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Abstract

Hermitian bundle gerbes with connection are geometric objects for which a notion of sur-
face holonomy can be defined for closed oriented surfaces. We systematically introduce
bundle gerbes by closing the pre-stack of trivial bundle gerbes under descent.

Inspired by structures arising in a representation theoretic approach to rational confor-
mal field theories, we introduce geometric structure that is appropriate to define surface
holonomy in more general situations: Jandl gerbes for unoriented surfaces, D-branes for
surfaces with boundaries, and bi-branes for surfaces with defect lines.
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1 Introduction

Two-dimensional quantum field theories have been a rich source of relations between different
mathematical disciplines. A prominent class of examples of such theories are the two-dimen-
sional rational conformal field theories, which admit a mathematically precise description (see
[SER] for a summary of recent progress). A large subclass of these also have a classical descrip-
tion in terms of an action, in which a term given by a surface holonomy enters.

The appropriate geometric object for the definition of surface holonomies for oriented sur-
faces with empty boundary are hermitian bundle gerbes. We systematically introduce bundle
gerbes by first defining a pre-stack of trivial bundle gerbes, in such a way that surface holonomy
can be defined, and then closing this pre-stack under descent. This construction constitutes in
fact a generalization of the geometry of line bundles, their holonomy and their applications to
classical particle mechanics.

Inspired by results in a representation theoretic approach to rational conformal field theories,
we then introduce in the same spirit geometric structure that allows to define surface holonomy
in more general situations: Jandl gerbes for unoriented surfaces, D-branes for surfaces with
boundaries, and bi-branes for surfaces with defect lines.

2 Hermitian line bundles and holonomy

Before discussing bundle gerbes, it is appropriate to summarize some pertinent aspects of line
bundles.

One of the basic features of a (complex) line bundle L over a smooth manifold M is that it
is locally trivializable. This means that M can be covered by open sets U, such that there exist
isomorphisms ¢, : L|y, — 1y, where 1p, denotes the trivial line bundle C x U,. A choice of
such maps ¢, defines gluing isomorphisms

Gop - 1Ua’UaﬂU5 — 1Ly, UaNUg with  ggy © gap = gay on UaNUsNU, . (2.1)

Isomorphisms between trivial line bundles are just smooth functions. Given a set of gluing
isomorphisms one can obtain as additional structure the total space as the manifold

L= |1, /~, (2:2)

with the relation ~ identifying an element ¢ of 1y, with gag(¢) of 1y,. In short, every bundle
is glued together from trivial bundles.

In the following all line bundles will be equipped with a hermitian metric, and all isomor-
phisms are supposed to be isometries. Such line bundles form categories, denoted Bun(M).
The trivial bundle 1,; defines a full, one-object subcategory Buntriv(M) whose endomorphism
set is the monoid of U(1)-valued functions on M. Denoting by my(C) the set of isomorphism
classes of a category C and by H*(M,U(1)) the sheaf cohomology of M with coefficients in the
sheaf of U(1)-valued functions, we have the bijection

mo(Bun(M)) = H'(M,U(1)) = H*(M,Z), (2.3)

under which the isomorphism class of the trivial bundle is mapped to zero.



Another basic feature of line bundles is that they pull back along smooth maps: for L a line
bundle over M and f: M’ — M a smooth map, the pullback f*L is a line bundle over M’, and
this pullback f* extends to a functor

[+ Bun(M) — Bun(M'). (2.4)

Furthermore, there is a unique isomorphism ¢*(f*L) — (f o g)*L for composable maps f and
g.

As our aim is to discuss holonomies, we should in fact consider a different category, namely
line bundles equipped with (metric) connections. These form again a category, denoted by
Bun(M), and this has again a full subcategory BuntrivV(M) of trivial line bundles with connec-
tion. But now this subcategory has more than one object: every 1-form w € Q! (M) can serve
as a connection on a trivial line bundle 1 over M; the so obtained objects are denoted by 1,,.
The set Hom(1,, 1,/) of connection-preserving isomorphisms 7: 1,, — 1, is the set of smooth
functions g: M — U(1) satisfying

W —w=—1idlogg. (2.5)
Just like in (22]), every line bundle L with connection can be glued together from line bundles
1., along connection-preserving gluing isomorphisms 7,4.

The curvature of a trivial line bundle 1,, is curv(1,):=dw € Q*(M), and is thus invariant
under connection-preserving isomorphisms. It follows that the curvature of any line bundle
with connection is a globally well-defined, closed 2-form. We recall that the cohomology class
of this 2-form in real cohomology coincides with the characteristic class in (2.3).

In order to introduce the holonomy of line bundles with connection, we say that the holon-
omy of a trivial line bundle 1,, over S* is

Holy, := exp (27Ti /Sl w) e U(1). (2.6)

If 1, and 1, are trivial line bundles over S*, and if there exists a morphism 1 in Hom(1,, 1.),
we have Holy,, = Hol; , because

/w'—/ w:/ —idlogn €Z. (2.7)
st st st

More generally, if L is any line bundle with connection over M, and ®: S' — M is a smooth
map, then the pullback bundle ®*L is trivial since H%(S',Z) =0, and hence one can choose an

isomorphism 7 : ®*L = 1,, for some w € Q'(S'). We then set
Hol,(®) := Holy,, . (2.8)

This is well-defined because any other trivialization 7": ®*L — 1. provides a transition isomor-
phism 1:=7"07 ! in Hom(1,,1,,). But as we have seen above, the holonomies of isomorphic
trivial line bundles coincide.

Let us also mention an elementary example of a physical application of line bundles
and their holonomies: the action functional S for a charged point particle. For (M, g) a
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(pseudo-)Riemannian manifold and ®: R D [t;,t5] — (M, g) the trajectory of a point particle
of mass m and electric charge e, one commonly writes the action S[®] as the sum of the kinetic

term
. m d<I> d(I)
Skm / dt’ dt (29)
and a term .
2
—e/ O A, (2.10)
t1

with A the electromagnetic gauge potential. However, this formulation is inappropriate when
the electromagnetic field strength F' is not exact, so that a gauge potential A with dA=F
exists only locally. As explained above, keeping track of such local 1-forms A, and local ‘gauge
transformations’, i.e. connection-preserving isomorphisms between those, leads to the notion of
a line bundle L with connection. For a closed trajectory, i.e. ®(t;) = ®(t5), the action should
be defined as

MOl = Sanl®l ol (D). (2.11)

An important feature of bundles in physical applications is the ‘Dirac quantization’ condition
on the field strength F': the integral of F' over any closed surface > in M gives an integer. This
follows from the coincidence of the cohomology class of F' with the characteristic class in (23]).
Another aspect is a neat explanation of the Aharonov-Bohm effect. A line bundle over a non-
simply connected manifold can have vanishing curvature and yet non-trivial holonomies. In the
quantum theory holonomies are observable, and thus the gauge potential A contains physically
relevant information even if its field strength is zero. Both aspects, the quantization condition
and the Aharonov-Bohm effect, persist in the generalization of line bundles to bundle gerbes,
which we discuss next.

3 Gerbes and surface holonomy

In this section we formalize the procedure of Section 2 that has lead us from local 1-form
gauge potentials to line bundles with connection: we will explain that it is the closure of the
category of trivial bundles with connection under descent. We then apply the same principle to
locally defined 2-forms, whereby we arrive straightforwardly at the notion of bundle gerbes with
connection. We describe the notion of surface holonomy of such gerbes and their applications
to physics analogously to Section

3.1 Descent of bundles

As a framework for structures with a category assigned to every manifold and consistent pull-
back functors we consider presheaves of categories. Let Man be the category of smooth mani-
folds and smooth maps, and let Cat be the 2-category of categories, with functors between cat-
egories as 1-morphisms and natural transformations between functors as 2-morphisms. Then a
presheaf of categories is a lax functor

F: Man’*® — Cat (3.1)



It assigns to every manifold M a category F (M), and to every smooth map f: M’ — M a
functor F(f): F(M) — F(M'). By the qualification ‘lax’ we mean that the composition of
maps must only be preserved up to coherent isomorphisms.

In Section 2] we have already encountered four examples of presheaves: the presheaf Bun
of line bundles, the presheaf Bun" of line bundles with connection, and their sub-presheaves of
trivial bundles.

To formulate a gluing condition for presheaves of categories we need to specify coverings.
Here we choose surjective submersions m: Y — M. We remark that every cover of M by open
sets U, provides a surjective submersion with Y the disjoint union of the U,; thus surjective
submersions generalize open coverings. This generalization proves to be important for many
examples of bundle gerbes, such as the lifting of bundle gerbes and the canonical bundle gerbes
of compact simple Lie groups.

With hindsight, a choice of coverings endows the category Man with a Grothendieck topol-
ogy. Both surjective submersions and open covers define a Grothendieck topology, and since
every surjective submersion allows for local sections, the resulting two Grothendieck topologies
are equivalent. And in fact the submersion topology is the maximal one equivalent to open
coverings.

Along with a covering 7: Y — M there comes a simplicial manifold

o 8o )
= VB ==y —= YV —> M. (3.2)
- w o

Here Y denotes the n-fold fibre product of Y over M,

Y= {0,y at) €Y7 [ 7(yo) = =7 (g1)} (3.3)

and the map 0;: Y[ — Y1 omits the ith entry. In particular dy: Y@ —Y is the
projection to the second factor and 0;: Y — Y the one to the first. All fibre products Y
are smooth manifolds, and all maps 0; are smooth. Now let L be a line bundle over M. By
pullback along m we obtain:

(BO1) An object L := *L in Bun(Y).
(BO2) A morphism i i
¢: OgL=oyn"L == Oim"L = 0;L (3.4)
in Bun(Y?)) induced from the identity 7o dy =7 0 0.
(BO3) A commutative diagram

. s - ) . y
orocl = oror L % gror = os00 L % oorf = 0r0r )
3.5

a1
of morphisms in Bun(Y); or in short, an equality 03¢ o 9;¢ = 0} ¢.

We call a pair (L, ¢) as in (BO1) and (BO2) which satisfies (BO3) a descent object in the
presheaf Bun. Analogously we obtain for a morphism f: L — L’ of line bundles over M
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(BM1) A morphism fi=n"f: L — L' in Bun(Y).

(BM2) A commutative diagram ) )
¢odyf=01fo¢ (3.6)
of morphisms in Bun(Y'1?).

Such a morphism f as in (BM1) obeying (BM2) is called a descent morphism in the presheaf
BUD.

Descent objects and descent morphisms for a given covering n form a category
Desc(m: Y —M) of descent data. What we described above is a functor

Ly Bun(M) — Desc(m: Y —M) . (3.7)

The question arises whether every ‘local’ descent object corresponds to a ‘global’ object on M,
i.e. whether the functor ¢, is an equivalence of categories.

The construction generalizes straightforwardly to any presheaf of categories F, and if the
functor ¢, is an equivalence for all coverings 7: Y — M, the presheaf F is called a sheaf of
categories (or stack). Extending the gluing process from (2.2]) to non-trivial bundles shows that
the presheaves Bun and Bun' are sheaves. In contrast, the presheaves Buntriv and Buntriv¥ of
trivial bundles are not sheaves, since gluing of trivial bundles does in general not result in a
trivial bundle. In fact the gluing process ([2.2)) shows that every bundle can be obtained by
gluing trivial ones. In short, the sheaf Bun' of line bundles with connection is obtained by
closing the presheaf Buntriv’ under descent.

3.2 Bundle gerbes

Our construction of line bundles started from trivial line bundles with connection which are
just 1-forms on M, and the fact that 1-forms can be integrated along curves has lead us to the
notion of holonomy. To arrive at a notion of surface holonomy, we now consider a category of
2-forms, or rather a 2-category:

m An object is a 2-form w € Q%(M), called a trivial bundle gerbe with connection and denoted
by Z,.

m A l-morphism 7: w — w' is a 1-form n € Q*(M) such that dn = &' — w.

m A 2-morphism ¢: n = 7’ is a smooth function ¢ : M — U(1) such that —idlog(¢) =1n' —n.

There is also a natural pullback operation along maps, induced by pullback on differential
forms. The given data can be rewritten as a presheaf of 2-categories, as there is a 2-category
attached to each manifold. This presheaf should now be closed under descent to obtain a sheaf
of 2-categories. As a first step we complete the morphism categories under descent. Since these
are categories of trivial line bundles with connections, we set

Hom(Z,,, Z./) := Bun'y_, (M), (3.8)

the category of hermitian line bundles with connection of fixed curvature w’—w. The horizontal
composition is given by the tensor product in the category of bundles. Finally, completing the
2-category under descent, we get the definition of a bundle gerbe:
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Definition 1. A bundle gerbe G (with connection) over M consists of the following data: a
covering m: Y — M, and for the associated simplicial manifold

— Io]
v = yB —= vyl ?;0 Y "> M (3.9)
— v —= 1

(GO1) an object T, of GrbtrivV(Y): a 2-form w € Q*(Y);

(GO2) a l-morphism
L: &I, — 0L, (3.10)

in GrbtrivW(Y?): a line bundle L with connection over Y?;

(GO3) a 2-isomorphism
u: BL@OL — 0L (3.11)
in GrbtrivV(Y): a connection-preserving morphism of line bundles over Yl;
(GO4) an equality
o (id@agu) = Ofp o (Bn®id) (3.12)
of 2-morphisms in GrbtrivV(Y4).

For later applications it will be necessary to close the morphism categories under a second
operation, namely direct sums. Closing the category of line bundles with connection under
direct sums leads to the category of complex vector bundles with connection, i.e. we set

Hom(Z,, Z.,) := VectBun'_ (M), (3.13)

where the curvature of these vector bundles is constrained to satisfy

%tr(curv(L)) = —w, (3.14)

with n the rank of the vector bundle. Notice that this does not affect the definition of a bundle
gerbe, since the existence of the 2-isomorphism g restricts the rank of L to be one.

As a next step, we need to introduce 1-morphisms and 2-morphisms between bundle gerbes.
1-morphisms have to compare two bundle gerbes G and G’. We assume first that both bundle
gerbes have the same covering ¥ — M.

Definition 2. i) A 1-morphism between bundle gerbes G = (Y,w, L, u) and G' = (Y,w', L', i/)
over M with the same surjective submersion Y — M consists of the following data on the
associated simplicial manifold

- s o)
v == yB —=% yI 6:;0 Y " M. (3.15)

(GIM1) a l-morphism A: Z,, — Z,, in GrbtrivV(Y): a rank-n hermitian vector bundle A with
connection of curvature & tr(curv(L)) =w' — w;
(GIM2) a 2-isomorphism a: L' ® JfA = 9f A® L in GrbtrivV(Y?): a connection-preserving

morphism of hermitian vector bundles;
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(GIM3) a commutative diagram
(id® ') o (Oya®id) o (Id® Jyar) = df o (u®id) (3.16)
of 2-morphisms in GrbtrivV(YFl).

ii) A 2-morphism between two such 1-morphisms (A, a) and (A, ') consists of

(G2M1) a 2-morphism 8: A => A’ in GrbtrivV(Y): a connection-preserving morphism of vector
bundles;

(G2M2) a commutative diagram
o (id®d;f) = (0jf®id) o a (3.17)
of 2-morphisms in Grbtrivv(Y2]).

Since 1-morphisms are composed by taking tensor products of vector bundles, a 1-morphism
is invertible if and only if its vector bundle is of rank one.

In order to define 1-morphisms and 2-morphisms between bundle gerbes with possibly differ-
ent coverings w: Y —= M and 7": Y’ — M, we pull all the data back to a common refinement of
these coverings and compare them there. We call a covering (: Z — M a common refinement
of m and 7’ iff there exist maps s: Z —Y and s': Z — Y” such that

y<*—z-—"sy (3.18)

A

M

commutes. An example of such a common refinement is the fibre product Z:=Y x,; Y’ — M,
with the maps Z — Y and Z — Y’ given by the projections. The important point about a
common refinement Z — M is that the maps s and s’ induce simplicial maps

Yo7 ——>Y". (3.19)

For bundle gerbes G = (Y,w, L, ) and G' = (Y',w', L', ii/) we obtain new bundle gerbes with
surjective submersion Z by pulling back all the data along the simplicial maps s and s’. Ex-
plicitly, Gz := (Z, sjw, siL, ssp) and G/, = (Z, sgw’, s7°L’, s5 ). Also morphisms can be refined
by pulling them back.

Definition 3. i) A 1-morphism between bundle gerbes G = (Y,w, L, u) and G' = (Y, ', L', 1t/)
consists of a common refinement Z — M of the coverings Y — M and Y'— M and a mor-
phism (A, «) of the two refined gerbes G; and G,.

ii) A 2-morphism between 1-morphisms m=(Z, A, o) and m’ = (Z', A’, /) consists of a common
refinement W — M of the coverings Z — M and Z' — M (respecting the projections to Y
and Y, respectively) and a 2-morphism 3 of the refined morphisms my, and mj;,. In addition
two such 2-morphisms (W, 5) and (W', 3') must be identified iff there exists a further common
refinement V— M of W— M and W' — M, compatible with the other projections, such
that the refined 2-morphisms agree on V.



For a gerbe G = (Y,w, L, u) and a refinement Z — M of Y the refined gerbe G is isomorphic
to G. This implies that every gerbe is isomorphic to a gerbe defined over an open covering
Z := | |;c; Ui. Furthermore we can choose the covering in such a way that the line bundle over
double intersections is trivial as well. When doing so we obtain the familiar description of
gerbes in terms of local data, reproducing formulas by [Al, [Gal]. Extending this description
to morphisms it is straightforward to show that gerbes are classified by the so-called Deligne
cohomology H*(M,D(2)) in degree two:

mo(GrbY(M)) = H?*(M,D(2)). (3.20)
Analogously we get the classification of gerbes without connection as

mo(Grb(M)) = H*(M,U(1)) = H*(M,Z). (3.21)

3.3 Surface holonomy

The holonomy of a trivial bundle gerbe Z,, over a closed oriented surface Y is by definition

Holz, := exp<27ri/ w) e U(1). (3.22)

If Z, and Z,, are two trivial bundle gerbes over X such that there exists a 1-isomorphism
1, —= L., i.e. a vector bundle L of rank one, we have an equality Holz, =Holz , because

[o=[w=[emm) ez. (3.23)

More generally, consider a bundle gerbe G with connection over a smooth manifold M, and

a smooth map
o: Y —-=M (3.24)

defined on a closed oriented surface . Since H3(3,Z) = 0, the pullback ®*G is isomorphic to
a trivial bundle gerbe. Hence one can choose a trivialization, i.e. a 1-isomorphism

T: dG=1, (3.25)
and define the holonomy of G around ® by
HOlg((I)) = HOILJ . (326)

In the same way as for the holonomy of a line bundle with connection, this definition is indepen-
dent of the choice of the 1-isomorphism 7. Namely, if 7": ®*G = 7., is another trivialization,
we have a transition isomorphism

L=ToT" ' I,°51T,, (3.27)

which shows the independence.



3.4 Wess-Zumino terms

As we have seen in Section 2] the holonomy of a line bundle with connection supplies a term
in the action functional of a classical charged particle, describing the coupling to a gauge field
whose field strength is the curvature of the line bundle. Analogously, the surface holonomy of a
bundle gerbe with connection defines a term in the action of a classical charged string. Such a
string is described in terms of a smooth map ®: > — M. The exponentiated action functional

of the string is (compare (2.11))
9P — lSkinl®l Holy (D) (3.28)

where Sy, [®] is a kinetic term which involves a conformal structure on . Physical models
whose fields are maps defined on surfaces are called (non-linear) sigma models, and the holonomy
term is called a Wess-Zumino term. Such terms are needed in certain models in order to obtain
quantum field theories that are conformally invariant.

A particular class of sigma models with Wess-Zumino term is given by WZW (Wess-Zumino-
Witten) models. For these the target space M is a connected compact simple Lie group G, and
the curvature of the bundle gerbe G is an integral multiple of the canonical 3-form

H= (0NN € DB(G)

(6 is the left-invariant Maurer-Cartan form on G, and (-, -) the Killing form of the Lie algebra
g of G). WZW models have been a distinguished arena for the interplay between Lie theory
and the theory of bundle gerbes [Gall [GR]. This has lead to new insights both in the physical
applications and in the underlying mathematical structures. Some of these will be discussed in
the following sections.

Defining Wess-Zumino terms as the holonomy of a bundle gerbe with connection allows one
in particular to explain the following two facts.

m The Aharonov-Bohm effect: This occurs when the bundle gerbe has a flat connection, i.e. its

curvature H € Q3(M) vanishes. This does not mean, though, that the bundle gerbe is trivial,
since its class in H3(M,Z) may be pure torsion. In particular, it can still have non-constant
holonomy, and thus a non-trivial Wess-Zumino term.
An example for the Aharonov-Bohm effect is the sigma model on the 2-torus 7' = S! x S!. By
dimensional reasons, the 3-form H vanishes. Nonetheless, since H?(T,U(1))=U(1), there
exists a whole family of Wess-Zumino terms parameterized by an angle, of which only the
one with angle zero is trivial.

m Discrete torsion: The set of isomorphism classes of bundle gerbes with connection that have
the same curvature H is parameterized by H?(M,U(1)) via the map

H*(M,U(1)) — Tors(H*(M, 7)) . (3.29)

If this group is non-trivial, there exist different Wess-Zumino terms for one and the same
field strength H; their difference is called ‘discrete torsion’.

An example for discrete torsion is the level-k WZW model on the Lie group PSO(4n).
Since H?(PSO(4n), U(1)) = Zs, there exist two non-isomorphic bundle gerbes with connection
having equal curvature.



4 The representation theoretic formulation of RCFT

4.1 Sigma models

Closely related to surface holonomies are novel geometric structures that have been introduced
for unoriented surfaces, for surfaces with boundary, and for surfaces with defect lines. These
structures constitute the second theme of this contribution, extending the construction of gerbes
and surface holonomy via descent; they will be discussed in Sections [l [6] and [7.

These geometric developments were in fact strongly inspired by algebraic and representation
theoretic results in two-dimensional quantum field theories. To appreciate this connection we
briefly review in this section the relation between spaces of maps ®: > — M, as they appear
in the treatment of holonomies, and quantum field theories.

As already indicated in Section B.4] a classical field theory, the (non-linear) sigma model, on
a two-dimensional surface 3, called the world sheet, can be associated to the space of smooth
maps ® from ¥ to some smooth manifold M, called the target space. Appropriate structure on
the target space determines a Lagrangian for the field theory on X. Geometric structure on M,
e.g. a (pseudo-) Riemannian metric G, becomes, from this point of view, for any given map ®
a background function G(®(x)) for the field theory on X.

Three main issues will then lead us to a richer structure related to surface holonomies:

m In string theory (where the world sheet 3 arises as the surface swept out by a string moving
in M) and in other applications as well, one also encounters sigma models on world sheets %
that have non-empty boundary. We will explain how the geometric data relevant for encoding
boundary conditions — so called D-branes — can be derived from geometric principles.

m String theories of type I, which form an integral part of string dualities, involve unoriented
world sheets. In string theory it is therefore a fundamental problem to exhibit geometric
structure on the target space that provides a notion of holonomy for unoriented surfaces.

m An equally natural structure present in quantum field theory are topological defect lines, along
which correlation functions of bulk fields can have a branch-cut. In specific models these
can be understood, just like boundary conditions, as continuum versions of corresponding
structures in lattice models of statistical mechanics. (For instance, in the lattice version of
the Ising model a topological defect is produced by changing the coupling along all bonds
that cross a specified line from ferromagnetic to antiferromagnetic.)

Sigma models have indeed been a significant source of examples for quantum field theories, at
least on a heuristic level. Conversely, having a sigma model interpretation for a given quantum
field theory allows for a geometric interpretation of quantum field theoretic quantities. Sigma
models have indeed been, at least on a heuristic level, a significant source of examples for
quantum field theories. Conversely, quantum field theoretic structures in sigma models have
lead to structural insights and quantitative predictions in geometry.

A distinguished subclass of theories in which this relationship between quantum field theory
and geometry can be studied are two-dimensional conformal field theories, or CF'Ts, for short,
and among these in particular the rational conformal field theories for which there exists a
rigorous representation theoretic approach. The structures appearing in that approach in the
three situations mentioned above suggest new geometric notions for conformal sigma models.
Below we will investigate these notions with the help of standard geometric principles. Before
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doing so we formulate, in representation theoretic terms, the relevant aspects of the quantum
field theories in question.

4.2 Rational conformal field theory

The conformal symmetry, together with further, so-called chiral, symmetries of a CF'T can be
encoded in the structure of a conformal vertex algebra V. For any conformal vertex algebra one
can construct (see e.g. [ErB|) a chiral CFT; in mathematical terms, a chiral CFT is a system
of conformal blocks, i.e. sheaves over the moduli spaces of curves with marked points. These
sheaves of conformal blocks are endowed with a projectively flat connection, the Knizhnik-Za-
molodchikov connection, which in turn furnishes representations of the fundamental groups of
the moduli spaces, i.e. of the mapping class groups.

Despite the physical origin of its name, a chiral conformal field theory is mathematically
rigorous. On the other hand, from the two-dimensional point of view it is, despite its name,
not a conventional quantum field theory, as one deals with (sections of) bundles instead of local
correlation functions. In particular, it must not be confused with a full local conformal field
theory, which is the relevant structure to enter our discussion of holonomies.

Chiral conformal field theories are particularly tractable when the vertex algebra 'V is ratio-
nal in the sense of [Hul, thm 2.1]. Then the representation category C of V is a modular tensor
category, and the associated chiral CF'T is a rational chiral CFT, or chiral RCFT. In this sit-
uation, we can use the tools of three-dimensional topological quantum field theory (TFT). A
TFT is, in short, a monoidal functor tfte [Tu, chap.IV.7| that associates a finite-dimensional
vector space tfte(E) to any (extended) surface E, and a linear map from tftc(E) to tfte(E)
to any (extended) cobordism M: E — E'.

More precisely, a three-dimensional TF'T is a projective monoidal functor from a category
Cobe of decorated cobordisms to the category of finite-dimensional complex vector spaces. The
modular tensor category C provides the decoration data for Cobe. Specifically, the objects E
of Cobe are extended surfaces, ie.[l compact closed oriented two-manifolds with a finite set of
embedded arcs, and each of these arcs is marked by an object of C. A morphism E — E’ is an
extended cobordism, i.e. a compact oriented three-manifold M with OM = (—E) LU E/', together
with an oriented ribbon graph Iy in M such that at each marked arc of (—E) UE’ a ribbon of
[ is ending. Each ribbon of I}y is labeled by an object of C, while each coupon of I} is labeled
by an element of the morphism space of C that corresponds to the objects of the ribbons which
enter and leave the coupon. Composition in Cobe is defined by gluing, the identity morphism
idg is the cylinder over E, and the tensor product is given by disjoint union of objects and
cobordisms.

A topological field theory furnishes, for any extended surface, a representation of the map-
ping class group. Our approach relies on the fundamental conjecture (which is largely estab-
lished for a broad class of models) that, for C the representation category of a rational vertex
algebra V, the mapping class group representation given by tft¢ is equivalent to the one pro-
vided by the Knizhnik-Zamolodchikov connection on the conformal blocks for the vertex algebra

V.

! Here various details are suppressed. Detailed information, e.g. the precise definition of a ribbon graph
or the reason why tfte is only projective, can be found in many places, such as [Tul BK| [KRT]| or [FEEFS]
sect. 2.5-2.7].
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4.3 The TFT construction of full RCFT

Let us now turn to the discussion of full local conformal field theories, which are the structures to
be compared to holonomies. A full CFT is, by definition, a consistent system of local correlation
functions that satisfy all sewing constraints (see e.g. [FjJFRS2, def.3.14]). According to the
principle of holomorphic factorization, every full RCF'T can be understood with the help of a
corresponding chiral CFT. The relevant chiral CF'T is, however, not defined on world sheets X
(which may be unoriented or have a non-empty boundary), but rather on their complex doubles
i, which can be given the structure of extended surfaces; this affords a geometric separation of
left- and right-movers. The double Y of ¥ is, by definition, the orientation bundle over > modu-
lo identification of the two points in the fibre over each boundary point of 3. The world sheet ¥
can be obtained from ¥ as the quotient by an orientation-reversing involution 7. To give some
examples, when X is closed and orientable, then Y is just the disconnected sum X=X 11— of
two copies of 2 with opposite orientation, and the involution 7 just exchanges these two copies;
the double of both the disk and the real projective plane is the two-sphere (with 7 being given,
in standard complex coordinates, by z — z~! and by z —=—2z"', respectively); and the double
of both the annulus and the Mobius strip is a two-torus. Further, when > comes with field
insertions, that is, embedded arcs labeled by objects of either C (for arcs on 0X) or pairs of
objects of C (for arcs in the interior of X), then corresponding arcs labeled by objects of C are
present on 5.

Given this connection between the surfaces relevant to chiral and full CFT, the relationship
between the chiral and the full CFT can be stated as follows: A correlation function C(X)
of the full CFT on X is a specific element in the appropriate space of conformal blocks of
the chiral CFT on the double ¥. A construction of such elements has been accomplished in
[FRS1), [FRS2, [FRS3|, [FjFRS1]. The first observation is that they can be computed with the
help of the corresponding TF'T, namely as

C(D) = tfte(My) 1 € tfte(D). (4.1)

Ms:  ~
Here My = () —> 3], the connecting manifold for the world sheet X, is an extended cobordism
that is constructed from the data of 3. Besides the category C, the specification of the vector
C(X) needs a second ingredient: a (Morita class of a) symmetric special Frobenius algebra A
in C.

Let us give some details? of the construction of c(%).

m As a three-manifold, My, is the interval bundle over ¥ modulo a Zs-identification of the
intervals over 0%. Explicitly,

My = (Sx[-1,1))/~  with  ([,0ra],t) ~ ([z, —ora], —1). (4.2)

It follows in particular that 8Mg:§ and that > is naturally embedded in My as

103 — Ux{t=0} — My. Indeed, +(X) is a deformation retract of My, so that the topology
of My, is completely determined by the one of X.

2 For another brief summary, with different emphasis, see Section 7 of [FRS4]. An in-depth exposition,
including for instance the relevance of various orientations, can e.g. be found in Appendix B of [FjFRSI].
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m A crucial ingredient of the construction of the ribbon graph D). in My is a (dual) oriented
triangulation I" of the submanifold +(X) of My. This triangulation is labeled by objects and
morphisms of C. It is here that the Frobenius algebra A enters: Each edge of I'\ +(0%) is
covered with a ribbon labeled by the object A of C, while each (three-valent) vertex is covered
with a coupon labeled by the multiplication morphism m € Hom¢(A® A, A). In addition,
whenever these assignments in themselves would be in conflict with the orientations of the
edges, a coupon with morphism in either Home(A® A,1) or Home(1, A® A) is inserted.
Such morphisms are part of the data for a Frobenius structure on A. Assuming, for now,
that the world sheet ¥ is oriented, independence of C'(X) from the choice of triangulation I
amounts precisely to the statement that the object A carries the structure of a symmetric
special Frobenius algebra.

m [f > has non-empty boundary, the prescription for I' is amended as follows. Each edge e
of I'N#(0%) is covered with a ribbon labeled by a (left, say) A-module N = N(e), while
each vertex lying on 1(0X) is covered with a coupon that has incoming N- and A-ribbons
as well as an outgoing N-ribbon and that is labeled by the representation morphism
pn € Home(A® N, N). The physical interpretation of the A-module N is as the bound-
ary condition that is associated to a component of 93. That the object N of C labeling a
boundary condition carries the structure of an A-module and that the morphism py is the
corresponding representation morphism is precisely what is required (in addition to A being
a symmetric special Frobenius algebra) in order to get independence of C'(X) from the choice
of triangulation I'.

m If ¥ is unoriented, then as an additional feature one must ensure independence of C'(X)
from the choice of local orientations of ¥. As shown in [FRS2|, this requires an additional
structure on the algebra A, namely the existence of a morphism o € Hom¢ (A, A) that is an
algebra isomorphism from the opposite algebra A°PP to A and squares to the twist of A, i.e.
satisfies

oon=mn, com=mocy0(0®0), go0 =04, (4.3)

where n € Home (1, A), 64 € Home(A, A) and ¢4 4 € Home(A® A, A ® A) denote the unit mor-
phism, the twist, and the self-braiding of A, respectively. This way A becomes a braided
version of an algebra with involution. A symmetric special Frobenius algebra endowed with
a morphism o satistying ([A3)) is called a Jandl algebra.

m [n the presence of topological defect lines on ¥ a further amendment of the prescription is in
order. The defect lines partition Y into disjoint regions, and to the regions to the left and to
the right of a defect line one may associate different (symmetric special Frobenius) algebras
Aj and A,, such that the part of the triangulation I" in one region is labeled by the algebra A;,
while the part of I" in the other region is labeled by A,. The defect lines are to be regarded
as forming a subset I'P of I themselves; each edge of '’ is covered with a ribbon labeled by
some object B of C, while each vertex of I" lying on I'? is covered with a coupon labeled by
a morphism p € Home(A; ® B, B), respectively o € Home(B ® A,., B). Consistency requires
that these morphisms endow the object B of C that labels a defect line with the structure
of an A;-A,-bimodule. (Below we will concentrate on the case A; = A, =: A, so that we deal
with A-bimodules.)
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m There are also rules for the morphisms of C that label bulk, boundary and defect fields,
respectively.

The prescription summarized above allows one to construct the correlator (4.1) for any
arbitrary world sheet ¥. The so obtained correlators can be proven [FjFRSI]| to satisfy all
consistency conditions that the correlators of a CF'T must obey. Thus, specifying the algebra
A is sufficient to obtain a consistent system of correlators. The assignment of a (suitably
normalized) correlator C'(X) to ¥ actually depends only on the Morita class of the symmetric
special Frobenius algebra A. Conversely, any consistent set of correlators can be obtained this
way |[FjERS2].

Topological defects admit a number of interesting operations. In particular, they can be
fused — on the algebraic side this corresponds to the tensor product B ® 4 B’ of bimodules. The
bimodule morphisms Hom 4 4(B ® 4 B’, B”) appear as labels of vertices of defect lines. Defect
lines can also be fused to boundaries; depending on the relative situation of the defect line and
the boundary, this is given on the algebraic side by the tensor product B®4 N of a bimodule
with a left module, or by the tensor product N ® 4 B with a right module, respectively.

In the following table we collect some pertinent aspects of the construction and exhibit the
geometric structures on the sigma model target space M that correspond to them.

geometric situation | algebraic structure in the category C geometric structure on M
Y. closed oriented symm. special Frobenius algebra A | bundle gerbe G with connection
Y unoriented Jandl structure o: A°P? — A Jandl gerbe
boundary condition A-module G-D-brane
topological defect line | A-bimodule G-bi-brane

Jandl gerbes, D-branes and bi-branes will be presented in Sections [5l [ and [7, respectively.

5 Jandl gerbes: Holonomy for unoriented surfaces

We have defined trivial bundle gerbes with connection as 2-forms because 2-forms can be inte-
grated over oriented surfaces. Closing the 2-category of trivial bundle gerbes under descent has
lead us to bundle gerbes. Jandl gerbes are bundle gerbes with additional structure, whose holon-
omy is defined for closed surfaces without orientation, even for unorientable surfaces [SSW].
In particular, Jandl gerbes provide Wess-Zumino terms for unoriented surfaces. Comparing
the geometric data with the representation theoretic ones from Section [ bundle gerbes with
connection correspond to Frobenius algebras, while Jandl gerbes correspond to Jandl algebras.

The appropriate quantity that has to replace 2-forms in order to make integrals over an
unoriented surface well-defined is a 2-density. Every surface > has an oriented double covering
pr: 3 —= % that comes with an orientation-reversing involution o: 3 — 3 which exchanges
the two sheets and preserves the fibres. A 2-density on ¥ is a 2-form w € Q%(2) such that

ow=—-w. (5.1)

Every ordinary 2-form p on X defines a particular 2-density by w, := pr*p.
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A 2-density on X can indeed be integrated without requiring X to be oriented. One chooses
a dual triangulation I' of 3J and, for each face f of [, one of its two preimages under pr: X — >,

denoted f,.. Then one sets
W= w. (5.2)
J#=3],

Owing to the equality (5.I]) the so defined integral does not depend on the choice of the preim-
ages for nor on the choice of triangulation I'. If ¥ can be endowed with an orientation, the
preimages fo, can be chosen in such a way that pr|s : fo — f is orientation-preserving. Then
the integral of a 2-density w, coincides with the ordinary integral of the 2-form p.

Next we want to set up a 2-category whose objects are related to 2-densities. To this end
we use the 2-category of trivial bundle gerbes introduced in Section Thus, one datum
specifying an object is a 2-form w 6(22(2). In the context of 2-categories, demanding strict
equality as in (5.0)) is unnatural. Instead, we replace equality by a 1-morphism

n: ow——w, (5.3)

ie. a 1-form ne Q' (X) such that o*w=—w + d. As we shall see in a moment, we must
impose equivariance of the 1-morphism up to some 2-morphism, i.e. we need in addition a
2-isomorphism

¢: o'n=n, (5.4)
in other words a smooth function ¢: M — U(1) such that n=oc*n—idlog¢. This 2-isomor-
phism, in turn, must satisfy the equivariance relation

otp = L. (5.5)

Thus the objects of the 2-category are triples (w,n, ¢). Let us verify that they still lead
to a well-defined notion of holonomy. We choose again a dual triangulation I" of ¥ as well
as a preimage f,, for each of its faces. The expression (5.2) is now no longer independent of
these choices, because every change creates a boundary term in the integrals of the 1-form 7.
To resolve this problem, we involve orientation-reserving edges: these are edges in I' whose
adjacent faces have been lifted to opposite sheets. Since I is a dual triangulation, its orienta-
tion-reversing edges form a disjoint union of piecewise smooth circles ¢ C 3. For each of these
circles, we choose again a preimage c,. It may not be possible to choose c, to be closed, in
which case there exists a point p® € > which has two preimages in ¢,,. We choose again one of
these preimages, denoted p¢ . Then

Hol,, , ¢ := exp (27ri( Z/f w~+ Z/ n)) H o(pS,) (5.6)
7 for . Jecor .

is independent of the choice of the lifts f,,, c,r and po;, and is independent of the choice of the
triangulation.

More generally, let Man, be the category of smooth manifolds with involution, whose
morphisms are equivariant smooth maps. (The involution is not required to act freely.) In a
first step, we want to define a presheaf

Jantriv® : ManP? — Cat (5.7)

15



of trivial Jandl gerbes. For (M, k) a smooth manifold with involution k: M — M, a trivial
Jandl gerbe involves as a first datum a trivial bundle gerbe Z,,, but as explained in Section [I] we
replace the 1-morphism 7 from (5.3]) by a line bundle L over M with connection of curvature

curv(L) = —w — k'w, (5.8)

and we replace the 2-isomorphism ¢ from (5.4]) by an isomorphism ¢: k*L — L of line bundles
with connection, still subject to the condition (B.5]). Notice that the pair (L, ¢) is nothing but
a k-equivariant line bundle with connection over M. After this step, we still have the holonomy
(5.6, which now looks like

Holz, 1.4 = exp <27ri2/ w) HHOIE(C), (5.9)
7 o ;

where we have used the fact that, since the action of (k) on ¢, is free, the k-equivariant line
bundle (L, ¢) descends to a line bundle L with connection over the quotient ¢ =c.,/(k). This
formula is now manifestly independent of the choices of ¢, and p{,. Its independence under
different choices of faces f,, is due to (5.8)).

Now we close the presheaf JantrivV(M) under descent to allow for non-trivial bundle gerbes.
To do so, we need to introduce duals of bundle gerbes, 1-morphisms and 2-isomorphisms see
[Wall; for the sake of brevity we omit these definitions here.

Definition 4. Let M be a smooth manifold with involution k: M — M. A Jandl gerbe is a
bundle gerbe G over M together with a 1-isomorphism A: k*G — G* to the dual gerbe and a
2-isomorphism ¢: k* A = A* that satisfies k*p = p* L.

Jandl gerbes form a sheaf
Jan® : Man?® — Cat . (5.10)

The gluing axiom for this sheaf has been proved in [GSW2|. We remark that the 1-isomorphism
A may be regarded as the counterpart of a Jandl structure o on the Frobenius algebra A that
corresponds to the bundle gerbe G, if one accepts that the dual gerbe plays the role of the
opposed algebra.

Suppose we are given a Jandl gerbe J over a smooth manifold M with involution k. If X
is a closed surface, possibly unoriented and possibly unorientable, and

d: (,0) — (M,E) (5.11)

is a morphism in Man™, we can pull back the Jandl gerbe 7 from M to 3. As in the case of
ordinary surface holonomy, it then becomes trivial as a gerbe for dimensional reasons, and we
can choose an isomorphism

T: ©J > (1,.L,¢). (5.12)

Then we define
HOlj((I)) = HOIL,,L,Q& . (513)

This is independent of the choice of T, because any other choice 77 gives rise to an isomorphism
T' o T7'in JantrivV(X, o) under which the holonomy stays unchanged.
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We have now seen that every Jandl gerbe J over a smooth manifold M with involution k
has holonomies for unoriented closed surfaces and equivariant smooth maps ®: S M. We
thus infer that sigma models on M whose fields are such maps, are defined by Jandl gerbes
J over M rather than by ordinary bundle gerbes G. This makes it an interesting problem to
classify Jandl gerbes.

Concerning the existence of a Jandl gerbe J with underlying bundle gerbe G, the 1-iso-
morphism A: k*G — G* requires the curvature H of G to satisfy

KH=—H. (5.14)

Apart from this necessary condition, there is a sequence of obstruction classes [GSW2]. Reduced
to the case that M is 2-connected, there is one obstruction class o(G) € H3(Zy, U(1)), the group
cohomology of Zy with coefficients in U(1), on which Zs acts by inversion. If o(G) vanishes,
then inequivalent Jandl gerbes with the same underlying bundle gerbe G are parameterized by
H?*(Z,,U(1)).
These results can be made very explicit in the case of WZW models, for which the object
in Man, is a connected compact simple Lie group G equipped with an involution k: G — G
acting as
ki g (z9)7" (5.15)

for a fixed ‘twist element’ z € Z(G). It is easy to see that the 3-form Hj € Q3(G), which is the
curvature of the level-k bundle gerbes G over G, satisfies the necessary condition (5.14]). All
obstruction classes o(G) and all parameterizing groups have been computed in dependence of
the twist element z and the level k£ [GSW1|. The numbers of inequivalent Jandl gerbes range
from two (for simply connected G, per level and involution) to sixteen (for PSO(4n), for every
even level).

Most prominently, there are two involutions on SU(2), namely g — ¢~! and g — —g~},
and for each of them two inequivalent Jandl gerbes per level. On SO(3) there is only a single
involution, but the results of [SSW, IGSW1] exhibit four inequivalent Jandl gerbes per even level.
This explains very nicely why SU(2) and SO(3) have the same number of orientifolds, despite
a different number of involutions. These results reproduce those of the algebraic approach (see
e.g. [FRS2|); for the precise comparison, Jandl structures related by the action of the trivial
line bundle with either of its two equivariant structures have to be identified.

6 D-branes: Holonomy for surfaces with boundary

We now introduce the geometric structure needed to define surface holonomies and Wess-
Zumino terms for surfaces with boundary. When one wants to define holonomy along a curve
that is not closed, one way to make the parallel transport group-valued is to choose trivi-
alizations at the end points. To incorporate these trivializations into the background, one
can choose a submanifold D C M together with a trivialization E|p — 14. Admissible paths
v:[0,1] — M are then required to start and end on this submanifold, v(0),v(1) € D. The
same strategy has proven to be successful for surfaces with boundary.

Definition 5. Let G be a bundle gerbe with connection over M. A G-D-brane is a submanifold
D C M together with a 1-morphism

D: Glp —1I, (6.1)
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to a trivial bundle gerbe 7, given by a two-form w on D.

The morphism D is called a G-module, or twisted vector bundle. Notice that if H is the
curvature of G, the 1I-morphism D enforces the identity

Hlp = dw. (6.2)

This equality restricts the possible choices of the world volume D of the G-D-brane.

Suppose that X is an oriented surface, possibly with boundary, and ®: ¥ — M is a smooth
map. We require that ®(9X) CD. As described in Section B3, we choose a trivialization
T:®*G —1I,. Its restriction to 0¥ and the G-module D define a 1-morphism

Ty, *(D)

Ip}az cb*g’az - q)*(g”D) *(Z) .- (6:3)
According to the definition (8.13)), this 1-morphism is nothing but a hermitian vector bundle

E with connection over 0% and its curvature is curv(E) =w — p. Then we consider

Holg p(®) := exp <27ri/ ,0) tr(Holg(0%)), (6.4)

b
where the trace makes the holonomy of E independent of the choice of a parameterization of
0X. This expression is independent of the choice of the trivialization 7: if 71 G — 1, is
another one and E’ is the corresponding vector bundle, we have the transition isomorphism L
from (3.27) with curvature p’ — p, and an isomorphism E'® L = E. It follows that

exp<27ri /E p) tr(Hol (%)) :exp(27ri< /Z p’—curv(L))) tr(Holper (%)),  (6.5)

and on the right hand side the unprimed quantities cancel by Stokes’ theorem.

Important results on D-branes concern in particular two large classes of models, namely
free field theories and again WZW theories. The simplest example of a free field theory is the
one of a compactified free boson, in which M is a circle Sk = R mod 2rRZ of radius R. As
is well known, there are then in particular two distinct types of D-branes: DO-branes Dg(co),
whose support is localized at a position z € S%, and D1-branes D,(ll), whose world volume is all
of S} and which are characterized by a Wilson line o € R modﬁ Z, corresponding to a flat
connection on S}.

For WZW theories, which are governed by a bundle gerbe G over a connected compact
simple Lie group G, preserving the non-abelian current symmetries puts additional constraints
on the admissible D-branes: their support D must be a conjugacy class C, of a group element
h € G. This can e.g. be seen by studying the scattering of bulk fields in the presence of the
D-brane. On such conjugacy classes one finds a canonical 2-form wy, € Q*(C,). Additionally,
the 1-morphism D: G|¢, — Z,, of a symmetric D-brane must satisfy a certain equivariance
condition [Ga2|. Interestingly, only on those conjugacy classes C;, for which

h = exp(27i kofg/\),) : (6.6)

with a an integrable highest weight, admit such 1-morphisms. Here p denotes the Weyl vector
and ¢V the dual Coxeter number of the Lie algebra g of G. Thus in particular the possible
world volumes of symmetric D-branes form only a discrete subset of conjugacy classes.
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We finally remark that the concepts of D-branes and Jandl gerbes can be merged |[GSW2].
The resulting structures provide holonomies for unoriented surfaces with boundary, and can be
used to define D-branes in WZW orientifold theories.

7 Bi-branes: Holonomy for surfaces with defect lines

7.1 Gerbe bimodules and bi-branes

In the representation theoretic approach to rational conformal field theory, boundary conditions
and defect lines are described as modules and bimodules, respectively. The fact that the
appropriate target space structure for describing boundary conditions, D-branes, is related to
gerbe modules, raises the question of what the appropriate target space structure for defect
lines should be. The following definition turns out to be appropriate.

Definition 6. Let G; and Gs be bqndle gerbes with connection over M; and M, respectively.
A G1-Gs-bi-brane is a submanifold B C M; x M, together with a (p7G1)|5-(p5G2)|g-bimodule, i.e.
with a 1-morphism

B:  (p1G1)lg — 03G:)|5 ® I (7.1)

with Z, a trivial bundle gerbe given by a two-form w on B.

Similarly as in (6.2) it follows that the two-form w on B obeys
piH|z=p3H|g+ dw. (7.2)

We call B the world volume and  the curvature of the bimodule. With the appropriate notion
of duality for bundle gerbes (see Section 1.4 of [Wall), a Gi-Go-bimodule is the same as a
(G1®G5)-module. For a formulation in terms of local data, see (B.8) of [FSW].

As an illustration, consider again the free boson and WZW theories, restricting attention
to the case M, = M. For the free boson compactiﬁed on a circle S}z of radius R, one finds that
the world volume of a bi-brane is a submanifold B, C S} x Sk of the form

Bro = {(y,y—2) |y € S} (7.3)

with 2 € S}. The submanifold B, , has the topology of a circle and comes with a flat connec-
tion, i.e. with a Wilson line a. Thus the bi-branes of a compactified free boson are naturally
parameterized by a pair (z, ) taking values in two dual circles that describe a point on Sk and
a Wilson line.

In the WZW case, for which the target space is a compact connected simple Lie group G, a
scattering calculation [FSW]| similar to the one performed for D-branes indicates that the world
volume of a (maximally symmetric) bi-brane is a biconjugacy class

B = {(9.9') €eGXG|3ay, 2, €G: g=z hay', ¢ =z h'z3'} C GxG (7.4)

of a pair (h,l) of group elements satisfying h (h/)~' €Cy,, with h, as given in (6.6). The
biconjugacy classes carry two commuting G-actions, corresponding to the presence of two in-
dependent conserved currents in the field theory. Further, a biconjugacy class can be described
as the preimage

By =i (Cov—r) = {(9,9) €GXG|gg ™ €Chp—1} (7.5)
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of the conjugacy class Cpj,—1 under the map
i GXG3 (g1,92) — 9195 €G. (7.6)

Finally, the relevant two-form on Bh7h/ is

D = w1 — 5 (10 A pih) (7.7)

Here k is the level, 0 is the left-invariant Maurer-Cartan form, p; are the projections to the
factors of G x G, and wy, is the canonical 2-form (see Section [B]) on the conjugacy class Cj,. One
checks that @y, j is bi-invariant and satisfies (7.2).

Examples of symmetric bi-branes can be constructed from symmetric D-branes using a
multiplicative structure on the bundle gerbe G [Wa2|. Another important class of examples are
Poincaré line bundles. These describe T-dualities; an elementary relation between T-duality
and Poincaré line bundles is provided [SaS| by the equation of motion [RS| in the presence of
defects.

7.2 Holonomy and Wess-Zumino term for defects

The notion of bi-brane allows one in particular to define holonomy also for surfaces with defect
lines.

The simplest world sheet geometry involving a defect line consists of a closed oriented
world sheet ¥ together with an embedded oriented circle S C ¥ that separates the world sheet
into two components, > = Ug Y. Assume that the defect S separates regions that support
conformally invariant sigma models with target spaces M; and Ms, respectively, and consider
maps ¢;: 3; — M; for i € {1,2} such that the image of

QSS: S — M1XM2
s = (d1(s), d2(s))

is contained in the submanifold B of M, x M,. The orientation of ¥J; is the one inherited from
the orientation of ¥, and without loss of generality we take 0% =S and 9%, = —5.

We wish to find the Wess-Zumino part of the sigma model action, or rather the corresponding
holonomy Holg, ¢, 5, that corresponds to having bundle gerbes G; and G, over M; and M, and
a G1-Go-bi-brane B. The pullback of the bimodule (7I) along the map ¢g: S — B gives a
(616,)|5-(63G,)|s-bimodule

¢sB: (01G1)]s — (929:)|s ® Loye - (7.9)

The pullback bundle gerbes ¢! G; over ¥; are trivializable for dimensional reasons, and a choice
T;: ¢9;G;, — 1, of trivializations for two-forms p; on >; produces a vector bundle £ over S. We
then define

(7.8)

1

pl) exp <27Ti/Z pg) tr(Holg(S)) € C (7.10)

2

to be the holonomy in the presence of the bi-brane B. As shown in Appendix B.3 of [ESW],
for similar reasons as in the case of D-branes the number Holg, g, 5(2, S) is independent of the
choice of the trivializations 7; and 7.
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7.3 Fusion of defects

In the field theory context of section [ there are natural notions of the fusion of a defect (an A-
bimodule) with a boundary condition (a left A-module), yielding another boundary condition,
and of the fusion of two defects, yielding another defect. Both of these are provided by the
tensor product over the relevant Frobenius algebra A. These representation theoretic notions
of fusion have a counterpart on the geometric side as well.

Consider first the fusion of a defect with a boundary condition. We allow for the general
situation of a defect described by an M;-Ms-bi-brane with different target spaces M; and M.
Thus take an M;-Ms,-bi-brane with world volume BC M x My and an Ms-D-brane with world
volume D C M,. The action of correspondences on sheaves suggests the following ansatz for
the world volume of the fusion product:

(B % D) := p, (Bmpgl(b)> (7.11)

with p; the projection M, XM2 — M;. The corresponding ansatz for the fusjon of an M;i-M>-
bi-brane B of world volume B with an Ms-Mjs-bi-brane B’ of world volume B’ uses projections
Dij from M1 X M2 X M3 to Mz X Mjl

(BxB') = py3(pis (B) Nps (B)) - (7.12)

In general one obtains this way only subsets, rather than submanifolds, of M; and M; x M3,
respectively. On a heuristic level one would, however, expect that owing to quantization of
the branes a finite superposition of branes is selected, which should then reproduce the results
obtained in the field theory setting.

We illustrate this again with the two classes of models already considered, i.e. free bosons
and WZW theories, again restricting attention to the case M; = M,. First, for the theory of
a compactified free boson, the D-brane is of one of the types D;(,;O) or D&l) (see Section [B)) and
the bi-brane world volume is of the form BLQ given in (Z3). For D-branes of type DY the
prescription (ZI1)) thus yields

Bizw) DY = D) (7.13)

T4y *

For the fusion of a bi-brane B, o) and a D1-brane Dg), one must take the flat line bundle on
the bi-brane into account. We first pull back the line bundle on Dél) along ps to a line bundle
on Sk xSk, then restrict it to By, ), and finally tensor this restriction with the line bundle on
B(z.q) described by the Wilson line a. This results in a line bundle with Wilson line a+/3 on
the bi-brane world volume, which in turn can be pushed down along p; to a line bundle on S},
so that

B * D) =D, (7.14)

In short, the fusion with a defect B, ) acts on D0O-branes as a translation by x in position
space, and on Dl-branes as a translation by « in the space of Wilson lines. Similarly, the

prescription (ZI2)) leads to
B(x,a) * B(x’,a’) = B(x+x’,a+a’) (7.15)

for the fusion of two bi-branes B, ) and By ), i.e. both the position and the Wilson line
variable of the bi-branes add up.
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For WZW theories, besides the quantization of the positions of the branes another new
phenomenon is that multiplicities other than zero or one appear in the field theory approach.
In that context they arise from the decomposition B, ®4 Bg= €., N,;' B, of a tensor product
of simple A-bimodules into a finite direct sum of simple A-bimodules, and analogously for the
case of mixed fusion (in rational CFT, both the category of A-modules and the category of A-
bimodules are semisimple). Moreover, for simply connected groups, the multiplicities appearing
in both types of fusion are in fact the same as the chiral fusion multiplicities which are given
by the Verlinde formula.

By analogy with the field theory situation we expect fusion rules

BoxBs=> N,JB, (7.16)
ol

of bi-branes, and analogously for mixed fusion of bi-branes and D-branes. In the particular
case of WZW theories on simply connected Lie groups one can in addition invoke the duality
a+— " which in that case exists on the sets of branes as well as defects that preserve all
current symmetries, so as to work instead with fusion coefficients of type N, ZNaﬁ“’v. Then
for the case of two D-branes D, and D, with world volumes given by conjugacy classes C,,, and
Ch, of G, as well as a bi-brane Bg whose world volume is the biconjugacy class ﬁ_l(Chﬁ), one is
lead to consider the subset

Magy = p7(Co) N1 (C) N1 (Cy) = {(9,9) €GX G g€Cus g €C,, g9 €Ca}  (7.17)

of GxG. Combining the adjoint action on ¢ and on ¢’ gives a natural G-action on Il,5,. And
since both D-branes and the bi-brane are equipped with two-forms w,, w, and wg, Il,3, comes
with a natural two-form as well, namely with

Wagy = PiWaln, ,, + Powy ., + @5l - (7.18)

By comparison with the field theory approach, this result should be linked to the fusion
rules of the chiral WZW theory and thereby provide a physically motivated realization of the
Verlinde algebra. To see how such a relation can exist, notice that fusion rules are dimensions
of spaces of conformal blocks and as such can be obtained by geometric quantization from
suitable moduli spaces of flat connections which arise in the quantization of Chern-Simons
theories (see e.g. [ADW]). The moduli space relevant to us is the one for the three-punctured
sphere 5(23), for which the monodromy of the flat connection around the punctures takes values
in conjugacy classes C,, Cg and C,, respectively. The relations in the fundamental group of
5(23) imply the condition g,gzg, =1 on the monodromies g, €Cs, gs €Cs and g, €C,. Since
monodromies are defined only up to simultaneous conjugation, the moduli space that matters
in classical Chern-Simons theory is isomorphic to the quotient Il,4,/G.

It turns out that the range of bi-branes appearing in the fusion product is correctly bounded
already before geometric quantization. Indeed, the relevant product of conjugacy classes is

Cp xCp = {gg' | g €Cp, g' Gchf} , (719)

and for the case of G=SU(2) it is easy to see that this yields the correct upper and lower
bounds for the SU(2) fusion rules |[JW], [FSW]. A full understanding of fusion can, however,
only be expected after applying geometric quantization to the so obtained moduli space: this
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space must be endowed with a two-form, which is interpreted as the curvature of a line bundle,
and the holomorphic sections of this bundle are what results from geometric quantization. In
view of this need for quantization it is a highly non-trivial observation that the two-form (Z.I8))
furnished by the two branes and the bi-brane is exactly the same as the one that arises from
classical Chern-Simons theory.

In terms of defect lines, the decomposition (.I6]) of the fusion product of bi-branes corre-
sponds to the presence of a defect junction, which constitutes a particular type of defect field.
A sigma model description for world sheets with such embedded defect junctions has been
proposed in [RS].

We have demonstrated how structural analogies between the geometry of bundle gerbes
and the representation theoretic approach to rational conformal field theory lead to interesting
geometric structure, including a physically motivated realization of the Verlinde algebra. The
precise form of the latter and its relation with the realization of the Verlinde algebra in the
context of supersymmetric conformal field theory [FHT]| remain to be understood. But in any
case the parallelism between classical actions and full quantum theory exhibited above remains
intriguing and raises the hope that some of the structural aspects discussed in this contribution
are generic features of quantum field theories.
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