ ︷︷ ︸

i−1

)/Σi−1 and Sh(n(i− 1), n). As these numbers are equal,

we obtain that the two sets are in bijection and d0(γi(c)) can be expressed as the product of
γi−1(c) and d0(c).

The boundary criterium for the divided power structure can be seen as follows: if c is of the
form d0(b) for some b ∈ NΓ(C∗)n+1, then γi(c) is

N(µ)(
∑

σ∈Sh(n,...,n)/Σi

ε(σ)sσ([ni−1]\1)(d0(b)) ⊗ . . . ⊗ sσ([ni−1]\n)(d0(b))).

The simplicial identity sj−1d0 = d0sj for all j > 0 allows us to move the d0-terms in front by
increasing the indices of the degeneracy maps. Therefore γi(d0(b)) is equal to an expression of
the form N(µ)N(d0 ⊗ . . . ⊗ d0)(x) for some suitable x. As N(µ)N(d0 ⊗ . . . ⊗ d0) is equal to
d0 ◦N(µ) we obtain the desired result.

For f : C∗ → D∗ a morphism of commutative monoids in (Ch
R
>0, ⊗̃, N(R), τ̃ ) we have to show

that NΓ(f) is a morphism of divided power chain algebras, i.e., that it is a multiplicative chain
map that preserves units and divided powers. As f is a chain map, Γ(f) is a map of simplicial
R-modules and NΓ(f) is a chain map. If jC∗

and jD∗
are the units for C∗ and D∗, we have

f ◦ jC∗
= jD∗

and this implies

NΓ(f) ◦NΓ(jC∗
) ◦ ϕ−1

N(R) = NΓ(jD∗
) ◦ ϕ−1

N(R)

and thus the unit condition holds.
In order to establish that NΓ(f) is multiplicative we have to show that the back face in the

diagram

NΓ(C∗)⊗NΓ(C∗)
µ

//

sh

++VVVVVVVVVVVVVVVVVV

NΓ(f)⊗NΓ(f)

��

NΓ(C∗)

NΓ(f)

��

N(Γ(C∗)⊗̂Γ(C∗))

ϕ−1◦µ̃=N(µ̂)
44jjjjjjjjjjjjjjjj

N(Γ(f)⊗̂Γ(f))

��

NΓ(D∗)⊗NΓ(D∗)
µ

//

sh

++VVVVVVVVVVVVVVVVVV
NΓ(D∗)

N(Γ(D∗)⊗̂Γ(D∗))

ϕ−1◦µ̃=N(µ̂)
44jjjjjjjjjjjjjjjj
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commutes. The top and bottom triangle commute by definiton, the left front square commutes
because the shuffle map is natural and the right front square commutes because we know from
Theorem 6.4 that Γ(f) is multiplicative.

The fact that f preserves divided powers can be seen directly: using naturality of ϕ and the
multiplicativity of f with respect to ⊗̃, the only thing we have to verify is the compatibility of
f with the variant of the shuffle map. But this map is a sum of tensors of degeneracy maps and
as Γ(f) respects the simplicial structure, the claim follows.

�

Remark 7.6. We can transfer the model structure on simplicial commutative R-algebras as
in [Qui67, II, Theorem 4] to the category Com⊗̃ of commutative monoids in (Ch

R
>0, ⊗̃, N(R), τ̃ )

by declaring that a map f : C∗ → D∗ is a weak equivalence, fibration resp. cofibration in Com⊗̃
if and only if Γ(f) is a weak equivalence, fibration resp. cofibration in the model structure on
commutative simplicial R-algebras.

8. Bar constructions and Hochschild complex

One well-known example of a divided power chain algebra is the normalization of a bar
construction of a commutative R-algebra (see for instance [C54, Exposé no 7] and [BK94, §3]).

Let A be a commutative R-algebra. The bar construction of A is the simplicial commutative
R-algebra, B•(A), with

Bn(A) = A⊗(n+2).

The simplicial structure maps are given by inserting the multiplicative unit 1 ∈ R for degenera-
cies and by multiplication for face maps. As A is commutative, we can multiply componentwise

Bn(A)⊗ Bn(A)→ Bn(A), (a0 ⊗ . . .⊗ an+1)⊗ (a′0 ⊗ . . . ⊗ a
′
n+1) 7→ a0a

′
0 ⊗ . . .⊗ an+1a

′
n+1.

From Theorems 6.4 and 7.5 it follows that the normalization B∗(A) := N(B•(A)) is a divided
power chain algebra.

The Hochschild complex of the commutative R-algebra A ist defined as

C∗(A) = A⊗A⊗A B∗(A)

where the A-bimodule structure on Bn(A) is induced by

(a⊗ ã)(a0 ⊗ . . .⊗ an+1) := aa0 ⊗ . . .⊗ an+1ã.

If A is flat over R, the homology of this complex is TorA⊗A∗ (A,A). As B∗(A) is acyclic and
surjects onto C∗(A), the Hochschild complex inherits a structure of a divided power chain algebra
from B∗(A). Cartan showed [C54, Exposé 7], that the bar construction of strict differential
graded commutative algebras has a divided power structure. Condition (b) of Definition 7.4 is

in general satisfied on the iterated bar construction B
(n)
∗ , n > 2 [C54, p. 7, Exposé 7], so that

each B
(n)
∗ , n > 2 is a divided power chain algebra.
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Mathematics 407, Springer-Verlag, Berlin-New York (1974) 604 pp.

[Bo67] Aldridge K. Bousfield, Operations on derived functors for non-additive functors, unpublished notes,
Brandeis University (1967) 69 pp.

[BK94] Siegfried Brüderle, Ernst Kunz, Divided powers and Hochschild homology of complete intersections,
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