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Abstra
tHermitian bundle gerbes with 
onne
tion are geometri
 obje
ts for whi
h a notion of sur-fa
e holonomy 
an be de�ned for 
losed oriented surfa
es. We systemati
ally introdu
ebundle gerbes by 
losing the pre-sta
k of trivial bundle gerbes under des
ent.Inspired by stru
tures arising in a representation theoreti
 approa
h to rational 
onfor-mal �eld theories, we introdu
e geometri
 stru
ture that is appropriate to de�ne surfa
eholonomy in more general situations: Jandl gerbes for unoriented surfa
es, D-branes forsurfa
es with boundaries, and bi-branes for surfa
es with defe
t lines.
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1 Introdu
tionTwo-dimensional quantum �eld theories have been a ri
h sour
e of relations between di�erentmathemati
al dis
iplines. A prominent 
lass of examples of su
h theories are the two-dimen-sional rational 
onformal �eld theories, whi
h admit a mathemati
ally pre
ise des
ription (see[SFR℄ for a summary of re
ent progress). A large sub
lass of these also have a 
lassi
al des
rip-tion in terms of an a
tion, in whi
h a term given by a surfa
e holonomy enters.The appropriate geometri
 obje
t for the de�nition of surfa
e holonomies for oriented sur-fa
es with empty boundary are hermitian bundle gerbes. We systemati
ally introdu
e bundlegerbes by �rst de�ning a pre-sta
k of trivial bundle gerbes, in su
h a way that surfa
e holonomy
an be de�ned, and then 
losing this pre-sta
k under des
ent. This 
onstru
tion 
onstitutes infa
t a generalization of the geometry of line bundles, their holonomy and their appli
ations to
lassi
al parti
le me
hani
s.Inspired by results in a representation theoreti
 approa
h to rational 
onformal �eld theories,we then introdu
e in the same spirit geometri
 stru
ture that allows to de�ne surfa
e holonomyin more general situations: Jandl gerbes for unoriented surfa
es, D-branes for surfa
es withboundaries, and bi-branes for surfa
es with defe
t lines.2 Hermitian line bundles and holonomyBefore dis
ussing bundle gerbes, it is appropriate to summarize some pertinent aspe
ts of linebundles.One of the basi
 features of a (
omplex) line bundle L over a smooth manifold M is that itis lo
ally trivializable. This means that M 
an be 
overed by open sets Uα su
h that there existisomorphisms φα : L|Uα
// 1Uα, where 1Uα denotes the trivial line bundle C×Uα. A 
hoi
e ofsu
h maps φα de�nes gluing isomorphisms

gαβ : 1Uα

∣∣
Uα∩Uβ

// 1Uβ

∣∣
Uα∩Uβ

with gβγ ◦ gαβ = gαγ on Uα∩Uβ∩Uγ . (2.1)Isomorphisms between trivial line bundles are just smooth fun
tions. Given a set of gluingisomorphisms one 
an obtain as additional stru
ture the total spa
e as the manifold
L :=

⊔

α

1Uα /∼ , (2.2)with the relation ∼ identifying an element ℓ of 1Uα with gαβ(ℓ) of 1Uβ
. In short, every bundleis glued together from trivial bundles.In the following all line bundles will be equipped with a hermitian metri
, and all isomor-phisms are supposed to be isometries. Su
h line bundles form 
ategories, denoted Bun(M).The trivial bundle 1M de�nes a full, one-obje
t sub
ategory Buntriv(M) whose endomorphismset is the monoid of U(1)-valued fun
tions on M . Denoting by π0(C) the set of isomorphism
lasses of a 
ategory C and by H•(M, U(1)) the sheaf 
ohomology of M with 
oe�
ients in thesheaf of U(1)-valued fun
tions, we have the bije
tion

π0(Bun(M)) ∼= H1(M, U(1)) ∼= H2(M, Z) , (2.3)under whi
h the isomorphism 
lass of the trivial bundle is mapped to zero.1



Another basi
 feature of line bundles is that they pull ba
k along smooth maps: for L a linebundle over M and f : M ′ // M a smooth map, the pullba
k f ∗L is a line bundle over M ′, andthis pullba
k f ∗ extends to a fun
tor
f ∗ : Bun(M) // Bun(M ′) . (2.4)Furthermore, there is a unique isomorphism g∗(f ∗L) // (f ◦ g)∗L for 
omposable maps f and

g. As our aim is to dis
uss holonomies, we should in fa
t 
onsider a di�erent 
ategory, namelyline bundles equipped with (metri
) 
onne
tions. These form again a 
ategory, denoted by
Bun∇(M), and this has again a full sub
ategory Buntriv∇(M) of trivial line bundles with 
onne
-tion. But now this sub
ategory has more than one obje
t: every 1-form ω ∈Ω1(M) 
an serveas a 
onne
tion on a trivial line bundle 1 over M ; the so obtained obje
ts are denoted by 1ω.The set Hom(1ω, 1ω′) of 
onne
tion-preserving isomorphisms η : 1ω

// 1ω′ is the set of smoothfun
tions g : M // U(1) satisfying
ω′ − ω = − i dlog g . (2.5)Just like in (2.2), every line bundle L with 
onne
tion 
an be glued together from line bundles

1ωα along 
onne
tion-preserving gluing isomorphisms ηαβ .The 
urvature of a trivial line bundle 1ω is curv(1ω) :=dω ∈ Ω2(M), and is thus invariantunder 
onne
tion-preserving isomorphisms. It follows that the 
urvature of any line bundlewith 
onne
tion is a globally well-de�ned, 
losed 2-form. We re
all that the 
ohomology 
lassof this 2-form in real 
ohomology 
oin
ides with the 
hara
teristi
 
lass in (2.3).In order to introdu
e the holonomy of line bundles with 
onne
tion, we say that the holon-omy of a trivial line bundle 1ω over S1 is
Hol1ω := exp

(
2πi

∫

S1

ω
)
∈ U(1) . (2.6)If 1ω and 1ω′ are trivial line bundles over S1, and if there exists a morphism η in Hom(1ω, 1ω′),we have Hol1ω =Hol1ω′

be
ause
∫

S1

ω′ −

∫

S1

ω =

∫

S1

− i dlog η ∈ Z . (2.7)More generally, if L is any line bundle with 
onne
tion over M , and Φ: S1 // M is a smoothmap, then the pullba
k bundle Φ∗L is trivial sin
e H2(S1, Z) = 0, and hen
e one 
an 
hoose anisomorphism T : Φ∗L
∼ // 1ω for some ω ∈Ω1(S1). We then set

HolL(Φ) := Hol1ω . (2.8)This is well-de�ned be
ause any other trivialization T ′: Φ∗L // 1ω′ provides a transition isomor-phism η := T ′ ◦ T −1 in Hom(1ω, 1ω′). But as we have seen above, the holonomies of isomorphi
trivial line bundles 
oin
ide.Let us also mention an elementary example of a physi
al appli
ation of line bundlesand their holonomies: the a
tion fun
tional S for a 
harged point parti
le. For (M, g) a2



(pseudo-)Riemannian manifold and Φ: R ⊃ [t1, t2] // (M, g) the traje
tory of a point parti
leof mass m and ele
tri
 
harge e, one 
ommonly writes the a
tion S[Φ] as the sum of the kineti
term
Skin[Φ] =

m

2

∫ t2

t1

g(dΦ

dt
, dΦ

dt
) (2.9)and a term

− e

∫ t2

t1

Φ∗A , (2.10)with A the ele
tromagneti
 gauge potential. However, this formulation is inappropriate whenthe ele
tromagneti
 �eld strength F is not exa
t, so that a gauge potential A with dA =Fexists only lo
ally. As explained above, keeping tra
k of su
h lo
al 1-forms Aα and lo
al `gaugetransformations', i.e. 
onne
tion-preserving isomorphisms between those, leads to the notion ofa line bundle L with 
onne
tion. For a 
losed traje
tory, i.e. Φ(t1) =Φ(t2), the a
tion shouldbe de�ned as
eiS[Φ] = eiSkin[Φ] HolL(Φ) . (2.11)An important feature of bundles in physi
al appli
ations is the `Dira
 quantization' 
onditionon the �eld strength F : the integral of F over any 
losed surfa
e Σ in M gives an integer. Thisfollows from the 
oin
iden
e of the 
ohomology 
lass of F with the 
hara
teristi
 
lass in (2.3).Another aspe
t is a neat explanation of the Aharonov-Bohm e�e
t. A line bundle over a non-simply 
onne
ted manifold 
an have vanishing 
urvature and yet non-trivial holonomies. In thequantum theory holonomies are observable, and thus the gauge potential A 
ontains physi
allyrelevant information even if its �eld strength is zero. Both aspe
ts, the quantization 
onditionand the Aharonov-Bohm e�e
t, persist in the generalization of line bundles to bundle gerbes,whi
h we dis
uss next.3 Gerbes and surfa
e holonomyIn this se
tion we formalize the pro
edure of Se
tion 2 that has lead us from lo
al 1-formgauge potentials to line bundles with 
onne
tion: we will explain that it is the 
losure of the
ategory of trivial bundles with 
onne
tion under des
ent. We then apply the same prin
iple tolo
ally de�ned 2-forms, whereby we arrive straightforwardly at the notion of bundle gerbes with
onne
tion. We des
ribe the notion of surfa
e holonomy of su
h gerbes and their appli
ationsto physi
s analogously to Se
tion 2.3.1 Des
ent of bundlesAs a framework for stru
tures with a 
ategory assigned to every manifold and 
onsistent pull-ba
k fun
tors we 
onsider presheaves of 
ategories. Let Man be the 
ategory of smooth mani-folds and smooth maps, and let Cat be the 2-
ategory of 
ategories, with fun
tors between 
at-egories as 1-morphisms and natural transformations between fun
tors as 2-morphisms. Then apresheaf of 
ategories is a lax fun
tor
F : Manopp // Cat (3.1)3



It assigns to every manifold M a 
ategory F(M), and to every smooth map f : M ′ // M afun
tor F(f) : F(M) // F(M ′). By the quali�
ation `lax' we mean that the 
omposition ofmaps must only be preserved up to 
oherent isomorphisms.In Se
tion 2 we have already en
ountered four examples of presheaves: the presheaf Bunof line bundles, the presheaf Bun∇ of line bundles with 
onne
tion, and their sub-presheaves oftrivial bundles.To formulate a gluing 
ondition for presheaves of 
ategories we need to spe
ify 
overings.Here we 
hoose surje
tive submersions π: Y // M . We remark that every 
over of M by opensets Uα provides a surje
tive submersion with Y the disjoint union of the Uα; thus surje
tivesubmersions generalize open 
overings. This generalization proves to be important for manyexamples of bundle gerbes, su
h as the lifting of bundle gerbes and the 
anoni
al bundle gerbesof 
ompa
t simple Lie groups.With hindsight, a 
hoi
e of 
overings endows the 
ategory Man with a Grothendie
k topol-ogy. Both surje
tive submersions and open 
overs de�ne a Grothendie
k topology, and sin
eevery surje
tive submersion allows for lo
al se
tions, the resulting two Grothendie
k topologiesare equivalent. And in fa
t the submersion topology is the maximal one equivalent to open
overings.Along with a 
overing π: Y // M there 
omes a simpli
ial manifold
· · ·

∂0 //
//
//

∂3

// Y
[3]

∂0 //
//

∂2

// Y [2]
∂0 //

∂1

// Y
π // M . (3.2)Here Y [n] denotes the n-fold �bre produ
t of Y over M ,

Y [n] := {(y0, . . . , yn−1)∈Y n | π(y0) = . . .=π(yn−1)} , (3.3)and the map ∂i : Y [n] // Y [n−1] omits the ith entry. In parti
ular ∂0 : Y [2] // Y is theproje
tion to the se
ond fa
tor and ∂1 : Y [2] // Y the one to the �rst. All �bre produ
ts Y [k]are smooth manifolds, and all maps ∂i are smooth. Now let L be a line bundle over M . Bypullba
k along π we obtain:(BO1) An obje
t L̃ := π∗L in Bun(Y ).(BO2) A morphism
φ : ∂∗

0L̃
∼= ∂∗

0π
∗L

∼ // ∂∗
1π

∗L ∼= ∂∗
1L̃ (3.4)in Bun(Y [2]) indu
ed from the identity π ◦ ∂0 =π ◦ ∂1.(BO3) A 
ommutative diagram

∂∗
1∂

∗
0L̃

∂∗

1
φ

44∂∗
0∂

∗
0 L̃

∂∗

0
φ
// ∂∗

0∂
∗
1 L̃ ∂∗

2∂
∗
0 L̃

∂∗

2
φ
// ∂∗

2∂
∗
1L̃ ∂∗

1∂
∗
1L̃ (3.5)of morphisms in Bun(Y [3]); or in short, an equality ∂∗

2φ ◦ ∂∗
0φ = ∂∗

1φ.We 
all a pair (L̃, φ) as in (BO1) and (BO2) whi
h satis�es (BO3) a des
ent obje
t in thepresheaf Bun. Analogously we obtain for a morphism f : L // L′ of line bundles over M4



(BM1) A morphism f̃ := π∗f : L̃ // L̃′ in Bun(Y ).(BM2) A 
ommutative diagram
φ′ ◦ ∂∗

0 f̃ = ∂∗
1 f̃ ◦ φ (3.6)of morphisms in Bun(Y [2]).Su
h a morphism f̃ as in (BM1) obeying (BM2) is 
alled a des
ent morphism in the presheaf

Bun.Des
ent obje
ts and des
ent morphisms for a given 
overing π form a 
ategory
Des
(π: Y //M) of des
ent data. What we des
ribed above is a fun
tor

ιπ : Bun(M) // Des
(π: Y //M) . (3.7)The question arises whether every `lo
al' des
ent obje
t 
orresponds to a `global' obje
t on M ,i.e. whether the fun
tor ιπ is an equivalen
e of 
ategories.The 
onstru
tion generalizes straightforwardly to any presheaf of 
ategories F , and if thefun
tor ιπ is an equivalen
e for all 
overings π : Y // M , the presheaf F is 
alled a sheaf of
ategories (or sta
k). Extending the gluing pro
ess from (2.2) to non-trivial bundles shows thatthe presheaves Bun and Bun∇ are sheaves. In 
ontrast, the presheaves Buntriv and Buntriv∇ oftrivial bundles are not sheaves, sin
e gluing of trivial bundles does in general not result in atrivial bundle. In fa
t the gluing pro
ess (2.2) shows that every bundle 
an be obtained bygluing trivial ones. In short, the sheaf Bun∇ of line bundles with 
onne
tion is obtained by
losing the presheaf Buntriv∇ under des
ent.3.2 Bundle gerbesOur 
onstru
tion of line bundles started from trivial line bundles with 
onne
tion whi
h arejust 1-forms on M , and the fa
t that 1-forms 
an be integrated along 
urves has lead us to thenotion of holonomy. To arrive at a notion of surfa
e holonomy, we now 
onsider a 
ategory of2-forms, or rather a 2-
ategory:An obje
t is a 2-form ω ∈Ω2(M), 
alled a trivial bundle gerbe with 
onne
tion and denotedby Iω.A 1-morphism η : ω // ω′ is a 1-form η ∈ Ω1(M) su
h that dη = ω′ − ω.A 2-morphism φ : η +3 η′ is a smooth fun
tion φ : M // U(1) su
h that −i dlog(φ) = η′− η.There is also a natural pullba
k operation along maps, indu
ed by pullba
k on di�erentialforms. The given data 
an be rewritten as a presheaf of 2-
ategories, as there is a 2-
ategoryatta
hed to ea
h manifold. This presheaf should now be 
losed under des
ent to obtain a sheafof 2-
ategories. As a �rst step we 
omplete the morphism 
ategories under des
ent. Sin
e theseare 
ategories of trivial line bundles with 
onne
tions, we set
Hom(Iω, Iω′) := Bun∇ω′−ω(M) , (3.8)the 
ategory of hermitian line bundles with 
onne
tion of �xed 
urvature ω′−ω. The horizontal
omposition is given by the tensor produ
t in the 
ategory of bundles. Finally, 
ompleting the2-
ategory under des
ent, we get the de�nition of a bundle gerbe:5



De�nition 1. A bundle gerbe G (with 
onne
tion) over M 
onsists of the following data: a
overing π : Y // M , and for the asso
iated simpli
ial manifold
Y [4]

//
//
//
// Y

[3]
//
//
// Y [2]

∂1

//
∂0 //

Y
π // M (3.9)(GO1) an obje
t Iω of Grbtriv∇(Y ): a 2-form ω ∈ Ω2(Y );(GO2) a 1-morphism

L : ∂∗
0Iω

// ∂∗
1Iω (3.10)in Grbtriv∇(Y [2]): a line bundle L with 
onne
tion over Y [2];(GO3) a 2-isomorphism

µ : ∂∗
2L⊗ ∂∗

0L +3 ∂∗
1L (3.11)in Grbtriv∇(Y [3]): a 
onne
tion-preserving morphism of line bundles over Y [3];(GO4) an equality

∂∗
2µ ◦ (id⊗ ∂∗

0µ) = ∂∗
1µ ◦ (∂∗

3µ⊗ id) (3.12)of 2-morphisms in Grbtriv∇(Y [4]).For later appli
ations it will be ne
essary to 
lose the morphism 
ategories under a se
ondoperation, namely dire
t sums. Closing the 
ategory of line bundles with 
onne
tion underdire
t sums leads to the 
ategory of 
omplex ve
tor bundles with 
onne
tion, i.e. we set
Hom(Iω, Iω′) := Ve
tBun∇ω′−ω(M) , (3.13)where the 
urvature of these ve
tor bundles is 
onstrained to satisfy

1

n
tr(curv(L)) = ω′ − ω , (3.14)with n the rank of the ve
tor bundle. Noti
e that this does not a�e
t the de�nition of a bundlegerbe, sin
e the existen
e of the 2-isomorphism µ restri
ts the rank of L to be one.As a next step, we need to introdu
e 1-morphisms and 2-morphisms between bundle gerbes.1-morphisms have to 
ompare two bundle gerbes G and G′. We assume �rst that both bundlegerbes have the same 
overing Y // M .De�nition 2. i) A 1-morphism between bundle gerbes G =(Y, ω, L, µ) and G′ = (Y, ω′, L′, µ′)over M with the same surje
tive submersion Y // M 
onsists of the following data on theasso
iated simpli
ial manifold

Y [4]
//
//
//
// Y

[3]
//
//
// Y [2]

∂1

//
∂0 //

Y
π // M . (3.15)(G1M1) a 1-morphism A : Iω

// Iω′ in Grbtriv∇(Y ): a rank-n hermitian ve
tor bundle A with
onne
tion of 
urvature 1
n

tr(curv(L)) =ω′ − ω;(G1M2) a 2-isomorphism α : L′ ⊗ ∂∗
0A +3 ∂∗

1A⊗L in Grbtriv∇(Y [2]): a 
onne
tion-preservingmorphism of hermitian ve
tor bundles;6



(G1M3) a 
ommutative diagram
(id⊗µ′) ◦ (∂∗

2α⊗ id) ◦ (id⊗ ∂∗
0α) = ∂∗

1α ◦ (µ⊗ id) (3.16)of 2-morphisms in Grbtriv∇(Y [3]).ii) A 2-morphism between two su
h 1-morphisms (A, α) and (A′, α′) 
onsists of(G2M1) a 2-morphism β : A +3 A′ in Grbtriv∇(Y ): a 
onne
tion-preserving morphism of ve
torbundles;(G2M2) a 
ommutative diagram
α′ ◦ (id⊗ ∂∗

0β) = (∂∗
1β ⊗ id) ◦ α (3.17)of 2-morphisms in Grbtriv∇(Y [2]).Sin
e 1-morphisms are 
omposed by taking tensor produ
ts of ve
tor bundles, a 1-morphismis invertible if and only if its ve
tor bundle is of rank one.In order to de�ne 1-morphisms and 2-morphisms between bundle gerbes with possibly di�er-ent 
overings π : Y // M and π′ : Y ′ // M , we pull all the data ba
k to a 
ommon re�nement ofthese 
overings and 
ompare them there. We 
all a 
overing ζ : Z // M a 
ommon re�nementof π and π′ i� there exist maps s : Z // Y and s′ : Z // Y ′ su
h that

Y

π
  A

AA
AA

AA
A Z

soo s′ //

ζ

��

Y ′

π′

~~||
||

||
||

M

(3.18)

ommutes. An example of su
h a 
ommon re�nement is the �bre produ
t Z :=Y ×M Y ′ // M ,with the maps Z // Y and Z // Y ′ given by the proje
tions. The important point about a
ommon re�nement Z // M is that the maps s and s′ indu
e simpli
ial maps

Y • Z•oo // Y ′• . (3.19)For bundle gerbes G =(Y, ω, L, µ) and G′ = (Y ′, ω′, L′, µ′) we obtain new bundle gerbes withsurje
tive submersion Z by pulling ba
k all the data along the simpli
ial maps s and s′. Ex-pli
itly, GZ := (Z, s∗0ω, s∗1L, s∗2µ) and G′
Z = (Z, s′∗0 ω′, s′∗1 L′, s′∗2 µ′). Also morphisms 
an be re�nedby pulling them ba
k.De�nition 3. i) A 1-morphism between bundle gerbes G =(Y, ω, L, µ) and G′ =(Y ′, ω′, L′, µ′)
onsists of a 
ommon re�nement Z // M of the 
overings Y // M and Y ′ // M and a mor-phism (A, α) of the two re�ned gerbes GZ and G′

Z .ii) A 2-morphism between 1-morphisms m =(Z, A, α) and m
′ = (Z ′, A′, α′) 
onsists of a 
ommonre�nement W // M of the 
overings Z // M and Z ′ // M (respe
ting the proje
tions to Yand Y ′, respe
tively) and a 2-morphism β of the re�ned morphisms mW and m

′
W . In additiontwo su
h 2-morphisms (W, β) and (W ′, β ′) must be identi�ed i� there exists a further 
ommonre�nement V // M of W // M and W ′ // M , 
ompatible with the other proje
tions, su
hthat the re�ned 2-morphisms agree on V . 7



For a gerbe G =(Y, ω, L, µ) and a re�nement Z // M of Y the re�ned gerbe GZ is isomorphi
to G. This implies that every gerbe is isomorphi
 to a gerbe de�ned over an open 
overing
Z :=

⊔
i∈I Ui. Furthermore we 
an 
hoose the 
overing in su
h a way that the line bundle overdouble interse
tions is trivial as well. When doing so we obtain the familiar des
ription ofgerbes in terms of lo
al data, reprodu
ing formulas by [Al, Ga1℄. Extending this des
riptionto morphisms it is straightforward to show that gerbes are 
lassi�ed by the so-
alled Deligne
ohomology Hk(M,D(2)) in degree two:

π0(Grb∇(M)) ∼= H2(M,D(2)) . (3.20)Analogously we get the 
lassi�
ation of gerbes without 
onne
tion as
π0(Grb(M)) ∼= H2(M, U(1)) ∼= H3(M, Z) . (3.21)3.3 Surfa
e holonomyThe holonomy of a trivial bundle gerbe Iω over a 
losed oriented surfa
e Σ is by de�nition

HolIω := exp
(
2πi

∫

Σ

ω
)

∈ U(1) . (3.22)If Iω and Iω′ are two trivial bundle gerbes over Σ su
h that there exists a 1-isomorphism
Iω

// Iω′, i.e. a ve
tor bundle L of rank one, we have an equality HolIω =HolIω′
be
ause

∫

Σ

ω′ −

∫

Σ

ω =

∫

Σ

curv(L) ∈ Z . (3.23)More generally, 
onsider a bundle gerbe G with 
onne
tion over a smooth manifold M , anda smooth map
Φ : Σ // M (3.24)de�ned on a 
losed oriented surfa
e Σ. Sin
e H3(Σ, Z) = 0, the pullba
k Φ∗G is isomorphi
 toa trivial bundle gerbe. Hen
e one 
an 
hoose a trivialization, i.e. a 1-isomorphism

T : Φ∗G ∼ // Iω (3.25)and de�ne the holonomy of G around Φ by
HolG(Φ) := HolIω . (3.26)In the same way as for the holonomy of a line bundle with 
onne
tion, this de�nition is indepen-dent of the 
hoi
e of the 1-isomorphism T . Namely, if T ′: Φ∗G ∼ // Iω′ is another trivialization,we have a transition isomorphism

L := T ′ ◦ T −1 : Iω
∼ // Iω′ , (3.27)whi
h shows the independen
e.

8



3.4 Wess-Zumino termsAs we have seen in Se
tion 2, the holonomy of a line bundle with 
onne
tion supplies a termin the a
tion fun
tional of a 
lassi
al 
harged parti
le, des
ribing the 
oupling to a gauge �eldwhose �eld strength is the 
urvature of the line bundle. Analogously, the surfa
e holonomy of abundle gerbe with 
onne
tion de�nes a term in the a
tion of a 
lassi
al 
harged string. Su
h astring is des
ribed in terms of a smooth map Φ: Σ // M . The exponentiated a
tion fun
tionalof the string is (
ompare (2.11))
eiS[Φ] = eiSkin[Φ] HolG(Φ) , (3.28)where Skin[Φ] is a kineti
 term whi
h involves a 
onformal stru
ture on Σ. Physi
al modelswhose �elds are maps de�ned on surfa
es are 
alled (non-linear) sigma models, and the holonomyterm is 
alled a Wess-Zumino term. Su
h terms are needed in 
ertain models in order to obtainquantum �eld theories that are 
onformally invariant.A parti
ular 
lass of sigma models with Wess-Zumino term is given by WZW (Wess-Zumino-Witten) models. For these the target spa
e M is a 
onne
ted 
ompa
t simple Lie group G, andthe 
urvature of the bundle gerbe G is an integral multiple of the 
anoni
al 3-form

H = 〈θ ∧ [θ∧ θ]〉 ∈ Ω3(G)(θ is the left-invariant Maurer-Cartan form on G, and 〈· , ·〉 the Killing form of the Lie algebra
g of G). WZW models have been a distinguished arena for the interplay between Lie theoryand the theory of bundle gerbes [Ga1, GR℄. This has lead to new insights both in the physi
alappli
ations and in the underlying mathemati
al stru
tures. Some of these will be dis
ussed inthe following se
tions.De�ning Wess-Zumino terms as the holonomy of a bundle gerbe with 
onne
tion allows onein parti
ular to explain the following two fa
ts.The Aharonov-Bohm e�e
t : This o

urs when the bundle gerbe has a �at 
onne
tion, i.e. its
urvature H ∈Ω3(M) vanishes. This does not mean, though, that the bundle gerbe is trivial,sin
e its 
lass in H3(M, Z) may be pure torsion. In parti
ular, it 
an still have non-
onstantholonomy, and thus a non-trivial Wess-Zumino term.An example for the Aharonov-Bohm e�e
t is the sigma model on the 2-torus T = S1 ×S1. Bydimensional reasons, the 3-form H vanishes. Nonetheless, sin
e H2(T, U(1)) =U(1), thereexists a whole family of Wess-Zumino terms parameterized by an angle, of whi
h only theone with angle zero is trivial.Dis
rete torsion: The set of isomorphism 
lasses of bundle gerbes with 
onne
tion that havethe same 
urvature H is parameterized by H2(M, U(1)) via the map

H2(M, U(1)) // Tors(H3(M, Z)) . (3.29)If this group is non-trivial, there exist di�erent Wess-Zumino terms for one and the same�eld strength H ; their di�eren
e is 
alled `dis
rete torsion'.An example for dis
rete torsion is the level-k WZW model on the Lie group PSO(4n).Sin
e H2(PSO(4n), U(1)) =Z2, there exist two non-isomorphi
 bundle gerbes with 
onne
tionhaving equal 
urvature. 9



4 The representation theoreti
 formulation of RCFT4.1 Sigma modelsClosely related to surfa
e holonomies are novel geometri
 stru
tures that have been introdu
edfor unoriented surfa
es, for surfa
es with boundary, and for surfa
es with defe
t lines. Thesestru
tures 
onstitute the se
ond theme of this 
ontribution, extending the 
onstru
tion of gerbesand surfa
e holonomy via des
ent; they will be dis
ussed in Se
tions 5, 6 and 7.These geometri
 developments were in fa
t strongly inspired by algebrai
 and representationtheoreti
 results in two-dimensional quantum �eld theories. To appre
iate this 
onne
tion webrie�y review in this se
tion the relation between spa
es of maps Φ: Σ // M , as they appearin the treatment of holonomies, and quantum �eld theories.As already indi
ated in Se
tion 3.4, a 
lassi
al �eld theory, the (non-linear) sigma model, ona two-dimensional surfa
e Σ, 
alled the world sheet, 
an be asso
iated to the spa
e of smoothmaps Φ from Σ to some smooth manifold M , 
alled the target spa
e. Appropriate stru
ture onthe target spa
e determines a Lagrangian for the �eld theory on Σ. Geometri
 stru
ture on M ,e.g. a (pseudo-)Riemannian metri
 G, be
omes, from this point of view, for any given map Φa ba
kground fun
tion G(Φ(x)) for the �eld theory on Σ.Three main issues will then lead us to a ri
her stru
ture related to surfa
e holonomies:In string theory (where the world sheet Σ arises as the surfa
e swept out by a string movingin M) and in other appli
ations as well, one also en
ounters sigma models on world sheets Σthat have non-empty boundary . We will explain how the geometri
 data relevant for en
odingboundary 
onditions � so 
alled D-branes � 
an be derived from geometri
 prin
iples.String theories of type I, whi
h form an integral part of string dualities, involve unorientedworld sheets. In string theory it is therefore a fundamental problem to exhibit geometri
stru
ture on the target spa
e that provides a notion of holonomy for unoriented surfa
es.An equally natural stru
ture present in quantum �eld theory are topologi
al defe
t lines, alongwhi
h 
orrelation fun
tions of bulk �elds 
an have a bran
h-
ut. In spe
i�
 models these
an be understood, just like boundary 
onditions, as 
ontinuum versions of 
orrespondingstru
tures in latti
e models of statisti
al me
hani
s. (For instan
e, in the latti
e version ofthe Ising model a topologi
al defe
t is produ
ed by 
hanging the 
oupling along all bondsthat 
ross a spe
i�ed line from ferromagneti
 to antiferromagneti
.)Sigmamodels have indeed been a signi�
ant sour
e of examples for quantum �eld theories, atleast on a heuristi
 level. Conversely, having a sigma model interpretation for a given quantum�eld theory allows for a geometri
 interpretation of quantum �eld theoreti
 quantities. Sigmamodels have indeed been, at least on a heuristi
 level, a signi�
ant sour
e of examples forquantum �eld theories. Conversely, quantum �eld theoreti
 stru
tures in sigma models havelead to stru
tural insights and quantitative predi
tions in geometry.A distinguished sub
lass of theories in whi
h this relationship between quantum �eld theoryand geometry 
an be studied are two-dimensional 
onformal �eld theories, or CFTs, for short,and among these in parti
ular the rational 
onformal �eld theories for whi
h there exists arigorous representation theoreti
 approa
h. The stru
tures appearing in that approa
h in thethree situations mentioned above suggest new geometri
 notions for 
onformal sigma models.Below we will investigate these notions with the help of standard geometri
 prin
iples. Before10



doing so we formulate, in representation theoreti
 terms, the relevant aspe
ts of the quantum�eld theories in question.4.2 Rational 
onformal �eld theoryThe 
onformal symmetry, together with further, so-
alled 
hiral, symmetries of a CFT 
an been
oded in the stru
ture of a 
onformal vertex algebra V. For any 
onformal vertex algebra one
an 
onstru
t (see e.g. [FrB℄) a 
hiral CFT; in mathemati
al terms, a 
hiral CFT is a systemof 
onformal blo
ks, i.e. sheaves over the moduli spa
es of 
urves with marked points. Thesesheaves of 
onformal blo
ks are endowed with a proje
tively �at 
onne
tion, the Knizhnik-Za-molod
hikov 
onne
tion, whi
h in turn furnishes representations of the fundamental groups ofthe moduli spa
es, i.e. of the mapping 
lass groups.Despite the physi
al origin of its name, a 
hiral 
onformal �eld theory is mathemati
allyrigorous. On the other hand, from the two-dimensional point of view it is, despite its name,not a 
onventional quantum �eld theory, as one deals with (se
tions of) bundles instead of lo
al
orrelation fun
tions. In parti
ular, it must not be 
onfused with a full lo
al 
onformal �eldtheory, whi
h is the relevant stru
ture to enter our dis
ussion of holonomies.Chiral 
onformal �eld theories are parti
ularly tra
table when the vertex algebra V is ratio-nal in the sense of [Hu, thm2.1℄. Then the representation 
ategory C of V is a modular tensor
ategory, and the asso
iated 
hiral CFT is a rational 
hiral CFT , or 
hiral RCFT. In this sit-uation, we 
an use the tools of three-dimensional topologi
al quantum �eld theory (TFT). ATFT is, in short, a monoidal fun
tor tftC [Tu, 
hap. IV.7℄ that asso
iates a �nite-dimensionalve
tor spa
e tftC(E) to any (extended) surfa
e E, and a linear map from tftC(E) to tftC(E′)to any (extended) 
obordism M : E // E′.More pre
isely, a three-dimensional TFT is a proje
tive monoidal fun
tor from a 
ategory
CobC of de
orated 
obordisms to the 
ategory of �nite-dimensional 
omplex ve
tor spa
es. Themodular tensor 
ategory C provides the de
oration data for CobC. Spe
i�
ally, the obje
ts Eof CobC are extended surfa
es, i.e. 1 
ompa
t 
losed oriented two-manifolds with a �nite set ofembedded ar
s, and ea
h of these ar
s is marked by an obje
t of C. A morphism E // E′ is anextended 
obordism, i.e. a 
ompa
t oriented three-manifold M with ∂M = (−E)⊔E′, togetherwith an oriented ribbon graph ΓM in M su
h that at ea
h marked ar
 of (−E)⊔E′ a ribbon of
ΓM is ending. Ea
h ribbon of ΓM is labeled by an obje
t of C, while ea
h 
oupon of ΓM is labeledby an element of the morphism spa
e of C that 
orresponds to the obje
ts of the ribbons whi
henter and leave the 
oupon. Composition in CobC is de�ned by gluing, the identity morphism
idE is the 
ylinder over E, and the tensor produ
t is given by disjoint union of obje
ts and
obordisms.A topologi
al �eld theory furnishes, for any extended surfa
e, a representation of the map-ping 
lass group. Our approa
h relies on the fundamental 
onje
ture (whi
h is largely estab-lished for a broad 
lass of models) that, for C the representation 
ategory of a rational vertexalgebra V, the mapping 
lass group representation given by tftC is equivalent to the one pro-vided by the Knizhnik-Zamolod
hikov 
onne
tion on the 
onformal blo
ks for the vertex algebra
V. 1 Here various details are suppressed. Detailed information, e.g. the pre
ise de�nition of a ribbon graphor the reason why tftC is only proje
tive, 
an be found in many pla
es, su
h as [Tu, BK, KRT℄ or [FFFS,se
t. 2.5-2.7℄. 11



4.3 The TFT 
onstru
tion of full RCFTLet us now turn to the dis
ussion of full lo
al 
onformal �eld theories, whi
h are the stru
tures tobe 
ompared to holonomies. A full CFT is, by de�nition, a 
onsistent system of lo
al 
orrelationfun
tions that satisfy all sewing 
onstraints (see e.g. [FjFRS2, def. 3.14℄). A

ording to theprin
iple of holomorphi
 fa
torization, every full RCFT 
an be understood with the help of a
orresponding 
hiral CFT. The relevant 
hiral CFT is, however, not de�ned on world sheets Σ(whi
h may be unoriented or have a non-empty boundary), but rather on their 
omplex doubles
Σ̂, whi
h 
an be given the stru
ture of extended surfa
es; this a�ords a geometri
 separation ofleft- and right-movers. The double Σ̂ of Σ is, by de�nition, the orientation bundle over Σ modu-lo identi�
ation of the two points in the �bre over ea
h boundary point of Σ. The world sheet Σ
an be obtained from Σ̂ as the quotient by an orientation-reversing involution τ . To give someexamples, when Σ is 
losed and orientable, then Σ̂ is just the dis
onne
ted sum Σ̂ =Σ⊔−Σ oftwo 
opies of Σ with opposite orientation, and the involution τ just ex
hanges these two 
opies;the double of both the disk and the real proje
tive plane is the two-sphere (with τ being given,in standard 
omplex 
oordinates, by z � // z−1 and by z � //−z−1, respe
tively); and the doubleof both the annulus and the Möbius strip is a two-torus. Further, when Σ 
omes with �eldinsertions, that is, embedded ar
s labeled by obje
ts of either C (for ar
s on ∂Σ) or pairs ofobje
ts of C (for ar
s in the interior of Σ), then 
orresponding ar
s labeled by obje
ts of C arepresent on Σ̂.Given this 
onne
tion between the surfa
es relevant to 
hiral and full CFT, the relationshipbetween the 
hiral and the full CFT 
an be stated as follows: A 
orrelation fun
tion C(Σ)of the full CFT on Σ is a spe
i�
 element in the appropriate spa
e of 
onformal blo
ks ofthe 
hiral CFT on the double Σ̂. A 
onstru
tion of su
h elements has been a

omplished in[FRS1, FRS2, FRS3, FjFRS1℄. The �rst observation is that they 
an be 
omputed with thehelp of the 
orresponding TFT, namely as

C(Σ) = tftC(MΣ) 1 ∈ tftC(Σ̂) . (4.1)Here MΣ ≡ ∅
MΣ

// Σ̂, the 
onne
ting manifold for the world sheet Σ, is an extended 
obordismthat is 
onstru
ted from the data of Σ. Besides the 
ategory C, the spe
i�
ation of the ve
tor
C(Σ) needs a se
ond ingredient: a (Morita 
lass of a) symmetri
 spe
ial Frobenius algebra Ain C.Let us give some details 2 of the 
onstru
tion of C(Σ).As a three-manifold, MΣ is the interval bundle over Σ modulo a Z2-identi�
ation of theintervals over ∂Σ. Expli
itly,

MΣ =
(
Σ̂×[−1, 1]

)
/∼ with ([x, or2], t) ∼ ([x,−or2],−t) . (4.2)It follows in parti
ular that ∂MΣ =Σ̂ and that Σ is naturally embedded in MΣ as

ı : Σ
≃

// Σ×{t=0} �

�

// MΣ. Indeed, ı(Σ) is a deformation retra
t of MΣ, so that the topologyof MΣ is 
ompletely determined by the one of Σ.2 For another brief summary, with di�erent emphasis, see Se
tion 7 of [FRS4℄. An in-depth exposition,in
luding for instan
e the relevan
e of various orientations, 
an e.g. be found in Appendix B of [FjFRS1℄.12



A 
ru
ial ingredient of the 
onstru
tion of the ribbon graph ΓMΣ
in MΣ is a (dual) orientedtriangulation Γ of the submanifold ı(Σ) of MΣ. This triangulation is labeled by obje
ts andmorphisms of C. It is here that the Frobenius algebra A enters: Ea
h edge of Γ \ ı(∂Σ) is
overed with a ribbon labeled by the obje
t A of C, while ea
h (three-valent) vertex is 
overedwith a 
oupon labeled by the multipli
ation morphism m∈HomC(A⊗A, A). In addition,whenever these assignments in themselves would be in 
on�i
t with the orientations of theedges, a 
oupon with morphism in either HomC(A⊗A, 1) or HomC(1, A⊗A) is inserted.Su
h morphisms are part of the data for a Frobenius stru
ture on A. Assuming, for now,that the world sheet Σ is oriented, independen
e of C(Σ) from the 
hoi
e of triangulation Γamounts pre
isely to the statement that the obje
t A 
arries the stru
ture of a symmetri
spe
ial Frobenius algebra.If Σ has non-empty boundary , the pres
ription for Γ is amended as follows. Ea
h edge eof Γ∩ ı(∂Σ) is 
overed with a ribbon labeled by a (left, say) A-module N = N(e), whileea
h vertex lying on ı(∂Σ) is 
overed with a 
oupon that has in
oming N- and A-ribbonsas well as an outgoing N-ribbon and that is labeled by the representation morphism

ρN ∈HomC(A⊗N, N). The physi
al interpretation of the A-module N is as the bound-ary 
ondition that is asso
iated to a 
omponent of ∂Σ. That the obje
t N of C labeling aboundary 
ondition 
arries the stru
ture of an A-module and that the morphism ρN is the
orresponding representation morphism is pre
isely what is required (in addition to A beinga symmetri
 spe
ial Frobenius algebra) in order to get independen
e of C(Σ) from the 
hoi
eof triangulation Γ.If Σ is unoriented , then as an additional feature one must ensure independen
e of C(Σ)from the 
hoi
e of lo
al orientations of Σ. As shown in [FRS2℄, this requires an additionalstru
ture on the algebra A, namely the existen
e of a morphism σ ∈HomC(A, A) that is analgebra isomorphism from the opposite algebra Aopp to A and squares to the twist of A, i.e.satis�es
σ ◦ η = η , σ ◦ m = m ◦ cA,A ◦ (σ⊗σ) , σ ◦ σ = θA , (4.3)where η∈HomC(1, A), θA ∈HomC(A, A) and cA,A ∈HomC(A⊗A, A⊗A) denote the unit mor-phism, the twist, and the self-braiding of A, respe
tively. This way A be
omes a braidedversion of an algebra with involution. A symmetri
 spe
ial Frobenius algebra endowed witha morphism σ satisfying (4.3) is 
alled a Jandl algebra.In the presen
e of topologi
al defe
t lines on Σ a further amendment of the pres
ription is inorder. The defe
t lines partition Σ into disjoint regions, and to the regions to the left and tothe right of a defe
t line one may asso
iate di�erent (symmetri
 spe
ial Frobenius) algebras

Al and Ar, su
h that the part of the triangulation Γ in one region is labeled by the algebra Al,while the part of Γ in the other region is labeled by Ar. The defe
t lines are to be regardedas forming a subset ΓD of Γ themselves; ea
h edge of ΓD is 
overed with a ribbon labeled bysome obje
t B of C, while ea
h vertex of Γ lying on ΓD is 
overed with a 
oupon labeled bya morphism ρ∈HomC(Al ⊗B, B), respe
tively ρ∈HomC(B ⊗Ar, B). Consisten
y requiresthat these morphisms endow the obje
t B of C that labels a defe
t line with the stru
tureof an Al-Ar-bimodule. (Below we will 
on
entrate on the 
ase Al = Ar =: A, so that we dealwith A-bimodules.) 13



There are also rules for the morphisms of C that label bulk, boundary and defe
t �elds,respe
tively.The pres
ription summarized above allows one to 
onstru
t the 
orrelator (4.1) for anyarbitrary world sheet Σ. The so obtained 
orrelators 
an be proven [FjFRS1℄ to satisfy all
onsisten
y 
onditions that the 
orrelators of a CFT must obey. Thus, spe
ifying the algebra
A is su�
ient to obtain a 
onsistent system of 
orrelators. The assignment of a (suitablynormalized) 
orrelator C(Σ) to Σ a
tually depends only on the Morita 
lass of the symmetri
spe
ial Frobenius algebra A. Conversely, any 
onsistent set of 
orrelators 
an be obtained thisway [FjFRS2℄.Topologi
al defe
ts admit a number of interesting operations. In parti
ular, they 
an befused � on the algebrai
 side this 
orresponds to the tensor produ
t B ⊗A B′ of bimodules. Thebimodule morphisms HomA|A(B ⊗A B′, B′′) appear as labels of verti
es of defe
t lines. Defe
tlines 
an also be fused to boundaries; depending on the relative situation of the defe
t line andthe boundary, this is given on the algebrai
 side by the tensor produ
t B ⊗A N of a bimodulewith a left module, or by the tensor produ
t N ⊗A B with a right module, respe
tively.In the following table we 
olle
t some pertinent aspe
ts of the 
onstru
tion and exhibit thegeometri
 stru
tures on the sigma model target spa
e M that 
orrespond to them.geometri
 situation algebrai
 stru
ture in the 
ategory C geometri
 stru
ture on M

Σ 
losed oriented symm. spe
ial Frobenius algebra A bundle gerbe G with 
onne
tion
Σ unoriented Jandl stru
ture σ : Aopp // A Jandl gerbeboundary 
ondition A-module G-D-branetopologi
al defe
t line A-bimodule G-bi-braneJandl gerbes, D-branes and bi-branes will be presented in Se
tions 5, 6 and 7, respe
tively.5 Jandl gerbes: Holonomy for unoriented surfa
esWe have de�ned trivial bundle gerbes with 
onne
tion as 2-forms be
ause 2-forms 
an be inte-grated over oriented surfa
es. Closing the 2-
ategory of trivial bundle gerbes under des
ent haslead us to bundle gerbes. Jandl gerbes are bundle gerbes with additional stru
ture, whose holon-omy is de�ned for 
losed surfa
es without orientation, even for unorientable surfa
es [SSW℄.In parti
ular, Jandl gerbes provide Wess-Zumino terms for unoriented surfa
es. Comparingthe geometri
 data with the representation theoreti
 ones from Se
tion 4, bundle gerbes with
onne
tion 
orrespond to Frobenius algebras, while Jandl gerbes 
orrespond to Jandl algebras.The appropriate quantity that has to repla
e 2-forms in order to make integrals over anunoriented surfa
e well-de�ned is a 2-density. Every surfa
e Σ has an oriented double 
overing
pr : Σ̂ // Σ that 
omes with an orientation-reversing involution σ : Σ̂ // Σ̂ whi
h ex
hangesthe two sheets and preserves the �bres. A 2-density on Σ is a 2-form ω ∈Ω2(Σ̂) su
h that

σ∗ω = −ω . (5.1)Every ordinary 2-form ρ on Σ de�nes a parti
ular 2-density by ωρ := pr∗ρ.14



A 2-density on Σ 
an indeed be integrated without requiring Σ to be oriented. One 
hoosesa dual triangulation Γ of Σ and, for ea
h fa
e f of Γ, one of its two preimages under pr : Σ̂ // Σ,denoted for. Then one sets ∫

Σ

ω :=
∑

f

∫

for

ω . (5.2)Owing to the equality (5.1) the so de�ned integral does not depend on the 
hoi
e of the preim-ages for nor on the 
hoi
e of triangulation Γ. If Σ 
an be endowed with an orientation, thepreimages for 
an be 
hosen in su
h a way that pr|for
: for

// f is orientation-preserving. Thenthe integral of a 2-density ωρ 
oin
ides with the ordinary integral of the 2-form ρ.Next we want to set up a 2-
ategory whose obje
ts are related to 2-densities. To this endwe use the 2-
ategory of trivial bundle gerbes introdu
ed in Se
tion 3.2. Thus, one datumspe
ifying an obje
t is a 2-form ω ∈Ω2(Σ̂). In the 
ontext of 2-
ategories, demanding stri
tequality as in (5.1) is unnatural. Instead, we repla
e equality by a 1-morphism
η : σ∗ω // −ω , (5.3)i.e. a 1-form η∈Ω1(Σ̂) su
h that σ∗ω =−ω + dη. As we shall see in a moment, we mustimpose equivarian
e of the 1-morphism up to some 2-morphism, i.e. we need in addition a2-isomorphism
φ : σ∗η +3 η , (5.4)in other words a smooth fun
tion φ : M // U(1) su
h that η = σ∗η−i dlog φ. This 2-isomor-phism, in turn, must satisfy the equivarian
e relation

σ∗φ = φ−1. (5.5)Thus the obje
ts of the 2-
ategory are triples (ω, η, φ). Let us verify that they still leadto a well-de�ned notion of holonomy. We 
hoose again a dual triangulation Γ of Σ as wellas a preimage for for ea
h of its fa
es. The expression (5.2) is now no longer independent ofthese 
hoi
es, be
ause every 
hange 
reates a boundary term in the integrals of the 1-form η.To resolve this problem, we involve orientation-reserving edges: these are edges in Γ whoseadja
ent fa
es have been lifted to opposite sheets. Sin
e Γ is a dual triangulation, its orienta-tion-reversing edges form a disjoint union of pie
ewise smooth 
ir
les c⊂Σ. For ea
h of these
ir
les, we 
hoose again a preimage cor. It may not be possible to 
hoose cor to be 
losed, inwhi
h 
ase there exists a point pc ∈Σ whi
h has two preimages in cor. We 
hoose again one ofthese preimages, denoted pc
or. Then

Holω,η,φ := exp

(

2πi
(∑

f

∫

for

ω +
∑

c

∫

cor

η
))∏

c

φ(pc
or) (5.6)is independent of the 
hoi
e of the lifts for, cor and por, and is independent of the 
hoi
e of thetriangulation.More generally, let Man+ be the 
ategory of smooth manifolds with involution, whosemorphisms are equivariant smooth maps. (The involution is not required to a
t freely.) In a�rst step, we want to de�ne a presheaf

Jantriv∇ : Manopp
+

// Cat (5.7)15



of trivial Jandl gerbes. For (M, k) a smooth manifold with involution k : M // M , a trivialJandl gerbe involves as a �rst datum a trivial bundle gerbe Iω, but as explained in Se
tion 1 werepla
e the 1-morphism η from (5.3) by a line bundle L over M with 
onne
tion of 
urvature
curv(L) = −ω − k∗ω , (5.8)and we repla
e the 2-isomorphism φ from (5.4) by an isomorphism φ : k∗L // L of line bundleswith 
onne
tion, still subje
t to the 
ondition (5.5). Noti
e that the pair (L, φ) is nothing buta k-equivariant line bundle with 
onne
tion over M . After this step, we still have the holonomy(5.6), whi
h now looks like

HolIω ,L,φ = exp
(
2πi
∑

f

∫

for

ω
) ∏

c

HolL̄(c) , (5.9)where we have used the fa
t that, sin
e the a
tion of 〈k〉 on cor is free, the k-equivariant linebundle (L, φ) des
ends to a line bundle L̄ with 
onne
tion over the quotient c = cor/〈k〉. Thisformula is now manifestly independent of the 
hoi
es of cor and pc
or. Its independen
e underdi�erent 
hoi
es of fa
es for is due to (5.8).Now we 
lose the presheaf Jantriv∇(M) under des
ent to allow for non-trivial bundle gerbes.To do so, we need to introdu
e duals of bundle gerbes, 1-morphisms and 2-isomorphisms see[Wa1℄; for the sake of brevity we omit these de�nitions here.De�nition 4. Let M be a smooth manifold with involution k : M // M . A Jandl gerbe is abundle gerbe G over M together with a 1-isomorphism A : k∗G // G∗ to the dual gerbe and a2-isomorphism ϕ : k∗A +3 A∗ that satis�es k∗ϕ =ϕ∗−1.Jandl gerbes form a sheaf

Jan∇ : Manopp
+

// Cat . (5.10)The gluing axiom for this sheaf has been proved in [GSW2℄. We remark that the 1-isomorphism
A may be regarded as the 
ounterpart of a Jandl stru
ture σ on the Frobenius algebra A that
orresponds to the bundle gerbe G, if one a

epts that the dual gerbe plays the role of theopposed algebra.Suppose we are given a Jandl gerbe J over a smooth manifold M with involution k. If Σis a 
losed surfa
e, possibly unoriented and possibly unorientable, and

Φ : (Σ̂, σ) // (M, k) (5.11)is a morphism in Manopp
+ , we 
an pull ba
k the Jandl gerbe J from M to Σ̂. As in the 
ase ofordinary surfa
e holonomy, it then be
omes trivial as a gerbe for dimensional reasons, and we
an 
hoose an isomorphism

T : Φ∗J ∼ // (Iω, L, φ) . (5.12)Then we de�ne
HolJ (Φ) := HolIω ,L,φ . (5.13)This is independent of the 
hoi
e of T , be
ause any other 
hoi
e T ′ gives rise to an isomorphism

T ′ ◦ T −1 in Jantriv∇(Σ̂, σ) under whi
h the holonomy stays un
hanged.16



We have now seen that every Jandl gerbe J over a smooth manifold M with involution khas holonomies for unoriented 
losed surfa
es and equivariant smooth maps Φ: Σ̂ // M . Wethus infer that sigma models on M whose �elds are su
h maps, are de�ned by Jandl gerbes
J over M rather than by ordinary bundle gerbes G. This makes it an interesting problem to
lassify Jandl gerbes.Con
erning the existen
e of a Jandl gerbe J with underlying bundle gerbe G, the 1-iso-morphism A : k∗G // G∗ requires the 
urvature H of G to satisfy

k∗H = −H . (5.14)Apart from this ne
essary 
ondition, there is a sequen
e of obstru
tion 
lasses [GSW2℄. Redu
edto the 
ase that M is 2-
onne
ted, there is one obstru
tion 
lass o(G)∈H3(Z2, U(1)), the group
ohomology of Z2 with 
oe�
ients in U(1), on whi
h Z2 a
ts by inversion. If o(G) vanishes,then inequivalent Jandl gerbes with the same underlying bundle gerbe G are parameterized by
H2(Z2, U(1)).These results 
an be made very expli
it in the 
ase of WZW models, for whi
h the obje
tin Man+ is a 
onne
ted 
ompa
t simple Lie group G equipped with an involution k : G // Ga
ting as

k : g � // (zg)−1 (5.15)for a �xed `twist element' z ∈Z(G). It is easy to see that the 3-form Hk ∈Ω3(G), whi
h is the
urvature of the level-k bundle gerbes G over G, satis�es the ne
essary 
ondition (5.14). Allobstru
tion 
lasses o(G) and all parameterizing groups have been 
omputed in dependen
e ofthe twist element z and the level k [GSW1℄. The numbers of inequivalent Jandl gerbes rangefrom two (for simply 
onne
ted G, per level and involution) to sixteen (for PSO(4n), for everyeven level).Most prominently, there are two involutions on SU(2), namely g � // g−1 and g � // −g−1,and for ea
h of them two inequivalent Jandl gerbes per level. On SO(3) there is only a singleinvolution, but the results of [SSW, GSW1℄ exhibit four inequivalent Jandl gerbes per even level.This explains very ni
ely why SU(2) and SO(3) have the same number of orientifolds, despitea di�erent number of involutions. These results reprodu
e those of the algebrai
 approa
h (seee.g. [FRS2℄); for the pre
ise 
omparison, Jandl stru
tures related by the a
tion of the trivialline bundle with either of its two equivariant stru
tures have to be identi�ed.6 D-branes: Holonomy for surfa
es with boundaryWe now introdu
e the geometri
 stru
ture needed to de�ne surfa
e holonomies and Wess-Zumino terms for surfa
es with boundary. When one wants to de�ne holonomy along a 
urvethat is not 
losed, one way to make the parallel transport group-valued is to 
hoose trivi-alizations at the end points. To in
orporate these trivializations into the ba
kground, one
an 
hoose a submanifold Ḋ ⊂M together with a trivialization E|Ḋ
// 1A. Admissible paths

γ : [0, 1] // M are then required to start and end on this submanifold, γ(0), γ(1)∈Ḋ. Thesame strategy has proven to be su

essful for surfa
es with boundary.De�nition 5. Let G be a bundle gerbe with 
onne
tion over M . A G-D-brane is a submanifold
Ḋ ⊂M together with a 1-morphism

D : G|Ḋ
// Iω (6.1)17



to a trivial bundle gerbe Iω given by a two-form ω on Ḋ.The morphism D is 
alled a G-module, or twisted ve
tor bundle. Noti
e that if H is the
urvature of G, the 1-morphism D enfor
es the identity
H|Ḋ = dω . (6.2)This equality restri
ts the possible 
hoi
es of the world volume Ḋ of the G-D-brane.Suppose that Σ is an oriented surfa
e, possibly with boundary, and Φ: Σ // M is a smoothmap. We require that Φ(∂Σ)⊂ Ḋ. As des
ribed in Se
tion 3.3, we 
hoose a trivialization

T : Φ∗G // Iρ. Its restri
tion to ∂Σ and the G-module D de�ne a 1-morphism
Iρ

∣∣
∂Σ

T −1|∂Σ // Φ∗G
∣∣
∂Σ

= Φ∗(G
∣∣
Ḋ
)

Φ∗(D)
// Φ∗(Iω) . (6.3)A

ording to the de�nition (3.13), this 1-morphism is nothing but a hermitian ve
tor bundle

E with 
onne
tion over ∂Σ and its 
urvature is curv(E) =ω − ρ. Then we 
onsider
HolG,D(Φ) := exp

(
2πi

∫

Σ

ρ
)

tr(HolE(∂Σ)) , (6.4)where the tra
e makes the holonomy of E independent of the 
hoi
e of a parameterization of
∂Σ. This expression is independent of the 
hoi
e of the trivialization T : if T ′: G // Iρ′ isanother one and E ′ is the 
orresponding ve
tor bundle, we have the transition isomorphism Lfrom (3.27) with 
urvature ρ′ − ρ, and an isomorphism E ′ ⊗L ∼= E. It follows that

exp
(
2πi

∫

Σ

ρ
)

tr(HolE(∂Σ)) = exp

(
2πi
(∫

Σ

ρ′ − curv(L)
))

tr(HolE′⊗L(∂Σ)) , (6.5)and on the right hand side the unprimed quantities 
an
el by Stokes' theorem.Important results on D-branes 
on
ern in parti
ular two large 
lasses of models, namelyfree �eld theories and again WZW theories. The simplest example of a free �eld theory is theone of a 
ompa
ti�ed free boson, in whi
h M is a 
ir
le S1
R
∼= R mod 2πR Z of radius R. Asis well known, there are then in parti
ular two distin
t types of D-branes: D0-branes D(0)

x ,whose support is lo
alized at a position x∈S1
R, and D1-branes D(1)

α , whose world volume is allof S1
R and whi
h are 
hara
terized by a Wilson line α∈R mod 1

2πR
Z, 
orresponding to a �at
onne
tion on S1

R.For WZW theories, whi
h are governed by a bundle gerbe G over a 
onne
ted 
ompa
tsimple Lie group G, preserving the non-abelian 
urrent symmetries puts additional 
onstraintson the admissible D-branes: their support Ḋ must be a 
onjuga
y 
lass Ch of a group element
h∈G. This 
an e.g. be seen by studying the s
attering of bulk �elds in the presen
e of theD-brane. On su
h 
onjuga
y 
lasses one �nds a 
anoni
al 2-form ωh ∈Ω2(Ch). Additionally,the 1-morphism D : G|Ch

// Iωh
of a symmetri
 D-brane must satisfy a 
ertain equivarian
e
ondition [Ga2℄. Interestingly, only on those 
onjuga
y 
lasses Ch for whi
h

h = exp(2πi
α+ρ

k+g∨
) , (6.6)with α an integrable highest weight, admit su
h 1-morphisms. Here ρ denotes the Weyl ve
torand g∨ the dual Coxeter number of the Lie algebra g of G. Thus in parti
ular the possibleworld volumes of symmetri
 D-branes form only a dis
rete subset of 
onjuga
y 
lasses.18



We �nally remark that the 
on
epts of D-branes and Jandl gerbes 
an be merged [GSW2℄.The resulting stru
tures provide holonomies for unoriented surfa
es with boundary, and 
an beused to de�ne D-branes in WZW orientifold theories.7 Bi-branes: Holonomy for surfa
es with defe
t lines7.1 Gerbe bimodules and bi-branesIn the representation theoreti
 approa
h to rational 
onformal �eld theory, boundary 
onditionsand defe
t lines are des
ribed as modules and bimodules, respe
tively. The fa
t that theappropriate target spa
e stru
ture for des
ribing boundary 
onditions, D-branes, is related togerbe modules, raises the question of what the appropriate target spa
e stru
ture for defe
tlines should be. The following de�nition turns out to be appropriate.De�nition 6. Let G1 and G2 be bundle gerbes with 
onne
tion over M1 and M2, respe
tively.A G1-G2-bi-brane is a submanifold Ḃ ⊂M1×M2 together with a (p∗1G1)|Ḃ-(p∗2G2)|Ḃ-bimodule, i.e.with a 1-morphism
B : (p∗1G1)|Ḃ

// (p∗2G2)|Ḃ ⊗ I̟ (7.1)with I̟ a trivial bundle gerbe given by a two-form ̟ on Ḃ.Similarly as in (6.2) it follows that the two-form ̟ on Ḃ obeys
p∗1H|

Ḃ
= p∗2H|

Ḃ
+ d̟ . (7.2)We 
all Ḃ the world volume and ̟ the 
urvature of the bimodule. With the appropriate notionof duality for bundle gerbes (see Se
tion 1.4 of [Wa1℄), a G1-G2-bimodule is the same as a

(G1⊗G∗
2)-module. For a formulation in terms of lo
al data, see (B.8) of [FSW℄.As an illustration, 
onsider again the free boson and WZW theories, restri
ting attentionto the 
ase M1 =M2. For the free boson 
ompa
ti�ed on a 
ir
le S1

R of radius R, one �nds thatthe world volume of a bi-brane is a submanifold Ḃx ⊂S1
R×S1

R of the form
Ḃx,α := {(y, y−x) | y∈S1

R} (7.3)with x∈S1
R. The submanifold Ḃx,α has the topology of a 
ir
le and 
omes with a �at 
onne
-tion, i.e. with a Wilson line α. Thus the bi-branes of a 
ompa
ti�ed free boson are naturallyparameterized by a pair (x, α) taking values in two dual 
ir
les that des
ribe a point on S1

R anda Wilson line.In the WZW 
ase, for whi
h the target spa
e is a 
ompa
t 
onne
ted simple Lie group G, as
attering 
al
ulation [FSW℄ similar to the one performed for D-branes indi
ates that the worldvolume of a (maximally symmetri
) bi-brane is a bi
onjuga
y 
lass
Ḃh,h′ :=

{
(g, g′)∈G×G | ∃x1, x2 ∈G: g =x1hx−1

2 , g′ = x1h
′x−1

2

}
⊂ G×G (7.4)of a pair (h, h′) of group elements satisfying h (h′)−1 ∈Chα with hα as given in (6.6). Thebi
onjuga
y 
lasses 
arry two 
ommuting G-a
tions, 
orresponding to the presen
e of two in-dependent 
onserved 
urrents in the �eld theory. Further, a bi
onjuga
y 
lass 
an be des
ribedas the preimage

Ḃh,h′ = µ̃−1(Chh′−1) =
{
(g, g′)∈G×G | gg′−1 ∈Chh′−1

} (7.5)19



of the 
onjuga
y 
lass Chh′−1 under the map
µ̃ : G×G ∋ (g1, g2)

� // g1g
−1
2 ∈ G . (7.6)Finally, the relevant two-form on Ḃh,h′ is

̟h,h′ := µ̃∗ωhh′−1 − k
2
〈p∗1θ ∧ p∗2θ〉 . (7.7)Here k is the level, θ is the left-invariant Maurer-Cartan form, pi are the proje
tions to thefa
tors of G×G, and ωh is the 
anoni
al 2-form (see Se
tion 6) on the 
onjuga
y 
lass Ch. One
he
ks that ̟h,h′ is bi-invariant and satis�es (7.2).Examples of symmetri
 bi-branes 
an be 
onstru
ted from symmetri
 D-branes using amultipli
ative stru
ture on the bundle gerbe G [Wa2℄. Another important 
lass of examples arePoin
aré line bundles. These des
ribe T-dualities; an elementary relation between T-dualityand Poin
aré line bundles is provided [SaS℄ by the equation of motion [RS℄ in the presen
e ofdefe
ts.7.2 Holonomy and Wess-Zumino term for defe
tsThe notion of bi-brane allows one in parti
ular to de�ne holonomy also for surfa
es with defe
tlines.The simplest world sheet geometry involving a defe
t line 
onsists of a 
losed orientedworld sheet Σ together with an embedded oriented 
ir
le S ⊂Σ that separates the world sheetinto two 
omponents, Σ =Σ1 ∪S Σ2. Assume that the defe
t S separates regions that support
onformally invariant sigma models with target spa
es M1 and M2, respe
tively, and 
onsidermaps φi: Σi

// Mi for i∈{1, 2} su
h that the image of
φS : S // M1×M2

s � // (φ1(s), φ2(s))
(7.8)is 
ontained in the submanifold Ḃ of M1×M2. The orientation of Σi is the one inherited fromthe orientation of Σ, and without loss of generality we take ∂Σ1 = S and ∂Σ2 =−S.We wish to �nd the Wess-Zumino part of the sigma model a
tion, or rather the 
orrespondingholonomy HolG1,G2,B, that 
orresponds to having bundle gerbes G1 and G2 over M1 and M2 anda G1-G2-bi-brane B. The pullba
k of the bimodule (7.1) along the map φS: S // Ḃ gives a

(φ∗
1G1)|S-(φ∗

2G2)|S-bimodule
φ∗

SB : (φ∗
1G1)|S // (φ∗

2G2)|S ⊗ Iφ∗

S̟ . (7.9)The pullba
k bundle gerbes φ∗
iGi over Σi are trivializable for dimensional reasons, and a 
hoi
e

Ti: φ∗
iGi

// Iρ of trivializations for two-forms ρi on Σi produ
es a ve
tor bundle E over S. Wethen de�ne
HolG1,G2,B(Σ, S) := exp

(
2πi

∫

Σ1

ρ1

)
exp

(
2πi

∫

Σ2

ρ2

)
tr(HolE(S)) ∈ C (7.10)to be the holonomy in the presen
e of the bi-brane B. As shown in Appendix B.3 of [FSW℄,for similar reasons as in the 
ase of D-branes the number HolG1,G2,B(Σ, S) is independent of the
hoi
e of the trivializations T1 and T2. 20



7.3 Fusion of defe
tsIn the �eld theory 
ontext of se
tion 4 there are natural notions of the fusion of a defe
t (an A-bimodule) with a boundary 
ondition (a left A-module), yielding another boundary 
ondition,and of the fusion of two defe
ts, yielding another defe
t. Both of these are provided by thetensor produ
t over the relevant Frobenius algebra A. These representation theoreti
 notionsof fusion have a 
ounterpart on the geometri
 side as well.Consider �rst the fusion of a defe
t with a boundary 
ondition. We allow for the generalsituation of a defe
t des
ribed by an M1-M2-bi-brane with di�erent target spa
es M1 and M2.Thus take an M1-M2-bi-brane with world volume Ḃ ⊆M1×M2 and an M2-D-brane with worldvolume Ḋ ⊆M2. The a
tion of 
orresponden
es on sheaves suggests the following ansatz forthe world volume of the fusion produ
t:
(B ⋆ D)̇ := p1

(
Ḃ ∩ p−1

2 (Ḋ)
) (7.11)with pi the proje
tion M1×M2

// Mi. The 
orresponding ansatz for the fusion of an M1-M2-bi-brane B of world volume Ḃ with an M2-M3-bi-brane B′ of world volume Ḃ′ uses proje
tions
pij from M1×M2×M3 to Mi×Mj :

(B ⋆ B′)̇ := p13

(
p−1

12 (Ḃ)∩ p−1
23 (Ḃ′)

)
. (7.12)In general one obtains this way only subsets, rather than submanifolds, of M1 and M1×M3,respe
tively. On a heuristi
 level one would, however, expe
t that owing to quantization ofthe branes a �nite superposition of branes is sele
ted, whi
h should then reprodu
e the resultsobtained in the �eld theory setting.We illustrate this again with the two 
lasses of models already 
onsidered, i.e. free bosonsand WZW theories, again restri
ting attention to the 
ase M1 =M2. First, for the theory ofa 
ompa
ti�ed free boson, the D-brane is of one of the types D(0)
x or D(1)

α (see Se
tion 6) andthe bi-brane world volume is of the form Ḃx,α given in (7.3). For D-branes of type D(0)
x thepres
ription (7.11) thus yields

B(x,α) ⋆ D(0)
y = D(0)

x+y . (7.13)For the fusion of a bi-brane B(x,α) and a D1-brane D(1)
β , one must take the �at line bundle onthe bi-brane into a

ount. We �rst pull ba
k the line bundle on Ḋ(1)

β along p2 to a line bundleon S1
R×S1

R, then restri
t it to Ḃ(x,α), and �nally tensor this restri
tion with the line bundle on
Ḃ(x,α) des
ribed by the Wilson line α. This results in a line bundle with Wilson line α+β onthe bi-brane world volume, whi
h in turn 
an be pushed down along p1 to a line bundle on S1

R,so that
B(x,α) ⋆ D(1)

β = D(1)
α+β . (7.14)In short, the fusion with a defe
t B(x,α) a
ts on D0-branes as a translation by x in positionspa
e, and on D1-branes as a translation by α in the spa
e of Wilson lines. Similarly, thepres
ription (7.12) leads to

B(x,α) ⋆ B(x′,α′) = B(x+x′,α+α′) (7.15)for the fusion of two bi-branes B(x,α) and B(x′,α′), i.e. both the position and the Wilson linevariable of the bi-branes add up. 21



For WZW theories, besides the quantization of the positions of the branes another newphenomenon is that multipli
ities other than zero or one appear in the �eld theory approa
h.In that 
ontext they arise from the de
omposition Bα ⊗A Bβ =
⊕

γ N
γ

αβ Bγ of a tensor produ
tof simple A-bimodules into a �nite dire
t sum of simple A-bimodules, and analogously for the
ase of mixed fusion (in rational CFT, both the 
ategory of A-modules and the 
ategory of A-bimodules are semisimple). Moreover, for simply 
onne
ted groups, the multipli
ities appearingin both types of fusion are in fa
t the same as the 
hiral fusion multipli
ities whi
h are givenby the Verlinde formula.By analogy with the �eld theory situation we expe
t fusion rules
Bα ⋆Bβ =

∑

γ

N γ
αβ Bγ (7.16)of bi-branes, and analogously for mixed fusion of bi-branes and D-branes. In the parti
ular
ase of WZW theories on simply 
onne
ted Lie groups one 
an in addition invoke the duality

α � // α∨ whi
h in that 
ase exists on the sets of branes as well as defe
ts that preserve all
urrent symmetries, so as to work instead with fusion 
oe�
ients of type Nαβγ =Nαβ
γ∨ . Thenfor the 
ase of two D-branes Dα and Dγ with world volumes given by 
onjuga
y 
lasses Chα and

Chγ of G, as well as a bi-brane Bβ whose world volume is the bi
onjuga
y 
lass µ̃−1(Chβ
), one islead to 
onsider the subset

Παβγ := p−1
1 (Cα) ∩ µ̃−1(Cβ) ∩ p−1

2 (Cγ) = {(g, g′)∈G×G | g∈Cα, g′∈Cγ , gg′−1∈Cβ} (7.17)of G×G. Combining the adjoint a
tion on g and on g′ gives a natural G-a
tion on Παβγ . Andsin
e both D-branes and the bi-brane are equipped with two-forms ωα, ωγ and ̟β, Παβγ 
omeswith a natural two-form as well, namely with
ωαβγ := p∗1ωα|Παβγ

+ p∗2ωγ |Παβγ
+ ̟β|Παβγ

. (7.18)By 
omparison with the �eld theory approa
h, this result should be linked to the fusionrules of the 
hiral WZW theory and thereby provide a physi
ally motivated realization of theVerlinde algebra. To see how su
h a relation 
an exist, noti
e that fusion rules are dimensionsof spa
es of 
onformal blo
ks and as su
h 
an be obtained by geometri
 quantization fromsuitable moduli spa
es of �at 
onne
tions whi
h arise in the quantization of Chern-Simonstheories (see e.g. [ADW℄). The moduli spa
e relevant to us is the one for the three-pun
turedsphere S2
(3), for whi
h the monodromy of the �at 
onne
tion around the pun
tures takes valuesin 
onjuga
y 
lasses Cα, Cβ and Cγ, respe
tively. The relations in the fundamental group of

S2
(3) imply the 
ondition gαgβgγ =1 on the monodromies gα ∈Cα, gβ ∈Cβ and gγ ∈Cγ . Sin
emonodromies are de�ned only up to simultaneous 
onjugation, the moduli spa
e that mattersin 
lassi
al Chern-Simons theory is isomorphi
 to the quotient Παβγ/G.It turns out that the range of bi-branes appearing in the fusion produ
t is 
orre
tly boundedalready before geometri
 quantization. Indeed, the relevant produ
t of 
onjuga
y 
lasses is

Ch ∗ Ch′ := {gg′ | g∈Ch, g′∈Ch′} , (7.19)and for the 
ase of G =SU(2) it is easy to see that this yields the 
orre
t upper and lowerbounds for the SU(2) fusion rules [JW, FSW℄. A full understanding of fusion 
an, however,only be expe
ted after applying geometri
 quantization to the so obtained moduli spa
e: this22



spa
e must be endowed with a two-form, whi
h is interpreted as the 
urvature of a line bundle,and the holomorphi
 se
tions of this bundle are what results from geometri
 quantization. Inview of this need for quantization it is a highly non-trivial observation that the two-form (7.18)furnished by the two branes and the bi-brane is exa
tly the same as the one that arises from
lassi
al Chern-Simons theory.In terms of defe
t lines, the de
omposition (7.16) of the fusion produ
t of bi-branes 
orre-sponds to the presen
e of a defe
t jun
tion, whi
h 
onstitutes a parti
ular type of defe
t �eld.A sigma model des
ription for world sheets with su
h embedded defe
t jun
tions has beenproposed in [RS℄.We have demonstrated how stru
tural analogies between the geometry of bundle gerbesand the representation theoreti
 approa
h to rational 
onformal �eld theory lead to interestinggeometri
 stru
ture, in
luding a physi
ally motivated realization of the Verlinde algebra. Thepre
ise form of the latter and its relation with the realization of the Verlinde algebra in the
ontext of supersymmetri
 
onformal �eld theory [FHT℄ remain to be understood. But in any
ase the parallelism between 
lassi
al a
tions and full quantum theory exhibited above remainsintriguing and raises the hope that some of the stru
tural aspe
ts dis
ussed in this 
ontributionare generi
 features of quantum �eld theories.
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