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1 Introduction

In this paper we study WZW model with defect on a world-sheet with and without

boundary. The main result of this paper is proof of symplectomorphism between

the phase space of the WZW model with defects on strip or cylinder and moduli

space of flat connections on disc or annulus respectively with sources.

To explain our results we start by reviewing Chern-Simons (CS) gauge theory

with compact gauge group G on three-dimensional manifold of the form S2
n,m×R,

where R is time direction, and S2
n,m is two-dimensional sphere S2 with m holes,

and n time-like Wilson lines [5, 25]. Later we will say often briefly CS theory on

S2
n,m suppressing “times R”.

It was conjectured in [5] that Hilbert space of quantized Chern-Simons theory

on S2
n,m×R, were n time-like Wilson lines assigned with representations λ1, . . . λn

must be of the form

H =
∑

τ1,...τm

Vλ1,...λn,τ1,...τm
⊗ Hτ1 ⊗ . . .Hτm

(1)

where Hτi
are the representation spaces of L̂G corresponding to the highest

weights τi, and Vκ1,...κl
is the Hilbert space corresponding to quantizing of Chern-

Simons theory on sphere S2 with l Wilson lines assigned with representations

κ1, . . . κl. The latter is space of conformal blocks of the WZW model with group

G with dimension

dimVκ1,...κl
=

∑

µ1,...µl−3

Nµ1

κ1κ2
Nµ2

µ1κ3
· · ·Nκl

µl−3κl−1
(2)

where Nλ
νµ are fusion coefficients of the WZW model with group G.

Let us now compare formulas (1) and (2) with different partition functions of

WZW model. The diagonal torus partition function of RCFT is

Z =
∑

i

χi(q)χ̄i∗(q̄), q = exp(2iπτ) (3)

Comparing it to (1) and (2) we see that it corresponds to Hilbert space of CS

theory on annulus. This observation was made in [5]. Using the Lagrangian of

the WZW model [24], it was proved in [4, 7, 13] that classical symplectic phase

spaces of the WZW model on circle indeed coincides with symplectic phase space

of the CS theory on annulus.
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The annulus partition function between Cardy states corresponding to pri-

maries a and b is

Zab = TrHab

(

q̃L0−
c
24

)

=
∑

i

Na
ibχi(q) (4)

Comparing it to (1) and (2) we see that it corresponds to Hilbert space of CS

theory on a disc with two Wilson lines. Using the Lagrangian formulation of

the WZW model on a world-sheet with boundary suggested in [3, 14, 17], it was

proved in [15] that classical symplectic phase space of the WZW model on a strip

coincides with symplectic phase space of CS theory on a disc with two Wilson

lines.

Now we will show that inclusion of defects [10, 16, 18, 19] and permutation

branes [8,9,12,21,22] allows to generalize these results to include also the following

three situations:

1. CS theory on annulus with arbitrary number of Wilson lines,

2. CS theory on disc with arbitrary number of Wilson lines,

3. CS theory on sphere with two Wilson lines and arbitrary number of holes.

The torus partition function with insertion of a defect Xa corresponding to

primary a is given by formula:

Za = Tr
(

Xaq̃
L0−

c
24 ˜̄q

L̄0−
c
24

)

=
∑

īi

Na
īiχi(q)χī(q̄) (5)

The comparison of (5) with formulas (1) and (2) reveals that Hilbert space

of WZW model with one defect coincides with Hilbert space of Chern-Simons

theory on annulus with one Wilson line. Using defect fusion rule

XaXb =
∑

c

N c
abXc (6)

the formula (5) can be generalized to the insertion of N defects: the torus parti-

tion function with insertion of N defects corresponding to primaries ai is

Za1...an
=

∑

i,̄i

dimVa1...an,i,̄iχi(q)χī(q̄) (7)

implying that Hilbert space of WZW model with N defects coincides with Hilbert

space of Chern-Simons theory on annulus with N Wilson lines.
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Using the fact that defects can be fused with boundary states producing new

boundary states

Xa|b〉 =
∑

d

Nd
ab|d〉 , (8)

one can compute the annulus partition function between Cardy states correspond-

ing to primaries a and b with insertion of a defect corresponding to primary c:

Zab,c = TrHab

(

Xcq̃
L0−

c
24

)

=
∑

d,i

Nd
bcN

a
idχi(q) (9)

Comparison with (1) and (2) shows that Hilbert space of WZW model on

annulus with defect coincides with Hilbert space of Chern-Simon theory on disc

with three Wilson lines. This result can be generalized to the insertion of any

number N of defects as well: the annulus partition function between Cardy states

corresponding to primaries a and b with insertion of N defects corresponding to

primaries di is

Zab,d1...dn
=

∑

i

dimVab,d1...dn,iχi(q) (10)

It corresponds to Chern-Simons theory on disc with N + 2 Wilson lines.

The annulus partition function between two permutation branes on two-fold

product of the WZW models, corresponding to single copy primaries a1 and a2 is

Za1,a2
=

∑

r,k,l

Na2

a1rN
r
klχk(q)χl(q) (11)

Partition function (11) corresponds to CS theory on annulus with two Wilson

lines. Again (11) can be generalized for permutations branes on N -fold product:

the annulus partition function between two permutation branes corresponding to

single copy primaries a1 and a2 on N -fold product is

Za1,a2
=

∑

i1,...iN

dimVa1,a2,i1,...iN χi1(q) . . . χiN (q) (12)

Partition function (12) corresponds to CS theory on sphere with N holes and two

Wilson lines.

Given these results it is natural to assume that classical symplectic phase

spaces of the WZW model with defects, suggested in [11] and with permutation

branes suggested in [22] should coincide with simplectic phase space of the CS

theory in the mentioned situations as well. In this paper we prove that it is the

case.
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The paper is organized in the following way. In the section 2 we review

symplectic form on moduli space of flat connections on S2
m,n. In section three

we review symplectic phase space of WZW model on a cylinder. In section four

we review symplectic phase space of WZW model on a strip. After all these

preparations in section five we present symplectic phase space of WZW models

on cylinder and strip with N defects and show that they have the same structure

and symplectic form as symplectic moduli space of flat connections on annulus

with N sources and disc with N + 2 sources respectively. In the last section

we show that symplectic phase space of the N -fold product of WZW models on

strip with boundary conditions specified by permutation branes coincides with

symplectic moduli space of flat connections on sphere with N holes and with two

sources.

2 Moduli space of flat connections on S2
m

Here we present details on symplectic form on moduli space of flat connections

on sphere S2
n,m with n Wilson line and m holes.

Let us at the beginning recall some essential points on the CS theory with

Wilson lines.

It was shown in [5, 25] that phase space of CS theory on manifold of form

M × R, where M is two-dimensional Riemann surface, R is time direction, with

n time-like Wilsonian lines assigned with representations λi, is moduli space PS2
n,m

of connections A on M satisfying the equation:

k

2π
F (z) + i

n
∑

i=1

Tiδ(z − zi) = 0 (13)

where F = dA+A2 and zi are points where Wilson lines hit M . Ti are conjugacy

classes in the Lie algebra g

Ti = ηiλiη
−1
i , ηi ∈ G (14)

where λi take values in the Cartan subalgebra. Recall also the following remark

[5, 15]. The symplectic form on moduli space of flat connections on sphere with

n sources and m holes can be decomposed as sum of symplectic forms on moduli

space of flat connections on sphere S2
n+m,0 with n + m sources and m copies of

the symplectic form on moduli space of flat connections on the two-dimensional
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disc with one source D1:

ΩS2
n,m

= ΩS2
n+m,0

+

m
∑

i=1

ΩD1i
(15)

Decomposition (15) implies that to write symplectic form on PS2
n,m

it is enough

to know symplectic form on PS2
n,0

and PD1
.

The symplectic form on the moduli space of flat connections on 2-dimensional

manifold M with n sources is given by formula

Ω =
k

4π
tr

∫

M

(δA)2 + i
n

∑

i=1

tr(λi(η
−1
i δηi)

2) (16)

where A satisfies (13). The δ denotes here exterior derivate on moduli space.

For the case of disc with one source (16) takes form:

ΩD1
=

k

4π

∫

D

tr(δA)2 + i[tr(λ(η−1δη)2)] (17)

and solution of (13) is:

A = −
i

k
ηλη−1dφ − dηη−1 (18)

where φ is angular coordinate on the disc and η ∈ G is single-valued on the disc.

To calculate (17) it was proved in [2] the following useful lemma: Suppose

that

A = ηBη−1 − dηη−1 (19)

where B is a gauge field and η ∈ G. Then

ω = tr

∫

D

(δA)2 (20)

can be written as

ω = tr

∫

D

{(δB)2 − 2δ[FBη−1δη]} + tr

∫

∂D

{η−1δηd(η−1δη) + 2δ[Bη−1δη]} (21)

where FB = dB + B2. One can prove this lemma by straightforward calculation.

Using this lemma one can easily obtain

ΩD1
=

∫

∂D

k

4π
tr(η−1δη)d(η−1δη) +

1

2π
tr(iλ(η−1δη)2)dφ (22)

It is shown in [20] that geometrical quantization of the coadjoint orbits of L̂G

with this form leads to the integrable representation Hλ of the affine algebra ĝ

at level k. By this reason later we denote this form ΩLG(η, λ).
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To compute symplectic form on the sphere with sources it was suggested in [2]

the following strategy. We choose a reference point P0 on sphere and draw loops

li around each source point zi starting and ending at the chosen reference point

P0. After that we cut out sphere along these loops. After this operation we have

n discs Di centered around sources zi, and each of which having as boundary one

of these loops ∂Di = −li, and additionally disc D0 whose boundary formed by

the sum of all of them: ∂D0 =
∑n

i=1 li.

Introducing local angular coordinate φi on discs Di around point zi one can

locally write as before (18)

Ai = −
i

k
Tidφi − dηiη

−1
i (23)

ΩDisc
i =

∫

li

k

4π
tr(η−1

i δηi)d(η−1
i δηi) +

1

2π
tr(iλi(η

−1
i δηi)

2)dφi (24)

The solution (23) implies that holonomy Mi of flat connection around point zi

takes value in conjugacy classes Ci:

Mi = ηie
2πiλi/kη−1

i (25)

On disc D0 there are no sources and one has usual flat connection

A0 = −dη0η
−1
0 , η0 ∈ G (26)

The corresponding symplectic form again easily derived form the lemma above:

Ω0 =
k

4π

∫

∂D0

tr{η−1
0 δη0d(η−1

0 δη0)} (27)

Now for symplectic form one can write

ΩS2
n,0

=
k

4π

∫

S2

tr(δA)2 + i
∑

i

tr(λi(η
−1
i δηi)

2) = Ω0 +

n
∑

i=1

Ωi = (28)

k

4π

n
∑

i=1

∫

li

tr{η−1
0 δη0d(η−1

0 δη0) − η−1
i δηid(η−1

i δηi) −
2i

k
λi(η

−1
i δηi)

2dφi}

The last thing which we should do is to match connection A0 with connections

Ai along the boundaries of D0 and Di:

A0|li = Ai|li (29)
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Equation (29) easily can be solved

η0|li = ηi|li exp(
i

k
λiφi)Ni (30)

where Ni is constant. Denote values of η0 at end points pi−1 and pi of li by

Ki = η0(pi) Ki−1 = η0(pi−1) (31)

Equation(30) implies that they satisfy

KiK
−1
i−1 = Mi (32)

Remembering that ηi is single-valued on the disc we have also

ηi(pi) = ηi(pi−1) (33)

Going around full boundary of D0 implies

Mn · · ·M1 = 1 (34)

Inserting (30) to (28) one obtains:

ΩS2
n,0

=
k

4π

n
∑

i=1

tr[N−1
i δNiη

−1
0 δη0]|

pi
pi−1

= −
k

4π

n
∑

i=1

tr[δηiη
−1
i δη0η

−1
0 ]|pi

pi−1
(35)

Using (31), (33) and (32) finally we arrive to

ΩS2
n,0

=
k

4π

n
∑

i=1

ωλi
(Mi) +

k

4π

n
∑

i=1

tr(K−1
i−1δKi−1K

−1
i δKi) (36)

ωλi
(Mi) = tr(η−1

i δηie
2πiλi/kη−1

i δηie
−2πiλi/k) (37)

One can solve (32) for Ki. Let us remark that without loss of generality one can

choose η0 in such a way that its value K0 is equal to the unity element. After

that the Ki will be given by products of Mi:

Ki = Mi · · ·M1 (38)

At this point we should note that the derivation above is carried out in the

assumption that all holonomies Mi taking values in conjugacy classes with fixed

λi. Actually what happens that some of them indeed take values in the fixed

conjugacy classes, but some of them rather should be considered as taking their
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values in continuous families of conjugacy classes, which would be reduced to

discrete families upon quantization. This can be also understood from the formula

(34), requiring the product of all holonomies to be unity. It is clear from this

formula, that one can solve for one of the holonomies, say Mn in the term of

product of others Mn = M−1
1 · · ·M−1

n−1. But product of conjugacy classes is not

a conjugacy class. Hence, we should decompose Mn as continuous family of

conjugacy classes. Given that after quantization we obtain space of conformal

blocks, this consideration implies that the discrete family which will be derived

after quantization is determined by fusion rules. Now we are ready to describe

moduli space of flat connections on sphere with sources. Assume we have k

holonomies Mi with fixed conjugacy classes, and n − k Mj with holonomies in

continuous families. In this case

PS2
n,0

= (M1, . . . , Mk, ηk+1, λk+1, . . . , ηn, λn)/G (39)

with the relation (34) where Mj = ηje
2πλj/kη−1

j , j = k + 1, . . . , n. G acts here

by simultaneous adjoint action on Mi, i = 1, . . . k, and by left action on ηj ,

j = k + 1, . . . n. This action is induced by the local gauge transformation of the

gauge connections. The mentioned holonomies with continuous λ will modify also

obtained symplectic forms for disc and sphere. The symplectic form on moduli

space of flat connections on a disc with one source (22) will take form

ΩLG(η, λ) =
k

4π

∫

∂D

tr(η−1δη)d(η−1δη) +
2

k
tr(iλ(η−1δη)2)dφ −

2

k
tr(iδλη−1δη)dφ

(40)

and the form (36) will be modified by the following term:

n
∑

j=k+1

tr(iδλjη
−1
j δηj) (41)

Let us briefly explain how quantization of the moduli space of flat connection

on S2
n,0 with form (36) leads to the space of conformal blocks considered in intro-

duction. Another important result obtained in [2] is that by a change of variables

symplectic form (36) can be written as sum of ΩPL forms,

ΩS2
n,0

=
n

∑

i=1

ΩPL(Mi) (42)

where

ΩPL(M) = ωλ(M) + L−1
+ δL+L−1

− δL− (43)
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L+ and L− here are components of the Gauss decomposition L+L− = M . On

the other side it is known that quantization with ΩPL leads to the highest weight

representations Υq,λ of the deformed enveloping algebra Uq(g) [1, 7, 23]. Hence

quantizing PS2
n,0

with the form Ωn leads to the tensor product ⊗iΥq,λi
. Gauge

transformation of gauge connections give rises on the quantum level to the diag-

onal action of Uq(g) on ⊗iΥq,λi
. Therefore, in the first approximation, we obtain

the subspace of invariant tensors of that action. More precisely, the subspace of

invariants may be equipped with a semipositive scalar product and one should

divide by the subspace of null-vectors. The quotient spaces are isomorphic to the

spaces of conformal blocks of the WZW theory.

Combining this with comment after formula (22) and decomposition (15) we

obtain (1).

We finish this section by writing explicitly formula (36) for the cases n = 3

and n = 4, which we need in next sections. For the case of n = 3

ΩS2
3,0

=
k

4π

3
∑

i=1

ωλi
(Mi) +

k

4π
tr(δM1M

−1
1 M−1

2 δM2) (44)

For the case of n = 4 the second term in (36) can be written in two equivalent

forms:

ΩS2
4,0

=
k

4π

4
∑

i=1

ωλi
(Mi) +

k

4π
tr(δM1M

−1
1 M−1

2 δM2 + δM3M
−1
3 M−1

4 δM4) (45)

or

ΩS2
4,0

=
k

4π

4
∑

i=1

ωλi
(Mi)+

k

4π
tr(δM1M

−1
1 M−1

2 δM2+δM1M
−1
1 M−1

2 M−1
3 δM3M2+δM2M

−1
2 M−1

3 δM3)

(46)

3 Bulk WZW model

In this section we review canonical quantization of the WZW model on the cylin-

der Σ = R × S1 = (t, x mod 2π) [4, 7, 13]. The world-sheet action of the bulk

WZW model is

Sbulk(g) =
k

4π

∫

Σ

Tr(g−1∂+g)(g−1∂−g)dx+dx− +
k

4π

∫

B

ωWZ(g) (47)

where x± = x ± t, and

ωWZ(g) =
1

3
tr(g−1δg)3 (48)

10



The phase space of solutions P can be described by the Cauchy data 1 at t = 0.

g(x) = g(0, x) and ξ0(x) = g−1∂tg(0, x) (49)

The corresponding symplectic form is [13]

Ωbulk =
k

4π

∫ 2π

0

Π(g)dx (50)

where

Π(g) = tr
(

−δξ0g
−1δg + (ξ0 + g−1∂xg)(g−1δg)2

)

(51)

The δ denotes here as before exterior derivative on the phase space P. It is easy

to check that the symlectic form density Π(g) has the following exterior derivative

δΠ(g) = ∂xω
WZ(g) (52)

what implies closedness of the Ω

δΩbulk = 0 (53)

The classical equations of motion are

∂−JL = 0 and ∂+JR = 0 (54)

where

JL = −ik∂+gg−1 and JR = ikg−1∂−g (55)

The general solution of (54) satisfying boundary conditions

g(t, x + 2π) = g(t, x) (56)

is

g(t, x) = gL(x+)g−1
R (x−) (57)

with gL,R satisfying monodromy conditions

gL(x+ + 2π) = gL(x+)γ (58)

gR(x− + 2π) = gR(x−)γ (59)

1 Surely we can choose any time slice, but for simplicity we always below take slice t = 0.
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with the same matrix γ. Expressing the symlectic form density Π(g) in the terms

of gL,R we obtain

Π = tr
[

g−1
L δgL∂x(g

−1
L δgL) − g−1

R δgR∂x(g
−1
R δgR) + ∂x(g

−1
L δgLg−1

R δgR)
]

(60)

Using (60) and (58), (59) one derives for Ω

Ωbulk = ΩL − ΩR (61)

where

ΩL =
k

4π

∫ 2π

0

tr
(

g−1
L δgL∂x(g

−1
L δgL)

)

dx +
k

4π
tr(g−1

L δgL(0)δγγ−1) (62)

and ΩR is given by the same formula with gR → gL. The chiral field gL can be

decomposed into the product of a closed loop in G, a multivalued field in the

Cartan subgroup and a constant element in G:

gL = h(x)eiτx/kg−1
0 (63)

where h ∈ LG, τ ∈ t ( the Cartan algebra) and g0 ∈ G. For the monodromy of

gL we obtain

γ = g0e
2iπτ/kg−1

0 (64)

Parametrization (63) induces the following decomposition of ΩL

ΩL = ΩLG(h, τ) +
k

4π
ωτ(γ) + tr[(iδτ)g−1

0 δg0] (65)

where ΩLG(h, τ) is the form (40):

ΩLG(h, τ) =
k

4π

∫ 2π

0

tr[h−1δh∂x(h
−1δh) +

2i

k
τ(h−1δh)2 −

2i

k
(δτ)h−1δh]dx (66)

and ωτ (γ) is the same form as defined in (37):

ωτ (γ) = tr[g−1
0 δg0e

2iπτ/kg−1
0 δg0e

−2iπτ/k] (67)

Comparing (61) with (15) for n = 0 and m = 2, we see that symplectic phase

of the WZW model on circle coincides with that of CS theory on annulus.
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4 Boundary WZW model

Here we review canonical quantization of the WZW model on the strip M =

R× [0, π] for maximally symmetric boundary conditions [15]. Let us remind some

well-known stuff on Lagrangian formulation of the WZW model on a world-sheet

with boundary [3, 14, 17]. Consider at the beginning the case when M has one

boundary. It is well established that maximally symmetric boundary conditions:

JL = −JR|∂M (68)

requires fields on boundary take values in discrete set of conjugacy classes:

g|∂M ∈ Cµ = βe2iπµ/kβ−1, β ∈ G (69)

where µ ≡µ · H is a highest weight representation integrable at level k, taking

value in the Cartan subalgebra.

To write down action of WZW model one should choose auxiliary disc D

satisfying condition ∂B = M + D, and continue g on that disc always taking

values in conjugacy class. With such a set-up action takes form

Sboundary = Sbulk −
k

4π

∫

D

ωµ (70)

where ωµ is the form defined in (37). This form satisfies the condition

ωWZW(g)|g∈Cµ
= dωµ (71)

which guaranties that the action (70) is well defined. In the case of several

boundaries the condition (69) should be imposed on each boundary component,

and the corresponding boundary two-form should be added for each component

as well.

From the paragraph above follows that for the case of strip we should impose

the following boundary conditions

g(t, 0) ∈ Cµ0
, g(t, π) ∈ Cµπ

(72)

The solution of bulk equation of motions (54) with boundary conditions (68)

is found in [15]. It takes again the form (57) but with gL,R satisfying:

gL(y + 2π) = gL(y)γ, and gR(y) = gL(−y)h−1
0 (73)
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The equations (73) imply

g(t, 0) = gL(t)g−1
R (−t) = gL(t)h0g

−1
L (t) (74)

and

g(t, π) = gL(π + t)g−1
R (π − t) = gL(−π + t)γh0g

−1
L (−π + t) (75)

Therefore to be in agreement with (72) one should require

h0 ∈ Cµ0
, and γh0 = hπ ∈ Cµπ

(76)

The symplectic form on the phase space of the WZW model on the strip is:

Ωstrip =
k

4π

[
∫ π

0

Π(g)dx + ωµ0
(g(0, 0))− ωµπ

(g(0, π))

]

(77)

The equations (52), (71) imply that the form (77) is closed. Inserting (51) in (77)

one obtains:

4π

k
Ωstrip =

∫ π

0

tr(g−1
L δgL∂x(g

−1
L δgL))dx −

∫ π

0

tr(g−1
R δgR∂x(g

−1
R δgR))dx (78)

+tr(g−1
L δgLg−1

R δgR)(π) − tr(g−1
L δgLg−1

R δgR)(0)

+ωµ0
(g(0, 0)) − ωµπ

(g(0, π))

Using (73) we obtain:

−

∫ π

0

tr(g−1
R δgR∂x(g

−1
R δgR))dx =

∫ 2π

π

tr(g−1
L δgL∂x(g

−1
L δgL))dx (79)

−tr(h−1
0 δh0g

−1
L δgL(0)) + tr(h−1

0 δh0g
−1
L δgL(−π)) − tr(δγγ−1g−1

L δgL(0)) + tr(δγγ−1g−1
L δgL(−π))

With the help of the following useful formula obtained in [6]:

ωf(λCλ−1) = ωf(C) + tr(λ−1δλCλ−1δλC−1) + tr(C−1δC + δCC−1)λ−1δλ (80)

one can show

ωµ0
(g(0, 0)) − tr(g−1

L δgLg−1
R δgR)(0) − tr(h−1

0 δh0g
−1
L δgL(0)) = ωµ0

(h0) (81)

and

− ωµπ
(g(0, π)) + tr(g−1

L δgLg−1
R δgR)(π) + tr(h−1

0 δh0g
−1
L δgL(−π)) (82)

+tr(δγγ−1g−1
L δgL(−π)) = −ωµπ

(γh0) + tr(δh0h
−1
0 γ−1δγ)

14



Collecting all we receive

Ωstrip = ΩL +
k

4π

[

ωµ0
(h0) − ωµπ

(γh0) + tr(δh0h
−1
0 γ−1δγ)

]

(83)

Finally again using for gL decomposition (63) and taking into account (65) one

obtains:

Ωstrip = ΩLG(h, τ) + Ωbndry (84)

where

Ωbndry = tr[(iδτ)g−1
0 δg0] +

k

4π

[

ωτ (γ) + ωµ0
(h0) − ωµπ

(γh0) + tr(δh0h
−1
0 γ−1δγ)

]

(85)

Recalling (76) we see that boundary phase space is

Pbndry = (h0, hπ, g0, τ)/G (86)

subject to relation γh0 = hπ, where γ = g0e
2iπτ/kg−1

0 . As explained in formula

(39) this is moduli space of flat connections on sphere with three Wilson lines

PS2
3,0

. The symplectic form (85) coincides with (44) with the term (41). Com-

paring (84) with (15) for n = 2 and m = 1, we see that symplectic phase space of

the WZW model on the strip coincides with that of CS theory on the disc with

two Wilson lines.

5 WZW model with Topological defects

5.1 Closed strings

Let us assume that one has defect line separating world-sheet on two regions

Σ1 and Σ2. In such a situation WZW model defined by pair of maps g1 and

g2. Maximally-symmetric topological defects defined as defect lines satisfying

conditions:

JL1
= JL2

|defect line and JR1
= JR2

|defect line (87)

It is shown in [11] that the conditions (87) imply that on the defect line fields

g1 and g2 satisfy the constraint

g1g
−1
2 |defect line = F ∈ Cµ = βe2iπµ/kβ−1, β ∈ G (88)

where µ ≡µ · H , as before, is a highest weight representation integrable at level

k, taking value in the Cartan subalgebra. To write action of the WZW model

15



with defect one again should introduce auxiliary disc satisfying conditions

∂B1 = Σ1 + D̄ and ∂B2 = Σ2 + D (89)

and continue fields g1 and g2 on this disc always holding the condition (88). After

this preparations the action takes form [11]:

S = Sbulk(g1) + Sbulk(g2) +
k

4π

∫

D

̟(g1, g2) (90)

where

̟(g1, g2) = ωµ(F ) − Tr(g−1
1 dg1g

−1
2 dg2) (91)

The form (91) satisfies the equation:

d̟(g1, g2) = ωWZ(g1)|defect − ωWZ(g2)|defect (92)

Equation (92) guarantees that the action (90) is well defined.

Now consider WZW model on the same cylinder as in section 1, and put

defect line at x = a in parallel to the time line.

The solution of the (54) with defect conditions (87) is again given by (57)

on bulk for both fields, but with gL1
,gR1

,gL2
,gR2

satisfying the following defect

conditions:

gL2
(y) = gL1

(y)h−1
a (93)

gR2
(y) = gR1

(y)ma

The equations (93) imply

F (t, a) = g1g
−1
2 (t, a) = gL1

(a+t)g−1
R1

(a−t)gR2
(a−t)g−1

L2
(a+t) = gL1

(a+t)mahag
−1
L1

(a+t)

(94)

Therefore to satisfy the boundary condition (88) we should require

maha = da ∈ Cµa
(95)

Given that we consider WZW model on cylinder we should additionally require

g2(t, 2π) = g1(t, 0) (96)

The condition (96) imposes the following relation on monodromies γL, γR of gL1

and gR1
:

gL1
(y + 2π) = gL1

(y)γL (97)

gR1
(y + 2π) = gR1

(y)γR

16



and

γ−1
R γL = maha = da (98)

It is instructive to compare (98) to (58) and (59). We have seen in section 1, that

in the absence of defect left and right monodromies are equal, whereas presence

of defect creates relative shift between them equal to the defect conjugacy class.

The symplectic form now is:

Ωdef1 =
k

4π

[
∫ a

0

Π(g1)dx +

∫ 2π

a

Π(g2)dx − ̟(g1(0, a), g2(0, a))

]

(99)

The conditions (52) and (92) imply that

δΩdef1 = 0 (100)

Substituting (60) in (99) one obtains:

4π

k
Ωdef1 =

∫ a

0

tr(g−1
L1

δgL1
∂x(g

−1
L1

δgL1
))dx −

∫ a

0

tr(g−1
R1

δgR1
∂x(g

−1
R1

δgR1
))dx (101)

+

∫ 2π

a

tr(g−1
L2

δgL2
∂x(g

−1
L2

δgL2
))dx −

∫ 2π

a

tr(g−1
R2

δgR2
∂x(g

−1
R2

δgR2
))dx

+tr(g−1
L1

δgL1
g−1

R1
δgR1

)(a) − tr(g−1
L1

δgL1
g−1

R1
δgR1

)(0)

+tr(g−1
L2

δgL2
g−1

R2
δgR2

)(2π) − tr(g−1
L2

δgL2
g−1

R2
δgR2

)(a) − ̟(g1(0, a), g2(0, a))

Using (93) and (80) one can check that

−̟(g1(0, a), g2(0, a)) − tr(g−1
L2

δgL2
g−1

R2
δgR2

)(a) + tr(g−1
L1

δgL1
g−1

R1
δgR1

)(a) (102)

+tr(h−1
a δhagL1

δgL1
)(a) + tr(δmam

−1
a g−1

R1
δgR1

)(a) = −ωµa
(da) + tr(δhah

−1
a m−1

a δma)

and

tr(g−1
L2

δgL2
∂x(g

−1
L2

δgL2
)) = tr(g−1

L1
δgL1

∂x(g
−1
L1

δgL1
))−∂x(tr(h

−1
a δhagL1

δgL1
)) (103)

tr(g−1
R2

δgR2
∂x(g

−1
R2

δgR2
)) = tr(g−1

R1
δgR1

∂x(g
−1
R1

δgR1
)) + ∂x(tr(δmam

−1
a g−1

R1
δgR1

))

(104)

Collecting all we get:

4π

k
Ωdef1 = (105)

∫ 2π

0

tr(g−1
L1

δgL1
∂x(g

−1
L1

δgL1
))dx −

∫ 2π

0

tr(g−1
R1

δgR1
∂x(g

−1
R1

δgR1
))dx

+tr(δhah
−1
a m−1

a δma) − tr(h−1
a δhagL1

δgL1
)(2π) − tr(δmam

−1
a g−1

R1
δgR1

)(2π)

−tr(g−1
L1

δgL1
g−1

R1
δgR1

)(0) + tr(g−1
L2

δgL2
g−1

R2
δgR2

)(2π) − ωµa
(da)
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Note that dependence on the insertion point a is completely dropped. This

reflects topological nature of the defect. Using (97) and (98) we derive

Ωdef1 = ΩL − ΩR +
k

4π
tr(δγRγ−1

R δγLγ−1
L ) −

k

4π
ωµa

(da) (106)

Finally using decompositions of gL1
and gR1

(63):

gL1
= hLeiτLx/kg0 and gR1

= hReiτRx/kf0 (107)

with γL and γR:

γL = g0e
2iπτL/kg−1

0 and γR = f0e
2iπτR/kf−1

0 (108)

and the corresponding decomposition of ΩL,R (65) we arrive at

Ωdef1 = ΩLG(hL, τL) − ΩLG(hR, τR) + Ωdefline (109)

Ωdefline1 = tr[(iδτL)g−1
0 δg0] − tr[(iδτR)f−1

0 δf0] (110)

+
k

4π

[

ωτL
(γL) − ωτR

(γR) + tr(δγRγ−1
R δγLγ−1

L ) − ωµa
(da)

]

Remembering (98) we see that defect phase space is

Pdef1 = (da, g0, τL, f0, τR)/G (111)

subject to relation γ−1
R γL = da with γL and γR given by (108). This is moduli

space of flat connections on sphere with three Wilson lines PS2
3,0

. The form (110)

coincides with (44) with terms (41). Comparing (109) with (15) for n = 1 and

m = 2, we see that symplectic phase space of the WZW model on circle with one

defect coincides with that of CS on annulus with one Wilson line.

Let us briefly present the case of the two defects insertion.

Now let us put two defect lines, one at point x = a, and the second at point

x = b, again both in parallel to time line. In this situation the world-sheet

separated on three region, Σ1, Σ2 and Σ3, and correspondingly the WZW model

is defined by three maps g1, g2 and g3. At each point should be satisfied defect

conditions (87), bringing as before to the following solution of the equations of

motion:

gL2
(y) = gL1

(y)h−1
a , gL3

(y) = gL2
(y)h−1

b (112)

gR2
(y) = gR1

(y)ma, gR3
(y) = gR2

(y)mb (113)
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maha = da ∈ Cµa
, mbhb = db ∈ Cµb

(114)

Requiring the condition of closedness of string

g3(2π) = g1(0) (115)

brings to the following constraint on monodromies:

gL1
(y + 2π) = gL1

(y)γL (116)

gR1
(y + 2π) = gR1

(y)γR (117)

γ−1
R γL = mambhbha = madbm

−1
a da = d̃bda (118)

Note that relative shift between monodromies is equal to product of defect con-

jugacy classes. The symplectic form is:

Ωdef2 =
k

4π

[
∫ a

0

Π(g1)dx +

∫ b

a

Π(g2)dx +

∫ 2π

b

Π(g3)dx − ̟(g1(0, a), g2(0, a)) − ̟(g2(0, b), g3(0, b))

]

(119)

Repeating the same steps as before we obtain:

Ωdef2 = ΩLG(hL, τL) − ΩLG(hR, τR) + Ωdefline2 (120)

Ωdefline2 = tr[(iδτL)g−1
0 δg0] − tr[(iδτR)f−1

0 δf0] (121)

+
k

4π

[

ωτL
(γL) − ωτR

(γR) − ωµa
(da) − ωµb

(d̃b) + tr(δγRγ−1
R δγLγ−1

L ) + tr(d̃−1
b δd̃bδdad

−1
a )

]

The defect phase space now is

Pdef2 = (da, d̃b, g0, τL, f0, τR)/G (122)

subject to relation γ−1
R γL = d̃bda, with γL and γR given by (108). This is phase

space (39) for n = 4. The form (121) coincides with (45) with terms (41).

Comparing (120) with (15) for n = 2 and m = 2, we see that symplectic phase

space of the WZW model on circle with two defects coincides with that of CS on

annulus with two Wilson lines.

These two examples can be easily generalized to the insertion of N defects.

From these examples one can conclude that the defect phase space of the

WZW model with N defects insertion is

PdefN = (d1, . . . dN , g0, τL, f0, τR)/G (123)
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subject to relation γ−1
R γL =

∏N
i=1 di, di ∈ Cµi

where Cµi
= βie

2iπµi/kβ−1
i , with γL

and γR given by (108). This is phase space (39) for n = N + 2. We see that

defect fusion rule (6) corresponds in the classical picture to the multiplication

of the corresponding conjugacy classes. By the cumbersome but straightforward

calculation we can again check that the symplectic form on the defect phase

space (123) is equal to symplectic form on the moduli space of flat connections

on sphere with N + 2 sources ΩS2
N+2,0

.

At the moment it is clear to author how to derive this result case by case by

brute force calculation. More general understanding is desirable.

5.2 Defects in open string

In this section we consider WZW model with defect on strip. Assume again that

we have defect at point x = a in parallel to the time line. The strip is divided to

two parts with fields g1 and g2. We should impose here boundary conditions at

x = 0 on g1, requiring

g1(t, 0) ∈ Cµ0
= β0e

2iπµ0/kβ−1
0 , β0 ∈ G (124)

then defect condition at x = a, requiring

g1g
−1
2 (t, a) ∈ Cµa

= βae
2iπµa/kβ−1

a , βa ∈ G (125)

and finally boundary condition at x = π on g2, requiring

g2(t, π) ∈ Cµπ
= βπe

2iπµπ/kβ−1
π , βπ ∈ G (126)

Equations (124) and (125) as before yield:

gR1
(y) = gL1

(−y)h−1
0 (127)

g1(0, t) = gL1
(t)g−1

R1
(−t) = gL1

(t)h0g
−1
L1

(t) (128)

h0 ∈ Cµ0
(129)

gL2
(y) = gL1

(y)h−1
a (130)

gR2
(y) = gR1

(y)ma

maha = da ∈ Cµa
(131)
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To solve the last boundary condition (126) we assume that gL1
has monodromy

matrix γ:

gL1
(y + 2π) = gL1

(y)γ (132)

Using (127) and (130) one obtains:

gL2
(y + 2π) = gL2

(y)haγh−1
a (133)

gR2
(y) = gL2

(−y)hah
−1
0 ma (134)

Equations (133) and (134) imply

g2(π, t) = gL2
(π + t)g−1

R2
(π− t) = gL2

(−π + t)haγh−1
a m−1

a h0h
−1
a g−1

L2
(−π + t) (135)

To satisfy (126) one should require

γh−1
a m−1

a h0 = γd−1
a h0 = hπ ∈ Cµπ

(136)

It is again instructive to compare (136) to (76). We see that presence of defect

again requires to include defect conjugacy class. This is classical analogue of the

defect-boundary fusion (8). The symplectic form is

Ωstrip−def =
k

4π

[
∫ a

0

Π(g1)dx +

∫ π

a

Π(g2)dx − ̟(g1(0, a), g2(0, a)) + ωµ0
(g1(0, 0)) − ωµπ

(g2(0, π))

]

(137)

Executing the same steps as in previous sections we finally obtain:

Ωstrip−def = ΩLG(h, τ) + Ωbndry−def (138)

where

Ωbndry−def = tr[(iδτ)g−1
0 δg0] +

k

4π
[ωτ (γ) + ωµ0

(h0) − ωµπ
(hπ) − ωµa

(da) (139)

+tr(d−1
a δh0h

−1
0 daγ

−1δγ) + tr(γ−1δγd−1
a δda) + tr(δdad

−1
a δh0h

−1
0 )

]

The boundary-defect phase space is

Pbndry−def = (h0, hπ, da, g0, τ)/G (140)

subject to relation γd−1
a h0 = hπ, where h0 ∈ Cµ0

, hπ ∈ Cµπ
, da ∈ Cµa

, and

γ = g0e
2iπτ/kg−1

0 . This is phase space (39) for n = 4. We see that (139) coincides

with (46). Comparing (138) with (15) for n = 3 and m = 1, we see that symplectic

phase space of the WZW model on strip with one defect coincides with that of CS

theory on disc with three Wilson lines. As we explained in the previous section,

consideration here can be generalized to the case of insertion of the arbitrary

number of the defect lines as well, yielding the symplectomorphism between phase

space of the WZW model on strip with N defects with that of CS theory on disc

with N + 2 Wilson lines.
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6 Permutation branes

Maximally symmetric permutation branes on two-fold product of the WZW mod-

els G × G is defined as boundary conditions satisfying the relations:

JL1
= −JR2

|∂M (141)

and

JL2
= −JR1

|∂M (142)

Here label 1 and 2 refer two the first and the second copy. It was shown in [8]

that conditions (141) and (142) imply that values of g1 and g2 on the boundary

constrained by the relation:

g1g2|∂M = F̃ ∈ Cµ = βe2iπµ/kβ−1, β ∈ G (143)

It is shown in [22] that in the Lagrangian approach to the boundary WZW model

as explained in the section 4, the permutation branes correspond to Lagrangian:

S = Sbulk(g1) + Sbulk(g2) −
k

4π

∫

D

ωP(g1, g2) (144)

where

ωP(g1, g2) = ωµ(F̃ ) + Tr(g−1
1 dg1dg2g

−1
2 ) (145)

The form (145) satisfies the equation:

dωP(g1, g2) = ωWZ(g1)|boundary + ωWZ(g2)|boundary (146)

Equation (146) guarantees that the action (144) is well defined. Consider now

two-fold product on a strip with boundary conditions (141) and (142) imposed

at points x = 0 and x = π. It is possible to show that equations of motions (54)

with these boundary conditions can be solved by (57) on bulk for both fields with

gL1
,gR1

,gL2
,gR2

satisfying:

gL1
(y + 2π) = gL1

(y)γ1 (147)

gL2
(y + 2π) = gL2

(y)γ2 (148)

gR2
(y) = gL1

(−y)h−1
0 (149)

gR1
(y) = gL2

(−y)m−1
0 (150)

From (149), (150) we obtain:
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F̃ (0, t) = gL1
(t)m0h0g

−1
L1

(t) (151)

Therefore to be in agreement with (143) we should require:

m0h0 = p0 ∈ Cµ0
(152)

Equations (147) and (148) further imply

F̃ (π, t) = gL1
(−π + t)γ1m0γ2h0g

−1
L1

(−π + t) (153)

Therefore we additionally should require:

γ1m0γ2h0 = γ1p0h
−1
0 γ2h0 = γ1p0γ̃2 = pπ ∈ Cµπ

(154)

where

γ̃2 = h−1
0 γ2h0 (155)

The symplectic form corresponding to the action (144) on the strip is

ΩP =
k

4π

[
∫ π

0

(Π(g1) + Π(g2))dx + ωP(g1(0, 0), g2(0, 0)) − ωP(g1(0, π), g2(0, π))

]

(156)

Repeating the same steps as explained in the previous sections we obtain:

ΩP = ΩLG(h1, τ1, ) + ΩLG(h2, τ2, ) + Ωbndry−perm (157)

Ωbndry−perm = tr[(iδτ1)g
−1
0 δg0] + tr[(iδτ2)f

−1
0 δf0] (158)

+
k

4π
[ωτ1(γ1) + ωτ2(γ̃2) + ωµ0

(p0) − ωµπ
(pπ)

− tr(p−1
0 δp0δγ̃2γ̃

−1
2 ) − tr(γ−1

1 δγ1δp0p
−1
0 ) − tr(p−1

0 γ−1
1 δγ1p0δγ̃2γ̃

−1
2 )

]

Comparing (154) to (39), (158) to (46), and finally (157) with (15) for n = 2

and m = 2, we see that symplectic phase space of the WZW model G × G on

strip with boundary conditions specified by permutation branes coincides with

that of CS on annulus with two Wilson lines. The generalization to the case of

permutation branes on N -fold product is again cumbersome but straightforward.
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