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Abstract

Let M be a pseudo-Riemannian spin manifold of dimension n and signature s and
denote by N the rank of the real spinor bundle. We prove that M is locally ho-
mogeneous if it admits more than 3

4N independent Killing spinors with the same
Killing number, unless n ≡ 1 (mod 4) and s ≡ 3 (mod 4). We also prove that
M is locally homogeneous if it admits k+ independent Killing spinors with Killing
number λ and k− independent Killing spinors with Killing number −λ such that
k++k− > 3

2N , unless n ≡ s ≡ 3 (mod 4). Similarly, a pseudo-Riemannian manifold
with more than 3

4N independent conformal Killing spinors is conformally locally
homogeneous. For (positive or negative) definite metrics, the bounds 3

4N and 3
2N in

the above results can be relaxed to 1
2N and N , respectively. Furthermore, we prove

that a pseudo-Riemannnian spin manifold with more than 3
4N parallel spinors is

flat and that 1
4N parallel spinors suffice if the metric is definite. Similarly, a Rie-

mannnian spin manifold with more than 3
8N Killing spinors with the Killing number

λ ∈ R has constant curvature 4λ2. For Lorentzian or negative definite metrics the
same is true with the bound 1

2N . Finally, we give a classification of (not necessar-
ily complete) Riemannian manifolds admitting Killing spinors, which provides an
inductive construction of such manifolds.



Introduction

Figueroa-O’Farrill, Meessen and Philip showed in [FMP] that M-theory backgrounds with
more than 24 supersymmetries are locally homogeneous. Notice that 24 is 3/4 of the
maximal possible number of independent supersymmetries, which is 32, the dimension of
the spinor module of Spin(1, 10). (Notice also that 11 ≡ 3 6≡ 1 (mod 4).) This result is
obtained from a careful analysis of the Killing spinor equations of M-theory.

In this paper, inspired by the work of Figueroa-O’Farrill et al, we study Killing spinors
in pseudo-Riemannian and conformal geometry for arbitrary dimensions n and signatures
s. We show that conformal Killing spinors give rise to conformal Killing polyvectors and,
under some simple assumptions, that Killing spinors give rise to Killing polyvectors, see
Theorem 2. More precisely, in equation (1.6), we define a ∧kTM -valued bilinear form

(s, t) 7→ [s, t]k,

on the spinor bundle of a pseudo-Riemannian spin manifold (M, g), which to a pair of
conformal Killing spinors s, t associates a conformal Killing polyvector field ω = [s, t]k.
For k = 1 we obtain conformal Killing vector fields.

Using the above correspondence, we prove that the existence of more than 3/4 of the
maximal possible number N of independent Killing spinors implies local homogeneity in
the pseudo-Riemannian as well as in the conformal setting, see Theorem 3 for the precise
statement. For (positive or negative) definite metrics we prove that more than 1

2
N Killing

spinors suffice to obtain the local homogeneity. In the pseudo-Riemannian (but not in the
conformal) setting, our argument requires n 6≡ 1 (mod 4) or s 6≡ 3 (mod 4). Allowing
imaginary “Killing numbers” λI ∈ End S, where λ ∈ R and I2 = −1, see (2.1), we can
prove a similar result also in the case n ≡ 1 (mod 4), s ≡ 3 (mod 8). In the remaining
case, where n ≡ 1 (mod 4) and s ≡ 7 (mod 8), our method does not allow to obtain the
local homogeneity from the existence of Killing spinors with the same Killing number.
Instead we have to assume the existence of k+ Killing spinors with Killing number λ and
k− Killing spinors with Killing number −λ. If k+ + k− > 3

2
N , then we prove that the

pseudo-Riemannian manifold is locally homogeneous, provided that n 6≡ 3 (mod 4) or
s 6≡ 3 (mod 4). This covers, in particular the case n ≡ 1 (mod 4). For definite metrics
the assumption can be relaxed to k+ + k− > N .

Using the correspondence between Killing spinors on (M, g) and parallel spinors on
the metric cone (M̂, ĝ) over M , see Definition 3 and Theorem 6, and our recent work
[ACGL] we are able to obtain more precise information for Riemannian and Lorentzian
manifolds. In fact, in Theorems 4, 8 and 10 we prove:

Theorem 1

(i) A pseudo-Riemannian spin manifold with more than 3
4
N linearly independent par-

allel spinors is flat. If the metric is definite, then 1
4
N parallel spinors suffice.

(ii) A Riemannian spin manifold with more than 3
8
N Killing spinors with the Killing

number λ ∈ R has constant curvature 4λ2.
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(iii) A pseudo-Riemannian spin manifold with a negative definite or Lorentzian metric
with more than 1

2
N Killing spinors with the Killing number λ ∈ R has constant

curvature 4λ2.

Notice that a negative definite metric g of positive scalar curvature s corresponds
to a positive definite metric −g of negative scalar curvature −s. We also prove that a
Riemannian spin manifold with 3

8
N Killing spinors with the Killing number λ ∈ R \ {0}

can be locally represented in the form

M = I ×M1 ×M2, g = ds2 + cos2(s)g1 + sin2(s)g2,

where (M1, g1) is of constant curvature 1 or of dimension ≤ 1, (M2, g2) is a seven-
dimensional 3-Sasakian manifold and I ⊂ (0, π

2
) is an intervall, see Theorem 8.

In Theorem 9, we give a local classification of Riemannian manifolds admitting a non-
trivial Killing spinor, which extends Bär’s classification [B] of Killing spinors on complete
Riemannian manifolds.

1 From Killing spinors to Killing polyvectors

Let (M, g) be an n-dimensional pseudo-Riemannian manifold. We will always assume
that M is connected.

Definition 1 A k-vector field ω ∈ Γ(∧kTM) ∼= Γ(∧kT ∗M) (k ≥ 1) is called Killing if

Xy∇Xω = 0, for all X ∈ TM.

It is called conformally Killing if there exists a (k − 1)-vector field ω̃ such that

Xy∇Xω = g(X, X)ω̃, for all X ∈ TM. (1.1)

Proposition 1

(i) ω ∈ Γ(∧kTM) is Killing if and only if γ̇yω is a parallel (k− 1)-vector field along γ,
for every geodesic γ:

∇γ̇(γ̇yω) = 0. (1.2)

(ii) Let (M, g) be a pseudo-Riemannnian manifold with indefinite metric g. Then ω is
conformally Killing if and only if ∇γ̇(γ̇yω) = 0, for every null geodesic γ.

Proof: An obvious calulation shows that a (conformal) Killing polyvector ω satisfies
the equation (1.2) for every (null) geodesic γ. The converse statement in (i) is also
clear, since every vector X is the velocity vector of a geodesic. To prove the converse
statement in (ii), let η ∈ ∧k−1TpM and denote by β the symmetric bilinear form such
that ηy(Xy∇Xω) = β(X, X), for all X ∈ TpM . By (1.2), we have β(X, X) = 0 for all X
in the null cone of g. This shows that β is a multiple of gp, since the null cone determines
the indefinite scalar product gp up to scale, and implies (1.1).
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Remarks: 1) For k = 1 (i) reduces to the well know fact that the scalar product of a
Killing vector field with the velocity vector of a geodesic is constant, which was observed
by Clairaut for surfaces of revolution. In virtue of (ii), conformal Killing polyvectors
give rise to conservation laws in general relativity. In particular, the function g(γ̇, Y ) is
constant along any null geodesic γ if Y is a conformal Killing vector field.

2) It is easy to see that an n-vector field ω on an n-dimensional manifold is conformally
Killing if and only if it is parallel.

3) The equation (1.1) easily implies

ω̃ =
1

n
tr ∇ω =

1

n

∑
gijeiy(∇ej

ω),

where ei is any basis and (gij) is the matrix inverse to gij = g(ei, ej).

Let (M, g) be a (strongly oriented) pseudo-Riemannian spin manifold and S → M its
(real) spinor bundle.

Definition 2 A spinor field s ∈ Γ(S) is called Killing with Killing number λ ∈ R if

∇Xs = λXs, for all X ∈ TM,

where Xs is the Clifford product of the vector X and the spinor s. It is called conformally
Killing if there exists a spinor field s̃ ∈ Γ(S) such that

∇Xs = Xs̃, for all X ∈ TM. (1.3)

Remarks: 1) Using the Clifford relation, XY + Y X = −2g(X, Y ), the equation (1.3)
easily implies

s̃ = − 1

n
Ds, (1.4)

where Ds =
∑

gijei∇ej
s is the Dirac operator. In particular, any Killing spinor is an

eigenspinor for the Dirac operator: Ds = −nλs.

2) The Killing number is related to the scalar curvature by the formula scal = 4n(n−1)λ2.
Therefore, the scalar curvature of a pseudo-Riemannian manifold which admits a Killing
spinor is constant and the Killing numbers of different Killing spinors on the same manifold
coincide up to a sign. It is well known that a Riemannian manifold which admits a Killing
spinor is Einstein, but this is no longer true for indefinite pseudo-Riemannian manifolds,
see [Bo] and references therein.

We denote by γv : Sp → Sp the Clifford multiplication with v ∈ TpM and define a
linear map γ : ∧kTpM → End (Sp), for all k ≥ 1, by

γv1∧···∧vk
:=

1

k!

∑
σ∈Sk

ε(σ)γvσ1 · · · γvσk
,

where Sk is the symmetric group. For λ ∈ ∧0TpM = R we put γλ = λ1 ∈ End (Sp).

A bilinear form h on the spinor module satisfying

h(s, t) = σh(t, s),

h(γXs, t) = τh(t, γXs), (1.5)
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for all spinors s, t and all vectors X, is called admissible of symmetry σ and type τ , where
σ, τ ∈ {−1, +1}. The admissible bilinear forms on the spinor module were classified in
[AC] and there always exists a nondegenerate admissible bilinear form. An admissible form
is automatically invariant under the connected spin group and, hence, defines a parallel
section of S∗⊗S∗. In the following, h shall always denote a parallel nondegenerate section
of S∗ ⊗ S∗ of symmetry σ and type τ . Notice that (1.5) implies

h(γξs, t) = τ k(−1)
(k−1)k

2 h(s, γξt), for all ξ ∈ Γ(∧kTM).

Using the bilinear form h we define, for k ≥ 1, a parallel section [·, ·]k ∈ Γ(S∗⊗S∗⊗∧kTM)
by

g([s, t]k, ξ) = h(γξs, t) ∀ξ ∈ Γ(∧kTM), s, t ∈ Γ(S). (1.6)

(Here g is canonically extended to a nondegenerate symmetric bilinear form on the exterior
algebra.) Such brackets occur in the classification of polyvector super-Poincaré algebras,
see [AC, ACDV]. For k = 0 we put [s, t]0 = h(s, t).

Theorem 2 Let s, t be conformal Killing spinors on an n-dimensional pseudo-Riemannian
spin manifold (M, g). Then ω = [s, t]k ∈ Γ(∧kTM) (k ≥ 1) is a conformal Killing polyvec-
tor;

Xy∇Xω = g(X, X)ω̃ ∀X ∈ TM,

where ω̃ ∈ Γ(∧k−1TM) is given by

nω̃ = (−1)k−1[Ds, t]k−1 + τ [s, Dt]k−1. (1.7)

Proof: Let (ei) be a local frame and ξ = X ∧ η, where X ∈ Γ(TM), η ∈ Γ(∧k−1TM)
and Xyη = 0. We shall assume that, at a given point p ∈ M , ∇X|p = ∇ei|p = 0 and
∇η|p = 0. Then we compute at p:

g(∇Xω, ξ) = h(γξ∇Xs, t) + h(γξs,∇Xt)

= h(γξγX s̃, t) + h(γξs, γX t̃)

= −g(X, X)
(
(−1)k−1h(γηs̃, t) + τh(γηs, t̃)

)
= −g(X, X)

(
(−1)k−1g([s̃, t]k−1, η) + τg([s, t̃]k−1, η)

)
.

This implies that ω is a conformal Killing polyvector and that

ω̃ = (−1)k[s̃, t]k−1 − τ [s, t̃]k−1. (1.8)

Expressing s̃, t̃ by (1.4), we obtain (1.7).

Corollary 1 Let s and t be Killing spinors with Killing numbers λ and µ, respectively,
and ω = [s, t]k. Then the following is true.

(i) ω is a conformal Killing polyvector with ω̃ = (λ(−1)k − µτ)[s, t]k−1.

(ii) If µ = (−1)kτλ, then ω = [s, t]k is a Killing polyvector.

(iii) If λ = µ = 0 then ω is parallel.
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2 Manifolds with many Killing spinors

Theorem 3 Let (M, g) be a pseudo-Riemannian spin manifold of dimension n, signa-
ture s and with spinor bundle S of rank N .

(i) If (M, g) admits k > 3
4
N conformal Killing spinors, which are linearly independent

at p ∈ M , then (M, g) admits n conformal Killing vector fields, which are linearly
independent at p ∈ M .

(ii) Assume that n 6≡ 1 (mod 4) or s 6≡ 3 (mod 4). If (M, g) admits k > 3
4
N Killing

spinors with the same Killing number, which are linearly independent at p ∈ M ,
then (M, g) admits n Killing vector fields, which are linearly independent at p ∈ M .

(iii) Assume that n ≡ 1 (mod 4) and s ≡ 3 (mod 8). Then S admits a parallel hy-
percomplex structure J1, J2, J3 = J1J2 ∈ Γ(End S), which commutes with Clifford
multiplication. Let I be any complex structure on S which is a linear combination
of J1, J2, J3 with constant coefficients. If (M, g) admits k > 3

4
N solutions s ∈ Γ(S)

of the equation
∇Xs = λXIs, for all X ∈ TM, (2.1)

with the same λ ∈ R, which are linearly independent at p ∈ M , then (M, g) admits
n Killing vector fields, which are linearly independent at p ∈ M .

(iv) Assume that n 6≡ 3 (mod 4) or s 6≡ 3 (mod 4). If (M, g) admits k+ Killing spinors
with the Killing number λ, which are independent at p, and k− Killing spinors with
the Killing number −λ, which are independent at p, such that k+ + k− > 3

2
N , then

it admits n Killing vector fields, which are independent at p.

(v) If g is definite, then (i)-(iv) hold under the weaker assumptions k > 1
2
N and k+ +

k− > N , respectively.

Proof: S carries a parallel nondegenerate bilinear form h of symmetry σ and type τ , see
(1.5). Moreover, there exists such a form of type τ = −1, unless n ≡ 1 (mod 4) and s ≡ 3
(mod 4), see [AC]. (The Pin(n)-invariant scalar product on the spinor module associated
with a positive definite scalar product, for instance, has τ = −1.) By Theorem 2, for any
pair of conformal Killing spinors s, t, the vector field [s, t]1 is conformal. Similarly, by
Corollary 1, if s, t are Killing spinors with the same Killing number and τ = −1, then
[s, t]1 is a Killing vector field. Therefore, to prove (i) and (ii) it suffices to show that

Π := [·, ·]1|S0⊗S0 : S0 ⊗ S0 → TpM

is surjective if the subspace S0 ⊂ Sp spanned by the values of the given (conformal)
Killing spinors at p has dimension > 3

4
dim Sp. Suppose first that g is definite. Then

we have to show that Π is surjective if dim S0 > 1
2
dim Sp. By the definition of Π,

surjectivity is equivalent to: @v ∈ TpM \ {0} such that γvS0 ⊂ S⊥
0 . Suppose that there

exists v ∈ TpM \ {0} such that γv|S0 : S0 → S⊥
0 . If dim S0 > 1

2
dim Sp, then dim S⊥

0 <
1
2
dim Sp < dim S0 and, thus, ker γv 6= 0. Since γ2

v = −g(v, v)1, this implies g(v, v) = 0
and, hence, v = 0. This proves the surjectivity of Π, if g is definite and dim S0 > 1

2
dim Sp.

If g is indefinite, we can only conclude that v is a null vector.
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Lemma 1 For any non-zero null vector v the subspace Lv := ker γv = im γv ⊂ Sp is
h-isotropic of dimension 1

2
dim Sp.

Proof: From γ2
v = 0 we get im γv ⊂ ker γv. Let u be an other null vector such that

g(u, v) = 1. Then im γu ⊂ ker γu and γuγv+γvγu = −21 implies ker γv ⊂ im γv and, hence,
ker γv = im γv. Therefore, dim Sp−dim ker γv = dim im γv implies dim Lv = 1

2
dim Sp. Let

us check that Lv is isotropic. For s, t = γvt
′ ∈ Lv = im γv, we have

h(s, t) = h(s, γvt
′) = τh(γvs, t

′) = 0,

since s ∈ Lv = ker γv.

The lemma shows that rk γv = 1
2
dim Sp for any non-zero null vector. Now we consider

the bilinear form β = h(γv·, ·) on Sp; rk β = rk γv = 1
2
dim Sp. Under the assumption

γvS0 ⊂ S⊥
0 , the matrix of β with respect to a basis adapted to a direct decomposition

Sp = S0 ⊕ S1 is of the form (
0 A

στAt B

)
(Notice that the symmetry of β is στ .) Therefore,

1

2
dim Sp = rk β ≤ rk A + rk (στAt, B) ≤ 2 dim S1 = 2(dim Sp − dim S0),

which implies dim S0 ≤ 3
4
dim Sp. So dim S0 > 3

4
dim Sp implies @v ∈ TpM \ {0} : γvS0 ⊂

S⊥
0 . This shows that Π : S0 ⊗ S0 → TpM is surjective in case (i) and (ii).

The proof of (iii) uses the fact that in that case there exist a unique (up to a constant
factor) admissible parallel nondegenerate bilinear form h invariant under J1, J2 and J3,
see [AC]. The form is of type τ = +1. Using this form we obtain for two solutions s, t of
(2.1) that Y = ω = [s, t]1 is a conformal Killing vector field, which satisfies (1.1) with

ω̃ = −h(s̃, t)− h(s, t̃) = −λ(h(Is, t) + h(s, It)) = 0,

as follows from (1.8). Therefore Y is a Killing vector field. The rest of the proof is similar
to that of (i) and (ii).

To prove (iv) we first remark that the assumptions on the dimension and signature
ensure the existence of an admissible parallel nondegenerate bilinear form h of type τ =
+1. Then we consider the subspaces S0(λ), S0(−λ) ⊂ Sp spanned by the values at p
of Killing spinors with Killing numbers λ and −λ, respectively. In virtue of Corollary
1, [s, t]1 is a Killing vector field if s, t are Killing spinors with Killing numbers λ, −λ,
respectively. Therefore, it suffices to show that [S0(λ), S0(−λ)] = TpM . If this condition
were not fulfilled, there would exist 0 6= v ∈ TpM such that γv : S0(λ) → S0(−λ)⊥. The
assumption dim S0(−λ)⊥ = N − k− < k+ = dim S0(λ) implies that Lv = ker γv 6= 0.
Then g is indefinite, v is a null vector and Lv = im γv is maximally isotropic, by Lemma
1. In particular, rk γv = N/2. We can consider β = h(γv·, ·) as a linear map Sp → S∗

p .
From the matrix representation of β with respect to bases adapted to decompositions
Sp = S0(λ)⊕ S1 and S∗

p
∼= S0(−λ)∗ ⊕ S ′

1 we see that

1

2
N = rk β ≤ min(k−, N − k+) + N − k− = 2N − k+ − k−,
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and, hence, k+ + k− ≤ 3
2
N , which contradicts the assumption k+ + k− > 3

2
N . This proves

[S0(λ), S0(−λ)] = TpM .

Now we study the case where the bilinear form h has type τ = +1 and the Killing
spinors have the same Killing number.

Proposition 2 Let h be a nondegenerate parallel bilinear form of symmetry σ and
type τ = +1 on the spinor bundle S of a pseudo-Riemannian spin manifold (M, g) and
denote by S(λ) ⊂ Γ(S) the vector space of Killing spinors with a given Killing number
λ ∈ R \ {0}. Then the image [S(λ), S(λ)]1 ⊂ Γ(TM) consists of Killing vector fields if
and only if S0 := S(λ)|p ⊂ Sp is totally isotropic for all p ∈ M with respect to h. If S0

is maximally isotropic at a point p then [S(λ), S(λ)]1 6= 0, hence, (M, g) admits a Killing
vector field, which does not vanish at p.

Proof: By Corollary 1, the bracket ω = [s, t]1 of s, t ∈ S(λ) is a conformal Killing vector
field with

ω̃ = −2λh(s, t).

This shows that ω is a Killing vector field if and only if h(s, t) = 0. Assume now that
S0 = S⊥

0 is maximally isotropic. By (1.6), [S0, S0]1 = 0 is equivalent to γvS0 ⊂ S0 for all
v ∈ TpM , which is impossible since Sp is an irreducible module of the Clifford algebra
C`(TpM).

Remark: One can check that [S0, S0]1 is one-dimensional for any maximally isotropic
subspace S0 of the spinor module S2,3 = R4 of Spin(2, 3). For the spinor module S4,5 of
Spin(4, 5) one can construct a maximally isotropic subspace S0 such that dim[S0, S0]1 =
4. These examples show that in general a vector space of Killing spinors spanning a
maximally isotropic subspace of Sp for all p is not sufficient to produce a transitive Lie
algebra of Killing fields.

3 A multiplicative invariant

Let M be a pseudo-Riemannian spin manifold with real spinor bundle S of rank N and
denote by S(λ) = S(M, λ) the vector space of Killing spinors with Killing number λ ∈ R.
Then we put k := dim S(λ) and

κ(M, λ) :=
k

N
, κ(M) := κ(M, 0).

Notice that κ(M) = 1 if and only if M is flat and that κ(M, λ) = dim S(λ)
rk S , where S is the

complex spinor bundle and S(λ) = S(M, λ) the vector space of complex Killing spinors
with Killing number λ. This follows from the fact that the complex spinor module Sp,q

of C`p,q is either the complexification of the real spinor module Sp,q or coincides with
Sp,q endowed with a Pin(p, q)-invariant complex structure, see [ACDV] Table 1. As a
consequence, we have rk S = N or N/2, respectively.

Lemma 2 Let V = V1 + V2 be an orthogonal decomposition of a complex Euclidian
vector space of dimension n into subspaces of dimension n1, n2 respectively.
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(i) If n1 or n2 is even, then the Clifford algebra C`(V ) ∼= C`(V1)⊗C`(V2) and the tensor
product S(V ) = S(V1) ⊗ S(V2) of irreducible C`(V1)-, C`(V2)-modules S(V1) and
S(V2), respectively, is an irreducible C`(V )-module.

(ii) If n1 and n2 are odd, then C`(V ) 6∼= C`(V1)⊗ C`(V2) but C`(V ) is isomorphic to the
Z/2Z-graded tensor product C`(V ) ∼= C`(V1)⊗̂C`(V2). In this case the spinor module
of C`0(V ) is obtained as the even part (Σ⊗̂Σ′)0 = Σ0⊗̂Σ′

0 + Σ1⊗̂Σ′
1 of the Z/2Z-

graded tensor product Σ ⊗ Σ′ of irreducible Z/2Z-graded C`(V1)-, C`(V2)-modules
Σ, Σ′, respectively. The C`0(V )-module S(V ) = (Σ⊗̂Σ′)0 is a sum of non-equivalent
irreducible semi-spinor submodules S±(V ), which are the ±i-eigenspaces of a central
element ξ ∈ C`1(V1)⊗̂C`1(V2) of C`0(V ).

Corollary 2 Under the assumptions of Lemma 2 the following is true.

(i) If n1 or n2 is even, then as a Spin(V1) × Spin(V2)-module the spinor module S(V )
of Spin(V ) is isomorphic to the tensor product S(V ) ∼= S(V1)⊗ S(V2).

(ii) If n1 and n2 are odd, then as a Spin(V1)×Spin(V2)-module, S(V ) ∼= 2S(V1)⊗S(V2).

Corollary 3 Let M = M1 ×M2 be the product of two pseudo-Riemannian spin man-
ifolds. Then κ(M) = κ(M1)κ(M2). In particular, κ(M) = κ(M1) if and only if M2 is
flat.

Proof: Since κ(M) = dim S(M,0)
rk S , the statement of Corollary 3 is obtained from Corollary

2, using that parallel spinors correspond to invariants of the holonomy group under the
spinor representation and that the holonomy group of M is the product of the holonomy
groups of the factors M1, M2. In fact, S(M, 0) ∼= S(M1, 0)⊗S(M2, 0) if n1 and n2 are even
and S(M, 0) ∼= 2S(M1, 0)⊗ S(M2, 0) if n1 and n2 are odd.

Remark: The invariant κ(M, λ) for λ 6= 0 is not multiplicative. For instance, κ(S2, 1
2
) = 1

but κ(S2 × S2, 1
2
) = 0.

4 Manifolds with many parallel spinors

Theorem 4 Let (M, g) be a pseudo-Riemannian spin manifold.

(i) If κ(M) > 3
4
, then (M, g) is flat.

(ii) If the metric g is definite and κ(M) > 1
4
, then (M, g) is flat. A complete simply

connected Riemannian spin manifold (M, g) with κ(M) = 1
4

is the product of a flat
manifold and a manifold with holonomy group SU(2).

Proof: (i) follows from Theorem 3 (i) and (v), since the conformal Killing vector fields
[s, t]1 are parallel if s, t are parallel spinors, see Corollary 1.
Next we prove (ii). It follows from Wang’s classification of parallel spinors on manifolds
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with connected irreducible holonomy group [W] that a locally irreducible Riemannian
manifold (M, g) has κ(M) ≤ 1

4
and κ(M) = 1

4
implies that M has holonomy algebra

h = su(2). Applying the (local) de Rham decomposition and Corollary 3, we conclude
that a Riemannian manifold with κ(M) > 1

4
is flat and that a complete simply connected

Riemannian manifold with κ(M) = 1
4

is the product M = M0×M1 of a flat manifold M0

and an irreducible manifold M1 with κ(M1) = 1
4

and holonomy group SU(2).

Theorem 5 Let (M̂, ĝ) be the Lorentzian cone over a pseudo-Riemannian manifold
(M, g) with either negative definite metric or of signature (+, . . . , +,−). If κ(M̂) > 1

2
,

then M̂ is flat and M has constant curvature 1.

Proof: If (M̂, ĝ) is not flat, we can decompose it locally as a product of indecomposable
pseudo-Riemannian manifolds. By Corollary 3, there exists an indecomposable factor M1

of dimension > 1 with κ(M1) > 1
2
. It cannot be Riemannian, by the previous theorem.

Hence it is a Lorentzian indecomposable manifold. By [ACGL] Theorem 4.1, M1 = N̂1 is
(locally) a cone over a pseudo-Riemannian manifold N1. Moreover, by [ACGL] Theorem
9.1, the local holonomy algebra ĥ of M1 contains the subalgebra e := p ∧ E, where
TxM1 = V = Rp+Rq +E, p, q are isotropic vectors with ĝ(p, q) = 1 and E is the positive
definite orthogonal complement of span{p, q}. The Clifford algebra has the decomposition
C`(V ) = C`1,1 ⊗ C`(E). The Clifford algebra C`1,1 is the full matrix algebra of real 2× 2
matrices and is generated by

γp =
√

2

(
0 1
0 0

)
, γq = −

√
2

(
0 0
1 0

)
,

with respect to the standard basis (e1, e2) of R2. If SE is an irreducible C`(E)-module then
SV = R2 ⊗ SE is an irreducible C`(V )-module. Under the isomorphism C`(V ) ∼= C`1,1 ⊗
C`(E) a vector v = f ⊕ e ∈ R1,1⊕E is mapped to f ⊗1+ ν⊗ e, where ν = 1

2
(p+ q)(p− q)

is the volume element in C`1,1, which satisfies ν2 = 1, νe1 = e1, νe2 = −e2.

Lemma 3 The space of e-invariant spinors is given by

Se
V = e1 ⊗ SE ⊂ SV = R2 ⊗ SE.

Proof: A spinor s = e1 ⊗ s1 + e2 ⊗ s2 ∈ SV is invariant under e ⊂ ĥ if and only if

0 = γp∧es = −
√

2e1 ⊗ γes2,

for all e ∈ E, which is equivalent to s2 = 0.

The lemma shows that dim S ĥ
V ≤ dim Se

V = 1
2
dim SV and, hence, κ(M1) ≤ 1

2
, which

contradicts the assumption.
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5 Cones M̂ over pseudo-Riemannian manifolds M and

relation between Killing spinors on M and parallel

spinors on M̂

Definition 3 Let (M, g) be a pseudo-Riemannian manifold of signature (p, q). The
manifold M̂ = R+ × M endowed with the pseudo-Riemannian metric ĝ = dr2 + r2g of
signature (p + 1, q) is called the cone over (M, g).

Recall that a spin structure (in the strong sense) on (M, g) is a Spin0(p, q)-equivariant two-
fold covering PSpin0(p,q)(M) → PSO0(p,q)(M) of the principal bundle of strongly oriented or-
thonormal frames. Let us denote by PSpin0(p+1,q)(M) ⊃ PSpin0(p,q)(M) and PSO0(p+1,q)(M) ⊃
PSO0(p,q)(M) the Spin0(p + 1, q)- and SO0(p + 1, q)-principal bundles obtained by enlarg-
ing the structure groups. Then PSpin0(p,q)(M) → PSO0(p,q)(M) extends naturally to a
Spin0(p + 1, q)-equivariant two-fold covering

Θ : PSpin0(p+1,q)(M) → PSO0(p+1,q)(M).

Using the isometric inclusion M ∼= {1}×M ⊂ M̂ = R+×M , we can identify PSO0(p+1,q)(M)

with the restriction PSO0(p+1,q)(M̂)|M of the bundle of strongly oriented orthonormal

frames of M̂ . In particular, the frame (e1, . . . , en) ∈ PSO0(p,q)(M) ⊂ PSO0(p+1,q)(M) is

mapped to the frame (∂r, e1, . . . , en) ∈ PSO0(p+1,q)(M̂) under this identification. Simi-

larly, we identify PSO0(p+1,q)(M̂) with the pullback of PSO0(p+1,q)(M) via the projection

π : M̂ → M . Under this identification (∂r, e1, . . . , en) ∈ PSO0(p+1,q)(M̂)(r,x) is mapped to
(re1, . . . , ren) ∈ PSO0(p,q)(M)x ⊂ PSO0(p+1,q)(M)x for all x ∈ M . Then

PSpin0(p+1,q)(M̂) := π∗PSpin0(p+1,q)(M) → π∗PSO0(p+1,q)(M) = PSO0(p+1,q)(M̂)

defines a spin structure on M̂ .

Lemma 4 Let (M̂, ĝ) be the cone over a pseudo-Riemannian spin manifold (M, g) of
signature (p, q).

(i) If s = p − q ≡ 0, 2, 4, 5 or 6 (mod 8), then the spinor bundle Ŝ of M̂ is related to
the spinor bundle S of M by a canonical isomorphism

Ŝ|M ∼= S.

(ii) If s = p− q ≡ 1, 3 or 7 (mod 8), then the semi-spinor bundles Ŝ± of M̂ are related
to the spinor bundle of M by canonical isomorphisms

Ŝ±|M ∼= S.

(iii) If n = dim M = p + q is even, then the complex spinor bundles S, Ŝ of M and M̂ ,
respectively, are related by a canonical isomorphism

Ŝ|M ∼= S.

10



(iv) If n is odd, then the complex semi-spinor bundles Ŝ± of M̂ are related to the spinor
bundle S of M by canonical isomorphisms

Ŝ±|M ∼= S.

Proof: Let (e0, . . . , en) be an orthonormal basis of Rp+1,q. Recall that by definition

Spin(p, q) ⊂ Spin(p + 1, q) ⊂ C`0
p+1,q = 〈eiej|i, j = 0, . . . , n〉.

The even part C`0
p+1,q of the Clifford algebra C`p+1,q is mapped isomorphically onto C`p,q

by

eiej 7→ eiej,

eie0 7→ ei, i, j = 1, . . . , n.

Using this isomorphism C`0
p+1,q

∼= C`p,q the spinor module Sp,q of Spin(p, q) can be ex-
tended to an irreducible Spin(p + 1, q)-module. In fact, Sp,q is the restriction of an irre-
ducible C`p,q-module to Spin(p, q) ⊂ C`p,q. Restricting this C`p,q-module to Spin(p+1, q) ⊂
C`0

p+1,q
∼= C`p,q gives the desired Spin(p + 1, q)-module. The Spin(p + 1, q)-module Sp,q is

equivalent to the spinor module Sp+1,q if the spinor module Sp+1,q is irreducible, which
is the case if s = p − q ≡ 0, 2, 4, 5 or 6 (mod 8), see [AC] Prop. 1.3. Otherwise it is
equivalent to one of the semi-spinor modules S±

p+1,q. The semi-spinor modules S+
p+1,q and

S−
p+1,q are always equivalent as Spin(p, q)-modules (and even as Spin(p + 1, q)-modules if

s ≡ 1 (mod 8)). This implies (i) and (ii). The proof of (iii) and (iv) is similar.

Notice that for s = p− q ≡ 5 (mod 8) the spinor module Sp+1,q is irreducible and ad-
mits a Spin(p+1, q)-invariant complex structure, see [AC] Prop. 1.3. Its complexification
is isomorphic to the complex spinor module of Spin(p+1, q) (see [ACDV] Table 1), which
is a sum of two semi-spinor modules.

For Σ ∈ {S, S, Ŝ, Ŝ, Ŝ±, Ŝ±}, let us denote by Σ(λ) the vector space of Killing spinors
s ∈ Γ(Σ) with Killing number λ ∈ R.

Notice that if λ 6= 0 one can always normalise the metric such that λ = ±1
2

(as for
a space of constant curvature 1). Now let Σ = S or S. Multiplication by the volume
element ν = e1 · · · en ∈ C`(TM) maps Σ(λ) to Σ((−1)n+1λ). In particular, it defines
isomorphisms Σ(λ) ∼= Σ(−λ), if n is even. For odd dimensional manifolds, however, the
vector spaces Σ(λ) and Σ(−λ) have in general different dimensions.

Using Lemma 4, the following theorem can be proven as for Riemannian manifolds,
see Bär [B].

Theorem 6 Let (M̂, ĝ) be the cone over a pseudo-Riemannian spin manifold (M, g) of
signature (p, q).

(i) The restriction Γ(Ŝ) 3 s 7→ s|M ∈ Γ(S) defines isomorphisms

Ŝ(0) → S

(
1

2

)
∼= S

(
−1

2

)
,
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if s = p− q ≡ 0, 2, 4, 5 or 6 (mod 8) and

Ŝ±(0) → S
(
± ε

2

)
,

for some ε ∈ {1,−1}, if s = p− q ≡ 1, 3 or 7 (mod 8).

(ii) The restriction Γ(Ŝ) 3 s 7→ s|M ∈ Γ(S) defines isomorphisms

Ŝ(0) → S
(

1

2

)
∼= S

(
−1

2

)
,

if n = dim M is even and

Ŝ±(0) → S
(
± ε

2

)
,

for some ε ∈ {1,−1}, if n is odd.

6 Riemannian manifolds with many Killing spinors

Theorem 7 Let (M, g) be a simply connected Riemannian spin manifold.

(i) Assume that one of the following conditions is satisfied:

a) (M, g) is complete and not of constant curvature 1.

b) The holonomy algebra of M is different from so(n), where n = dim M .

Then the holonomy algebra ĥ of the cone (M̂, ĝ) is irreducible.

(ii) If ĥ is irreducible, then (M̂, ĝ) admits a parallel spinor if and only if ĥ belongs to the
following list: su(m) (m ≥ 3, k = 2), sp(m) (m ≥ 2, k = m + 1), spin(7) (k = 1) or
g2 (k = 1), where k in brackets indicates the number of linearly independent parallel
complex spinors. The projection of the space of parallel complex spinors onto the
space of parallel complex semi-spinors is zero for one of the two semi-spinor bundles,
unless n + 1 6≡ 0 (mod 4).

Proof: The irreducibility of the holonomy algebra follows from Gallot’s theorem [G]
under the assumption a) and from [ACGL] Theorem 4.1 under the assumption b). The
remaining statements follow from Wang’s classification of parallel spinors on manifolds
with connected irreducible holonomy group [W] and the observation that there is no cone
with holonomy group SU(2) = Sp(1).

Theorem 8 Let (M, g) be a Riemannian spin manifold which is not of constant positive
curvature 4λ2.

(i) Then κ(M, λ) ≤ 3
8
.
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(ii) Assume that for every p ∈ M we have κ(U, λ) = 3
8

for every sufficiently small
open neighborhood U ⊂ M of p. Then either (M, g) is locally isometric to seven-
dimensional 3-Sasakian manifold or there exists a dense open subset M ′ ⊂ M such
that every point of M ′ has a neighborhood isometric to a Riemannian manifold of
the form

(I ×M1 ×M2, ds2 + cos2(s)g1 + sin2(s)g2),

where (M1, g1) is of constant curvature 1 or of dimension ≤ 1 and (M2, g2) is a
seven-dimensional 3-Sasakian manifold.

Proof: We use the correspondence between Killing spinors on M and parallel spinors on
the cone M̂ . If κ(M, λ) > 3

8
, then, according to Theorem 6, κ(M̂) > 1

2
× 3

8
= 3

16
. This

is impossible if the holonomy algebra ĥ of M̂ is irreducible, due to Theorem 7 (ii). The
maximal value κ(M̂) = 3

16
is, in fact, attained for the holonomy algebra ĥ = sp(2) (since

there is no cone with holonomy su(2)). The cone M̂ has local holonomy sp(2) if and
only if the seven-dimensional manifold M is locally 3-Sasakian. This proves (i) and (ii)
if ĥ is irreducible. In the reducible case, the claims (i) and (ii) now follow from [ACGL]
Theorem 4.1 using Corollary 3.

Recall [B] that the holonomy algebra ĥ of the cone (M̂, ĝ) over a simply connected
Riemannian manifold (M, g) belongs to the list of irreducible linear Lie algebras described
in Theorem 7 (ii) if and only if (M, g) is Einstein-Sasaki, 3-Sasakian, strictly nearly parallel
G2 or strictly nearly Kähler, respectively. We will call these geometric structures on (M, g)
Bär geometries.

Theorem 9 Let (M, g) be an n-dimensional Riemannian spin manifold which admits
a nontrivial Killing spinor with Killing constant λ ∈ R.

(i) If λ = 0, then (M, g) is locally a product M = M0 × M1 × · · · × Mr of a flat
Riemannian manifold M0 with an arbitrary number of Riemannian manifolds Mi

with irreducible holonomy group from the following list: SU(m), Sp(m), Spin(7) or
G2.

(ii) If λ 6= 0, then (M, g) has holonomy h = so(n). Moreover, if the cone M̂ is locally
irreducible, then (M, g) carries locally one of the Bär geometries and if M̂ is locally
reducible, then, on a dense open subset, (M, g) can be locally represented in the form

M = I ×M1 ×M2, g = ds2 + cos2(s)g1 + sin2(s)g2, (6.1)

where I ⊂ (0, π
2
) is an intervall and (M1, g1) and (M2, g2) are Riemannian manifolds

which either admit a nontrivial Killing spinor with Killing constant ±λ or which are
of dimension ≤ 1.

Remark: Notice that the Theorem 9 (ii) gives an inductive decomposition of a manifold
with a nontrivial Killing spinor with λ 6= 0 in terms of an arbitrary number of manifolds
(Mi, gi), which carry each one of the Bär geometries or are of dimension ≤ 1. We remark
also that a manifold (M, g) of constant curvature 1 can be locally decomposed as (6.1) with
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manifolds (M1, g1) and (M2, g2) which are either of constant curvature 1 or of dimension
≤ 1.

Proof: (i) is an immediate consequence of Wang’s classification of irreducible connected
holonomy groups preserving a non-trivial spinor [W].

In the case (ii), it follows from Bär’s classification [B] that the cone (M̂, ĝ) over (M, g)
is locally irreducible if and only if (M, g) carries locally one of the Bär geometries. We
check, in this case, that M is locally irreducible. We consider the modified covariant
derivative ∇̃X := ∇X − λγX , X ∈ TxM , on the complex spinor bundle over M , where
∇ stands for the Levi-Civita connection. Assume that M = M1 × M2 is a Riemannian
product. Then we compute the curvature of ∇̃ at x ∈ M :

R̃(X1, X2)x = λ[γX1 , γX2 ] = 2λγX1γX2 ,

for Xi ∈ TM tangent to Mi and such that ∇Xi|x = 0, i = 1, 2. This implies that the local
holonomy h̃ algebra of ∇̃ contains spin(n), because the holonomy algebra at x contains
all curvature operators R̃(X1, X2)x and the Clifford products X1X2 generate spin(n) (as
a Lie algebra). Since, by [B], h̃ can be identified with the local holonomy algebra ĥ of the
Levi-Civita connection of the cone M̂ , we can conclude that ĥ contains the subalgebra
so(n) ⊂ so(n + 1). One can easily check that this is not possible for ĥ belonging to the
list of irreducible holonomy algebras of Riemannian cones admitting a parallel spinor,
see Theorem 7 (ii). This shows that (M, g) is locally irreducible if (M̂, ĝ) is locally
irreducible. In particular, h belongs to Berger’s list of irreducible holonomy algebras,
excluding the Ricci-flat holonomies (but so far including the holonomies of irreducible
symmetric spaces). In dimension n = 7 this already implies h = so(7). In dimension
n = 6 this implies h = so(6), using that a strict nearly Kähler manifold cannot be
Kähler. In the remaining cases (M, g) is locally Sasaki-Einstein (or even 3-Sasakian).
The curvature tensor of such a manifold satisfies

R(ξ, X)Y = ξg(X, Y )−Xg(ξ, Y )

for all vector fields X, Y on M , where ξ is the Sasaki vector field. This identity immediately
implies that h = so(n), since h contains all curvature operators and their brackets.

If the cone (M̂, ĝ) is locally reducible, then it follows from [ACGL] Theorem 4.1 that
h = so(n) and that, on a dense open subset of M , (M, g) is locally isometric to (6.1).

7 Pseudo-Riemannian manifolds with Lorentzian cone,

which admit many Killing spinors

Theorem 10 Let (M, g) be spin with either a negative definite metric or a metric of
Lorentzian signature (+, . . . , +,−). If (M, g) is not of positive constant curvature 4λ2,
then κ(M, λ) ≤ 1

2
.

Proof: The spinor module SV of Spin(V ), V = TxM̂ , is either irreducible or it splits as

SV = S+
V ⊕ S−

V , S±
V = e1 ⊗ S±

E + e2 ⊗ S∓
E ,
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where S±
E are the semi-spinor modules of Spin(E) and we use the notation of Lemma 3.

As in the proof of Theorem 5, we can assume that the cone (M̂, ĝ) is indecomposable. If
the cone is Riemannian, we have κ(M, λ) ≤ 3

8
, by Theorem 8. Therefore, we can assume

that it is Lorentzian. In that case the holonomy algebra contains e = p ∧ E, by [ACGL]
Theorem 9.1. Then (SV )e = e1 ⊗ SE if SV is irreducible and (S±

V )e = e1 ⊗ S±
E otherwise.

This shows that dim Ŝ(0) = 1
2
rkŜ, which implies dim S(λ) ≤ 1

2
N , by Theorem 6.

Remark that a pseudo-Riemannian manifold (M, g) of dimension n which admits a
Killing spinor with (real) Killing number λ ∈ R \ {0} has positive scalar curvature s =
4n(n−1)λ2. If g is negative definite of scalar curvature s > 0, then the Riemannian metric
−g has negative scalar curvature −s. This allows to treat also Riemannian manifolds with
negative scalar curvature.
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