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1 Introduction

In this paper we address problem of construction permutation branes and topo-

logical defects in the Liouville field theory. Topological defects are defined as

operators commuting with left and right copies of chiral algebra. In the last

years they were studied extensively in RCFT see, e.g. [12,13,15,20,28,29,35,39]

and free bosonic theory [1,2,16]. There has been also progress in the Lagrangian

description of the defects [17, 36, 38].

In this paper we turn to construction of topological defects and closely related

to them permutation branes in the Liouville field theory. A discussion of the

topological defects in the Liouville theory can be found in [35]. It was conjectured

there that defects in the Liouville theory should be labelled as FZZ and ZZ

branes [11, 44] by the primaries and obey the corresponding fusion rules. Our

findings here confirm this conjecture.

Main tool used in this paper is generalizations of the Cardy-Lewellen cluster

condition to permutation branes and defects. In the past years Cardy-Lewellen

sewing constraint proved to be very useful to find branes in non-rational models

[11, 19, 22, 30, 41, 44]. Here we show that for construction of defects in non-

rational models it can serve as well. The paper is organized as follows. In

section 2 permutation branes in RCFT are reviewed. We collected there necessary

formulae for different annulus partition functions involving permutation branes.

We also elaborate here Cardy-Lewellen cluster conditions for permutation branes.

In section 3 defects in RCFT are reviewed. Here again a special attention to

Cardy-Lewellen cluster condition for defects is paid. In section 4 we remind the

necessary stuff on Liouville field theory. In section 5 permutation branes for

Liouville theory are presented. In section 6 defects for Liouville theory are found.

2 Permutation branes in RCFT

Let us remind some basic facts on permutation branes in RCFT [14, 18, 32, 37].

Consider N -fold tensor product of a CFT with chiral symmetry algebra WL(WR).

On such a product one can consider brane with gluing automorphism given

by a cycle (1 . . .N), or by other words, satisfying following equations:

W
(r)
L (z) = W

(r+1)
R (z̄)|z=z̄, r = 1 . . . N − 1 (1)

W
(N)
L (z) = W

(1)
R (z̄)|z=z̄
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When single copy CFT is a rational CFT with diagonal partition function

Z =
∑

i,̄i

Zi,̄iχi(q)χ̄ī(q̄), Zi,̄i = δi,i∗ , q = exp(2iπτ) (2)

where i∗ is conjugate representation in the sense N1
ii∗=1, permutation branes were

constructed in [32]. It is shown in [32] that for such a CFT permutation branes

are labeled by primaries of single copy and have boundary states:

|a〉P =
∑

j

Saj

(S0j)N/2
|j, j〉〉P (3)

where Sij is the matrix of the modular transformations of single copy:

χi(q̃) =
∑

j

Sijχj(q), q̃ = exp(−2iπ/τ) (4)

and |j, j〉〉P permuted Ishibashi state satisfying (1). It is known that boundary

states should satisfy two criteria: Cardy condition [6], requiring the annulus

partition functions to be expressed as sum of some characters with non-negative

integer numbers, and Cardy-Lewellen cluster condition [7,23]. It is shown in [32]

that states (3) indeed satisfy the Cardy condition. In case of permutation branes

check of the Cardy condition involves calculation of two kinds of annulus partition

functions:

1) partition functions between two permutation branes,

2) partition function between permutation branes and factorized branes, i.e.

branes which can be written as product of Cardy branes for each constituent.

For further use we write down these partition functions in case of two-fold

product N = 2. Generalization to generic N is straightforward and corresponding

formulae can be found in [32]. For two-fold product permutation boundary state

(3) satisfies relations:

L(1)
n − L̄

(2)
−n = 0, W (1)

n − (−1)sW W̄
(2)
−n = 0 (5)

L(2)
n − L̄

(1)
−n = 0, W (2)

n − (−1)sW W̄
(1)
−n = 0

where sW is the spin of W , and takes form:

|a〉P =
∑

j

Saj

S0j
|j, j〉〉P =

∑

j

Saj

S0j

∑

N,M

|j, N〉0⊗U |j, N〉1⊗|j,M〉1⊗U |j,M〉0 . (6)

where 0 and 1 labels first and second copy of the CFT in question, sums over N

and M run over orthonormal basis of the highest weight representation Rj, and
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operator U in front of right-movers is chiral CPT operator as usual. Using this

explicit expression, the Verlinde formula

Nk
ij =

SilSjlS
∗
kl

S0l
(7)

and expression for the Cardy state:

|i〉 =
∑

j

Sij
√

S0j

∑

N

|j, N〉 ⊗ U |j, N〉 (8)

it is easy to compute that partition function between two permutation branes

labeled by a1 and a2 is :

Za1,a2
=
∑

r,k,l

Na2

a1rN
r
klχk(q)χl(q) (9)

and partition function between permutation brane labeled by a and product

of two Cardy states labeled by a1 and a2 respectively is ( for details see [32,37]):

Za,(a0a1) =
∑

k,r

N r
a0a1

Na
rkχk(q

1/2) . (10)

Now we turn to the Cardy-Lewellen cluster condition [3,7,23,31,33,34]. Given

that cluster condition for permutation branes very little discussed in the litera-

ture, we will derive it here for general case of the not necessarily diagonal RCFT

with the arbitrary fusion coefficients Nk
ij . However to keep the things still enough

simple we assume that we have no bulk multiplicities : Zīi = 0, 1.

Let us as warm-up exercise to remind cluster condition for usual branes. Con-

sider a boundary state

|α〉 =
∑

i

Bi
α|i〉〉 (11)

where i runs over primaries, and |i〉〉 are Ishibashi states. Recall the relation

between coefficients Bi
α and one-point functions

〈Φ(īi)(z, z̄)〉α =
U i

αδi∗ ī

(z − z̄)2∆i
(12)

in the presence of the boundary condition α:

U i
α =

Bi
α

B0
α

eiπ∆i (13)
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It is convenient at this point to introduce full plane chiral decomposition of phys-

ical fields [26]:

Φ(īi)(z, z̄) =
∑

j,j̄,k,k̄,a,ā

C
(kk̄)

(īi)(jj̄)aā

(

φk
ija(z) ⊗ φk̄

īj̄ā(z̄)
)

(14)

where φk
ija are intertwining operators Rj → Rk, and a = 1 . . . Nk

ij. Consider

now two-point function 〈Φi(z1, z̄1)Φj(z2, z̄2)〉α in the presence of boundary in two

pictures. In the first picture one applies first bulk OPE

Φ(īi)(z1, z̄1)Φ(jj̄)(z2, z̄2) =
∑

k,k̄,a,ā

C
(kk̄)

(īi)(jj̄)aā

(z1 − z2)∆i+∆j−∆k(z̄1 − z̄2)
∆ī+∆j̄−∆k̄

Φ(kk̄)(z2, z̄2)+. . .

(15)

and then evaluates one-point function resulting in:

〈Φ(īi)(z1, z̄1)Φ(jj̄)(z2, z̄2)〉α =
∑

k,a,ā

C
(k,k∗)

(īi)(jj̄)aā
Uk

αT ijīj̄
kaā (16)

where T ijīj̄
kaā are conformal blocks, which using φk

ija intertwining operators can be

expressed as:

T ijīj̄
kaā = 〈0|φ1

ii∗(z1)φ
i∗

jk∗a(z2)φ
k∗

īj̄ā(z̄1)φ
j̄
j̄1

(z̄2)|0〉 (17)

In the second picture one first applies bulk-boundary OPE [3]

Φ(īi)(z, z̄) =
∑

m,t,s

R
(īi),t
m,s,(α)

(z − z̄)∆i+∆ī−∆m
ψαα,s

m + . . . (18)

where t = 1, . . . Nm
īi , and index s counts different boundary fields and runs s =

1, . . . nm
αα, where nm

αα coefficient of character χm in the annulus partition function

between brane α with itself, and then evaluates two-point function of boundary

fields resulting in

〈Φ(īi)(z1, z̄1)Φ(jj̄)(z2, z̄2)〉α =
∑

m,t1,t2,s1,s2

R
(īi),t1
m,s1(α)R

(jj̄),t2
m∗,s2(α)T

īijj̄
mt1t2c

α,s1,s2

m (19)

where

〈ψαα,s1

m (x1)ψ
αα,s2

n (x2)〉 =
cα,s1,s2

m δmn∗

|x2 − x1|2∆m
(20)

and

T īijj̄
mt1t2 = 〈0|φ1

ii∗(z1)φ
i∗

īm∗t1
(z̄1)φ

m∗

jj̄t2
(z2)φ

j̄
j̄1

(z̄2)|0〉 (21)
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Using braiding relations between chiral blocks

T ijīj̄
kaā =

∑

m

B
(+)
k∗m∗

[

j ī

i∗ j̄

]t1t2

aā

T īijj̄
mt1t2 (22)

one derives:

∑

k,a,ā

C
(k,k∗)

(īi)(jj̄)aā
Uk

αB
(+)
k∗m∗

[

j ī

i∗ j̄

]t1t2

aā

=
∑

s1,s2

R
(īi),t1
m,s1,(α)R

(jj̄),t2
m∗,s2,(α)c

α,s1,s2

m (23)

Putting m = 0 one obtains:

∑

k,a,ā

C
(k,k∗)
(ii∗)(jj∗)aāU

k
αB

(+)
k∗0

[

j i∗

i∗ j∗

]11

aā

= U i
(α)U

j
(α) (24)

where we took into account that Rīi
0(α) = U i

αδi∗ ī. We should note that here we

used reflection amplitudes as they defined in [3]. The traditionally used reflection

amplitudes [7, 23] differ by phase

U i
(α) = Ũ i

(α)e
iπ∆i (25)

They have the advantage, that related to boundary states coefficients without

phase factor:

Ũ i
(α) =

Bi
α

B0
α

(26)

Recalling relation between braiding and fusion matrices:

B(+)
pq

[

i j

k l

]cd

ab

= eiπ(∆k+∆l−∆p−∆q)Fpq

[

i l

k j

]cd

ab

(27)

and symmetry properties of fusion matrix

Fpq

[

k j

i l

]cd

ab

= Fp∗q∗

[

l i∗

j∗ k

]cd

ab

(28)

we receive that Ũ i
(α) obey the equation:

∑

k,a,ā

C
(k,k∗)
(ii∗)(jj∗)aāŨ

k
αFk0

[

i∗ i

j j

]11

aā

= Ũ i
(α)Ũ

j
(α) (29)

Now we apply this procedure to permutation branes. For simplicity we again

consider the case of two-fold product. The primary fields of two-fold product are
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products of primary fields Φ
(1)
i Φ

(2)
j . The form of the gluing relations (5) implies

that for permutation branes two-point functions have the form:

〈Φ(1)

(īi)
(z1)Φ

(2)

(jj̄)
(z2)〉P =

U i,̄i
(P)δij̄∗δīj∗

(z1 − z̄2)2∆i(z̄1 − z2)2∆ī

(30)

To receive cluster condition for permutation branes one should consider four-point

functions 〈Φ(1)

(i1 ī1)
(z1)Φ

(2)

(i2 ī2)
(z2)Φ

(1)

(j1 j̄1)
(z3)Φ

(2)

(j2 j̄2)
(z4)〉P . In the first picture one has:

〈Φ(1)

(i1 ī1)
(z1)Φ

(2)

(i2 ī2)
(z2)Φ

(1)

(j1 j̄1)
(z3)Φ

(2)

(j2 j̄2)
(z4)〉P = (31)

∑

k,k̄,a,ā,c,c̄

C
(k,k̄)

(i1 ī1)(j1 j̄1)aā
C

(k̄∗,k∗)

(i2 ī2)(j2 j̄2)cc̄
Uk,k̄

(P)M
i1i2j1j2ī1 ī2j̄1j̄2
kk̄aācc̄

where Mi1i2j1j2ī1ī2 j̄1j̄2
kk̄aācc̄

have the same form as T ijīj̄
k but with every field being

product of two fields for each copy. Remembering gluing conditions (5) we note

that actually left fields of the first copy related only to right fields of the second

copy, and right field of the first copy to the left field of the second. Therefore

Mi1i2j1j2ī1 ī2j̄1 j̄2
kk̄aācc̄

factorize and have the form:

Mi1i2j1j2ī1ī2 j̄1j̄2
kk̄aācc̄

= (32)

〈0|φ1
i1i∗

1

(z1)φ
i∗
1

j1k∗a(z3)φ
k∗

ī2j̄2c̄(z̄2)φ
j̄2
j̄21

(z̄4)|0〉 ×
〈0|φ1

i2i∗
2

(z2)φ
i∗
2

j2k̄c
(z4)φ

k̄
ī1j̄1ā(z̄1)φ

j̄1
j̄11

(z̄3)|0〉 = T i1j1ī2 j̄2
kac̄ T i2j2ī1 j̄1

k̄∗cā

Boundary OPE now looks:

Φ
(1)

(i1 ī1)
(z1)Φ

(2)

(i2 ī2)
(z2) =

∑

mn,t1,t2,s

R
(i1 ī1),(i2 ī2),t1,t2
mn,s

(z1 − z̄2)
∆i1

+∆ī2
−∆m(z̄1 − z2)

∆ī1
+∆i2

−∆n
ψs

mn + . . .

(33)

where t1 = 1 . . . Nm
i1ī2

, t2 = 1 . . . Nn
ī1i2

, and s counts different boundary fields,

and its range is given by the corresponding coefficient in the annulus partition

function of the permutation brane with itself. Using (33) in the second picture

one has:

〈Φ(1)

(i1 ī1)
(z1)Φ

(2)

(i2 ī2)
(z2)Φ

(1)

(j1 j̄1)
(z3)Φ

(2)

(j2 j̄2)
(z4)〉P = (34)

∑

m,n,t1,t2,t3,t4,s1,s2

R(i1 ī1),(i2 ī2),t1,t2
mn,s1

R
(j1 j̄1),(j2 j̄2),t3,t4
m∗n∗,s2

cs1,s2

mn Mi1i2 ī1 ī2j1j2j̄1 j̄2
mnt1t2t3t4

where

〈ψs
mn(x1)ψ

s
pt(x2)〉 =

cs1,s2

mn δmp∗δnt∗

|x1 − x2|2(∆m+∆n)
(35)
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and

Mi1i2ī1 ī2j1j2j̄1j̄2
mnt1t2t3t4 = (36)

〈0|φ1
i1i∗

1

(z1)φ
i∗
1

ī2m∗t1
(z̄2)φ

m∗

j1j̄2t3
(z3)φ

j̄2
j̄21

(z̄4)|0〉 ×
〈0|φ1

i2i∗
2

(z2)φ
i∗
2

ī1n∗t2
(z̄1)φ

n∗

j2j̄1t4
(z4)φ

j̄1
j̄11

(z̄3)|0〉 = T i1ī2j1j̄2
mt1t3 T i2ī1j2j̄1

nt2t4

Using (22) we end up with:

∑

k,k̄,a,ā,c,c̄

C
(k,k̄)

(i1 ī1)(j1 j̄1)aā
C

(k̄∗,k∗)

(i2ī2)(j2 j̄2)cc̄
B

(+)
k∗m∗

[

j1 ī2

i∗1 j̄2

]t1t3

ac̄

B
(+)

k̄n∗

[

j2 ī1

i∗2 j̄1

]t2t4

cā

Uk,k̄
(P) = (37)

∑

s1,s2

R(i1 ī1),(i2 ī2),t1,t2
mn,s1

R
(j1 j̄1),(j2j̄2),t3,t4
m∗n∗,s2

cs1,s2

mn

Putting m = n = 0, and taking into account that

R
(i1 ī1),(i2 ī2),t1,t2
00,s = U i1 ,̄i1

(P) δi∗1 ī2δi2 ī1
∗ (38)

one obtains:

∑

k,k̄,a,ā,c,c̄

C
(k,k̄)

(i1 ī1)(j1 j̄1)aā
C

(k̄∗,k∗)

(̄i∗
1
i∗
1
)(j̄∗

1
j∗
1
)cc̄
B

(+)
k∗0

[

j1 i∗1
i∗1 j∗1

]11

ac̄

B
(+)

k̄0

[

j̄∗1 ī1

ī1 j̄1

]11

cā

Uk,k̄
(P) = (39)

U i1 ,̄i1
(P) U

j1,j̄1
(P)

Again defining new amplitudes

Ũ i1 ,̄i1
(P) = U i1 ,̄i1

(P) e
iπ(∆i+∆ī) (40)

and using (27) and (28) we derive:

∑

k,k̄,a,ā,c,c̄

C
(k,k̄)

(i1 ī1)(j1 j̄1)aā
C

(k̄∗,k∗)

(̄i∗
1
i∗
1
)(j̄∗

1
j∗
1
)cc̄
Fk0

[

i∗1 i1

j∗1 j1

]11

ac̄

Fk̄∗0

[

ī1 ī∗1
j̄∗1 j̄∗1

]11

cā

Ũk,k̄
(P) = (41)

Ũ i1 ,̄i1
(P) Ũ

j1,j̄1
(P)

For diagonal model i1 = ī∗1, j1 = j̄∗1 , k̄ = k∗ without multiplicities Nk
ij = 1, (41)

simplifies to

∑

k

(Ck
ij)

2Ũk
(P)

(

Fk0

[

i∗ i

j j

])2

= Ũ i
(P)Ũ

j
(P) (42)

8



were we denoted Ck
ij ≡ C

(kk∗)
(ii∗)(jj∗) and Ũ i

(P) ≡ Ũ i,i∗

(P) .

Note that for diagonal models permutation branes reflection amplitudes de-

pend only on single copy primaries.

For this case permutation branes cluster condition was discussed in [32].

It is straightforward to generalize (41) to generalN -fold product. Here we only

write the corresponding formula for diagonal models (2) without multiplicities:

∑

k

(Ck
ij)

N Ũk
(P)

(

Fk0

[

i∗ i

j j

])N

= Ũ i
(P)Ũ

j
(P) (43)

It is shown in [32] that (3) satisfies (43).

3 Topological defects in RCFT

Recall basic facts on topological defects in RCFT [15,20,28,29]. The construction

of defects lines is analogous to that of boundary condition. Following [28] we

define defect lines as operators X, satisfying relations:

[Ln, X] = [L̄n, X] = 0 (44)

[Wn, X] = [W̄n, X] = 0 (45)

As in the case of the boundary conditions, there are also consistency condi-

tions, analogous to the Cardy and Cardy-Lewellen constraints, which must be

satisfied by the operator X. For simplicity we shall write all the formulae for

diagonal models (2). To formulate these conditions, one first note that as conse-

quence of (44) and (45) X is a sum of projectors

X =
∑

i,̄i

D(i,̄i)P (i,̄i) (46)

where

P (i,̄i) =
∑

N,N̄

(|i, N〉 ⊗ |̄i, N̄〉)(〈i, N | ⊗ 〈̄i, N̄ |) (47)

An analogue of the Cardy condition for defects requires that partition function

with insertion of a pair defects after modular transformation can be expressed as

sum of characters with non-negative integers. It is found in [28] that for diagonal

models one can solve this condition taking for each primary a

D(i,̄i)
a =

Sai

S0i

(48)
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for which one has:

Zab = Tr
(

X†
aXbq̃

L0−
c
24 ˜̄q

L̄0−
c
24

)

=
∑

k,īi

Na
bkN

k
īiχi(q)χī(q̄) (49)

Topological defects can act on boundary states producing new boundary

states. The action of defects (48) on Cardy states is easily obtained using the

Verlinde formula:

Xa|b〉 =
∑

d

Nd
ab|d〉 (50)

Topological defects can be fused. For defects (48) again using the Verlinde formula

one derives:

XaXb =
∑

c

N c
abXc (51)

Now we turn to the cluster condition for defects [29]. Here we should consider

two-point functions

〈Φi∗(z1, z̄1)XΦi(z2, z̄2)〉 =
D(i,̄i)

(z1 − z2)2∆i(z̄1 − z̄2)2∆ī

(52)

Di =
D(i,̄i)

D0
(53)

Using (14) one can write for the following four-point function with the defects

insertion in the first picture:

〈Φj∗(z1, z̄1)Φi∗(z2, z̄2)XΦi(z3, z̄3)Φj(z4, z̄4)X
†〉 = (54)

∑

k

C1
j∗jC

k
ij,aāC

j
i∗k,cc̄D

(k,k̄)F j∗i∗ij
kac F j̄∗ī∗ īj̄

k̄āc̄

where

F j∗i∗ij
kac = 〈0|φ1

j∗j(z1)φ
j
i∗kc(z2)φ

k
ija(z3)φ

j
j1(z4)|0〉 (55)

Here we denoted Ck
ij ≡ C

(kk∗)
(ii∗)(jj∗) as before.

Using relations:

Cj
i∗k,cc̄ = Cj

ki∗,cc̄ (56)

and

Cj
ki∗,cc̄C

1
j∗j = Ck∗

i∗j∗,cc̄C
1
k∗k (57)

we can write for the second line of (54)

∑

k

Ck
ij,aāC

k∗

i∗j∗,cc̄C
1
k∗kD

(k,k̄)F j∗i∗ij
kac F j̄∗ī∗ īj̄

k̄āc̄
(58)

10



In the second picture one has:

〈Φi∗(z2, z̄2)XΦi(z3, z̄3)Φj(z4, z̄4)X
†Φj∗(z1, z̄1)〉 = (59)

C1
i∗iC

1
j∗jD

(i,̄i)D(j,j̄)F i∗ijj∗

0 F ī∗īj̄j̄∗

0 + . . .

where

F i∗ijj∗

pmn = 〈0|φ1
i∗i(z2)φ

i
ipm(z3)φ

p
jj∗n(z4)φ

j∗

j∗1(z1)|0〉 (60)

To relate (54) with (59) one should use braiding relations for chiral blocks to

move j∗ to the very right. Using (27) and the following property of the braiding

matrix

B
(+)
ij

[

i∗ j∗

0 k

]1a

1a

= (±)eiπ(∆k−∆i−∆j) (61)

one obtains product of fusion matrices :

F j∗i∗ij
kac F j̄∗ī∗ īj̄

k̄āc̄
= Fk0

[

j∗ j

i i

]11

ac

Fk̄0

[

j̄∗ j̄

ī ī

]11

āc̄

F i∗ijj∗

0 F ī∗ īj̄j̄∗

0 + . . . (62)

Collecting all we obtain

∑

k

(C1
k∗kD

(kk̄))Ck
ij,aāC

k∗

i∗j∗,cc̄Fk0

[

j∗ j

i i

]11

ac

Fk̄0

[

j̄∗ j̄

ī ī

]11

āc̄

= (63)

(C1
i∗iD

(īi))(C1
(j∗jD

(jj̄))

Comparing formulae (5) and (44), (6) and (46), (48), (41) and (63) one reveals

deep connection between permutation branes on two-fold product form one side,

and defects on other side, known as folding trick [1, 2, 27, 43]. We see that men-

tioned relations for permutation branes become corresponding relations for defect

after performing two-steps operation (folding) on the second copy of the CFT in

question: left-right exchange and then hermitian conjugation, turning bound-

ary state to operator. Comparison of (41) and (63) shows that the hermitian

conjugation requires inclusion of the two-point functions C1
i∗i.

4 Liouville theory

Let us review basic facts on the Liouville field theory (see e.g. [42]). Liouville

field theory is defined on a two-dimensional surface with metric gab by the local

11



Lagrangian density

L =
1

4π
gab∂aϕ∂bϕ+ µe2bϕ +

Q

4π
Rϕ (64)

where R is associated curvature. This theory is conformal invariant if the coupling

constant b is related with the background charge Q as

Q = b+
1

b
(65)

The symmetry algebra of this conformal field theory is the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
cL
12

(n3 − n)δn,−m (66)

with central charge

cL = 1 + 6Q2 (67)

Primary fields Vα in this theory, which are associated with exponential fields

e2αϕ, have conformal dimensions

∆α = α(Q− α) (68)

The fields Vα and VQ−α have the same conformal dimensions and represent

the same primary field, i.e. they are proportional to each other:

Vα = S(α)VQ−α (69)

with the function

S(α) =
(πµγ(b2))

b−1(Q−2α)

b2
Γ(1 − b(Q− 2α))Γ(−b−1(Q− 2α))

Γ(b(Q− 2α))Γ(1 + b−1(Q− 2α))
(70)

The spectrum of the Liouville theory is believed [4,5,8] to be of the following

form

H =

∫ ∞

0

dp RQ
2

+iP ⊗RQ
2

+iP (71)

where Rα is the highest weight representation with respect to Virasoro alegbra.

Characters of the representations RQ

2
+iP are

χP (τ) =
qP 2

η(τ)
(72)

where

η(τ) = q1/24
∞
∏

n=1

(1 − qn) (73)

12



Modular transformation of (72) is well-known:

χP (−1

τ
) =

√
2

∫

χP ′(τ)e4iπPP ′

dP ′ (74)

Degenerate representations appear at αm,n = 1−m
2b

+ 1−n
2
b and have conformal

dimensions [21]

∆m,n = Q2/4 − (m/b+ nb)2/4 (75)

where m,n are positive integers. At general b there is only one null-vector at the

level mn. Hence the degenerate character reads:

χm,n(τ) =
q−(m/b+nb)2 − q−(m/b−nb)2

η(τ)
(76)

Modular transformation of (76) is worked out in [44]

χm,n(−1

τ
) = 2

√
2

∫

χP (τ) sinh(2πmP/b) sinh(2πnbP )dP (77)

For future use we write here the reflection function for α = Q
2

+ iP , denoting

it briefly as S(P ):

S(P ) = −[πµγ(b2)]−i2P/b Γ(1 + 2ibP )Γ(1 + 2iP
b

)

Γ(1 − 2ibP )Γ(1 − 2iP
b

)
(78)

Two-point functions of Liouvulle theory are given by reflection function (70):

〈Vα(z1, z̄1)Vα(z2, z̄2)〉 =
S(α)

(z1 − z2)2∆α(z̄1 − z̄2)2∆α
(79)

Three-point functions of Liouville theory C(α1, α2, α3) are computed in [9, 45],

were so called DOZZ formula for them was suggested. We don’t need in this

paper the full DOZZ formula. But we do need C(α1, α2, α3) for the values of αi

satisfying relation

α1 + α2 + α3 = Q− nb (80)

For this case three-point functions are given by the screening integrals computed

in [10]

In(α1, α2, α3) =
(

b4γ(b2)πµ
)n

∏n
j=1 γ(−jb2)

∏n−1
k=0[γ(2α1b+ kb2)γ(2α2b+ kb2)γ(2α3b+ kb2)]

(81)

where γ(x) = Γ(x)
Γ(1−x)

.

Structure constants Cα3

α1,α2
are related to three-point functions as

Cα3

α1,α2
= C(α1, α2, Q− α3) (82)
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5 Permutation branes in Liouville theory

In this section we turn to construction of permutation branes on N -fold product

of the Liouville field theories. As explained in section 1 they satisfy following

gluing conditions:

L(r)
n − L̄

(r)
−n = 0, r = 1 . . . N − 1, (83)

L(N)
n − L̄

(1)
−n = 0.

Remembering that Liouville field theory is diagonal theory (71) we conclude that

reflection amplitudes as well as Ishibashi states depend on single copy primaries

P . To compute reflection amplitudes U
(N)
P (α = Q

2
+ iP ) for permutation branes

on N -fold product of Liouville fields

〈V (1)
Q
2

+iP
(z1, z̄1) · · ·V (N)

Q
2

+iP
(zN , z̄N)〉P =

U
(N)
P (α)

∏N
1 (zr − z̄r+1)(Q2/2+2P 2)

(84)

where zN+1 ≡ z1, we will use the same trick as in [11, 40, 44] and apply sewing

constraints to 2N -point function

〈V (1)
−b/2(z1, z̄1) · · ·V

(N)
−b/2(zN , z̄N )V

(1)
Q

2
+iP

(zN+1, z̄N+1) · · ·V (N)
Q

2
+iP

(z2N , z̄2N)〉P (85)

with degenerate representation −b/2. Recalling fusion rule with degenerate field

V−b/2Vα ∼ C
α−b/2
−b/2,αVα−b/2 + C

α+b/2
−b/2,αVα+b/2 (86)

and that Liouville theory is diagonal theory with self-conjugate primaries we can

apply to this situation equation (43) with i = −b/2, j = α = Q
2

+ iP , k = α±b/2:

U
(N)
P (α)U

(N)
P (−b/2) = (87)

(

C
α−b/2
−b/2,αFα−b/2,0

[

−b/2 −b/2
α α

])N

U
(N)
P (α− b/2)

+

(

C
α+b/2
−b/2,αFα+b/2,0

[

−b/2 −b/2
α α

])N

U
(N)
P (α + b/2)

The necessary three-point functions can be computed using (81) and (82)

C
α−b/2
−b/2,α = C(−b/2, α,Q− α + b/2) = 1 (88)

C
α+b/2
−b/2,α = C(α,−b/2, Q− α− b/2) = b4πµγ(b2)

Γ(2αb− b2 − 1)Γ(1 − 2αb)

Γ(2 + b2 − 2αb)Γ(2αb)
(89)
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The necessary elements of the fusion matrix are computed in [11, 40, 44] using

explicit expression of the conformal blocks through hypergeometric functions.

We will write down here final results:

Fα−b/2,0

[

−b/2 −b/2
α α

]

=
Γ(2αb− b2)Γ(−1 − 2b2)

Γ(2αb− 2b2 − 1)Γ(−b2) (90)

Fα+b/2,0

[

−b/2 −b/2
α α

]

=
Γ(2 + b2 − 2αb)Γ(−1 − 2b2)

Γ(1 − 2αb)Γ(−b2) (91)

At this point we can continue in two different ways. It is shown in [11,44] that

Liouville theory possesses two kinds of boundary states, discrete and continuous

families. For permutation branes and defects one expects the same picture. To

discover continuous family one treats U
(N)
P (−b/2) as a constant A depending on

boundary condition. Doing this and putting (88), (89), (90) and (91) in (87) one

receives the following linear equation:

AU
(N)
P (α) =

(

Γ(−1 − 2b2)Γ(2αb− b2)

Γ(−b2)Γ(2αb− 2b2 − 1)

)N

U
(N)
P (α− b/2) + (92)

(

πµγ(b2)b4Γ(−1 − 2b2)Γ(2αb− b2 − 1)

Γ(−b2)Γ(2αb)

)N

U
(N)
P (α + b/2)

Using the identity

Γ(1 + z) = zΓ(z) (93)

it is easy to show that (92) can be solved by:

U
(N)
P s (α) = 21/2

[

1

23/4πb
(πµγ(b2))(Q−2α)/2bΓ(1 − b(Q− 2α))Γ(−b−1(Q− 2α))

]N

cosh(2πs(2α−Q))

(94)

where

2 cosh 2πbs =
A

b2N

(

Γ(−b2)
Γ(−1 − 2b2)

)N
1

(πµγ(b2))N/2
(95)

Putting α = Q
2

+ iP we get

U
(N)
P s (P ) = 21/2

(

[πµγ(b2)]−iP/bΓ(1 + 2ibP )Γ(1 + 2iP
b

)

23/4(2iπP )

)N

cos(4Pπs) (96)

Let us make the following comments on (96).
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1. Putting N = 1 we surely recover FZZ branes1 [11]:

U
(1)
P s(P ) ≡ U (FZZ)

s (P ) =
2−1/4[πµγ(b2)]−iP/bΓ(1 + 2ibP )Γ(1 + 2iP

b
)

2iπP
cos(4Pπs)

(97)

2. It is very interesting to note that (96) has similar structure as corresponding

solution (3) in the case of rational CFT, in the sense that both have the

form Saj(f(j))N , where Saj is the matrix of the modular transformation of

the single copy, and f(j) is the function which appears in the expression

for single copy boundary states.

3. From the expression (84) one concludes that U
(N)
P (P ) should satisfy

U
(N)
P s (P ) = (S(P ))NU

(N)
P s (−P ) (98)

Solution (96) obviously satisfies (98).

To obtain discrete family we will treat U
(N)
P (−b/2) as it stands, and again

substituting in (87) values of structure constants and elements of fusion matrix

(88), (89), (90) and (91), we derive the following non-linear equation:

U
(N)
P (α)U

(N)
P (−b/2) =

(

Γ(−1 − 2b2)Γ(2αb− b2)

Γ(−b2)Γ(2αb− 2b2 − 1)

)N

U
(N)
P (α− b/2) +(99)

(

πµb4γ(b2)Γ(−1 − 2b2)Γ(2αb− b2 − 1)

Γ(−b2)Γ(2αb)

)N

U
(N)
P (α + b/2)

Equation (99) admits the following two-parameters solution:

U
(N)
P m,n(α) =

(

[πµγ(b2)]−α/bΓ(1 − b(Q− 2α))Γ(−b−1(Q− 2α))

Γ(1 − bQ)Γ(−b−1Q)

)N

fm,n(α)

(100)

where

fm,n(α) =
sin(πmb−1(2α−Q)) sin(πnb(2α−Q))

sin(πmb−1Q) sin(πnbQ)
(101)

and satisfies equation

fm,n(α)fm,n(−b/2) = fm,n(α− b/2) + fm,n(α + b/2) (102)

Putting α = Q
2

+ iP we get

1To compare with [11] we changed here slightly normalization, and redefined parameter s

there as 2s here.
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U
(N)
P m,n(P ) =

(

[πµγ(b2)]−Q/2b[πµγ(b2)]−iP/bΓ(1 + 2iP b)Γ(1 + 2iP/b)Q

Γ(1 − bQ)Γ(1 − b−1Q)(−2iP )

)N

fm,n(P )

(103)

where

fm,n(P ) =
sinh(2πmPb−1) sinh(2πnbP )

sin(πmb−1Q) sin(πnbQ)
(104)

To construct boundary states one should solve additionally the equation (26).

The solution is easily seen to be

Ψ
(N)
P m,n(P ) = 23/2

(

[πµγ(b2)]−iP/bΓ(1 + 2iP b)Γ(1 + 2iP/b)

23/4(2iπP )

)N

sinh(2πmPb−1) sinh(2πnbP )

(105)

U
(N)
P m,n(P ) =

Ψ
(N)
P m,n(P )

Ψ
(N)
P m,n(iQ

2
)

(106)

For solution (105) we can make similar comments as for solution (96). For

N = 1 we recover ZZ branes:

Ψ
(1)
P m,n(P ) ≡ Ψ(ZZ)

m,n (P ) = (107)

23/4[πµγ(b2)]−iP/bΓ(1 + 2iP b)Γ(1 + 2iP/b)

2iπP
sinh(2πmPb−1) sinh(2πnbP )

The solution (105) has the same structure as (3) in the same sense as before ,

and satisfies the reflection constraint (98).

Having reflection amplitudes (96) and (105) one can write boundary states

|s〉(N)
P =

∫

U
(N)
P s (P )|P 〉〉(N)

P dP (108)

|m,n〉(N)
P =

∫

Ψ
(N)
P m,n(P )|P 〉〉(N)

P dP (109)

where |P 〉〉(N)
P are Ishibashi states satisfying (83). For N = 1 we identify

|s〉(1)P ≡ |s〉(FZZ) =

∫

U (FZZ)
s (P )|P 〉〉dP (110)

|m,n〉(1)P ≡ |m,n〉(ZZ) =

∫

Ψ(ZZ)
m,n (P )|P 〉〉dP (111)

where |P 〉〉 are the Ishibashi states satisfying Ln + L̄−n = 0.
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Let us test the solutions (108) and (109) computing the annulus partition

function between permutation branes and products of ZZ branes. For simplicity

we restrict ourselves to the case of permutation branes on two-fold productN = 2.

The partition function between permutation brane labelled by s and product of

two ZZ branes labelled by (m1, n1) and (m2, n2) respectively is

Zs,(m1,n1),(m2,n2) =

∫

U
(2)
P s(−P )ΨZZ

m1,n1
(P )Ψ(ZZ)

m2,n2
(P )(χP (q̃))2dP = (112)

∫

P

21/2 cos(4Pπs) sinh(2πm1bP ) sinh(2πn1P/b) sinh(2πm2bP ) sinh(2πn2P/b)

(sinh(2bP ) sinh(2P/b))2
χP (q̃2)dP

To obtain (112) we used the Γ-function identity

Γ(1 + ix)Γ(1 − ix) =
πx

sinh(πx)
(113)

and the following property of the permutation Ishibashi states

〈〈Q1|〈〈Q2|(q̃1/2)H |P 〉〉(2)P = χP (q̃2)δ(P −Q1)δ(P −Q2) (114)

Using identities

sinh(2πnbP ) sinh(2πn′bP ) =

min(n,n′)−1
∑

l=0

sinh(2πbP ) sinh(2πb(n + n′ − 2l − 1)P )

(115)

and
sinh(2πnbP )

sinh(2πbP )
=

n−1
∑

l=1−n,2

exp(2πlbP ) (116)

and performing modular transformation (74) we obtain:

Z(m1,n1),(m2,n2) = (117)

min(n1,n2)−1
∑

l1=0

min(m1,m2)−1
∑

k1=0

(n1+n2−2l1−1)−1
∑

l=1−(n1+n2−2l1−1),2

(m1+m2−2k1−1)−1
∑

k=1−(m1+m2−2k1−1),2

χs+i(k/b+lb)/2(q
1/2)

in agreement with (10). Again using (113) and (114) for the partition function

between permutation brane labeled by (m,n) and product of two ZZ branes

labeled by (m1, n1) and (m2, n2) one obtains:

Z(m,n);(m1,n1),(m2,n2) =

∫

Ψ
(2)
P m,n(−P )Ψ(ZZ)

m1,n1
(P )Ψ(ZZ)

m2,n2
(P )χP (q̃2)dP = (118)

∫

P

23/2 sinh(2πmbP ) sinh(2πnP/b) sinh(2πm1bP ) sinh(2πn1P/b) sinh(2πm2bP ) sinh(2πn2P/b)

(sinh(2bP ) sinh(2P/b))2

×χP (q̃2)dP
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Using identity (115) and modular transformation law for degenerate charac-

ters (77) it takes form

Z(m,n);(m1,n1),(m2,n2) =

min(n1,n2)−1
∑

l1=0

min(m1,m2)−1
∑

k1=0

min(n,n1+n2−2l1−1)−1
∑

l2=0

(119)

min(m,m1+m2−2k1−1)−1
∑

k2=0

χm1+m2+m−2k1−2k2−2;n1+n2+n−2l1−2l2−2(q
1/2)

again in agreement with (10). This calculation can be easily generalized to the

the case of generic N . It shows in particularly that to produce correct formula

for annulus partition function between permutation branes and products of ZZ

branes the power N in (96) and (105) is really necessary.

6 Defects in Liouville theory

Defects in the Liouville theory can be constructed from the permutation branes

U
(2)
P s(P ) and Ψ

(2)
P m,n(P ) on two-fold product constructed in the previous section

using discussed in section 3 folding trick. As we explained in section 3 folding

trick involves two steps, left right exchange and hermitian conjugation. Taking

into account two-point function of the Liouville theory (79) one concludes that

permutations branes reflection amplitude in the process of the hermitian conju-

gation should be divided by the reflection function (78). Dividing (96) and (105)

for N = 2 by the reflection function (78) and using (113) one obtains:

Ds(P ) = U
(2)
P s(P )S(−P ) =

cos(4Pπs)

2 sinh(2πbP ) sinh(2Pπ/b)
(120)

and

Dm,n(P ) = Ψ
(2)
P m,n(P )S(−P ) =

sinh(2πmPb−1) sinh(2πnbP )

sinh(2πbP ) sinh(2Pπ/b)
(121)

Now one can define

Xs =

∫

P

Ds(P )idP⊗PdP (122)

and

Xm,n =

∫

P

Dm,n(P )idP⊗PdP (123)
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where idP⊗P is the identity operator on the space RQ
2

+iP ⊗ RQ
2

+iP . Consider

partition function with insertion of two defects parameterized by (m1, n1) and

(m2, n2)

Z(m1,n1),(m2,n2) =

∫

Dm1,n1
(P )Dm2,n2

(P )χP (q̃)χP (¯̃q)dP = (124)

∫

P

sinh(2πm1bP ) sinh(2πn1P/b) sinh(2πm2bP ) sinh(2πn2P/b)

(sinh(2bP ) sinh(2P/b))2
χP (q̃)χP (¯̃q)dP

Using identities (115) and (116) and performing modular transformation (74)

we obtain:

Z(m1,n1),(m2,n2) = (125)
∫ min(n1,n2)−1

∑

l1=0

min(m1,m2)−1
∑

k1=0

(n1+n2−2l1−1)−1
∑

l=1−(n1+n2−2l1−1),2

(m1+m2−2k1−1)−1
∑

k=1−(m1+m2−2k1−1),2

χP+i(k/b+lb)/2(q)χP (q̄)dP

in agreement with (49).

Using identities (115) and (116) for fusion of defects with boundaries and with

themselves one obtains

Xm,n|m′, n′〉(ZZ) =

min(n,n′)−1
∑

l=0

min(m,m′)−1
∑

k=0

|m+m′−2k−1, n+n′−2l−1〉(ZZ) (126)

Xm,n|s〉(FZZ) =
n−1
∑

l=1−n,2

m−1
∑

k=1−m,2

|s+ i(k/b+ lb)/2〉(FZZ) (127)

Xs|m,n〉(ZZ) =
n−1
∑

l=1−n,2

m−1
∑

k=1−m,2

|s+ i(k/b+ lb)/2〉(FZZ) (128)

Xm,nXm′,n′ =

min(n,n′)−1
∑

l=0

min(m,m′)−1
∑

k=0

Xm+m′−2k−1,n+n′−2l−1 (129)

Xm,nXs =

n−1
∑

l=1−n,2

m−1
∑

k=1−m,2

Xs+i(k/b+lb)/2 (130)

in agreement with (50) and (51).
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7 Discussion

We would like to outline here some directions for future work.

• In this paper we have constructed defects and permutation branes in the

Liouville field theory, using the classifying algebra technique. This tech-

nique can be used to find defects and permutation branes also in other

non-rational models like SL(2, R), SL(2, R)/U(1), Nappi-Witten etc.

• Another important task is to study defects and permutation branes in the

Lagrangian approach to the Liouville field theory. We can write a following

mixed boundary interaction term

µBe
αϕ1eβϕ2 (131)

where α(Q− α) + β(Q− β) = 1, in the product space of the two Liouville

fields ϕ1 and ϕ2. In the case when α = β one has the permutation symmetry.

We are tempted to think that parameter A, labeling continuous family in

(92), should be related to the parameter µB in (131) for this case.

• The defect Xs1
acting on FZZ states |s2〉(FZZ) produces the state:

Xs1
|s2〉(FZZ) =

∫

cos(4Pπs1)

2 sinh(2πbP ) sinh(2Pπ/b)
U (FZZ)

s2
(P )|P 〉〉dP (132)

The interpretation of this state at the moment is not clear. It would be

interesting to understand this state in the matrix model approach [24, 25].
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