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AbstratHermitian bundle gerbes with onnetion are geometri objets for whih a notion of sur-fae holonomy an be de�ned for losed oriented surfaes. We systematially introduebundle gerbes by losing the pre-stak of trivial bundle gerbes under desent.Inspired by strutures arising in a representation theoreti approah to rational onfor-mal �eld theories, we introdue geometri struture that is appropriate to de�ne surfaeholonomy in more general situations: Jandl gerbes for unoriented surfaes, D-branes forsurfaes with boundaries, and bi-branes for surfaes with defet lines.
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1 IntrodutionTwo-dimensional quantum �eld theories have been a rih soure of relations between di�erentmathematial disiplines. A prominent lass of examples of suh theories are the two-dimen-sional rational onformal �eld theories, whih admit a mathematially preise desription (see[SFR℄ for a summary of reent progress). A large sublass of these also have a lassial desrip-tion in terms of an ation, in whih a term given by a surfae holonomy enters.The appropriate geometri objet for the de�nition of surfae holonomies for oriented sur-faes with empty boundary are hermitian bundle gerbes. We systematially introdue bundlegerbes by �rst de�ning a pre-stak of trivial bundle gerbes, in suh a way that surfae holonomyan be de�ned, and then losing this pre-stak under desent. This onstrution onstitutes infat a generalization of the geometry of line bundles, their holonomy and their appliations tolassial partile mehanis.Inspired by results in a representation theoreti approah to rational onformal �eld theories,we then introdue in the same spirit geometri struture that allows to de�ne surfae holonomyin more general situations: Jandl gerbes for unoriented surfaes, D-branes for surfaes withboundaries, and bi-branes for surfaes with defet lines.2 Hermitian line bundles and holonomyBefore disussing bundle gerbes, it is appropriate to summarize some pertinent aspets of linebundles.One of the basi features of a (omplex) line bundle L over a smooth manifold M is that itis loally trivializable. This means that M an be overed by open sets Uα suh that there existisomorphisms φα : L|Uα
// 1Uα, where 1Uα denotes the trivial line bundle C×Uα. A hoie ofsuh maps φα de�nes gluing isomorphisms

gαβ : 1Uα

∣∣
Uα∩Uβ

// 1Uβ

∣∣
Uα∩Uβ

with gβγ ◦ gαβ = gαγ on Uα∩Uβ∩Uγ . (2.1)Isomorphisms between trivial line bundles are just smooth funtions. Given a set of gluingisomorphisms one an obtain as additional struture the total spae as the manifold
L :=

⊔

α

1Uα /∼ , (2.2)with the relation ∼ identifying an element ℓ of 1Uα with gαβ(ℓ) of 1Uβ
. In short, every bundleis glued together from trivial bundles.In the following all line bundles will be equipped with a hermitian metri, and all isomor-phisms are supposed to be isometries. Suh line bundles form ategories, denoted Bun(M).The trivial bundle 1M de�nes a full, one-objet subategory Buntriv(M) whose endomorphismset is the monoid of U(1)-valued funtions on M . Denoting by π0(C) the set of isomorphismlasses of a ategory C and by H•(M, U(1)) the sheaf ohomology of M with oe�ients in thesheaf of U(1)-valued funtions, we have the bijetion

π0(Bun(M)) ∼= H1(M, U(1)) ∼= H2(M, Z) , (2.3)under whih the isomorphism lass of the trivial bundle is mapped to zero.1



Another basi feature of line bundles is that they pull bak along smooth maps: for L a linebundle over M and f : M ′ // M a smooth map, the pullbak f ∗L is a line bundle over M ′, andthis pullbak f ∗ extends to a funtor
f ∗ : Bun(M) // Bun(M ′) . (2.4)Furthermore, there is a unique isomorphism g∗(f ∗L) // (f ◦ g)∗L for omposable maps f and

g. As our aim is to disuss holonomies, we should in fat onsider a di�erent ategory, namelyline bundles equipped with (metri) onnetions. These form again a ategory, denoted by
Bun∇(M), and this has again a full subategory Buntriv∇(M) of trivial line bundles with onne-tion. But now this subategory has more than one objet: every 1-form ω ∈Ω1(M) an serveas a onnetion on a trivial line bundle 1 over M ; the so obtained objets are denoted by 1ω.The set Hom(1ω, 1ω′) of onnetion-preserving isomorphisms η : 1ω

// 1ω′ is the set of smoothfuntions g : M // U(1) satisfying
ω′ − ω = − i dlog g . (2.5)Just like in (2.2), every line bundle L with onnetion an be glued together from line bundles

1ωα along onnetion-preserving gluing isomorphisms ηαβ .The urvature of a trivial line bundle 1ω is curv(1ω) :=dω ∈ Ω2(M), and is thus invariantunder onnetion-preserving isomorphisms. It follows that the urvature of any line bundlewith onnetion is a globally well-de�ned, losed 2-form. We reall that the ohomology lassof this 2-form in real ohomology oinides with the harateristi lass in (2.3).In order to introdue the holonomy of line bundles with onnetion, we say that the holon-omy of a trivial line bundle 1ω over S1 is
Hol1ω := exp

(
2πi

∫

S1

ω
)
∈ U(1) . (2.6)If 1ω and 1ω′ are trivial line bundles over S1, and if there exists a morphism η in Hom(1ω, 1ω′),we have Hol1ω =Hol1ω′

beause
∫

S1

ω′ −

∫

S1

ω =

∫

S1

− i dlog η ∈ Z . (2.7)More generally, if L is any line bundle with onnetion over M , and Φ: S1 // M is a smoothmap, then the pullbak bundle Φ∗L is trivial sine H2(S1, Z) = 0, and hene one an hoose anisomorphism T : Φ∗L
∼ // 1ω for some ω ∈Ω1(S1). We then set

HolL(Φ) := Hol1ω . (2.8)This is well-de�ned beause any other trivialization T ′: Φ∗L // 1ω′ provides a transition isomor-phism η := T ′ ◦ T −1 in Hom(1ω, 1ω′). But as we have seen above, the holonomies of isomorphitrivial line bundles oinide.Let us also mention an elementary example of a physial appliation of line bundlesand their holonomies: the ation funtional S for a harged point partile. For (M, g) a2



(pseudo-)Riemannian manifold and Φ: R ⊃ [t1, t2] // (M, g) the trajetory of a point partileof mass m and eletri harge e, one ommonly writes the ation S[Φ] as the sum of the kinetiterm
Skin[Φ] =

m

2

∫ t2

t1

g(dΦ

dt
, dΦ

dt
) (2.9)and a term

− e

∫ t2

t1

Φ∗A , (2.10)with A the eletromagneti gauge potential. However, this formulation is inappropriate whenthe eletromagneti �eld strength F is not exat, so that a gauge potential A with dA =Fexists only loally. As explained above, keeping trak of suh loal 1-forms Aα and loal `gaugetransformations', i.e. onnetion-preserving isomorphisms between those, leads to the notion ofa line bundle L with onnetion. For a losed trajetory, i.e. Φ(t1) =Φ(t2), the ation shouldbe de�ned as
eiS[Φ] = eiSkin[Φ] HolL(Φ) . (2.11)An important feature of bundles in physial appliations is the `Dira quantization' onditionon the �eld strength F : the integral of F over any losed surfae Σ in M gives an integer. Thisfollows from the oinidene of the ohomology lass of F with the harateristi lass in (2.3).Another aspet is a neat explanation of the Aharonov-Bohm e�et. A line bundle over a non-simply onneted manifold an have vanishing urvature and yet non-trivial holonomies. In thequantum theory holonomies are observable, and thus the gauge potential A ontains physiallyrelevant information even if its �eld strength is zero. Both aspets, the quantization onditionand the Aharonov-Bohm e�et, persist in the generalization of line bundles to bundle gerbes,whih we disuss next.3 Gerbes and surfae holonomyIn this setion we formalize the proedure of Setion 2 that has lead us from loal 1-formgauge potentials to line bundles with onnetion: we will explain that it is the losure of theategory of trivial bundles with onnetion under desent. We then apply the same priniple toloally de�ned 2-forms, whereby we arrive straightforwardly at the notion of bundle gerbes withonnetion. We desribe the notion of surfae holonomy of suh gerbes and their appliationsto physis analogously to Setion 2.3.1 Desent of bundlesAs a framework for strutures with a ategory assigned to every manifold and onsistent pull-bak funtors we onsider presheaves of ategories. Let Man be the ategory of smooth mani-folds and smooth maps, and let Cat be the 2-ategory of ategories, with funtors between at-egories as 1-morphisms and natural transformations between funtors as 2-morphisms. Then apresheaf of ategories is a lax funtor
F : Manopp // Cat (3.1)3



It assigns to every manifold M a ategory F(M), and to every smooth map f : M ′ // M afuntor F(f) : F(M) // F(M ′). By the quali�ation `lax' we mean that the omposition ofmaps must only be preserved up to oherent isomorphisms.In Setion 2 we have already enountered four examples of presheaves: the presheaf Bunof line bundles, the presheaf Bun∇ of line bundles with onnetion, and their sub-presheaves oftrivial bundles.To formulate a gluing ondition for presheaves of ategories we need to speify overings.Here we hoose surjetive submersions π: Y // M . We remark that every over of M by opensets Uα provides a surjetive submersion with Y the disjoint union of the Uα; thus surjetivesubmersions generalize open overings. This generalization proves to be important for manyexamples of bundle gerbes, suh as the lifting of bundle gerbes and the anonial bundle gerbesof ompat simple Lie groups.With hindsight, a hoie of overings endows the ategory Man with a Grothendiek topol-ogy. Both surjetive submersions and open overs de�ne a Grothendiek topology, and sineevery surjetive submersion allows for loal setions, the resulting two Grothendiek topologiesare equivalent. And in fat the submersion topology is the maximal one equivalent to openoverings.Along with a overing π: Y // M there omes a simpliial manifold
· · ·

∂0 //
//
//

∂3

// Y
[3]

∂0 //
//

∂2

// Y [2]
∂0 //

∂1

// Y
π // M . (3.2)Here Y [n] denotes the n-fold �bre produt of Y over M ,

Y [n] := {(y0, . . . , yn−1)∈Y n | π(y0) = . . .=π(yn−1)} , (3.3)and the map ∂i : Y [n] // Y [n−1] omits the ith entry. In partiular ∂0 : Y [2] // Y is theprojetion to the seond fator and ∂1 : Y [2] // Y the one to the �rst. All �bre produts Y [k]are smooth manifolds, and all maps ∂i are smooth. Now let L be a line bundle over M . Bypullbak along π we obtain:(BO1) An objet L̃ := π∗L in Bun(Y ).(BO2) A morphism
φ : ∂∗

0L̃
∼= ∂∗

0π
∗L

∼ // ∂∗
1π

∗L ∼= ∂∗
1L̃ (3.4)in Bun(Y [2]) indued from the identity π ◦ ∂0 =π ◦ ∂1.(BO3) A ommutative diagram

∂∗
1∂

∗
0L̃

∂∗

1
φ

44∂∗
0∂

∗
0 L̃

∂∗

0
φ
// ∂∗

0∂
∗
1 L̃ ∂∗

2∂
∗
0 L̃

∂∗

2
φ
// ∂∗

2∂
∗
1L̃ ∂∗

1∂
∗
1L̃ (3.5)of morphisms in Bun(Y [3]); or in short, an equality ∂∗

2φ ◦ ∂∗
0φ = ∂∗

1φ.We all a pair (L̃, φ) as in (BO1) and (BO2) whih satis�es (BO3) a desent objet in thepresheaf Bun. Analogously we obtain for a morphism f : L // L′ of line bundles over M4



(BM1) A morphism f̃ := π∗f : L̃ // L̃′ in Bun(Y ).(BM2) A ommutative diagram
φ′ ◦ ∂∗

0 f̃ = ∂∗
1 f̃ ◦ φ (3.6)of morphisms in Bun(Y [2]).Suh a morphism f̃ as in (BM1) obeying (BM2) is alled a desent morphism in the presheaf

Bun.Desent objets and desent morphisms for a given overing π form a ategory
Des(π: Y //M) of desent data. What we desribed above is a funtor

ιπ : Bun(M) // Des(π: Y //M) . (3.7)The question arises whether every `loal' desent objet orresponds to a `global' objet on M ,i.e. whether the funtor ιπ is an equivalene of ategories.The onstrution generalizes straightforwardly to any presheaf of ategories F , and if thefuntor ιπ is an equivalene for all overings π : Y // M , the presheaf F is alled a sheaf ofategories (or stak). Extending the gluing proess from (2.2) to non-trivial bundles shows thatthe presheaves Bun and Bun∇ are sheaves. In ontrast, the presheaves Buntriv and Buntriv∇ oftrivial bundles are not sheaves, sine gluing of trivial bundles does in general not result in atrivial bundle. In fat the gluing proess (2.2) shows that every bundle an be obtained bygluing trivial ones. In short, the sheaf Bun∇ of line bundles with onnetion is obtained bylosing the presheaf Buntriv∇ under desent.3.2 Bundle gerbesOur onstrution of line bundles started from trivial line bundles with onnetion whih arejust 1-forms on M , and the fat that 1-forms an be integrated along urves has lead us to thenotion of holonomy. To arrive at a notion of surfae holonomy, we now onsider a ategory of2-forms, or rather a 2-ategory:An objet is a 2-form ω ∈Ω2(M), alled a trivial bundle gerbe with onnetion and denotedby Iω.A 1-morphism η : ω // ω′ is a 1-form η ∈ Ω1(M) suh that dη = ω′ − ω.A 2-morphism φ : η +3 η′ is a smooth funtion φ : M // U(1) suh that −i dlog(φ) = η′− η.There is also a natural pullbak operation along maps, indued by pullbak on di�erentialforms. The given data an be rewritten as a presheaf of 2-ategories, as there is a 2-ategoryattahed to eah manifold. This presheaf should now be losed under desent to obtain a sheafof 2-ategories. As a �rst step we omplete the morphism ategories under desent. Sine theseare ategories of trivial line bundles with onnetions, we set
Hom(Iω, Iω′) := Bun∇ω′−ω(M) , (3.8)the ategory of hermitian line bundles with onnetion of �xed urvature ω′−ω. The horizontalomposition is given by the tensor produt in the ategory of bundles. Finally, ompleting the2-ategory under desent, we get the de�nition of a bundle gerbe:5



De�nition 1. A bundle gerbe G (with onnetion) over M onsists of the following data: aovering π : Y // M , and for the assoiated simpliial manifold
Y [4]

//
//
//
// Y

[3]
//
//
// Y [2]

∂1

//
∂0 //

Y
π // M (3.9)(GO1) an objet Iω of Grbtriv∇(Y ): a 2-form ω ∈ Ω2(Y );(GO2) a 1-morphism

L : ∂∗
0Iω

// ∂∗
1Iω (3.10)in Grbtriv∇(Y [2]): a line bundle L with onnetion over Y [2];(GO3) a 2-isomorphism

µ : ∂∗
2L⊗ ∂∗

0L +3 ∂∗
1L (3.11)in Grbtriv∇(Y [3]): a onnetion-preserving morphism of line bundles over Y [3];(GO4) an equality

∂∗
2µ ◦ (id⊗ ∂∗

0µ) = ∂∗
1µ ◦ (∂∗

3µ⊗ id) (3.12)of 2-morphisms in Grbtriv∇(Y [4]).For later appliations it will be neessary to lose the morphism ategories under a seondoperation, namely diret sums. Closing the ategory of line bundles with onnetion underdiret sums leads to the ategory of omplex vetor bundles with onnetion, i.e. we set
Hom(Iω, Iω′) := VetBun∇ω′−ω(M) , (3.13)where the urvature of these vetor bundles is onstrained to satisfy

1

n
tr(curv(L)) = ω′ − ω , (3.14)with n the rank of the vetor bundle. Notie that this does not a�et the de�nition of a bundlegerbe, sine the existene of the 2-isomorphism µ restrits the rank of L to be one.As a next step, we need to introdue 1-morphisms and 2-morphisms between bundle gerbes.1-morphisms have to ompare two bundle gerbes G and G′. We assume �rst that both bundlegerbes have the same overing Y // M .De�nition 2. i) A 1-morphism between bundle gerbes G =(Y, ω, L, µ) and G′ = (Y, ω′, L′, µ′)over M with the same surjetive submersion Y // M onsists of the following data on theassoiated simpliial manifold

Y [4]
//
//
//
// Y

[3]
//
//
// Y [2]

∂1

//
∂0 //

Y
π // M . (3.15)(G1M1) a 1-morphism A : Iω

// Iω′ in Grbtriv∇(Y ): a rank-n hermitian vetor bundle A withonnetion of urvature 1
n

tr(curv(L)) =ω′ − ω;(G1M2) a 2-isomorphism α : L′ ⊗ ∂∗
0A +3 ∂∗

1A⊗L in Grbtriv∇(Y [2]): a onnetion-preservingmorphism of hermitian vetor bundles;6



(G1M3) a ommutative diagram
(id⊗µ′) ◦ (∂∗

2α⊗ id) ◦ (id⊗ ∂∗
0α) = ∂∗

1α ◦ (µ⊗ id) (3.16)of 2-morphisms in Grbtriv∇(Y [3]).ii) A 2-morphism between two suh 1-morphisms (A, α) and (A′, α′) onsists of(G2M1) a 2-morphism β : A +3 A′ in Grbtriv∇(Y ): a onnetion-preserving morphism of vetorbundles;(G2M2) a ommutative diagram
α′ ◦ (id⊗ ∂∗

0β) = (∂∗
1β ⊗ id) ◦ α (3.17)of 2-morphisms in Grbtriv∇(Y [2]).Sine 1-morphisms are omposed by taking tensor produts of vetor bundles, a 1-morphismis invertible if and only if its vetor bundle is of rank one.In order to de�ne 1-morphisms and 2-morphisms between bundle gerbes with possibly di�er-ent overings π : Y // M and π′ : Y ′ // M , we pull all the data bak to a ommon re�nement ofthese overings and ompare them there. We all a overing ζ : Z // M a ommon re�nementof π and π′ i� there exist maps s : Z // Y and s′ : Z // Y ′ suh that

Y

π
  A

AA
AA

AA
A Z

soo s′ //

ζ

��

Y ′

π′

~~||
||

||
||

M

(3.18)
ommutes. An example of suh a ommon re�nement is the �bre produt Z :=Y ×M Y ′ // M ,with the maps Z // Y and Z // Y ′ given by the projetions. The important point about aommon re�nement Z // M is that the maps s and s′ indue simpliial maps

Y • Z•oo // Y ′• . (3.19)For bundle gerbes G =(Y, ω, L, µ) and G′ = (Y ′, ω′, L′, µ′) we obtain new bundle gerbes withsurjetive submersion Z by pulling bak all the data along the simpliial maps s and s′. Ex-pliitly, GZ := (Z, s∗0ω, s∗1L, s∗2µ) and G′
Z = (Z, s′∗0 ω′, s′∗1 L′, s′∗2 µ′). Also morphisms an be re�nedby pulling them bak.De�nition 3. i) A 1-morphism between bundle gerbes G =(Y, ω, L, µ) and G′ =(Y ′, ω′, L′, µ′)onsists of a ommon re�nement Z // M of the overings Y // M and Y ′ // M and a mor-phism (A, α) of the two re�ned gerbes GZ and G′

Z .ii) A 2-morphism between 1-morphisms m =(Z, A, α) and m
′ = (Z ′, A′, α′) onsists of a ommonre�nement W // M of the overings Z // M and Z ′ // M (respeting the projetions to Yand Y ′, respetively) and a 2-morphism β of the re�ned morphisms mW and m

′
W . In additiontwo suh 2-morphisms (W, β) and (W ′, β ′) must be identi�ed i� there exists a further ommonre�nement V // M of W // M and W ′ // M , ompatible with the other projetions, suhthat the re�ned 2-morphisms agree on V . 7



For a gerbe G =(Y, ω, L, µ) and a re�nement Z // M of Y the re�ned gerbe GZ is isomorphito G. This implies that every gerbe is isomorphi to a gerbe de�ned over an open overing
Z :=

⊔
i∈I Ui. Furthermore we an hoose the overing in suh a way that the line bundle overdouble intersetions is trivial as well. When doing so we obtain the familiar desription ofgerbes in terms of loal data, reproduing formulas by [Al, Ga1℄. Extending this desriptionto morphisms it is straightforward to show that gerbes are lassi�ed by the so-alled Deligneohomology Hk(M,D(2)) in degree two:

π0(Grb∇(M)) ∼= H2(M,D(2)) . (3.20)Analogously we get the lassi�ation of gerbes without onnetion as
π0(Grb(M)) ∼= H2(M, U(1)) ∼= H3(M, Z) . (3.21)3.3 Surfae holonomyThe holonomy of a trivial bundle gerbe Iω over a losed oriented surfae Σ is by de�nition

HolIω := exp
(
2πi

∫

Σ

ω
)

∈ U(1) . (3.22)If Iω and Iω′ are two trivial bundle gerbes over Σ suh that there exists a 1-isomorphism
Iω

// Iω′, i.e. a vetor bundle L of rank one, we have an equality HolIω =HolIω′
beause

∫

Σ

ω′ −

∫

Σ

ω =

∫

Σ

curv(L) ∈ Z . (3.23)More generally, onsider a bundle gerbe G with onnetion over a smooth manifold M , anda smooth map
Φ : Σ // M (3.24)de�ned on a losed oriented surfae Σ. Sine H3(Σ, Z) = 0, the pullbak Φ∗G is isomorphi toa trivial bundle gerbe. Hene one an hoose a trivialization, i.e. a 1-isomorphism

T : Φ∗G ∼ // Iω (3.25)and de�ne the holonomy of G around Φ by
HolG(Φ) := HolIω . (3.26)In the same way as for the holonomy of a line bundle with onnetion, this de�nition is indepen-dent of the hoie of the 1-isomorphism T . Namely, if T ′: Φ∗G ∼ // Iω′ is another trivialization,we have a transition isomorphism

L := T ′ ◦ T −1 : Iω
∼ // Iω′ , (3.27)whih shows the independene.

8



3.4 Wess-Zumino termsAs we have seen in Setion 2, the holonomy of a line bundle with onnetion supplies a termin the ation funtional of a lassial harged partile, desribing the oupling to a gauge �eldwhose �eld strength is the urvature of the line bundle. Analogously, the surfae holonomy of abundle gerbe with onnetion de�nes a term in the ation of a lassial harged string. Suh astring is desribed in terms of a smooth map Φ: Σ // M . The exponentiated ation funtionalof the string is (ompare (2.11))
eiS[Φ] = eiSkin[Φ] HolG(Φ) , (3.28)where Skin[Φ] is a kineti term whih involves a onformal struture on Σ. Physial modelswhose �elds are maps de�ned on surfaes are alled (non-linear) sigma models, and the holonomyterm is alled a Wess-Zumino term. Suh terms are needed in ertain models in order to obtainquantum �eld theories that are onformally invariant.A partiular lass of sigma models with Wess-Zumino term is given by WZW (Wess-Zumino-Witten) models. For these the target spae M is a onneted ompat simple Lie group G, andthe urvature of the bundle gerbe G is an integral multiple of the anonial 3-form

H = 〈θ ∧ [θ∧ θ]〉 ∈ Ω3(G)(θ is the left-invariant Maurer-Cartan form on G, and 〈· , ·〉 the Killing form of the Lie algebra
g of G). WZW models have been a distinguished arena for the interplay between Lie theoryand the theory of bundle gerbes [Ga1, GR℄. This has lead to new insights both in the physialappliations and in the underlying mathematial strutures. Some of these will be disussed inthe following setions.De�ning Wess-Zumino terms as the holonomy of a bundle gerbe with onnetion allows onein partiular to explain the following two fats.The Aharonov-Bohm e�et : This ours when the bundle gerbe has a �at onnetion, i.e. itsurvature H ∈Ω3(M) vanishes. This does not mean, though, that the bundle gerbe is trivial,sine its lass in H3(M, Z) may be pure torsion. In partiular, it an still have non-onstantholonomy, and thus a non-trivial Wess-Zumino term.An example for the Aharonov-Bohm e�et is the sigma model on the 2-torus T = S1 ×S1. Bydimensional reasons, the 3-form H vanishes. Nonetheless, sine H2(T, U(1)) =U(1), thereexists a whole family of Wess-Zumino terms parameterized by an angle, of whih only theone with angle zero is trivial.Disrete torsion: The set of isomorphism lasses of bundle gerbes with onnetion that havethe same urvature H is parameterized by H2(M, U(1)) via the map

H2(M, U(1)) // Tors(H3(M, Z)) . (3.29)If this group is non-trivial, there exist di�erent Wess-Zumino terms for one and the same�eld strength H ; their di�erene is alled `disrete torsion'.An example for disrete torsion is the level-k WZW model on the Lie group PSO(4n).Sine H2(PSO(4n), U(1)) =Z2, there exist two non-isomorphi bundle gerbes with onnetionhaving equal urvature. 9



4 The representation theoreti formulation of RCFT4.1 Sigma modelsClosely related to surfae holonomies are novel geometri strutures that have been introduedfor unoriented surfaes, for surfaes with boundary, and for surfaes with defet lines. Thesestrutures onstitute the seond theme of this ontribution, extending the onstrution of gerbesand surfae holonomy via desent; they will be disussed in Setions 5, 6 and 7.These geometri developments were in fat strongly inspired by algebrai and representationtheoreti results in two-dimensional quantum �eld theories. To appreiate this onnetion webrie�y review in this setion the relation between spaes of maps Φ: Σ // M , as they appearin the treatment of holonomies, and quantum �eld theories.As already indiated in Setion 3.4, a lassial �eld theory, the (non-linear) sigma model, ona two-dimensional surfae Σ, alled the world sheet, an be assoiated to the spae of smoothmaps Φ from Σ to some smooth manifold M , alled the target spae. Appropriate struture onthe target spae determines a Lagrangian for the �eld theory on Σ. Geometri struture on M ,e.g. a (pseudo-)Riemannian metri G, beomes, from this point of view, for any given map Φa bakground funtion G(Φ(x)) for the �eld theory on Σ.Three main issues will then lead us to a riher struture related to surfae holonomies:In string theory (where the world sheet Σ arises as the surfae swept out by a string movingin M) and in other appliations as well, one also enounters sigma models on world sheets Σthat have non-empty boundary . We will explain how the geometri data relevant for enodingboundary onditions � so alled D-branes � an be derived from geometri priniples.String theories of type I, whih form an integral part of string dualities, involve unorientedworld sheets. In string theory it is therefore a fundamental problem to exhibit geometristruture on the target spae that provides a notion of holonomy for unoriented surfaes.An equally natural struture present in quantum �eld theory are topologial defet lines, alongwhih orrelation funtions of bulk �elds an have a branh-ut. In spei� models thesean be understood, just like boundary onditions, as ontinuum versions of orrespondingstrutures in lattie models of statistial mehanis. (For instane, in the lattie version ofthe Ising model a topologial defet is produed by hanging the oupling along all bondsthat ross a spei�ed line from ferromagneti to antiferromagneti.)Sigmamodels have indeed been a signi�ant soure of examples for quantum �eld theories, atleast on a heuristi level. Conversely, having a sigma model interpretation for a given quantum�eld theory allows for a geometri interpretation of quantum �eld theoreti quantities. Sigmamodels have indeed been, at least on a heuristi level, a signi�ant soure of examples forquantum �eld theories. Conversely, quantum �eld theoreti strutures in sigma models havelead to strutural insights and quantitative preditions in geometry.A distinguished sublass of theories in whih this relationship between quantum �eld theoryand geometry an be studied are two-dimensional onformal �eld theories, or CFTs, for short,and among these in partiular the rational onformal �eld theories for whih there exists arigorous representation theoreti approah. The strutures appearing in that approah in thethree situations mentioned above suggest new geometri notions for onformal sigma models.Below we will investigate these notions with the help of standard geometri priniples. Before10



doing so we formulate, in representation theoreti terms, the relevant aspets of the quantum�eld theories in question.4.2 Rational onformal �eld theoryThe onformal symmetry, together with further, so-alled hiral, symmetries of a CFT an beenoded in the struture of a onformal vertex algebra V. For any onformal vertex algebra onean onstrut (see e.g. [FrB℄) a hiral CFT; in mathematial terms, a hiral CFT is a systemof onformal bloks, i.e. sheaves over the moduli spaes of urves with marked points. Thesesheaves of onformal bloks are endowed with a projetively �at onnetion, the Knizhnik-Za-molodhikov onnetion, whih in turn furnishes representations of the fundamental groups ofthe moduli spaes, i.e. of the mapping lass groups.Despite the physial origin of its name, a hiral onformal �eld theory is mathematiallyrigorous. On the other hand, from the two-dimensional point of view it is, despite its name,not a onventional quantum �eld theory, as one deals with (setions of) bundles instead of loalorrelation funtions. In partiular, it must not be onfused with a full loal onformal �eldtheory, whih is the relevant struture to enter our disussion of holonomies.Chiral onformal �eld theories are partiularly tratable when the vertex algebra V is ratio-nal in the sense of [Hu, thm2.1℄. Then the representation ategory C of V is a modular tensorategory, and the assoiated hiral CFT is a rational hiral CFT , or hiral RCFT. In this sit-uation, we an use the tools of three-dimensional topologial quantum �eld theory (TFT). ATFT is, in short, a monoidal funtor tftC [Tu, hap. IV.7℄ that assoiates a �nite-dimensionalvetor spae tftC(E) to any (extended) surfae E, and a linear map from tftC(E) to tftC(E′)to any (extended) obordism M : E // E′.More preisely, a three-dimensional TFT is a projetive monoidal funtor from a ategory
CobC of deorated obordisms to the ategory of �nite-dimensional omplex vetor spaes. Themodular tensor ategory C provides the deoration data for CobC. Spei�ally, the objets Eof CobC are extended surfaes, i.e. 1 ompat losed oriented two-manifolds with a �nite set ofembedded ars, and eah of these ars is marked by an objet of C. A morphism E // E′ is anextended obordism, i.e. a ompat oriented three-manifold M with ∂M = (−E)⊔E′, togetherwith an oriented ribbon graph ΓM in M suh that at eah marked ar of (−E)⊔E′ a ribbon of
ΓM is ending. Eah ribbon of ΓM is labeled by an objet of C, while eah oupon of ΓM is labeledby an element of the morphism spae of C that orresponds to the objets of the ribbons whihenter and leave the oupon. Composition in CobC is de�ned by gluing, the identity morphism
idE is the ylinder over E, and the tensor produt is given by disjoint union of objets andobordisms.A topologial �eld theory furnishes, for any extended surfae, a representation of the map-ping lass group. Our approah relies on the fundamental onjeture (whih is largely estab-lished for a broad lass of models) that, for C the representation ategory of a rational vertexalgebra V, the mapping lass group representation given by tftC is equivalent to the one pro-vided by the Knizhnik-Zamolodhikov onnetion on the onformal bloks for the vertex algebra
V. 1 Here various details are suppressed. Detailed information, e.g. the preise de�nition of a ribbon graphor the reason why tftC is only projetive, an be found in many plaes, suh as [Tu, BK, KRT℄ or [FFFS,set. 2.5-2.7℄. 11



4.3 The TFT onstrution of full RCFTLet us now turn to the disussion of full loal onformal �eld theories, whih are the strutures tobe ompared to holonomies. A full CFT is, by de�nition, a onsistent system of loal orrelationfuntions that satisfy all sewing onstraints (see e.g. [FjFRS2, def. 3.14℄). Aording to thepriniple of holomorphi fatorization, every full RCFT an be understood with the help of aorresponding hiral CFT. The relevant hiral CFT is, however, not de�ned on world sheets Σ(whih may be unoriented or have a non-empty boundary), but rather on their omplex doubles
Σ̂, whih an be given the struture of extended surfaes; this a�ords a geometri separation ofleft- and right-movers. The double Σ̂ of Σ is, by de�nition, the orientation bundle over Σ modu-lo identi�ation of the two points in the �bre over eah boundary point of Σ. The world sheet Σan be obtained from Σ̂ as the quotient by an orientation-reversing involution τ . To give someexamples, when Σ is losed and orientable, then Σ̂ is just the disonneted sum Σ̂ =Σ⊔−Σ oftwo opies of Σ with opposite orientation, and the involution τ just exhanges these two opies;the double of both the disk and the real projetive plane is the two-sphere (with τ being given,in standard omplex oordinates, by z � // z−1 and by z � //−z−1, respetively); and the doubleof both the annulus and the Möbius strip is a two-torus. Further, when Σ omes with �eldinsertions, that is, embedded ars labeled by objets of either C (for ars on ∂Σ) or pairs ofobjets of C (for ars in the interior of Σ), then orresponding ars labeled by objets of C arepresent on Σ̂.Given this onnetion between the surfaes relevant to hiral and full CFT, the relationshipbetween the hiral and the full CFT an be stated as follows: A orrelation funtion C(Σ)of the full CFT on Σ is a spei� element in the appropriate spae of onformal bloks ofthe hiral CFT on the double Σ̂. A onstrution of suh elements has been aomplished in[FRS1, FRS2, FRS3, FjFRS1℄. The �rst observation is that they an be omputed with thehelp of the orresponding TFT, namely as

C(Σ) = tftC(MΣ) 1 ∈ tftC(Σ̂) . (4.1)Here MΣ ≡ ∅
MΣ

// Σ̂, the onneting manifold for the world sheet Σ, is an extended obordismthat is onstruted from the data of Σ. Besides the ategory C, the spei�ation of the vetor
C(Σ) needs a seond ingredient: a (Morita lass of a) symmetri speial Frobenius algebra Ain C.Let us give some details 2 of the onstrution of C(Σ).As a three-manifold, MΣ is the interval bundle over Σ modulo a Z2-identi�ation of theintervals over ∂Σ. Expliitly,

MΣ =
(
Σ̂×[−1, 1]

)
/∼ with ([x, or2], t) ∼ ([x,−or2],−t) . (4.2)It follows in partiular that ∂MΣ =Σ̂ and that Σ is naturally embedded in MΣ as

ı : Σ
≃

// Σ×{t=0} �

�

// MΣ. Indeed, ı(Σ) is a deformation retrat of MΣ, so that the topologyof MΣ is ompletely determined by the one of Σ.2 For another brief summary, with di�erent emphasis, see Setion 7 of [FRS4℄. An in-depth exposition,inluding for instane the relevane of various orientations, an e.g. be found in Appendix B of [FjFRS1℄.12



A ruial ingredient of the onstrution of the ribbon graph ΓMΣ
in MΣ is a (dual) orientedtriangulation Γ of the submanifold ı(Σ) of MΣ. This triangulation is labeled by objets andmorphisms of C. It is here that the Frobenius algebra A enters: Eah edge of Γ \ ı(∂Σ) isovered with a ribbon labeled by the objet A of C, while eah (three-valent) vertex is overedwith a oupon labeled by the multipliation morphism m∈HomC(A⊗A, A). In addition,whenever these assignments in themselves would be in on�it with the orientations of theedges, a oupon with morphism in either HomC(A⊗A, 1) or HomC(1, A⊗A) is inserted.Suh morphisms are part of the data for a Frobenius struture on A. Assuming, for now,that the world sheet Σ is oriented, independene of C(Σ) from the hoie of triangulation Γamounts preisely to the statement that the objet A arries the struture of a symmetrispeial Frobenius algebra.If Σ has non-empty boundary , the presription for Γ is amended as follows. Eah edge eof Γ∩ ı(∂Σ) is overed with a ribbon labeled by a (left, say) A-module N = N(e), whileeah vertex lying on ı(∂Σ) is overed with a oupon that has inoming N- and A-ribbonsas well as an outgoing N-ribbon and that is labeled by the representation morphism

ρN ∈HomC(A⊗N, N). The physial interpretation of the A-module N is as the bound-ary ondition that is assoiated to a omponent of ∂Σ. That the objet N of C labeling aboundary ondition arries the struture of an A-module and that the morphism ρN is theorresponding representation morphism is preisely what is required (in addition to A beinga symmetri speial Frobenius algebra) in order to get independene of C(Σ) from the hoieof triangulation Γ.If Σ is unoriented , then as an additional feature one must ensure independene of C(Σ)from the hoie of loal orientations of Σ. As shown in [FRS2℄, this requires an additionalstruture on the algebra A, namely the existene of a morphism σ ∈HomC(A, A) that is analgebra isomorphism from the opposite algebra Aopp to A and squares to the twist of A, i.e.satis�es
σ ◦ η = η , σ ◦ m = m ◦ cA,A ◦ (σ⊗σ) , σ ◦ σ = θA , (4.3)where η∈HomC(1, A), θA ∈HomC(A, A) and cA,A ∈HomC(A⊗A, A⊗A) denote the unit mor-phism, the twist, and the self-braiding of A, respetively. This way A beomes a braidedversion of an algebra with involution. A symmetri speial Frobenius algebra endowed witha morphism σ satisfying (4.3) is alled a Jandl algebra.In the presene of topologial defet lines on Σ a further amendment of the presription is inorder. The defet lines partition Σ into disjoint regions, and to the regions to the left and tothe right of a defet line one may assoiate di�erent (symmetri speial Frobenius) algebras

Al and Ar, suh that the part of the triangulation Γ in one region is labeled by the algebra Al,while the part of Γ in the other region is labeled by Ar. The defet lines are to be regardedas forming a subset ΓD of Γ themselves; eah edge of ΓD is overed with a ribbon labeled bysome objet B of C, while eah vertex of Γ lying on ΓD is overed with a oupon labeled bya morphism ρ∈HomC(Al ⊗B, B), respetively ρ∈HomC(B ⊗Ar, B). Consisteny requiresthat these morphisms endow the objet B of C that labels a defet line with the strutureof an Al-Ar-bimodule. (Below we will onentrate on the ase Al = Ar =: A, so that we dealwith A-bimodules.) 13



There are also rules for the morphisms of C that label bulk, boundary and defet �elds,respetively.The presription summarized above allows one to onstrut the orrelator (4.1) for anyarbitrary world sheet Σ. The so obtained orrelators an be proven [FjFRS1℄ to satisfy allonsisteny onditions that the orrelators of a CFT must obey. Thus, speifying the algebra
A is su�ient to obtain a onsistent system of orrelators. The assignment of a (suitablynormalized) orrelator C(Σ) to Σ atually depends only on the Morita lass of the symmetrispeial Frobenius algebra A. Conversely, any onsistent set of orrelators an be obtained thisway [FjFRS2℄.Topologial defets admit a number of interesting operations. In partiular, they an befused � on the algebrai side this orresponds to the tensor produt B ⊗A B′ of bimodules. Thebimodule morphisms HomA|A(B ⊗A B′, B′′) appear as labels of verties of defet lines. Defetlines an also be fused to boundaries; depending on the relative situation of the defet line andthe boundary, this is given on the algebrai side by the tensor produt B ⊗A N of a bimodulewith a left module, or by the tensor produt N ⊗A B with a right module, respetively.In the following table we ollet some pertinent aspets of the onstrution and exhibit thegeometri strutures on the sigma model target spae M that orrespond to them.geometri situation algebrai struture in the ategory C geometri struture on M

Σ losed oriented symm. speial Frobenius algebra A bundle gerbe G with onnetion
Σ unoriented Jandl struture σ : Aopp // A Jandl gerbeboundary ondition A-module G-D-branetopologial defet line A-bimodule G-bi-braneJandl gerbes, D-branes and bi-branes will be presented in Setions 5, 6 and 7, respetively.5 Jandl gerbes: Holonomy for unoriented surfaesWe have de�ned trivial bundle gerbes with onnetion as 2-forms beause 2-forms an be inte-grated over oriented surfaes. Closing the 2-ategory of trivial bundle gerbes under desent haslead us to bundle gerbes. Jandl gerbes are bundle gerbes with additional struture, whose holon-omy is de�ned for losed surfaes without orientation, even for unorientable surfaes [SSW℄.In partiular, Jandl gerbes provide Wess-Zumino terms for unoriented surfaes. Comparingthe geometri data with the representation theoreti ones from Setion 4, bundle gerbes withonnetion orrespond to Frobenius algebras, while Jandl gerbes orrespond to Jandl algebras.The appropriate quantity that has to replae 2-forms in order to make integrals over anunoriented surfae well-de�ned is a 2-density. Every surfae Σ has an oriented double overing
pr : Σ̂ // Σ that omes with an orientation-reversing involution σ : Σ̂ // Σ̂ whih exhangesthe two sheets and preserves the �bres. A 2-density on Σ is a 2-form ω ∈Ω2(Σ̂) suh that

σ∗ω = −ω . (5.1)Every ordinary 2-form ρ on Σ de�nes a partiular 2-density by ωρ := pr∗ρ.14



A 2-density on Σ an indeed be integrated without requiring Σ to be oriented. One hoosesa dual triangulation Γ of Σ and, for eah fae f of Γ, one of its two preimages under pr : Σ̂ // Σ,denoted for. Then one sets ∫

Σ

ω :=
∑

f

∫

for

ω . (5.2)Owing to the equality (5.1) the so de�ned integral does not depend on the hoie of the preim-ages for nor on the hoie of triangulation Γ. If Σ an be endowed with an orientation, thepreimages for an be hosen in suh a way that pr|for
: for

// f is orientation-preserving. Thenthe integral of a 2-density ωρ oinides with the ordinary integral of the 2-form ρ.Next we want to set up a 2-ategory whose objets are related to 2-densities. To this endwe use the 2-ategory of trivial bundle gerbes introdued in Setion 3.2. Thus, one datumspeifying an objet is a 2-form ω ∈Ω2(Σ̂). In the ontext of 2-ategories, demanding stritequality as in (5.1) is unnatural. Instead, we replae equality by a 1-morphism
η : σ∗ω // −ω , (5.3)i.e. a 1-form η∈Ω1(Σ̂) suh that σ∗ω =−ω + dη. As we shall see in a moment, we mustimpose equivariane of the 1-morphism up to some 2-morphism, i.e. we need in addition a2-isomorphism
φ : σ∗η +3 η , (5.4)in other words a smooth funtion φ : M // U(1) suh that η = σ∗η−i dlog φ. This 2-isomor-phism, in turn, must satisfy the equivariane relation

σ∗φ = φ−1. (5.5)Thus the objets of the 2-ategory are triples (ω, η, φ). Let us verify that they still leadto a well-de�ned notion of holonomy. We hoose again a dual triangulation Γ of Σ as wellas a preimage for for eah of its faes. The expression (5.2) is now no longer independent ofthese hoies, beause every hange reates a boundary term in the integrals of the 1-form η.To resolve this problem, we involve orientation-reserving edges: these are edges in Γ whoseadjaent faes have been lifted to opposite sheets. Sine Γ is a dual triangulation, its orienta-tion-reversing edges form a disjoint union of pieewise smooth irles c⊂Σ. For eah of theseirles, we hoose again a preimage cor. It may not be possible to hoose cor to be losed, inwhih ase there exists a point pc ∈Σ whih has two preimages in cor. We hoose again one ofthese preimages, denoted pc
or. Then

Holω,η,φ := exp

(

2πi
(∑

f

∫

for

ω +
∑

c

∫

cor

η
))∏

c

φ(pc
or) (5.6)is independent of the hoie of the lifts for, cor and por, and is independent of the hoie of thetriangulation.More generally, let Man+ be the ategory of smooth manifolds with involution, whosemorphisms are equivariant smooth maps. (The involution is not required to at freely.) In a�rst step, we want to de�ne a presheaf

Jantriv∇ : Manopp
+

// Cat (5.7)15



of trivial Jandl gerbes. For (M, k) a smooth manifold with involution k : M // M , a trivialJandl gerbe involves as a �rst datum a trivial bundle gerbe Iω, but as explained in Setion 1 wereplae the 1-morphism η from (5.3) by a line bundle L over M with onnetion of urvature
curv(L) = −ω − k∗ω , (5.8)and we replae the 2-isomorphism φ from (5.4) by an isomorphism φ : k∗L // L of line bundleswith onnetion, still subjet to the ondition (5.5). Notie that the pair (L, φ) is nothing buta k-equivariant line bundle with onnetion over M . After this step, we still have the holonomy(5.6), whih now looks like

HolIω ,L,φ = exp
(
2πi
∑

f

∫

for

ω
) ∏

c

HolL̄(c) , (5.9)where we have used the fat that, sine the ation of 〈k〉 on cor is free, the k-equivariant linebundle (L, φ) desends to a line bundle L̄ with onnetion over the quotient c = cor/〈k〉. Thisformula is now manifestly independent of the hoies of cor and pc
or. Its independene underdi�erent hoies of faes for is due to (5.8).Now we lose the presheaf Jantriv∇(M) under desent to allow for non-trivial bundle gerbes.To do so, we need to introdue duals of bundle gerbes, 1-morphisms and 2-isomorphisms see[Wa1℄; for the sake of brevity we omit these de�nitions here.De�nition 4. Let M be a smooth manifold with involution k : M // M . A Jandl gerbe is abundle gerbe G over M together with a 1-isomorphism A : k∗G // G∗ to the dual gerbe and a2-isomorphism ϕ : k∗A +3 A∗ that satis�es k∗ϕ =ϕ∗−1.Jandl gerbes form a sheaf

Jan∇ : Manopp
+

// Cat . (5.10)The gluing axiom for this sheaf has been proved in [GSW2℄. We remark that the 1-isomorphism
A may be regarded as the ounterpart of a Jandl struture σ on the Frobenius algebra A thatorresponds to the bundle gerbe G, if one aepts that the dual gerbe plays the role of theopposed algebra.Suppose we are given a Jandl gerbe J over a smooth manifold M with involution k. If Σis a losed surfae, possibly unoriented and possibly unorientable, and

Φ : (Σ̂, σ) // (M, k) (5.11)is a morphism in Manopp
+ , we an pull bak the Jandl gerbe J from M to Σ̂. As in the ase ofordinary surfae holonomy, it then beomes trivial as a gerbe for dimensional reasons, and wean hoose an isomorphism

T : Φ∗J ∼ // (Iω, L, φ) . (5.12)Then we de�ne
HolJ (Φ) := HolIω ,L,φ . (5.13)This is independent of the hoie of T , beause any other hoie T ′ gives rise to an isomorphism

T ′ ◦ T −1 in Jantriv∇(Σ̂, σ) under whih the holonomy stays unhanged.16



We have now seen that every Jandl gerbe J over a smooth manifold M with involution khas holonomies for unoriented losed surfaes and equivariant smooth maps Φ: Σ̂ // M . Wethus infer that sigma models on M whose �elds are suh maps, are de�ned by Jandl gerbes
J over M rather than by ordinary bundle gerbes G. This makes it an interesting problem tolassify Jandl gerbes.Conerning the existene of a Jandl gerbe J with underlying bundle gerbe G, the 1-iso-morphism A : k∗G // G∗ requires the urvature H of G to satisfy

k∗H = −H . (5.14)Apart from this neessary ondition, there is a sequene of obstrution lasses [GSW2℄. Reduedto the ase that M is 2-onneted, there is one obstrution lass o(G)∈H3(Z2, U(1)), the groupohomology of Z2 with oe�ients in U(1), on whih Z2 ats by inversion. If o(G) vanishes,then inequivalent Jandl gerbes with the same underlying bundle gerbe G are parameterized by
H2(Z2, U(1)).These results an be made very expliit in the ase of WZW models, for whih the objetin Man+ is a onneted ompat simple Lie group G equipped with an involution k : G // Gating as

k : g � // (zg)−1 (5.15)for a �xed `twist element' z ∈Z(G). It is easy to see that the 3-form Hk ∈Ω3(G), whih is theurvature of the level-k bundle gerbes G over G, satis�es the neessary ondition (5.14). Allobstrution lasses o(G) and all parameterizing groups have been omputed in dependene ofthe twist element z and the level k [GSW1℄. The numbers of inequivalent Jandl gerbes rangefrom two (for simply onneted G, per level and involution) to sixteen (for PSO(4n), for everyeven level).Most prominently, there are two involutions on SU(2), namely g � // g−1 and g � // −g−1,and for eah of them two inequivalent Jandl gerbes per level. On SO(3) there is only a singleinvolution, but the results of [SSW, GSW1℄ exhibit four inequivalent Jandl gerbes per even level.This explains very niely why SU(2) and SO(3) have the same number of orientifolds, despitea di�erent number of involutions. These results reprodue those of the algebrai approah (seee.g. [FRS2℄); for the preise omparison, Jandl strutures related by the ation of the trivialline bundle with either of its two equivariant strutures have to be identi�ed.6 D-branes: Holonomy for surfaes with boundaryWe now introdue the geometri struture needed to de�ne surfae holonomies and Wess-Zumino terms for surfaes with boundary. When one wants to de�ne holonomy along a urvethat is not losed, one way to make the parallel transport group-valued is to hoose trivi-alizations at the end points. To inorporate these trivializations into the bakground, onean hoose a submanifold Ḋ ⊂M together with a trivialization E|Ḋ
// 1A. Admissible paths

γ : [0, 1] // M are then required to start and end on this submanifold, γ(0), γ(1)∈Ḋ. Thesame strategy has proven to be suessful for surfaes with boundary.De�nition 5. Let G be a bundle gerbe with onnetion over M . A G-D-brane is a submanifold
Ḋ ⊂M together with a 1-morphism

D : G|Ḋ
// Iω (6.1)17



to a trivial bundle gerbe Iω given by a two-form ω on Ḋ.The morphism D is alled a G-module, or twisted vetor bundle. Notie that if H is theurvature of G, the 1-morphism D enfores the identity
H|Ḋ = dω . (6.2)This equality restrits the possible hoies of the world volume Ḋ of the G-D-brane.Suppose that Σ is an oriented surfae, possibly with boundary, and Φ: Σ // M is a smoothmap. We require that Φ(∂Σ)⊂ Ḋ. As desribed in Setion 3.3, we hoose a trivialization

T : Φ∗G // Iρ. Its restrition to ∂Σ and the G-module D de�ne a 1-morphism
Iρ

∣∣
∂Σ

T −1|∂Σ // Φ∗G
∣∣
∂Σ

= Φ∗(G
∣∣
Ḋ
)

Φ∗(D)
// Φ∗(Iω) . (6.3)Aording to the de�nition (3.13), this 1-morphism is nothing but a hermitian vetor bundle

E with onnetion over ∂Σ and its urvature is curv(E) =ω − ρ. Then we onsider
HolG,D(Φ) := exp

(
2πi

∫

Σ

ρ
)

tr(HolE(∂Σ)) , (6.4)where the trae makes the holonomy of E independent of the hoie of a parameterization of
∂Σ. This expression is independent of the hoie of the trivialization T : if T ′: G // Iρ′ isanother one and E ′ is the orresponding vetor bundle, we have the transition isomorphism Lfrom (3.27) with urvature ρ′ − ρ, and an isomorphism E ′ ⊗L ∼= E. It follows that

exp
(
2πi

∫

Σ

ρ
)

tr(HolE(∂Σ)) = exp

(
2πi
(∫

Σ

ρ′ − curv(L)
))

tr(HolE′⊗L(∂Σ)) , (6.5)and on the right hand side the unprimed quantities anel by Stokes' theorem.Important results on D-branes onern in partiular two large lasses of models, namelyfree �eld theories and again WZW theories. The simplest example of a free �eld theory is theone of a ompati�ed free boson, in whih M is a irle S1
R
∼= R mod 2πR Z of radius R. Asis well known, there are then in partiular two distint types of D-branes: D0-branes D(0)

x ,whose support is loalized at a position x∈S1
R, and D1-branes D(1)

α , whose world volume is allof S1
R and whih are haraterized by a Wilson line α∈R mod 1

2πR
Z, orresponding to a �atonnetion on S1

R.For WZW theories, whih are governed by a bundle gerbe G over a onneted ompatsimple Lie group G, preserving the non-abelian urrent symmetries puts additional onstraintson the admissible D-branes: their support Ḋ must be a onjugay lass Ch of a group element
h∈G. This an e.g. be seen by studying the sattering of bulk �elds in the presene of theD-brane. On suh onjugay lasses one �nds a anonial 2-form ωh ∈Ω2(Ch). Additionally,the 1-morphism D : G|Ch

// Iωh
of a symmetri D-brane must satisfy a ertain equivarianeondition [Ga2℄. Interestingly, only on those onjugay lasses Ch for whih

h = exp(2πi
α+ρ

k+g∨
) , (6.6)with α an integrable highest weight, admit suh 1-morphisms. Here ρ denotes the Weyl vetorand g∨ the dual Coxeter number of the Lie algebra g of G. Thus in partiular the possibleworld volumes of symmetri D-branes form only a disrete subset of onjugay lasses.18



We �nally remark that the onepts of D-branes and Jandl gerbes an be merged [GSW2℄.The resulting strutures provide holonomies for unoriented surfaes with boundary, and an beused to de�ne D-branes in WZW orientifold theories.7 Bi-branes: Holonomy for surfaes with defet lines7.1 Gerbe bimodules and bi-branesIn the representation theoreti approah to rational onformal �eld theory, boundary onditionsand defet lines are desribed as modules and bimodules, respetively. The fat that theappropriate target spae struture for desribing boundary onditions, D-branes, is related togerbe modules, raises the question of what the appropriate target spae struture for defetlines should be. The following de�nition turns out to be appropriate.De�nition 6. Let G1 and G2 be bundle gerbes with onnetion over M1 and M2, respetively.A G1-G2-bi-brane is a submanifold Ḃ ⊂M1×M2 together with a (p∗1G1)|Ḃ-(p∗2G2)|Ḃ-bimodule, i.e.with a 1-morphism
B : (p∗1G1)|Ḃ

// (p∗2G2)|Ḃ ⊗ I̟ (7.1)with I̟ a trivial bundle gerbe given by a two-form ̟ on Ḃ.Similarly as in (6.2) it follows that the two-form ̟ on Ḃ obeys
p∗1H|

Ḃ
= p∗2H|

Ḃ
+ d̟ . (7.2)We all Ḃ the world volume and ̟ the urvature of the bimodule. With the appropriate notionof duality for bundle gerbes (see Setion 1.4 of [Wa1℄), a G1-G2-bimodule is the same as a

(G1⊗G∗
2)-module. For a formulation in terms of loal data, see (B.8) of [FSW℄.As an illustration, onsider again the free boson and WZW theories, restriting attentionto the ase M1 =M2. For the free boson ompati�ed on a irle S1

R of radius R, one �nds thatthe world volume of a bi-brane is a submanifold Ḃx ⊂S1
R×S1

R of the form
Ḃx,α := {(y, y−x) | y∈S1

R} (7.3)with x∈S1
R. The submanifold Ḃx,α has the topology of a irle and omes with a �at onne-tion, i.e. with a Wilson line α. Thus the bi-branes of a ompati�ed free boson are naturallyparameterized by a pair (x, α) taking values in two dual irles that desribe a point on S1

R anda Wilson line.In the WZW ase, for whih the target spae is a ompat onneted simple Lie group G, asattering alulation [FSW℄ similar to the one performed for D-branes indiates that the worldvolume of a (maximally symmetri) bi-brane is a bionjugay lass
Ḃh,h′ :=

{
(g, g′)∈G×G | ∃x1, x2 ∈G: g =x1hx−1

2 , g′ = x1h
′x−1

2

}
⊂ G×G (7.4)of a pair (h, h′) of group elements satisfying h (h′)−1 ∈Chα with hα as given in (6.6). Thebionjugay lasses arry two ommuting G-ations, orresponding to the presene of two in-dependent onserved urrents in the �eld theory. Further, a bionjugay lass an be desribedas the preimage

Ḃh,h′ = µ̃−1(Chh′−1) =
{
(g, g′)∈G×G | gg′−1 ∈Chh′−1

} (7.5)19



of the onjugay lass Chh′−1 under the map
µ̃ : G×G ∋ (g1, g2)

� // g1g
−1
2 ∈ G . (7.6)Finally, the relevant two-form on Ḃh,h′ is

̟h,h′ := µ̃∗ωhh′−1 − k
2
〈p∗1θ ∧ p∗2θ〉 . (7.7)Here k is the level, θ is the left-invariant Maurer-Cartan form, pi are the projetions to thefators of G×G, and ωh is the anonial 2-form (see Setion 6) on the onjugay lass Ch. Oneheks that ̟h,h′ is bi-invariant and satis�es (7.2).Examples of symmetri bi-branes an be onstruted from symmetri D-branes using amultipliative struture on the bundle gerbe G [Wa2℄. Another important lass of examples arePoinaré line bundles. These desribe T-dualities; an elementary relation between T-dualityand Poinaré line bundles is provided [SaS℄ by the equation of motion [RS℄ in the presene ofdefets.7.2 Holonomy and Wess-Zumino term for defetsThe notion of bi-brane allows one in partiular to de�ne holonomy also for surfaes with defetlines.The simplest world sheet geometry involving a defet line onsists of a losed orientedworld sheet Σ together with an embedded oriented irle S ⊂Σ that separates the world sheetinto two omponents, Σ =Σ1 ∪S Σ2. Assume that the defet S separates regions that supportonformally invariant sigma models with target spaes M1 and M2, respetively, and onsidermaps φi: Σi

// Mi for i∈{1, 2} suh that the image of
φS : S // M1×M2

s � // (φ1(s), φ2(s))
(7.8)is ontained in the submanifold Ḃ of M1×M2. The orientation of Σi is the one inherited fromthe orientation of Σ, and without loss of generality we take ∂Σ1 = S and ∂Σ2 =−S.We wish to �nd the Wess-Zumino part of the sigma model ation, or rather the orrespondingholonomy HolG1,G2,B, that orresponds to having bundle gerbes G1 and G2 over M1 and M2 anda G1-G2-bi-brane B. The pullbak of the bimodule (7.1) along the map φS: S // Ḃ gives a

(φ∗
1G1)|S-(φ∗

2G2)|S-bimodule
φ∗

SB : (φ∗
1G1)|S // (φ∗

2G2)|S ⊗ Iφ∗

S̟ . (7.9)The pullbak bundle gerbes φ∗
iGi over Σi are trivializable for dimensional reasons, and a hoie

Ti: φ∗
iGi

// Iρ of trivializations for two-forms ρi on Σi produes a vetor bundle E over S. Wethen de�ne
HolG1,G2,B(Σ, S) := exp

(
2πi

∫

Σ1

ρ1

)
exp

(
2πi

∫

Σ2

ρ2

)
tr(HolE(S)) ∈ C (7.10)to be the holonomy in the presene of the bi-brane B. As shown in Appendix B.3 of [FSW℄,for similar reasons as in the ase of D-branes the number HolG1,G2,B(Σ, S) is independent of thehoie of the trivializations T1 and T2. 20



7.3 Fusion of defetsIn the �eld theory ontext of setion 4 there are natural notions of the fusion of a defet (an A-bimodule) with a boundary ondition (a left A-module), yielding another boundary ondition,and of the fusion of two defets, yielding another defet. Both of these are provided by thetensor produt over the relevant Frobenius algebra A. These representation theoreti notionsof fusion have a ounterpart on the geometri side as well.Consider �rst the fusion of a defet with a boundary ondition. We allow for the generalsituation of a defet desribed by an M1-M2-bi-brane with di�erent target spaes M1 and M2.Thus take an M1-M2-bi-brane with world volume Ḃ ⊆M1×M2 and an M2-D-brane with worldvolume Ḋ ⊆M2. The ation of orrespondenes on sheaves suggests the following ansatz forthe world volume of the fusion produt:
(B ⋆ D)̇ := p1

(
Ḃ ∩ p−1

2 (Ḋ)
) (7.11)with pi the projetion M1×M2

// Mi. The orresponding ansatz for the fusion of an M1-M2-bi-brane B of world volume Ḃ with an M2-M3-bi-brane B′ of world volume Ḃ′ uses projetions
pij from M1×M2×M3 to Mi×Mj :

(B ⋆ B′)̇ := p13

(
p−1

12 (Ḃ)∩ p−1
23 (Ḃ′)

)
. (7.12)In general one obtains this way only subsets, rather than submanifolds, of M1 and M1×M3,respetively. On a heuristi level one would, however, expet that owing to quantization ofthe branes a �nite superposition of branes is seleted, whih should then reprodue the resultsobtained in the �eld theory setting.We illustrate this again with the two lasses of models already onsidered, i.e. free bosonsand WZW theories, again restriting attention to the ase M1 =M2. First, for the theory ofa ompati�ed free boson, the D-brane is of one of the types D(0)
x or D(1)

α (see Setion 6) andthe bi-brane world volume is of the form Ḃx,α given in (7.3). For D-branes of type D(0)
x thepresription (7.11) thus yields

B(x,α) ⋆ D(0)
y = D(0)

x+y . (7.13)For the fusion of a bi-brane B(x,α) and a D1-brane D(1)
β , one must take the �at line bundle onthe bi-brane into aount. We �rst pull bak the line bundle on Ḋ(1)

β along p2 to a line bundleon S1
R×S1

R, then restrit it to Ḃ(x,α), and �nally tensor this restrition with the line bundle on
Ḃ(x,α) desribed by the Wilson line α. This results in a line bundle with Wilson line α+β onthe bi-brane world volume, whih in turn an be pushed down along p1 to a line bundle on S1

R,so that
B(x,α) ⋆ D(1)

β = D(1)
α+β . (7.14)In short, the fusion with a defet B(x,α) ats on D0-branes as a translation by x in positionspae, and on D1-branes as a translation by α in the spae of Wilson lines. Similarly, thepresription (7.12) leads to

B(x,α) ⋆ B(x′,α′) = B(x+x′,α+α′) (7.15)for the fusion of two bi-branes B(x,α) and B(x′,α′), i.e. both the position and the Wilson linevariable of the bi-branes add up. 21



For WZW theories, besides the quantization of the positions of the branes another newphenomenon is that multipliities other than zero or one appear in the �eld theory approah.In that ontext they arise from the deomposition Bα ⊗A Bβ =
⊕

γ N
γ

αβ Bγ of a tensor produtof simple A-bimodules into a �nite diret sum of simple A-bimodules, and analogously for thease of mixed fusion (in rational CFT, both the ategory of A-modules and the ategory of A-bimodules are semisimple). Moreover, for simply onneted groups, the multipliities appearingin both types of fusion are in fat the same as the hiral fusion multipliities whih are givenby the Verlinde formula.By analogy with the �eld theory situation we expet fusion rules
Bα ⋆Bβ =

∑

γ

N γ
αβ Bγ (7.16)of bi-branes, and analogously for mixed fusion of bi-branes and D-branes. In the partiularase of WZW theories on simply onneted Lie groups one an in addition invoke the duality

α � // α∨ whih in that ase exists on the sets of branes as well as defets that preserve allurrent symmetries, so as to work instead with fusion oe�ients of type Nαβγ =Nαβ
γ∨ . Thenfor the ase of two D-branes Dα and Dγ with world volumes given by onjugay lasses Chα and

Chγ of G, as well as a bi-brane Bβ whose world volume is the bionjugay lass µ̃−1(Chβ
), one islead to onsider the subset

Παβγ := p−1
1 (Cα) ∩ µ̃−1(Cβ) ∩ p−1

2 (Cγ) = {(g, g′)∈G×G | g∈Cα, g′∈Cγ , gg′−1∈Cβ} (7.17)of G×G. Combining the adjoint ation on g and on g′ gives a natural G-ation on Παβγ . Andsine both D-branes and the bi-brane are equipped with two-forms ωα, ωγ and ̟β, Παβγ omeswith a natural two-form as well, namely with
ωαβγ := p∗1ωα|Παβγ

+ p∗2ωγ |Παβγ
+ ̟β|Παβγ

. (7.18)By omparison with the �eld theory approah, this result should be linked to the fusionrules of the hiral WZW theory and thereby provide a physially motivated realization of theVerlinde algebra. To see how suh a relation an exist, notie that fusion rules are dimensionsof spaes of onformal bloks and as suh an be obtained by geometri quantization fromsuitable moduli spaes of �at onnetions whih arise in the quantization of Chern-Simonstheories (see e.g. [ADW℄). The moduli spae relevant to us is the one for the three-punturedsphere S2
(3), for whih the monodromy of the �at onnetion around the puntures takes valuesin onjugay lasses Cα, Cβ and Cγ, respetively. The relations in the fundamental group of

S2
(3) imply the ondition gαgβgγ =1 on the monodromies gα ∈Cα, gβ ∈Cβ and gγ ∈Cγ . Sinemonodromies are de�ned only up to simultaneous onjugation, the moduli spae that mattersin lassial Chern-Simons theory is isomorphi to the quotient Παβγ/G.It turns out that the range of bi-branes appearing in the fusion produt is orretly boundedalready before geometri quantization. Indeed, the relevant produt of onjugay lasses is

Ch ∗ Ch′ := {gg′ | g∈Ch, g′∈Ch′} , (7.19)and for the ase of G =SU(2) it is easy to see that this yields the orret upper and lowerbounds for the SU(2) fusion rules [JW, FSW℄. A full understanding of fusion an, however,only be expeted after applying geometri quantization to the so obtained moduli spae: this22



spae must be endowed with a two-form, whih is interpreted as the urvature of a line bundle,and the holomorphi setions of this bundle are what results from geometri quantization. Inview of this need for quantization it is a highly non-trivial observation that the two-form (7.18)furnished by the two branes and the bi-brane is exatly the same as the one that arises fromlassial Chern-Simons theory.In terms of defet lines, the deomposition (7.16) of the fusion produt of bi-branes orre-sponds to the presene of a defet juntion, whih onstitutes a partiular type of defet �eld.A sigma model desription for world sheets with suh embedded defet juntions has beenproposed in [RS℄.We have demonstrated how strutural analogies between the geometry of bundle gerbesand the representation theoreti approah to rational onformal �eld theory lead to interestinggeometri struture, inluding a physially motivated realization of the Verlinde algebra. Thepreise form of the latter and its relation with the realization of the Verlinde algebra in theontext of supersymmetri onformal �eld theory [FHT℄ remain to be understood. But in anyase the parallelism between lassial ations and full quantum theory exhibited above remainsintriguing and raises the hope that some of the strutural aspets disussed in this ontributionare generi features of quantum �eld theories.
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