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Abstract

The recent paper ‘Linear Connectivity Forces Large Complete Bipar-
tite Minors’ by Böhme et al. relies on a structure theorem for graphs with
no H-minor. The sketch provided of how to deduce this theorem from
the work of Robertson and Seymour appears to be incomplete. To fill
this gap, we modify the main proof of that paper to work with a mere
restatement of Robertson and Seymour’s original results instead.

1 Introduction

Robertson and Seymour proved several variants of a structure theorem
for graphs with no H-minor. The version in [6] roughly says that any
pair of such a graph G and a tangle of sufficiently high order in G has a
near-embedding in some surface in which H cannot be embedded. This
structure theorem guarantees that no bag of a vortex decomposition of
the near-embedding contains a large side of any separation in the given
tangle. In their recent paper [1], Böhme et al. propose a strengthening of
the above structure theorem for graphs of large tree-width, and make this
the cornerstone of the proof of their main result.

Recall that a graph G of large tree-width must contain a large wall
as a minor (cf. [4]). The “location” of this wall can be encoded into
a large-order tangle in G. Applying the Robertson-Seymour structure
theorem to G and this tangle, the authors of [1] wish to conclude not
only that no vortex bag contains a large side of a tangle separation as the
theorem states, but even that no vortex contains large parts of the wall,
and that therefore there must be a large subwall essentially embedded in
the surface. However, these last claims are not backed up by a rigorous
proof.

Our aim is to fill the gap between the work of Robertson and Seymour
and the proof of the main result of Böhme et al. in [1]. We assume the
reader to be familiar with the latter paper. Any references to its sections,
theorems, etc. will be emphasized to distinguish them from references
within our paper.

Instead of proving the structure theorem (Theorem 4.2 ) of [1] in gen-
eral, we modify the proof of the main result (Theorem 1.1 ) to work with
the original structure theorem of Robertson and Seymour itself, restated
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for readability in a terminology similar to [1]. Our patch will thus be a
short argument which fits smoothly into the proof of Theorem 1.1.

We remark that, in the meantime, Theorem 4.2 has indeed been found
to be true. But it is non-trivial to prove even on the basis of the work of
Robertson and Seymour. A proof of a strengthened general version will
be published separately [3].

Here is an overview of the layout of our note. In Section 2, we present
the Robertson-Seymour structure theorem we need, in terminology close
to [1]. Section 3 contains the tools necessary to exploit that structure
theorem in the setting of Theorem 1.1. In Section 4, we redo the proof of
Theorem 1.1 up to point where a wide vortex is found (Claim 5.3 ). After
that, no further modifications are required.

2 The Structure Theorem

There are several variants of the structure theorem for graphs with no
H-minor in the ‘Graph Minors’ series. We shall use the one in [6]. To
state it requires a fair amount of preparation. Note that Böhme et al.
based their structure theorem on [6] as well.

A pair (G,Ω) =: V of a graph G and a linearly ordered subset Ω ⊆
V (G) is called a vortex. The vertices Ω are the society vertices of the
vortex and their number |Ω| is its length. For convenience we also write
G for the vortex. The vertices in V (G) \ Ω are the inner vertices of V .
A vortex without inner vertices is trivial. We enumerate a society Ω =
{w1, . . . , wn} always according to its order, i.e. w1 < w2 < . . . < wn.

A path-decomposition D = (X1, . . . , Xm) of G is a decomposition of V
if m = n and wi ∈ Xi for all i. The Xi are the bags or parts of the
decomposition.

Given a decomposition D = (X1, . . . , Xm) of a vortex V as above. For
all 1 ≤ i < n, we write Zi := (Xi ∩Xi+1) \ Ω and call D linked if

• all these Zi have the same size, q say;

• there are q disjoint Zi−1–Zi paths in G[Xi]− Ω, for all 1 < i < n;

• Xi ∩ Ω = {wi−1, wi} for 1 ≤ i ≤ n, where w0 := w1.

Note that Xi ∩Xi+1 = Zi ∪ {wi}, for all 1 ≤ i < n
The union of the Zi−1–Zi paths in a linked decomposition of V is a

disjoint union of X1–Xn paths in G; we call the set of these paths a linkage
of V with respect to (X1, . . . , Xm).

The union of a path P with some mutually disjoint paths, having
precisely their first vertex on P , is a comb; the last vertices of those paths
are the teeth of this comb.

A graph G is said to be α-near-embeddable in some surface Σ if there
is a subset A ⊆ V (G) of at most α vertices, the apex set, such that
G−A is an edge-disjoint union of subgraphs G0, . . . , Gn of G with integers
0 ≤ α′ ≤ α ≤ n such that:

1. The pairs (Gi,Ωi) where Ωi :=V (Gi ∩ G0) with some linear order
are non-trivial vortices and different vortices overlap only in G0: we
have Gi ∩Gj ⊆ G0 for i 6= j.

2. G1, . . . , Gα′ are disjoint and have linked decompositions of adhesion
at most α. These are the large vortices and will be denoted by V.
For each of these vortices we fix a linked decomposition together
with a linkage and whenever we refer to the decomposition or the
linkage of a given large vortex, we shall mean these fixed ones.
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3. The remaining vortices Gα′+1, . . . , Gn have length at most 3. They
are called small vortices1 and we denote them by W.

4. For each large vortex Gj there is a comb K in Gj ∪
S
W which is

disjoint to the linkage of Gj and whose teeth are the society vertices
Ωj in the right order.

5. There are closed discs in Σ with disjoint interiors D1, . . . , Dn and an
embedding σ : G0 ↪→ Σ−

Sn
i=1Di such that σ(G0) ∩ ∂Di = σ(Ωi)

for all i and the generic linear ordering of Ωi is compatible with the
natural cyclic ordering of its image (i.e., coincides with the linear
ordering of σ(Ωi) induced by [0, 1) when ∂Di is viewed as a suitable
homeomorphic copy of [0, 1]/{0, 1}).

The tuple (σ,A,G0,V,W) is an α-near-embedding or just near-embedding
of G in Σ. A near-embedding with apex set A is said to respect a tangle T
if no large side of any separation in T \A is contained in a vortex W ∈ W
or in a bag of the decomposition of a vortex V ∈ V.

We will combine results from [6], namely the structure theorem (13.4)
and two lemmas (9.1) and (9.8) to show the following

Theorem 1 (structure theorem). For every graph H there exist non-
negative integers θ and α such that the following holds: let G be a graph
not containing H as a minor and T any tangle of order at least θ in G.
Then G has an α-near-embedding into a surface Σ in which H cannot be
embedded and this near-embedding respects T .

In the remainder of this section, we will show how to deduce Theorem 1
from the results mentioned above. For this purpose the readers should be
familiar with the concepts of [6] such that they understand the statement
(13.4). In particular, we will explicitly use the functions α and β which
are part of the definition of a portrayal.

The application of (13.4) yields a portrayal which translates directly
in our concept of a near-embedding—with one exception: Some technical
arguments are necessary to transform the subgraphs bordering a cuff in
the surface, which have a ‘circular’ structure, into large, linked vortices,
which have by their decompositions a ‘linear’ structure. Clearly, there is
an integer r bounding all the constants given by (13.4): The ‘apex’ set
Z0 ⊆ V (G) has size at most r, and the portrayal of G − Z0 of warp at
most r lives in a surface having most r cuffs. For our intended conversion
we need to delete additional r2 vertices from G. Thus, with α := r + r2,
we will eventually obtain an α-near-embedding of G with a larger apex
set of size at most α.

Let us consider all border nodes (w0, . . . , wn) of a given cuff, linearly
ordered in a way compatible with their cyclic ordering on the cuff. Let ci
be the border cell with ends wi−1 and wi for 0 ≤ i ≤ n and w−1 := wn.
Further, let Xi denote the vertex set of α(ci) and R be the graph

S
i α(ci).

We will convert this graph R into a large vortex for our near-embedding.
Lemmas (9.8) and (9.1) tell us that β(w0), . . . , β(wn) all have the same

size, q ≤ α say, and for 0 ≤ i ≤ n there are disjoint paths P i0 , . . . , P
i
q

connecting β(wi−1+) to β(wi+) with the following properties:

• All the paths P i1 , . . . , P
i
q are contained in α(ci).

• P i0 connects wi−1 and wi and avoids all other society vertices.

1These small vortices W ∈ W represent subgraphs in [1] that are split off of G along
separators of order at most 3 in ‘elementary reductions’ while Ω(W ) are the vertices ‘involved’
in this reduction.
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• P i0 is either contained in α(ci) or in α(c′) for some internal cell c′

with wi−1, wi ∈ c̃′.
Let us assume that the paths are enumerated such that for 1 ≤ k ≤ q and
1 ≤ i ≤ n the last vertex of P ik is the initial vertex of P i+1

k .
Let P0 denote the union of the paths P 2

0 , . . . , P
n
0 . This graph contains

a comb which we will need for our construction to satisfy property 4 of
near-embeddable.

For each k = 1, . . . , q, let Pk be the union of the paths P 0
k , . . . , P

n
k

and let P denote the set of these Pk. We may assume that |Pk| = 1 if
and only if k > q′ for some q′ ≤ q. For 1 ≤ k ≤ q′ the graphs in P are
paths or cycles and we regard them as oriented according to the order in
which they traverse the α(ci). Now, each vertex v ∈ β(w0) not lying on
some trivial path in P is either contained in one cycle or in two paths and
thus, has a unique successor vs and a unique predecessor vp in P. Now
Z := β(w0+) is a set of at most α vertices; deleting Z from H yields a
graph H ′ and with (P6) and (P7) from the definition of a portrayal it
follows that (X1 \ Z, . . . ,Xn−1 \ Z, (Xn ∪X0) \ Z) is a decomposition of
the vortex (H ′, {w1, . . . , wn}) of adhesion at most q′.

With P ′ := {Pi − Z | 1 ≤ i ≤ q′} we have a system of disjoint paths
connecting the adhesion sets Zi of our decomposition. However, by the
deletion of Z, some of the adhesion sets Zi might be strictly smaller than
q′ as the corresponding sets β(wi) also could have contained a vertex
v ∈ Z. We can solve this problem by adding either vs or vp to Xi and
achieve that P ′ is a linkage of our vortex. It is easy to see with (9.1) that
P0 − Z contains a comb with teeth {w1, . . . , wn}.

We have deleted up to r vertices for this construction which is neces-
sary for up to r cuffs. Thus, adding all these up to r2 vertices to the apex
set, Theorem 1 holds for α = r2 + r.

3 Preparations

To take full advantage of Theorem 1, we need a suitable tangle T in the
graph G as input. Suitable means in our case that T has high order and
encodes the location of a large grid minor in G. The interplay of tangles,
grids and grid minors is the subject of this section.

For a positive integer r let Wr be the grid on r2 vertices. More pre-
cisely, Wr has vertices V (Wr) :={(i, j) : 1 ≤ i, j ≤ r} and there is an edge
between two vertices (i, j) and (i′, j′) ofWr if and only if |i−i′|+|j−j′| = 1.
We call {1, . . . , r} × {j} the jth column of Wr for 1 ≤ j ≤ r. Similarly,
{i} × {1, . . . r} is the ith row. Uniting any row with any column gives a
cross. The graph Wr is the r-grid.

Our first statement is that, for any positive integer r, the r-grid gives
rise to a tangle of order r in a canonical way. Consider the set T of all
separations (A,B) of order less that r in Wr such that B contains a cross.
According to Robertson and Seymour [5, (7.3)], this is indeed a tangle of
order r in Wr. We refer to this tangle as the natural tangle of Wr.

Intuitively, a small side in any separation of a natural tangle cannot
contain many vertices without causing the separator to be large. We
formalize this fact in

Lemma 2. Each separation (A,B) in the natural tangle of some grid
satisfies |A| ≤ s2 where s := ord(A,B).
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Proof. Let (A,B) be any separation in the natural tangle T of Wr. Let
s be the order of (A,B). Denote by I the set of all numbers i such that
A has a vertex in the ith row. Similarly, let J be the set of all j such
that A has a vertex in the jth column. B is large and therefore contains
a cross. Hence the rows with index in I contain2 |I| disjoint A–B paths.
And the columns with index in J contain |J | disjoint A–B paths. The
separator A ∩ B must clearly have a vertex on each of those paths. This
means |I|, |J | ≤ s. But A ⊆ I × J and thus |A| ≤ |I||J | ≤ s2.

Robertson and Seymour also provide a general way of extending a
tangle T ′ in any minor H of G to a tangle T in G. Although we present
their construction in general, we shall use it only in the case where H is a
grid and T ′ its natural tangle. The following two lemmas are based on [5,
(6.1)]. They are both straightforward to verify so we spare the proofs.
Let T ′ be a tangle in some graph H and G any graph containing H as a
minor, witnessed by branch sets Vh with h ∈ V (H). Then separations of
G induce separations of H:

Lemma 3. For any separation (A,B) in G the pair

(A′, B′) := ({h ∈ V (H) : Vh ∩A 6= ∅}, {h ∈ V (H) : Vh ∩B 6= ∅})

is a separation of at most the same order as (A,B) in H.

The separation (A′, B′) is said to be induced in H by (A,B). This
enables us to (uniquely) extend T ′ to a tangle T of the same order in G:

Lemma 4. Let T be the set of all separations (A,B) in G of order less
than ord T ′ such that the induced separation (A′, B′) lies in T ′. Then T
forms a tangle of order ord T ′ in G.

We call the tangle T the extension of T ′ to G. Now we are able to
extend the natural tangle T ′ of Wr 4 G to a tangle T of order r in G.
By the definition of the extension, Lemma 2 obviously carries over as

Corollary 5. Let G be any graph containing some grid W as a minor.
Then the small side of any separation in the extension of the natural tangle
of W intersects at most s2 branch sets of W , where s is the order of the
separation.

4 Finding a Wide Vortex

In this section we provide an alternative opening for the proof of the
main theorem (Theorem 1.1 ) in [1]. It avoids the use of Theorem 4.2 and
applies Theorem 1 instead. As Böhme et al. point out, their structure
theorem serves two purposes in the original proof: Making the embedded
graph large and providing the “path” P0. Both is necessary only to ensure
the existence of an n2-wide vortex (Claim 5.3 ). We shall redo the proof
in detail up to that wide vortex.

Theorem 1.1 clearly follows from the bounded tree-width theorem
(Theorem 3.1 ) and

Theorem 6 (large tree-width). For any positive integers a, s and k, there
exists a constant w = w(a, s, k) such that every graph G with

κ(G) ≥ 3a+ 2, δ(G) ≥ 31

2
(a+ 1)− 3, and tw(G) > w

contains s disjoint Ka,k-minors or a subdivision of Ka,sk.

2In a slight abuse of terminology we speak of a subgraph being contained in a vertex set.
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For given values of a, s and k set H := sKa,k. Theorem 1 yields con-
stants α and θ such that for any graph G with no H-minor and a tangle T
of order at least θ there is an α-near-embedding of G into some surface Σ
into which H cannot be embedded and this near-embedding respects T .
Without loss of generality we may assume α > 1. Let the constants n2,
n3, n4 and n5 be chosen as in [1]. Set g :=(sk − 1)

`
α
a

´
and let n1 be

sufficiently large to make

1

7
n1 − 2(a+ 1)g − ask ≥ 3g + (n2 − 1)α

true. Let the integer r be large enough that

r ≥ θ, r > 3α and r2 > (n1 + g)(3α)2 + n1.

Robertson and Seymour showed [4] that the tree-width of graphs not
having the grid Wr as a minor is bounded as a function of r. So we can
pick w = w(r) such that any graph of tree-width larger than w has the
r-grid as a minor. We claim that Theorem 6 holds with this choice of w.
For suppose not. Then there is a counterexample G, i.e. a graph with
connectivity at least 3a + 2, minimum degree at least 31

2
(a + 1) − 3 and

tree-width larger than w containing neither s disjoint Ka,k-minors nor a
subdivision of Ka,sk.

By the choice of w the graph G has the r-grid as a minor. We fix the
branch sets of such a minor for the remainder of the proof. Let T be the
extension of its natural tangle to G. Since G does not contain sKa,k as a
minor and ord T = r ≥ θ we may apply Theorem 1 to G and T . Let all
the notation be just as in the definition of near-embedding.

The following two claims are the analogues to Claim 5.1 and Claim 5.2.
Keeping in mind that our small vortices play the same role as elementary
reductions in [1], the original proofs work in our setting as well.

Claim 1. At most g vertices of G have a or more neighbors in A.

Claim 2. There are at most g small vortices.

We now want to find a large vortex whose society vertices send only
few edges into G0. The first step towards this “wide” vortex is to show
that the graph G0 is large by applying Corollary 5 to the large grid minor
in G. Remember that, in the original proof, Theorem 4.2 ensured the
existence of a large wall in the embedded graph, making the next claim
trivial in that setting.

Claim 3. |G0| > n1.

Proof of Claim 3. Suppose not. Since large vortices are disjoint, there are
at most n1 society vertices of large vortices in G0 and hence at most n1

bags of large vortices in G. Corollary 5 is our tool to count how many
branch sets of Wr are spread out over the vortices and the apex set. As
it turns out, even together with the branch sets in G0, this number is less
than r2, giving a contradiction:

Any small vortex is separated from the rest of G−A by its at most 3
society vertices. Clearly, 3 < 2α < r− α ≤ ord(T \A). So the separation
specified above is in T \A, and, as the near-embedding respects the tangle
T , the vertex set of the small vortex is its small side. By the defintion of
T \A this means that adding the apex set on both sides of the separation
gives a separation of G which lies in T . Then Corollary 5 ensures that
at most (3 + α)2 < (3α)2 branch sets of Wr have a vertex in this small
vortex or the apex set.
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Similarly, any bag of the decomposition of a large vortex is separated
by its at most two adhesion sets from the rest of G − A. Since each
adhesion set has size at most α, the same argument as above implies that
at most (3α)2 branch sets of Wr have a vertex in this bag or the apex set.
Then by Claim 2 and the choice of r, G contains at most

(n1 + g)(3α)2 + n1 < r2

branch sets of Wr, contradiction.

We could end the patch here and let the proof of Claim 5.3 from [1]
take over. But that proof is inaccurate—it does not take into account
the non-essential society vertices. In fact, the Euler formula argument
from [1] fails for the given definition of an essential vertex.

Here are the definitions we are going to use: a society vertex v ∈Sn
i=1 Ωi is called essential if it has less than 7 neighbors in G0. A large

vortex Gi is m-wide if its society contains at least m essential vertices.
Unlike its counterpart in [1] the latter definition does not require the
existence of a comb with its teeth being essential society vertices in the
right order. This is because Theorem 1 yields such a comb right away. In
particular, we need not apply Erdős-Szekeres to construct it.

Claim 4. There is an n2-wide vortex.

Proof of Claim 4. G0 is embedded in Σ and hence satisfies the general
Euler formula (cf. [2, B.2])

|G0| − ‖G0‖+ l = 2− ε

where l is the number of faces of the embedded graph and ε is the Euler
genus of Σ. To eliminate l and ε from the equation use the inequalities
3l ≤ 2‖G0‖ and ε < ask. The former holds as each edge bounds at most
two faces while each face is bounded by at least three edges. The latter
is true because H cannot be embedded in the surface Σ and ‖H‖ = ask.
Hence

|G0|+ ask > |G0|+ ε = 2 + ‖G0‖ − l >
1

3
‖G0‖. (1)

Now partition the vertices of G0 into three classes: essential society ver-
tices X, non-essential society vertices Y and non-society vertices Z. De-
note the sizes of X, Y and Z by x, y and z, respectively. Then clearly

|G0| = x+ y + z.

The vertices in Y each have at least 7 neighbours in G0. By Claim 1 at
least z−g vertices of Z each send at least δ(G)− (a−1) ≥ 14(a+1) edges
into G0. In total we get

2

7
‖G0‖ ≥ y + 2(a+ 1)(z − g) ≥ |G0| − x− 2(a+ 1)g. (2)

Together (1) and (2) imply

6

7
(|G0|+ ask) > |G0| − x− 2(a+ 1)g.

Since G0 has at least n1 vertices, x is large enough to force one vortex to
be n2-wide by the choice of n1:

x >
1

7
|G0| − 2(a+ 1)g − ask ≥ 3g + (n2 − 1)α.
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Finally, by Claim 4 one of the vortices, Gj say, is n2-wide. By Theo-
rem 1 there is a comb P0 which is disjoint to the linkage of Gj and has
teeth Ωj . The rest works exactly as in the original proof. In particular,
our adjusted definition of an essential vertex causes no problems later on.
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