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Locally finite graphs with ends: a topological approach

Reinhard Diestel

This paper serves both as an introduction and as a comprehensive sur-
vey of the current state of the art in a newly emerging field: a topo-
logical approach to the study of locally finite graphs, which crucially
incorporates their ends. Topological arcs and circles, which may pass
through ends, assume the role played in finite graphs by paths and
cycles.

This approach has made it possible to extend to locally finite
graphs many classical theorems of finite graph theory that do not ex-
tend verbatim. The shift of paradigm it proposes is thus as much an
answer to old questions as a source of new ones; many concrete problems
of both types are suggested in the paper.

This paper attempts to provide an entry point to this field for
readers that have not followed the literature that has emerged in the
last 10 years or so. It takes them on a quick route through what appear
to be the most important lasting results, introduces them to key proof
techniques, identifies the most promising open problems, and offers
pointers to the literature for more detail.

Introduction

This paper describes a topological framework in which many well-known theo-
rems about finite graphs that appear to fail for infinite graphs have a natural
infinite analogue. It has been realised in recent years that many such theo-
rems, especially about paths and cycles, do work in a slightly richer setting:
not in the (locally finite) graph itself, but in its compactification obtained by
adding its ends. For example, the plane graph G in Figure 0 has three ends.
When we add these, we obtain a compact space |G| in which the fat edges
form a circle—a subspace homeomorphic to the standard topological circle S1.
Allowing such circles as ‘infinite cycles’, and allowing topological arcs through
ends as ‘infinite paths’, we can restore the truth of many well-known theorems
about finite graphs whose infinite analogues would fail if we allowed only the
usual finite paths and cycles familiar from finite graphs.

FIGURE 0. A circle through three ends
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The aim of this paper is to provide a reasonably complete but readable
introduction to this new approach, offering a fast track to its current state of the
art. It describes all the fundamental concepts, all the main results, and many
open problems. Given this aim, there will not be the space for many proofs.
However, there is a complementary source [32, Ch. 8.5] that offers detailed
proofs of all the most basic facts (which are here included in the narrative
but not all proved), and which the interested reader may wish to consult early
for some more ‘feel’ for the subject. For readers already familiar with those
basic techniques, the current paper also describes some more advanced but
fundamental proof techniques that cannot be found explicitly in [32].

We begin in Section 1 with the definition of the space |G| and an overview
of its basic properties. These properties mostly concern the topological ana-
logues of familiar finite concepts involving paths and cycles, such as spanning
trees, degrees (of ends), connectivity and so on. It is these analogues that
we shall need in the place of their finite counterparts when we wish to extend
theorems from finite graph theory to infinite graphs whose naive extension fails.

We continue in Section 2 with some basic theory, a body of results that are
not yet applications of the new topological concepts but relate them to each
other, much in the way their finite counterparts are related. Most results in this
section concern the homology of a graph, i.e., its cycle and cut space and they
way they interact. These homology aspects have, so far, been the prime field
of application for those topological notions involving ends. But there are other
applications too, and reading Section 2 will not be a prerequisite for reading
the rest of the paper.

Section 3 explaines some proof techniques, e.g. for the construction of to-
pological arcs and circles as limits of finite paths and cycles, that have evolved
over the past 10 years. These years have seen some considerable simplification
of the techniques required to deal with the problems one usually encounters in
this area. The aim of Section 3 is to describe the state of the art here, so as to
equip those new to the field quickly with the main techniques now available.

Section 4 is devoted to applications: theorems that involve our new to-
pological concepts but answer questions that could be asked without them.
Often, these questions simply ask for an extension to infinite graphs of well
known finite theorems whose naive infinite extensions are either false or triv-
ially true. Examples include all the standard planarity criteria in terms of the
cycle space, some classical theorems about Euler tours and Hamilton cycles,
connectivity results such as the tree-packing theorem of Nash-Williams and
Tutte, and infinite electrical networks. The consideration of arcs and circles
instead of paths and cycles has made it possible to ask extremal-type questions
about the interaction of graph invariants that were so far meaningful only for
finite graphs. Some of these are indicated in Section 4; more are given in Stein’s
paper [78] in this volume.

Finally, there is an outlook in Section 5 to new horizons: extensions to
graphs that are not locally finite, implications of our findings in related fields
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such as geometric group theory and the homology of locally compact spaces,
and applications to infinite matroids.

Open problems are not collected at the end but interspersed within the
text. There are plenty of these, as well as the overall quest to push the general
approach further: to identify more theorems about paths and cycles in finite
graphs that do not extend naively, and to find the correct topological analogue
that does extend.

1. Concepts and Basic Theory

Throughout this section, let G be a fixed infinite, locally finite, connected
graph. This section serves to introduce the concepts on which our topological
approach to the study of such graphs is based: the space |G| formed by G and
its ends; topological paths, circles and spanning trees in this space; notions
of connectivity in |G|. The style will be descriptive and informal, aiming for
overall readability; should any technical points remain unclear, the reader is
referred to [32, Ch. 8.5] for more formal definitions of the concepts introduced
here, and to [32] in general for graph-theoretic terms and notation.

Terms such as ‘path’ or ‘connected’, which formally have different mean-
ings in topology and in graph theory, will be used according to context: in
the graph-theoretical sense for graphs, and in the usual topological sense for
topological spaces. If the context is ambiguous, the two meanings will probably
coincide, making a formal distinction unnecessary.

We call 1-way infinite paths rays, and 2-way infinite paths double rays.
An end of G is an equivalence class of rays in G, where two rays are considered
equivalent if no finite set of vertices separates them in G. The graph shown in
Figure 0 has three ends; the Z×Z grid has only one, the infinite binary tree
has continuum many. We write Ω(G) for the set of ends of G.

Topologically, we view G as a cell complex with the usual topology. Adding
its ends compactifies it, with the topology generated by the open sets of G and
the following additional basic open sets. For every finite set S of vertices and
every end ω, there is a unique component C of G−S in which every ray of ω
has a tail. We say that ω lives in C and write C =: C(S,ω). Now for every
such S and every component C of G−S, we declare as open the union Ĉ of C
with the set of ends living in C and with all the ‘open’ S–C edges of G (i.e.,
without their endpoints in S). We denote the space just obtained by |G|.1

Theorem 1.1. [31, 32] The space |G| is compact and metrizable.

1 The open neighbourhoods of ends are defined slightly more generally in [32], but for
locally finite graphs the two definitions are equivalent. Topologies for graphs with infinite
degrees are discussed in Section 5.
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The space |G| is known as the Freudenthal compactification of G. The main
feature of its topology is that rays in G converge as they should: to the end of
which they are an element. One can show [34, Prop. 4.5] that every Hausdorff
topology on G ∪ Ω(G) with (essentially) this feature (and which induces the
1-complex topology on G) refines the topology of |G|. This identifies |G| as the
unique most powerful Hausdorff topology on G∪Ω(G), in a sense that can be
made quite precise [34].2

Of the many natural aspects of this topology let us mention just two more,
which relate it to better-known objects. Consider the binary tree T2, and think
of its rays from the root as 0–1 sequences. The resulting bijection between
the ends of T2 and these sequences is a homeomorphism between Ω(T2), as a
subspace of |T2|, and {0, 1}N with the product topology. Identifying pairs of
ends whose sequences specify the same rational (one sequence ending on zeros,
the other on 1s) turns this bijection into a homeomorphism from the resulting
identification space of Ω(T2) to [0, 1]. Without such identification, on the other
hand, Ω(G) is always a subset of a Cantor set.

Instead of paths and cycles in G we can now consider arcs and circles
in |G|: homeomorphic images of the real interval [0, 1] and of the complex unit
circle S1. While paths and cycles are examples of arcs and circles, Figure 0
shows a circle that is not a cycle. Arcs and circles that are not paths or
cycles must contain ends. An arc containing uncountably many ends always
induces the ordering of the rationals on a subset of its vertices [16]. Such arcs,
and circles containing them, are called wild (Figure 1.1), but they are quite
common.

FIGURE 1.1. The heavy edges form a wild circle.

2 The identity to |G| from G∪Ω(G) with any finer topolgy is continuous, so in |G| there
will be at least as many arcs and circles (and possibly more). Arcs and circles in |G| will be
our main tools.
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Arcs and circles are examples of a natural type of subspace of |G|: sub-
spaces that are the closure in |G| of some subgraph of G.3 We call such a
subspace X of |G| a standard subspace, and write V (X) and E(X) for the set
of vertices or edges it contains. Note that the ends in X are ends of G, not of
the subgraph that gave rise to X; in particular, ends in X need not have a ray
in that subgraph. Which ends of G are in X is determined just by V (X): they
are precisely the ends that are limits of vertices in X.

Given a standard subspace X and an end ω ∈ X, the maximum number of
arcs in X that end in ω but are otherwise disjoint is the (vertex-) degree of ω
in X; the maximum number of edge-disjoint arcs in X ending in ω is its edge-
degree in X. Both maxima are indeed attained, but it is non-trivial to prove
this [22]. End degrees behave largely as expected; for example, the connected
standard subspaces in which every vertex and every end has (vertex-) degree 2
are precisely the circles. (Use Lemma 1.2 to prove this.)4 In Section 4.1 we
shall define a third type of end degrees, their relative degree, which is useful for
the application of end degrees to extremal-type problems about infinite graphs.

Standard subspaces have the important property that connectedness and
arc-connectedness are equivalent for them. This will often be convenient:
while connectedness is much easier to prove (see Lemma 1.4), it is usually
arc-connectedness that we need.

Lemma 1.2. [32, 36, 83] Connected standard subspaces of |G| are locally con-
nected and arc-connected.

The proof that a connected standard subspace X is locally connected is not
hard: an open neighbourhood Ĉ ∩X of an end ω will be connected if we choose
the set S in its definition so as to minimize the number of C–S edges in X.
But local connectedness is not a property we shall often use directly. Its role
here is that it offers a convenient stepping stone towards the proof of arc-
connectedness.5 Direct proofs that X is arc-connected can be found in [36, 42],
and we shall indicate one in Section 3. Connected subspaces of |G| that are
neither open nor closed need not be arc-connected [42].

Lemma 1.2 has the important corollary that arc-components of standard
subspaces are closed (because the closure of an arc-component, which is obvi-
ously connected and standard, is arc-connected by the lemma.)

3 It takes a line of proof that arcs and circles do indeed have this property, i.e., that
the union of their edges is dense in them. This is because any arc between distinct ends
must contain an edge incident with finite set S that separates them; this will follow from
Lemma 1.3 below.

4 However, there may also be surprises. The wild circle of Figure 1.1, for example, is a
path-connected standard subspace, but it is also a disjoint union of arcs: the closures of the
fat double rays. (These arcs are really disjoint, also at ends!)

5 By general ‘continuum theory’ [67], compact, connected and locally connected metric
spaces are arc-connected.
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The edge set E(C) of any circle C will be called a circuit . Given any set F
of edges in G, we write F for the closure of

S
F in |G|, and call F the standard

subspace spanned by F . (This is with slight abuse of our usual notation, in
which we write X for the closure in |G| of a subset X ⊆ |G|.) Similarly, we
write F̊ for the set of all inner points of edges in F (while usually we write X̊
for the interior of a subset X ⊆ |G|).

The set of edges of G across a partition {V1, V2} of V (G) is a cut of G; the
sets V1, V2 are the sides of this cut. A minimal non-empty cut is a bond .

The following lemma is one of our basic tools for handling arcs. It says
that an arc cannot ‘jump across’ a finite cut without containing an edge from it:

Lemma 1.3. (Jumping Arc Lemma [32])
Let F be a cut of G with sides V1, V2.

(i) F is finite if and only if V1 ∩V2 = ∅.
(ii) If F is finite, there is no arc in |G|r F̊ with one endpoint in V1 and the

other in V2. If F is infinite, there may be such an arc.

The proof of Lemma 1.3 for F finite is straightforward from the definition of
the topology of |G|: deleting the edges of a finite cut splits |G| into two disjoint
open sets. When F is infinite, an intersection point ω as in (i) can be obtained
as the limit of two vertex sequences, one in V1 and the other in V2, that are
joined by infinitely many cut edges.

Although the ‘jumping arc’ is a nice way of remembering Lemma 1.3, its
main assertion (i) is not about arcs but about connectedness. It implies that
connectedness for standard subspaces can be characterized in graph-theoretical
terms alone, without any explicit mention of ends or the topology of |G|:

Lemma 1.4. [32] A standard subspace of |G| is connected if and only if it
contains an edge from every finite cut of G of which it meets both sides.

We shall say that a standard subspace X of |G| is k-edge-connected if the
deletion of fewer than k edges will not make it disconnected. Similarly, X is
k-vertex-connected if V (X) > k and the deletion of fewer than k vertices and
their incident edges does not leave a disconnected space. Note that for k = 1
both notions coincide with ordinary topological connectedness, and that for
X = |G| the space X is k-edge-connected or k-vertex-connected if and only if
the graph G is k-edge-connected or k-connected (by Lemma 1.4).

How about deleting ends as well as vertices and/or edges? For X = |G|,
this will never help to disconnect X: if deleting a finite set U of vertices and any
set of ends disconnects |G|, then so does the deletion of U alone, and similarly
for edges. For arbitrary standard subspaces X, however, deleting ends can make
sense. It will normally result in a subspace that is no longer standard, but the
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main reason for primarily considering standard subspaces, that connectedness
in them is equivalent to arc-connectedness (Lemma 1.2), is preserved.6

So let us call a subspace X ⊆ |G| substandard if its closure in |G| is
standard (so that X contains no partial edges), and k-connected if after the
deletion of fewer than k vertices, edges or ends it will still be arc-connected.
This makes sense in the context of Menger’s theorem, which Thomassen and
Vella [83] proved for topological spaces X that include all subspaces of |G|:
given any two points a, b ∈ X and k ∈ N, if for every set S ⊆ X of fewer
than k points there is an a–b arc in X r S, then X contains k arcs from a
to b that pairwise meet only in a and b.7 Hence in a k-connected standard or
substandard subspace any two vertices or ends can be linked by k independent
arcs: a useful property that can fail in standard subspaces that are merely
k-vertex-connected.

To work with arcs and circles in a way that resembles finite graph theory,
we need one more addition to our topological toolkit: the notion of a topological
spanning tree. A topological spanning tree of a connected standard subspace
X of |G| is an (arc-) connected standard subspace T ⊆ X of |G| that contains
every vertex (and hence every end) of X but contains no circle. A topological
spanning tree of |G| will also be called a topological spanning tree of G.

The closure T of an ordinary spanning tree T of G is not normally a
topological spanning tree: as soon as T contains disjoint rays from the same
end, T will contain a circle. Conversely, the subgraph of G underlying a topo-
logical spanning tree need not be a graph-theoretical tree: it will be acyclic, of
course, but it need not be connected. Figure 1.2 shows examples of both these
phenomena in the double ladder.

FIGURE 1.2. An ordinary spanning tree of G (left), and
a topological spanning tree of G (right)

Ordinary spanning trees whose closures are topological spanning trees do
always exist, however: all normal spanning trees have this property, and all
countable connected graphs have normal spanning trees. (A spanning tree T
of G is normal if, for a suitable choice of a root, the endvertices of every edge
of G are comparable in the tree-order of T . See [32].) Often, therefore, normal
spanning trees are the best choice of a spanning tree for our purposes.

More generally, we have the following existence lemma:

6 Georgakopoulos’s characterization of the subspaces that are connected but not arc-
connected [42] implies that any such space has uncountably many arc-components consisting
of one end only. One clearly cannot obtain such a space by deleting finitely many ends from
a connected standard subspace.

7 There is also version of Menger’s theorem for disjoint arcs between sets A, B ⊆X in [83],
which is easier to prove.
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Lemma 1.5. Let X be a connected standard subspace of |G|, and let Z ⊆ X
be a standard subspace not containing a circle. Then X has a topological
spanning tree containing Z.

Proof. We begin by enumerating the edges in E(X) r E(Z). We then go
through these edges one by one, considering each for deletion from X. We
delete an edge if this does not disconnect the space X r F̊ , where F is the set
of edges already deleted. Having considered every edge in E(X) r E(Z), we
are left with a standard subspace T that contains V (X) but contains no circle:
this would have an edge in E(X)rE(Z), which was considered for deletion and
should have been deleted. The space T is connected (cf. Lemma 1.4), and hence
arc-connected (Lemma 1.2). By construction, Z ⊆ T ⊆ X as desired. §

Unlike in finite graphs, it is considerably harder to construct a topological
spanning tree ‘from below’ (maintaining acyclicity) than, as we did just now,
‘from above’ (maintaining connectedness, and using the non-trivial Lemma 1.2).
A proof ‘from below’ will be indicated in the proof of Lemma 3.2.

A topological spanning tree T of G features analogues of all the usual
properties of spanning trees in finite graphs: adding any edge creates a circle,
deleting any edge disconnects it, and it contains a unique arc between any
two of its points. Hence every chord e ∈ E(G) r E(T ) creates a well-defined
fundamental circuit Ce in T ∪ e, while every edge f ∈ E(T ) lies in a well-
defined fundamental cut Df of G (whose sides are the vertex sets of the two
arc-components of T r f̊).

Fundamental circuits and cuts of topological spanning trees are subject to
the same duality as for ordinary spanning trees:

Lemma 1.6. Let Ce be a fundamental circuit and Df a fundamental cut, both
of the same topological spanning tree of G. Then e ∈ Df ⇔ f ∈ Ce.

However, the sizes of fundamental cuts and circuits behave in opposite
ways:

Lemma 1.7. The following statements hold in any locally finite graph.

(i) The fundamental circuits of an ordinary spanning tree are finite, but its
fundamental cuts may be infinite.

(ii) The fundamental circuits of a topological spanning tree may be infinite,
but its fundamental cuts are finite.

(iii) The fundamental circuits and cuts of normal spanning trees are finite.

For (ii), note that if a fundamental cut Df of a topological spanning tree T
was infinite, the two arc-components of T r f̊ (which are closed by Lemma 1.2)
would meet, by Lemma 1.3 (i).

The fact that fundamental cuts of topological spanning trees are finite
implies by Lemma 1.3 (ii) that they are in fact bonds.

8



2. The Topological Cycle Space

The way in which cycles and cuts interact in a graph can be described alge-
braically: in terms of its ‘cycle space’, its ‘cut space’, and the duality between
them. In this section we show how the cycle space theory of finite graphs
extends to locally finite graphs in a way that encompasses infinite circuits.
The fact that this can be done, that our topological circuits, cuts and spanning
trees interact in the same way as ordinary cycles, cuts and spanning trees do in
a finite graph, is by no means clear but rather surprising. For example, there
is nothing visibly topological about a finite cut in an infinite graph,8 so the
fact that the edge sets orthogonal to its finite cuts are precisely its topological
circuits and their sums (Theorem 2.6) comes as a pleasant surprise: it provides
a natural answer to a natural question, but not by design—it was not ‘built
into’ the definition of a circle.

As it turns out, extending finite cycle space theory in this way is not only
possible but also necessary: it is the ‘topological cycle space’ of a locally finite
graph, not its usual finitary cycle space, that interacts with its other structural
features, such as planarity, in the way we know it from finite graphs. We shall
discuss this in some depth in Section 4. In Section 5 we shall see how our
theory integrates with the broader topological context of (singular) homology
in more general spaces.

As before, let G be a fixed infinite, connected, locally finite graph. We start
by defining the ‘topological cycle space’ C(G) of G in analogy to the mod-2 (or
‘unoriented’) cycle space of a finite graph:9 its elements will be sets of edges
(that is to say, maps E(G)→ Z2, or formal sums of edges with coefficients
in Z2) generated from circuits by taking symmetric differences of edge sets.
These edge sets, the circuits, and the sums may be infinite.

Let us make this more precise. Let the edge space E(G) of G be the Z2-
vector space of all maps E(G)→Z2, which we think of as subsets of E(G) with
symmetric difference as addition. The vertex space V(G) is defined likewise.
Call a family (Di)i∈I of elements of E(G) thin if no edge lies in Di for infinitely
many i. Let the (thin) sum

P
i∈I Di of this family be the set of all edges that

lie in Di for an odd number of indices i. Given any subset D ⊆ E(G), the edge
sets that are sums of sets in D form a subspace of E(G). The (topological) cycle
space C(G) of G is the subspace of E(G) consisting of the sums of circuits. The
cut space B(G) of G is the subspace of E(G) consisting of all the cuts in G
and the empty set. (Unlike the circuits, these already form a subspace.) We
sometimes call the elements of C(G) algebraic cycles in G.

8 With hindsight, of course, Lemma 1.4 shows that this impression is wrong.

9 One can also define ‘oriented’ versions
→
C (G) of C(G), with integer or real coeffi-

cients [38]. Some of the theorems listed below have obvious oriented analogues, with very
similar proofs. But the differences have not yet been investigated systematically and may
well be worth further study; see Sections 2.3–4 and 4.3 for some good problems.
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2.1 Generating sets

The sums of elements of D ⊆ E(G), and the subspace of E(G) consisting of all
those sums, are said to be generated by D. For example, the cycle space of the
graph in Figure 0 is generated by its central hexagon and its squares, or by
the infinite circuit consisting of the fat edges and all the squares. Bruhn and
Georgakopoulos [19] proved that if D is thin, the space it generates is closed
under thin sums. As we shall see, this applies to both C(G) and B(G).

As in Lemma 1.7, the duality between C(G) and B(G)—which we address
more thoroughly later—is reflected by a switch between topological and ordi-
nary spanning trees:

Theorem 2.1. [32]

(i) Given an ordinary spanning tree of G, its fundamental cuts gener-
ate B(G), but its fundamental circuits need not generate C(G).

(ii) Given a topological spanning tree of G, its fundamental circuits gener-
ate C(G), but its fundamental cuts need not generate B(G).

(iii) Given a normal spanning tree of G, its fundamental circuits gener-
ate C(G), and its fundamental cuts generate B(G).

To prove the first assertion in Theorem 2.1 (ii), one shows that a given set
D ∈ C(G) equals the sum

P
Ce taken over all chords e of the topological

spanning tree such that e ∈ D. One has to show that these Ce form a thin
family (use Lemmas 1.6 and 1.7 (ii)), but also that D =

P
Ce. While for

finite G one just notes that D +
P

Ce consists of tree edges and deduces that
D +

P
Ce = ∅ (yielding D =

P
Ce), this last implication is now non-trivial:

it is not clear that the tree, which by assumption contains no circuit, cannot
contain a sum of circuits. The proof in [32] deduces this, i.e. that D and

P
e Ce

also agree on tree edges, from Theorem 2.5 (i)⇒ (iv) below, which in turn is
an easy consequence of the jumping arc lemma.

For the second assertion in (ii), recall that the edge set of a topological
spanning tree can miss an infinite cut (as in Figure 1.2). Such a cut will not
be a sum of fundamental cuts Df , because any such sum contains all those
tree-edges f .

The proof of assertion (i) is analogous to that of (ii), though in the first
statement one also has to show that the fundamental cuts do not generate
more than B(G): that a thin sum of cuts is again a cut. (See the discussion
after Theorem 2.2.) For the second statement of (i), recall that the edges of
an ordinary spanning tree may contain a circuit, which will not be a sum of
fundamental circuits Ce because any such sum contains all those chords e.

Assertion (iii) follows from (i) and (ii).

By Lemmas 1.6 and 1.7, the fundamental circuits and cuts of normal span-
ning trees form thin families. Hence by the result of [19] cited earlier, the sub-
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spaces they generate in E(G) are closed under thin sums. By Theorem 2.1 (iii)
these are the spaces C(G) and B(G):

Theorem 2.2.

(i) C(G) is generated by finite circuits and is closed under infinite thin sums.

(ii) B(G) is generated by finite bonds and is closed under infinite thin sums.

Since we already used the closure statement of (ii) for cuts in our proof of
Theorem 2.1, our proof of this part of Theorem 2.2 (ii) has been circular. But
one does not need Theorem 2.1, or indeed [19], to prove that a sum of cuts
is again a cut, a set of edges across a vertex partition. One way to do this
directly is to construct that partition explicitly. The simplest way, however, is
indirect: to show first that the cuts are precisely the edge sets that meet every
finite circuit in an even number of edges,10 and then to observe that the set of
those edge sets is closed under taking sums.

But also the closure statement of (i), for C(G), is non-trivial. Indeed, ifP
Di is a thin sum of sets Di =

P
j Cj

i ∈ C(G), where the Cj
i are circuits,

the combined sum
P

i,j Cj
i need not be thin. By Theorem 2.3 below one can

assume for each i that its own Cj
i are disjoint, in which case the combined

family (Cj
i ) will be thin (because the family (Di) is thin by assumption). But

Theorem 2.3 is hard, and too big a tool for this proof. As for cuts, the quickest
way to prove that C(G) is closed under thin sums is to use Theorem 2.7 (i): that
the elements of C(G) are precisely those sets of edges that meet every finite cut
evenly, a class of edge sets that is obviously closed under sums. See also the
discussion after Theorem 2.7.

A bond is atomic if it consists of all the edges at some fixed vertex. Follow-
ing Tutte, let us call a circuit in |G| peripheral if it contains every edge between
its incident vertices (i.e., has no chord in G) and the set of these vertices does
not separate G.

Theorem 2.3.

(i) Every element of C(G) is a disjoint union of circuits.

(ii) If G is 3-connected, its peripheral circuits generate C(G).
(iii) Every element of B(G) is a disjoint union of bonds.

(iv) The atomic bonds of G generate B(G).

Statement (i) was first established in [35], with a long and involved proof. As
techniques developed, simpler and more elegant proofs were found [44, 83, 85].
We shall discuss these techniques, and the different proofs they lead to, in
Section 3. Statement (ii), which extends a theorem of Tutte for finite graphs
(see [32]), is due to Bruhn [11]. It fails if we restrict the peripheral circuits

10 This is Theorem 2.7 (ii); its proof will be indepenent of what we are proving here.
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or the sums used to finite circuits or sums. Statements (iii) and (iv) are easy,
with proofs as for finite graphs.

Theorem 2.3 implies that, as in finite graphs, the circuits in |G| are the
minimal non-empty elements of C(G), while the bonds in G are the minimal
non-empty elements of B(G).

Finally, there is a generating theorem for the cycle space of a finite graph
whose extension to |G| and C(G) requires an interesting twist. When G is
finite, its cycle space is generated by the edge sets of its geodetic cycles: those
that contain a shortest path in G between any two of their vertices [32]. This
is still true for locally finite graphs (with ‘arc’ instead of ‘path’), but only if we
measure length of an arc in the right way: rather than by counting its edges,
we have to assign lengths to the edges of G, and then measure the length of an
arc by adding up the lengths of its edges. By giving edges shorter lengths if
they lie ‘far out near the ends’, it is possible to do this in such a way that the
resulting metric on |G| induces its original topology.11 And then, no matter
how exactly we choose the edge lengths, Georgakopoulos and Sprüssel proved
that the geodetic circles do what they should:

Theorem 2.4. [48] Given any edge-length function `:E(G)→ [0,∞) whose
resulting metric on |G| induces the original topology of |G|, the circuits of the
geodetic circles in |G| generate C(G).

2.2 Characterizations of algebraic cycles

There are various equivalent ways to describe the elements of C(G) and of B(G),
each extending a similar statement about finite graphs. Let us list these now,
beginning with C(G).

A closed topological path in a standard subspace X of |G|, based at a
vertex, is a topological Euler tour of X if it traverses every edge in X exactly
once. One can show that if |G| admits a topological Euler tour it also has one
that traverses every end at most once [45]. For arbitrary standard subspaces
this is false: consider the closure of two disjoint double rays in the Z×Z grid.

Recall that, given a set D of edges, D denotes the closure of the union of
all the edges in D, the standard subspace of |G| spanned by D.

Theorem 2.5. The following statements are equivalent for sets D ⊆ E(G):

(i) D ∈ C(G), that is to say, D is a sum of circuits in |G|.
(ii) Every component of D admits a topological Euler tour.

(iii) Every vertex and every end has even (edge-) degree in D.

(iv) D meets every finite cut in an even number of edges.

11 This will be discussed in detail in Section 5.2.
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The equivalence of (i) and (ii) was proved in [34] for D = E(G) and extended
to arbitrary D by Georgakopoulos [44]; we shall meet the techniques needed
for the proof in Section 3. The equivalence with (iii) is a deep theorem, due to
Bruhn and Stein [22] for D = E(G) and to Berger and Bruhn [8] for arbitary D.
Note that (iii) assumes that end degrees have a parity even when they are infi-
nite. Finding the right way to divide ends of infinite edge-degree into ‘odd’ and
‘even’ was one of the major difficulties to overcome for this characterization
of C(G).

The equivalence of (i) with (iv), again from [34], is one of the cornerstones
of topological cycle space theory: its power lies in the fact that the finitary
statement in (iv) is directly compatible with compactness proofs (see Section 3).
Its implication (i)→(iv) follows from the jumping arc lemma, applied to the
circles whose circuits sum to the given set D ∈ C(G). For the converse implica-
tion one compares a given set D as in (iv) with the sum

P
Ce of fundamental

circuits of a topological spanning tree taken over all chords e ∈ D. It is clear
that D agrees with this sum on chords. Using Lemmas 1.6 and 1.7 one proves
that they also agree on tree edges.

2.3 Cycle-cut orthogonality

Given a set F ⊆ E(G), let us write Ffin for the set of finite elements of F . Call
two sets D,F ⊆ E(G) orthogonal if |D∩F | is finite and even, and put

F⊥ := {D ⊆ E(G) | D is orthogonal to every F ∈ F } .

Let us abbreviate V := V(G), E := E(G), C := C(G) and B := B(G).
The following theorem describes the duality between the topological cycle

and cut space of G in terms of orthogonal sets. Its four assertions show some
interesting symmetries: they can be summarized neatly as ‘all equations con-
taining each of the symbols =, C, B, fin and ⊥ exactly once (and no others)’.

Theorem 2.7.

(i) C = B⊥fin.

(ii) B = C⊥fin.

(iii) If G is 2-connected, then C⊥ = Bfin.

(iv) B⊥ = Cfin.

Theorem 2.7 (i) is just a reformulation of Theorem 2.5 (i)⇔(iv).
Assertion (ii) is the dual (see Section 5.4) finitary characterization of the

cut space. An interesting feature of its seemingly trivial inclusion B ⊆ C⊥fin is
that it requires an application of Theorem 2.3 (i). Indeed, any cut F is clearly
orthogonal to every finite circuit. But an arbitrary finite element D of C might
come as an infinite sum circuits (finite or infinite), and even if F is orthogonal
to every term in the sum it need not be orthogonal to D. However, the circuits
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into which D decomposes disjointly by Theorem 2.3 (i) will be finite and yield
D in a finite sum, which preserves orthogonality. The proof of B ⊇ C⊥fin is
the same as for finite graphs [32]: contracting the edges not in a given set
D ∈ C⊥fin leaves a graph with edge set D, whose finite circuits have to be even
by definition of D, because they expand to finite circuits of G. This contracted
bipartite graph defines a partition of V (G) showing that D is a cut.

The inclusion C⊥ ⊇ Bfin in (iii) is equivalent to C ⊆ B⊥fin of (i). The
converse inclusion is due to Richter and Vella [73]. Its interesting part is that
an edge set orthogonal to every circuit cannot be infinite. (It will be a cut
by (ii), since in particular it is orthogonal to every finite circuit.) It is here
that 2-connectedness is needed; assuming 2-edge-connectedness, for example,
is easily seen not to be enough.

In (iv), the weaker inclusion of B⊥ ⊆ C follows from (i). To see that an
edge set orthogonal to all cuts cannot be infinite, assume it is, pick infinitely
many independent edges, and obtain a contradiction by extending these to a
cut. The inclusion B⊥ ⊇ Cfin is equivalent to the inclusion B ⊆ C⊥fin of (i).

Theorem 2.7 (ii) has a nice corollary (which we already used in our proofs
of Theorems 2.1 and 2.2): that C(G) and B(G) are closed under infinite sums.
While this is not immediate from the definition of either C(G) or B(G), the
proof that B⊥fin (= C(G)) and C⊥fin (= B(G)) are closed under thin sums is
immediate from the definition of these sets.

We remark further that, unlike in finite graphs, there can be edge sets that
are orthogonal to all circuits but not to all elements of C, and edge sets that are
orthogonal to all bonds but not to all cuts [32] (even when G is 2-connected).

For finite G it is well known that dim(E) = dim(C)+dim(B) (see e.g. [32]),
so E/B ' C and E/C ' B. All this is still true for infinite G and our topological
cycle space C. But it is more instructive to find canonical such isomorphisms:
to define an epimorphism σ: E→C with kernel B, and an epimorphism τ : E→B
with kernel C. This can be done with Theorem 2.7. Indeed, let T be a normal
spanning tree12 of G, and write Ce and Df for its fundamental circuits and
cuts. By Lemma 1.7, all these are finite. Given E ⊆ E(G), define

σ(E) :=
X

{Ce : e ∈ E(G) r E(T ) and |E ∩Ce| is odd }
and

τ(E) :=
X

{Df : f ∈ E(T ) and |E ∩Df | is odd } .

Corollary 2.8.
(i) The map σ is an epimorphism E→ C with kernel B.

(ii) The map τ is an epimorphism E→B with kernel C.

12 For each of σ and τ defined below we shall need that T is both an ordinary and a
topological spanning tree.
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Proof. (i) To see that σ is onto, let D ∈ C be given and let E consist of those
chords e whose fundamental circuits Ce sum to D. The kernel of σ consists of
those sets E that meet every Ce evenly. These are precisely the sets E that
meet every finite circuit evenly, since these are generated by finitely many Ce.
By Theorem 2.7 (ii), these sets E are precisely those in B.

(ii) is analogous, using Theorem 2.7 (i). §

By Theorem 2.7, subsets of sets in C cannot contain an odd cut, and
subsets of sets in B cannot contain an odd circuit. These properties are the
only obstructions to being a subset of a set in C or B:

Theorem 2.9. Let E ⊆ E(G) be any set of edges.

(i) E extends to an element of B if and only if E contains no odd circuit.

(ii) E extends to an element of C if and only if E contains no odd bond.

Proof. We prove the backward implications.
(i) Pick a spanning tree in each component of the graph (V (G), E). Adding

edges of E(G) r E, extend the union of these trees to a spanning tree T of G.
Consider the sum

F :=
X

f∈E∩E(T )

Df ∈ B

of fundamental cuts of T . (The sum is thin by Lemmas 1.6 and 1.7.) We
claim that E ⊆ F . Let e ∈ E be given. If e ∈ E(T ) then e ∈ F , because
De is the only fundamental cut of T containing e. If e is a chord of T , then
its fundamental circuit Ce lies in E, by construction of T . As Ce is finite and
hence even (by assumption), Lemma 1.6 implies that e ∈ Df for an odd number
of edges f ∈ E ∩E(T ), giving e ∈ F as desired.

(ii) In every (arc-) component of the standard subspace E(G) r E pick a
topological spanning tree (Lemma 1.5). Use Lemma 1.5 again to extend their
union to a topological spanning tree T of G; note that the additional edges will
be in E, since adding them did not create a circle. Consider the sum

D :=
X

e∈ErE(T )

Ce ∈ C

of fundamental circuits of T . (The sum is thin by Lemmas 1.6 and 1.7.) We
claim that E ⊆ D. Let d ∈ E be given. If d /∈ E(T ) then d ∈ D, because Cd

is the only fundamental circuit of T containing d. If d ∈ E(T ), then its funda-
mental cut Dd lies in E, by construction of T . As Dd is finite (Lemma 1.7) and
hence even (by assumption; recall that fundamental cuts are in fact bonds),
Lemma 1.6 implies that d ∈ Ce for an odd number of edges e ∈ E r E(T ),
giving d ∈ D as desired. §
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2.4 Orthogonal decomposition

If we can write a set E ⊆ E(G) as a sum E = D+F with D ∈ C and F ∈ B, we
call this a decomposition of E. If the sets D and F are orthogonal (which for
infinite sets is not automatic, their intersection could be infinite or even odd;
cf. Lemma 1.3), we call this decomposition of E orthogonal .

Problem 2.10.

(i) For which G does every set E ∈ E(G) have a decomposition?

(ii) For which G does every set E ∈ E(G) have an orthogonal decomposition?

(iii) For which G does every set E ∈ E(G) have a decomposition E = D +F
with either D ∈ C(G) and F ∈ Bfin(G) or D ∈ Cfin(G) and F ∈ B(G)?

(iv) When are such decompositions unique?

Note that (iii)⇒ (ii)⇒ (i) for G fixed, by Theorem 2.7.

If G is finite, a look at the dimensions of the subspaces involved shows
that Problem 2.10 has a clear solution: the answer is ‘yes’ on all counts if
C(G)∩B(G) = {∅}, while otherwise it is ‘no’ on all counts.

For G finite, non-empty elements of C(G)∩B(G)—edge sets that are both
(algebraic) cycles and ‘cocycles’ (cuts)—are called bicycles. If G has no bicycle
then, naturally, it is pedestrian; Figure 2.1 shows a pedestrian graph13 from [17].
We shall adopt these definitions verbatim for infinite graphs, but remark that
only the finite bicycles are orthogonal to themselves. In view of Theorem 2.7
we would, ideally, hope for a positive answer to Problem 2.10 (ii) for all G that
have no finite bicycles. As we shall see, this is too much to ask—but what
exactly is possible is an open problem.

...

FIGURE 2.1. An infinite pedestrian graph

So what can we say when G is infinite? In general, neither (ii) nor (iii)
of Problem 2.10 need hold even for pedestrian graphs. Indeed [12], consider
an orthogonal decomposition E = D + F of a set E ⊆ E(G). Then D ∩F is
finite (and even), and E the disjoint union of a set EC := D r (D ∩ F ) and
a set EB := F r (D ∩ F ) that can be turned into elements of C(G) or B(G),
respectively, by adding a finite set (the set D ∩F ). Moreover, if E is infinite
then at least one of EC and EB must be infinite. Hence, for G to be a coun-
terexample to Problem 2.10 (ii), all it takes is an infinite set E ⊆ E(G) that
has no infinite subset EC that can be turned into an algebraic cycle by adding

13 To see it’s pedestrian, consider the leftmost edge of a hypothetical bicycle, and check
on which sides of the cut that it defines the vertices near it come to lie.
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finitely many edges, and no infinite subset EB that can be turned into a cut
by adding finitely many edges. It is easy to see that the edge set of the upper
horizontal ray in the pedestrian graph of Figure 2.1 is such a set E in that
graph.

Some alternative approaches to Problem 2.10 remain: to settle for (i); to
prove (ii) and (iii) for specific graphs G; or to prove the assertions from (ii)
and (iii) for specific edge sets E ⊆ E(G) in arbitrary graphs G.

The entire set E = E(G), for example, always has an orthogonal decom-
position, even into disjoint sets: this is a theorem of Gallai for finite graphs,
whose extension to locally finite graphs [17] has an easy compactness proof of
the kind we shall discuss in Section 3.

For singleton sets {e}, the following is known:

Theorem 2.11. [20, 25] Let e be any edge of G.

(i) Either e ∈ E for some E ∈ C ∩B, or there are D ∈ Cfin and F ∈ Bfin such
that {e} = D +F , but not both.

(ii) Either e ∈ E for some E ∈ Cfin∩Bfin, or there are D ∈ C and F ∈ B such
that {e} = D +F , but not both.

Theorem 2.11 (i) implies a positive answer to Problem 2.10 (i) for pedes-
trian graphs G: the sets from Cfin and Bfin needed to generate the singleton sets
{e} form a thin family [20, Prop. 13], and their sum over all e ∈ E is exactly E.

Corollary 2.12. If C(G)∩B(G) = ∅, then very set E ⊆ E(G) has a decom-
position E = D +F with D ∈ C(G) and F ∈ B(G).

What can we say if all we assume is that G has no finite bicycle? Then
every singleton set {e} has a decomposition {e} = D+F as in Theorem 2.11 (ii).
But unlike for pedestrian graphs, this cannot always be chosen orthogonal:
there can be edges e all whose decompositions {e} = D +F are such that both
D and F (and hence also D ∩F ) are infinite [20]. Moreover, the family of all
the D and F that can be used in such singleton decompositions will not be
thin, as soon as G has an infinite bicycle [12]. However we might still hope
that for every concrete E ⊆ E(G) we can choose these decompositions, one for
every e ∈ E, so that the sets D and F used form a thin family. This would
yield the result, stronger than Corollary 2.12, that every edge set in a graph
without a finite bicycle has a decomposition.

Finally, uniqueness. For pedestrian graphs, any orthogonal decomposition
E = D +F of an edge set E will be unique: if E = D0+F 0 was another, then
D−D0 = F 0−F would be a bicycle. For those pedestrian graphs that do have
orthogonal decompositions, we thus have linear projections E→ C and E→B
mapping E to D and to F , respectively.

Problem 2.13. Are there explicit descriptions of these projections?
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For finite graphs G there are such descriptions [9], but these involve counting
the number of spanning trees of G—not overly helpful when G is infinite.

Finally, homology theory appears to suggest the following related question:

Problem 2.14. For which G is there a natural ‘boundary operator’ ∂: E(G)→
V(G) with kernel C(G), and a natural ‘coboundary operator’ δ:V(G)→ E(G)
with image Bfin(G)?

I suspect that this simplicial attempt to marry our topological cycle space
to the usual homological setup is in fact inadequate, and that the way to do
this lies not in changing the boundary operators but in restricting the chains.
A singular approach that does capture the topological cycle space as its first
homology group, just as in finite graphs, and where some infinite chains are
allowed but not every subset (or sum) of edges is a legal 1-chain, has been con-
structed in [40]. It allows for some infinite chains, but not all. In particular,
its 1-chains do not include all subsets of E(G), so it does not imply a solution
to Problem 2.13 as posed above. See Section 5 for more.

It may also be instructive to study how the answer to the questions in this
section, in particular to Problem 2.10, changes if we replace our coefficient ring
Z2 with Z or R. There will be no bicycles then, which simplifies things. But
other problems occur. With integer coefficients, for example, 1-dimensional
simplicial (co-) chains even of a finite graph need not decompose into an alge-
braic cycle and a cut (both oriented): as one can readily check, the triangle
with one oriented edge mapped to 1 and the others to 0 is a counterexample.

For infinite graphs and real coefficients, let
→
E (G) consist of only those

functions ψ:
→
E(G)→R for which

°
ψ(→e) = ψ(←e) for all →e ∈

→
E(G) and

¢

X

e∈E(G)

ψ2(e) < ∞ ,

where ψ2(e) := ψ(→e)2 (= ψ(←e)2). For such ψ,ψ0 ∈
→
E (G) we may define

hψ,ψ0i :=
X

e∈E(G)

ψ(⇒e )ψ0(⇒e )
°

< ∞
¢
,

where ⇒e is the natural orientation of e, one of its two orientations that was
picked and fixed once and for all when G was first defined. Now ψ and ψ0 can
be called orthogonal if hψ,ψ0i = 0, and we can study Problem 2.10.

2.5 Duality
For finite multigraphs G and G∗ one calls G∗ a dual of G if there is a bijection
e 7→ e∗ between their edge sets E := E(G) and E∗ := E(G∗) such that every
set F ⊆ E satisfies

F ⊆ C(G) if and only if F ∗ ∈ B(G∗), (†)
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where F ∗ := { e∗ ∈ E∗ | e ∈ F }. If G is 3-connected, there is at most one
such G∗ (up to isomorphism), which is again 3-connected. In this case we think
of G∗ as being defined by (†), given G. By the finite version of Theorem 2.7,
condition (†) implies the corresponding condition with C and B swapped. Hence
if G∗ is a dual of G then G is a dual of G∗, and for 3-connected G we have
G∗∗ = G.

Can such duals exist also for locally finite infinite graphs? Geometric
duals of plane graphs suggest not: the geometric dual of the N×N grid,14 for
example, has a vertex of infinite degree. And indeed, Thomassen [80] proved
that if G is a locally finite 3-connected graph that (even only) has a locally
finite ‘finitary dual’—a graph G∗ for which only the finite sets of edges in G
and G∗ are required to satisfy (†)—then every edge of G must lie in exactly
two finite peripheral circuits. In particular, the N×N grid has no such dual.

Hence in order to be able to define duals for all locally finite graphs that
should have a dual—that is, for the locally finite planar graphs—we shall
have to allow as duals at least some graphs with infinite degrees. And if we
want duals to have duals, we have to define duals also for such graphs with
infinite degrees. As we shall see in Section 5, allowing arbitrary countable
graphs with infinite degrees leads to considerable difficulties. But, fortunately,
Thomassen [80] proved also that any graph with (even only) a finitary dual
must satisfy another condition:

Every two vertices can be separated by finitely many edges. (∗)

Thus, no matter how we define duals: as soon as their finite edge sets are
required to satisfy (†)—which is certainly the minimum we shall have to ask—
these graphs will have to satisfy (∗). On the other hand, the class of graphs
satisfying (∗) is not closed under taking finitary duals, and finitary duals are not
unique [13, 80]. Extending duality to infinite graphs thus seems to be fraught
with problems.

In our topological setup, however, the problem has a most elegant solution.
Let us say that vertex v dominates a ray R in G if G contains an infinite v–R
fan (Fig. 5.1). It is easy to see that if v dominates one ray of an end it dom-
inates all its rays; we then also say that its dominates that end ω. Assuming
that G satisfies (∗), we can then define a space G̃ similar to |G|, but with
the difference that new points at infinity are added only for the undominated
ends, while the dominated ends are made to converge to the vertex dominating
them.15 Figure 2.2 shows a graph G whose two ends are both dominated by
the vertex v. Thus, G̃ has no added ends, but the double rays ‘bend round’ so
that both their tails converge to v.

In this space G̃, duality works as if by magic. We define C(G) as the set of
circuits (the edge sets of circles) in G̃, define B(G∗) as the set of cuts of G∗ (as

14 . . . naively defined just for this example; see Problem 2.17 below
15 Note that, by (∗), this vertex is unique. We shall define G̃ more formally in Section 5.
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G

... ...

... ...

v

FIGURE 2.2. A self-dual graph with infinite circuits but
no added ends

before), and call G∗ a dual of G if there is a bijection e 7→ e∗ between their edge
sets satisfying (†) for all sets F ⊆ E(G), finite or infinite. If G is 3-connected
(and satisfies (∗)), then any dual G∗ of G is unique and also satisfies (∗), and
we have G∗∗ = G witnessed by the map e∗ 7→ e =: e∗∗ [13].

For the purpose only of the next theorem, let us call a (graph-theoretical)
spanning tree of G satisfying (∗) acirclic if its closure in G̃ contains no circle
(and similarly for G∗). Note that unless G has no dominated ends, normal
spanning trees of G will not be acirclic: they contain a ray from every end, and
a ray from a dominated ends that starts at its dominating vertex forms a circle
in G̃. However, one can show that every connected graph satisfying (∗) has an
acirclic spanning tree [13].

Theorem 2.15. [13] Let G = (V,E) and G∗ = (V ∗, E∗) be connected multi-
graphs satisfying (∗), and let ∗:E→E∗ be a bijection. Then the following two
assertions are equivalent:

(i) G and G∗ are duals of each other, and this is witnessed by the map ∗

and its inverse.

(ii) Given a set F ⊆ E, the graph (V, F ) is an acirclic spanning tree of G if
and only if (V ∗, E∗r F ∗) is an acirclic spanning tree of G∗.

(For (ii), define F ∗ := { e∗ ∈ E∗ | e ∈ F } as before.)

Can we generalize Theorem 2.15 to topological spanning trees that are not
necessarily graph-theoretical trees? A positive answer to this question would
be in line with the philosophy of our theory, but the answer is not obvious.
Once we use ends as ‘connectors’ (as we do in a topological spanning tree), we
should treat them on a par with edges: we should have a bijection between the
ends of G̃ and those of G̃∗, and use each end from this common set of ends in
precisely one of the two trees. But no matter how one defines the ‘ends of G̃’,
whether one takes just the undominated ends or the undominated ends plus the
dominating vertices (i.e., the set of all limit points of rays), there need not be
a bijection between the ends of G̃ and those of G̃∗: the 3×Z grid, for example,
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is a 3-connected graph with two ends, whose dual has no undominated end and
only one dominating vertex.

Surprisingly, things work better if we, initially, continue to consider the
ends of G and G∗ in the original spaces |G| and |G∗|. Bruhn and Stein [23]
have shown that, if G is 2-connected, there is a homeomorphism between the
subspaces Ω of |G| and Ω∗ of |G∗| that is compatible with the duality map
e 7→ e∗ from E to E∗ in the sense that, for every set F ⊆ E, an end ω ∈ Ω is
an accumulation point of

S
F in |G| if and only if ω∗ is an accumulation point

of
S

F ∗ in |G∗|. The question, then, could be roughly as follows: is it true
that no matter how we form a spanning tree in G̃ from some of the edges and
ends of G (taken in |G|), the other edges and ends (taken in |G∗|) will form a
spanning tree in G̃∗? And that, conversely, if this is the case for two graphs G
and G∗ then these form a dual pair?

Figure 2.3 shows a dual pair of graphs illustrating this. The grey tree in
G∗ needs the ‘shared’ end in order to be connected, and adding the end to it
does not create a circle. The dual black tree, however, is already connected
(without the end), and adding the end there would create a circle. Hence there
is a unique way of assigning the end to one of the two trees, so that both are
spanning and acirclic in their respective graphs.

FIGURE 2.3. Dual ‘spanning trees’: the grey tree contains
the shared end, the black tree does not

Let us make this precise in greater generality. Given a set F ⊆ E of edges
and a set Ψ ⊆ Ω of ends, let us say that the subspace

S
F ∪Ψ of |G| is formed

by F and Ψ. Given a subspace X of |G|, let X̃ denote the quotient space of
X obtained by identifying every vertex in X with all the ends in X that it
dominates (in G). (For X = G this yields precisely the definition of G̃ given
informally earlier.) For example, if G is the fan shown on the left in Figure 5.1,
we might take as X the space formed by the set F of fat edges and the unique
end of G. Then X̃ is a circle. However, if we take as X the space formed
only by the set F of fat edges, without the end, then X̃ is homeomorphic to

21



the half-open interval [0, 1). Call X̃ a spanning tree of G̃ if it contains all the
vertices of G̃, is arc-connected, and contains no circle.

Theorem 2.16. [16] Let G = (V,E,Ω) and G∗ = (V ∗, E∗,Ω∗) be 2-connected
multigraphs satisfying (∗), and let ∗:E → E∗ and ∗:Ω→ Ω∗ be compatible
bijections. Then the following two assertions are equivalent:

(i) G and G∗ are duals of each other, and this is witnessed by the maps
E→E∗ and Ω→Ω∗ and their inverses.

(ii) Whenever the subspace X of |G| formed by subsets F ⊆ E and Ψ ⊆ Ω
is such that X̃ is a spanning tree of G̃, the sets E∗ r F ∗ and Ω∗ r Ψ∗

form a subspace Y of |G∗| such that Ỹ is a spanning tree of G̃∗.

Here, as before, F ∗ := { e∗ ∈ E∗ | e ∈ F } and Ω∗ := {ω∗ ∈ Ω∗ | ω ∈ Ω }. The
obvious implications for infinite matroids which Theorem 2.7, Theorem 2.15
and 2.16 suggest will be a topic in Section 5.

For finite graphs, the theory of algebraic duality outlined above corre-
sponds to a theory of geometric duality: two connected graphs are duals of
each other if and only if they can be drawn in the plane so that precisely the
corresponding edges cross and vertices correspond bijectively to faces of the
dual.16

For our graphs satisfying (∗), this is not so obvious: how, for instance,
should we draw the two dual graphs of Figure 2.2 so that their rays converge
as they do in G̃ and G̃∗? In particular, where in such a drawing can we put the
two vertices of infinite degree, the limit points of those rays? For now, setting
up geometric duality in a satisfactory way remains an unsolved problem:

Problem 2.17. Define geometric duals for infinite graphs satisfying (∗) com-
patibly with their algebraic duals.

Perhaps the solution to Problem 2.17 lies in an approach similar to that for
Theorem 2.16: to apply duality ‘before identification’ rather than after, that is
to say, to look for geometrically dual embeddings of |G| and |G∗| rather than
of G̃ and G̃∗. The drawback of such an approach is that |G| and |G∗| need
not be compact as soon as we refine their topologies enough to make their
embeddings in the plane continuous.17 This, then, raises issues such as how
exactly to define a face.

16 In particular, graphs with a dual are planar. This is Whitney’s theorem, which extends
to locally finite graphs satisfying (∗) if and only if duality is defined as we did: with C as the
topological cycle space of G based on G̃. See Section 4.

17 Since |G| fails to be Hausdorff as soon as G has a dominated end, we need to refine our
current topology, known as VTOP, to a topology called MTOP; see Section 5.1–2. Under
MTOP, |G| is compact only if G is locally finite (in which case MTOP agrees with VTOP).
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3. Proof Techniques

Once more, let G be an infinite, locally finite, connected graph. The aim of
this section is to bring the reader new to the field up to date with its collective
memory of techniques. Although each of the deeper proofs of existing theorems
naturally has its own difficulties and ways of overcoming them, there is by now
a body of basic approaches that can be described—as well as some common
pitfalls the novice might like to hear about before plummeting their depths
themselves.

We shall concentrate on proofs that establish the existence of infinite sub-
structures of |G| such as arc, circles, or topological spanning trees. Such a proof
usually has two parts: the construction of this structure, usually by a limit pro-
cess, and the proof that the object thus constructed does what it is intended to
do.18 We shall only discuss the construction part. If the construction is done
well, it can happen that the proof of correctness becomes easy. This does not
always happen, and if it does, it may simply mean that the problem is intricate
enough that ‘blind’ constructions will fail: that any difficulties that may arise in
the proof have to be anticipated by the construction. Still, the basic techniques
that are common to many proofs tend to lie at the construction level, while
difficulties arising at proof level tend to be individual to the problem. Our
focus on the construction part of proofs reflects this phenomenon; it is not a
deliberate restriction.

3.1 The direct approach

The direct, or naive, approach to the construction of standard subspaces with
certain desired properties, such as an arc, a circle or a topological spanning tree,
is to obtain them as the union of nested finite subgraphs defined explicitly, or
as the intersection of a nested sequence of explicitly defined superspaces. For
example, we might try to construct a spanning tree as a union of finite trees
T0 ⊆ T1 ⊆ . . . eventually covering all the vertices of G. The union T of these Tn

will be a tree, but its closure in |G| may well contain a circle: unlike finite cycles,
this will arise only at the limit step, and it may not be clear how to choose the
Tn so that this does not happen.

If we want this naive approach to work, we have to express the statement
to be proved in a finitary way—for example, as statements about finite sets
of edges. The characterization of topological connectedness in Lemma 1.4 is a
case in point; the characterization of cycle space elements in Theorem 2.7 (i) is
another. Unlike the circle in our example, finitary properties do not appear or
disappear at limits, which makes it easy to prove such statements by induction
or an application of Zorn’s lemma.

18 For example, we might be constructing a Hamilton circle, a circle in |G| passing through
all the vertices. The construction part might define a map σ: [0, 1]→ |G| that is, by definition,
injective at vertices and inner points of edges (except that σ(0) = σ(1)), while we might still
have to show that σ is continuous and injective at ends.
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For instance, we have already seen the construction of a topological span-
ning tree ‘from above’, in the proof of Lemma 1.5. In that proof we used the fact
that connectedness of a standard subspace is a finitary property (Lemma 1.4),
and that topological spanning trees are edge-minimal connected standard sub-
spaces of |G| containing all its vertices. The proof of the following lemma,
which we shall need in Section 4, is very similar:

Lemma 3.1. Let X be a standard subspace of G.

(i) If X is k-edge-connected, we can delete edges from X to obtain a stan-
dard subspace Y that is edge-minimally k-edge-connected.

(ii) If X is k-vertex-connected, we can delete edges from X to obtain a
standard subspace Y that is edge-minimally k-vertex-connected.

Proof. (i) To obtain Y from X, we go through the edges of X in turn, deleting
the edge under consideration if and only if this does not spoil the k-edge-
connectedness of the current space. To show that Y is still k-edge-connected
(in which case it will clearly be minimally so), we consider a hypothetical set F
of fewer than k edges whose removal disconnects Y . By Lemma 1.4, the space
Y r F̊ meets both sides of some finite cut of G in which it has no edge. But
X r F̊ has an edge in this cut, because it is connected. All its edges in the
cut, however, were deleted in the construction of Y , and the edge deleted last
should not have been deleted.

(ii) The proof of the vertex-connectivity case is analogous: we again delete
edges one by one, but instead of an edge set F and the space Y r F̊ we consider
a separating set U of fewer than k vertices and the standard space obtained
from Y by deleting U and its incident edges. §

The analogue of Lemma 3.1 for k-connected subspaces—those that cannot
be made disconnected by the deletion of fewer than k vertices or ends—cannot
be proved in the same way. For arbitrary substandard subspaces it is false (con-
sider the double ladder, without the ends, for k = 2), but for standard subspaces
it is an open problem.19 For example, if we delete all the broken edges in the
graph of Figure 3.1 in ω steps, the space will lose its 3-connectedness (since
deleting the two ends will then disconnect it), but does so only at the limit
step.

FIGURE 3.1. The subspace obtained by deleting all the
broken edges is no longer 3-connected.

19 We shall discuss this problem in Section 4.1.
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As we shall see in Section 4, many applications of the object |G| have
the following form: there is an existence statement about finite graphs that
fails for infinite graphs—for example, a theorem asserting the existence of a
Hamilton cycle—but a topological analogue works in |G|. In our example, it
might be that the same conditions (such as being planar and 4-connected) that
force a Hamilton cycle in a finite graph force a Hamilton circle in |G|. Rather
than proving the infinite theorem from first principles, we might try to use
the finite result for the proof of its infinite analogue. We would then want to
express |G| as a limit of finite graphs G0, G1, . . . that satisfy the assumptions
(such as planarity and 4-connectedness) if G does, use the finite theorem to
find the desired structures in the Gn, and then take a limit of these to obtain
the analogous structure in |G|.

Experience has shown that defining these Gn as induced subgraphs of G,
e.g. those on its first n vertices, is not often a good approach: a badly chosen
Gn ⊆ G is too oblivous of how it lies inside G. (There might, for example,
exist Gn-paths20 in G between vertices of Gn that are easily separated in Gn.)
However, there is a standard approach using finite ‘nested’ minors rather than
subgraphs as Gn, which we define now.

Let v0, v1, . . . be an enumeration of the vertices of G. For each n ∈ N let
Sn := {v0, . . . , vn}, and write Gn for the minor of G obtained by contracting
every component of G− Sn to a vertex, deleting any loops that arise in the
contraction but keeping multiple edges. The vertices of Gn contracted from
components of G−Sn will be called the dummy vertices of Gn.

Note that every cut of Gn is also a cut of G. Conversely, a cut of G is
a cut of every Gn that contains all its edges. This is an important feature,
which distinguishes these minors from a similar sequence of finite subgraphs
exhausting G. A topologically connected standard subspace of |G|, for example,
will induce a connected subgraph in each Gn (cf. Lemma 1.4), an element of the
cycle space of G will induce a cycle space element of Gn (cf. Theorem 2.5.), and
so on. We shall appeal to these properties again in our discussion of homology
in Section 5.3.

As a first application of these Gn let us show that they allow us to construct
a topological spanning tree directly ‘from below’, using the direct approach.21

Lemma 3.2. G has a topological spanning tree.

Proof (by explicit construction from below).
Pick spanning trees Tn of Gn recursively so that E(Tn+1)∩E(Gn) = E(Tn).22

We claim that T :=
S

n E(Tn) is a topological spanning tree of G.

20 See [32] for the notion of an H-path in G for a subgraph H ⊆ G.
21 The proof of Lemma 3.2 can be generalized to a proof ‘from below’ of the full statement

of Lemma 1.5 for the existence of topological spanning trees in standard subspaces [16].
22 There is a unique way of doing this. Unless vn+1 forms a component of G−Sn by itself

(in which case Tn+1 = Tn), the graph Gn+1 is obtained from Gn by expanding the dummy
vertex of Gn contracted from the component containing vn+1 to a star with centre vn+1 and
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To show that T is connected (and hence arc-connected, by Lemma 1.2),
we have to check that every finite cut of G contains an edge from T . It does,
because it is also a cut of some Gn, and Tn has an edge in this cut.

Now suppose that T contains a circle, C say. Pick vertices u, v ∈ C, and
choose n large enough that u, v ∈ Sn. Let F be a fundamental cut of Tn

separating u from v. Since this is also a cut of G and C meets both its sides,
C has an edge in F (Lemma 1.4). Deleting this edge from C leaves an arc,
which still has an edge in F (by the same argument). Hence C ⊆ T has two
edges in F , contradicting the fact that E(T )∩E(Gn) = E(Tn) and Tn has only
one edge in F . §

Finally, there is a type of construction, very common in finite graph the-
ory, which is rather naive in the context of |G| but should not go unmentioned:
the construction of paths or arcs by ‘greedily moving along’. As an example,
consider the proof of Theorem 2.3 (i), that every edge set D ∈ C(G) is a disjoint
union of circuits. Let us just try to find the first circuit. If G is finite, we start
from any edge in D and ‘greedily move along’ further edges of D: since D has
an even number of edges at every vertex, we cannot get stuck until we reach
our starting vertex again. We stop, however, when we hit the first previously
visited vertex, having found our first circuit. We then delete this and repeat,
eventually decomposing D into circuits.

When G and D are infinite, this approach can fail quite spectacularly. For
example, D might be the wild circuit of Figure 1.1. By ‘moving along’ its edges
we would run into an end, from which there would be no escape, not even by
an inverse ray. The linear order structure of the double rays on the wild circle
indicates that the only way to obtain it as a limit is to ‘approach all its points
at once’—which is exactly what we shall do using our sequence of Gn.

3.2 The use of compactness
A typical compactness proof, such as of the Erdős -DeBruijn theorem on col-
ouring, is a way of making consistent choices for all the finite substructures
of an infinite structure, and then deducing from the fact that all the finite
substructures have a certain property that so does the entire structure.

In our context, only the simplest results have compactness proofs quite
like this. But we often use compactness for the construction part of a proof,
including the more difficult ones: to define a limit object (e.g., a subspace X)
in such a way that all of certain finite substructures (e.g., the finite cuts of G)
relate to the limit object in a certain desired way (contain an edge of X). This
may be less than we actually want to prove (e.g. that X is arc-connected)—but
it may be a good start.

The best examples for this are infinite analogues of theorems asserting for
a finite graph the existence of a path or cycle that can be found by a process

some new dummy vertices of Gn+1 as leaves. We we obtain Tn+1 from Tn by adding the
edges of this star. In other words, we do not add edges incident with a vertex in Sn.
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of ‘focussing in’ on some part of a graph: in such cases, the same process may
converge to a limit object in |G| with similar properties. Bruhn’s proof [11] of
Theorem 2.3 (ii), for example, works in principle like Tutte’s own proof of his
finite theorem. Or think of the ‘focussing’ in on a component in Thomassen’s
proof that every finite 3-connected graph has an edge whose contraction pre-
serves 3-connectedness. (See [32] for both.)

To illustrate how such a compactness proof typically works, or might fail,
let us take another look at the proof of Theorem 2.3 (i). We were trying to find
a single circuit C in a given set D ∈ C(G) (which might be the wild circle, so
that we cannot find C by ‘moving along’). Our approach now is to construct
C as a limit of circuits Cn in the Gn. Since D meets every cut of Gn evenly
(because that cut is also a cut of G), we have Dn := D∩E(Gn) ∈ C(Gn). By
the trivial finite version of Theorem 2.3 (i), we find a circuit Cn ⊆ Dn. Will
these Cn, or at least a subsequence, tend to a limit C ⊆ D that is a circle
in |G|?

Not necessarily. For a start, the limit might exist23 but be empty. Indeed,
depending on the structure of D, we might have chosen the Cn so badly that
no edge lies eventually in Cn.24 But there is a simple way to prevent this: by
insisting that every Cn contain some fixed edge e ∈ D.

Assuming this, let us use the infinity lemma to construct a limit of
these Cn. To apply the lemma we need to define ‘predecessors’, which is easy:
let the nth finite set in the setup of the lemma contain not only Cn but also
all edge sets of the form Cm

n := Cm∩E(Gn) with m > n. Since the cuts of Gn

are also cuts of Gm, these sets will meet every such cut evenly and hence lie
in C(Gn). We may now define the predecessor relation for the infinity lemma
as inclusion (of edge sets), and obtain the desired limit C as a union of certain
nested sets Cm

n ∈ C(Gn) found by the lemma, one for each n. Then C, too,
meets every finite cut of G evenly, because that cut is also a cut of some Gn and
the selected Cm

n meets this cut evenly. Hence C ∈ C(G), by Theorem 2.7 (i).
But is C a circuit? Unfortunately, it need not be: we cannot in general

prevent the Cm
n from traversing dummy vertices more than once, in which case

the closure C of their union can be a union of circles that are vertex-disjoint
but meet at ends. Figure 3.2 indicates an example where this happens: the
sequence of Cn there is formed by alternately extending them in two different
places, so that both extensions tend to the unique end, yielding a limit in which
that end has degree 4.

So what did we achieve? As the limit of our circuits Cn we found just
another algebraic cycle in C(G), but not a circuit. For our present problem
this seems like next to nothing: after all, we started with an algebraic cycle
D ∈ C(G), looking for a circuit C ⊆ D. But in general, the method does have

23 We have not made this precise yet.
24 For example, let G be the plane Z×Z grid, and choose as Cn the boundary circuit of

the outer face of Gn.
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FIGURE 3.2. Finite cycles tending to a double circle. The
shaded regions contract to dummy vertices.

its uses: it shows that from algebraic cycles Cn ∈ C(Gn)—we never used that
they are actually circuits—we can always obtain an algebraic cycle C ⊆

S
n Cn

by compactness, even if the Cn were not induced by some given D ∈ C(G).
And we can say a little more about C too: there is a subsequence of the Cn

(consisting of those Cm that gave rise to one of the Cm
n in our nested sequence

picked by the infinity lemma) such that every edge of C lies eventually on every
Cn in this subsequence.

Moreover, the set C ⊆ C(G) we found (now using that the Cn are circuits)
does have one advantage over D: the standard subspace C r e̊ is connected.
Indeed, every Cm r {e} spans a connected subgraph in Gm, and hence so does
Cm

n r {e} in Gn. The connectedness of C r e̊ now follows from Cm
n ⊆ C and

Lemma 1.4. We can therefore use Lemma 1.2 to find an arc in C r e̊ between
the endvertices of e, which together with e will form the desired single circuit
in D containing e—solving our problem.25

3.3 Constructing arcs directly

In our compactness proof discussed above, we obtained as a limit of finite
cycles Cn ⊆ Gn an edge set C ∈ C(G) with C connected, and we had to invoke
Lemma 1.2 in order to find inside C an arc between the endpoints of our fixed
edge e. Could we have obtained such an arc directly, by using compactness
in a more subtle way—e.g. by choosing the edge sets to which we applied the
infinity lemma more carefully?

Problem 3.3. Given two vertices x, y ∈ G and, for all n large enough, an x–y
path Pn ⊆ Gn, construct by a direct compactness argument an x–y arc in |G|
with edges in

S
n E(Pn).

This problem is still unsolved. What we can do is construct a topological
x–y path in |G| by direct compactness. This path will traverse vertices at most
once, but it may be non-injective at ends (as in Figure 3.2). In order to obtain
the desired arc, we therefore still have to invoke a theorem from general topol-
ogy: that the image of any x–y path in a Hausdorff space contains an x–y arc.

25 The proof of Theorem 2.3 (i) follows easily now: we just collect circuits C ⊆ D induc-
tively and delete them, to eventually decompose D, starting each new circuit with the next
uncovered edge of D in some fixed enumeration.
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Before we apply this technique to obtain such a partial solution to Prob-
lem 3.3, let us illustrate it by an exercise. Let T be the infinite binary tree.
The task is to construct a topological path σ: [0, 1]→ |T | that starts and ends
at the root and traverses every edge exactly twice, once in each direction. For
k ∈ N, let T k denote the finite subtree of T consisting of its first k levels. We
shall obtain σ as a limit of analogous paths σk around these T k, as follows.

Let σ0 be the constant map from [0, 1] to the 1-vertex graph T 0. Assume
inductively that we have defined for i = 0, . . . , k paths σi: [0, 1]→T i such that
the inverse image under σi of each leaf of T i is a non-trivial interval, that the
inverse image of any other point of T i is a single point, and that σi+1 agrees
with σi on all points of [0, 1] that σi maps to points of T i other than leaves.
(Thinking of σi as a journey with [0, 1] measuring ‘time’, we thus ask that σi

should pause for a while at every leaf of T i, but not elsewhere.) In order to
obtain σk+1 from σk, we just expand every pause at a leaf t of T k to a little
path tt0tt00t in T k+1 from t to its two successors t0, t00 and back, pausing again
at each of t0 and t00.

To define our desired limit σ of these σk, we first look at all those x ∈ [0, 1]
for which the σk eventually agree, and let σ(x) := σk(x) for these x (with k large
enough). For any other x, every σk(x) will be a leaf of T k, and as k→∞ these
σk(x) form a ray in T ; we let σ(x) be the end of that ray. It is straightforward
from the definition of the topology of |T |, but still instructive, to check that
this map σ: [0, 1]→ |T | is continuous at these latter points x mapped to ends.
Indeed, every basic open neighbourhood of an end ω = σ(x) has the following
form: for some vertex t on the ray R in ω starting at the root, it is the set of all
points in |T | strictly above t. Let t0 be the upper neighbour of t on R. If k is
the level of t0 in T , then t0 is a leaf of T k, and all the points in the subinterval of
[0, 1] that σk maps to this leaf t0 will be mapped by all σ` with ` > k to points
of G that still lie above t. Hence σ will map all such points to the closure of
this set (but not to t), i.e. to the open neighbourhood of ω we started with.

This technique for constructing a topological path directly as a limit of
maps can can be combined with compactness, as follows. Consider Problem 3.3.
Every x–y walk in Gm, including the given path Pm, induces for every n < m an
x–y walk in Gn consisting of those of its edges that already lie in Gn, traversed
in the same order and direction. In order to obtain an x–y arc in |G|, we first
use the infinity lemma to select from these walks a sequence (Wn)n∈N of x–y
walks Wn each inducing the previous. We then parametrize these walks in turn
for n = 1, 2, . . ., as in our binary tree example: by topological paths σn ‘pausing’
at every dummy vertex of Gn (but only there), and so as to agree with σn−1 at
all points that σn−1 does not map to a dummy vertex. The limit of these σn

will be a topological x–y path σ in |G|, defined as as earlier, since sequences
of dummy vertices of the Gn (n→∞) that correspond to nested components
of G− Sn define a unique end, and these components form a neighbourhood
basis for that end.

Note that if we insist that the lengths of pauses tend to zero as n tends
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to infinity, the inverse image of an end under the limit path σ will be a totally
disconnected subset of [0, 1]. But I do not know how to set up the infinity
lemma in such a way that σ will be injective at ends: we have found an x–y
path in |G|, but not the desired arc.

The construction of a topological Euler tour in |G| for the proof of Theorem
2.5 (ii) works exactly like this, too.

4. Applications

A particularly satisfying feature of the topological approach to infinite graphs
via ends is its applicability. Considering arcs and circles in |G| instead of paths
and cycles in G enables us to extend classical theorems from finite graph theory
whose naive extension to infinite graphs fails.

In this section we give an overview of three areas in which this phenomenon
is particularly striking: an emerging ‘extremal’ theory of infinite graphs; ap-
plications of the cycle space (eg. to characterizations of planarity), and infinite
electrical networks. Let G be a locally finite, connected infinite graph.

4.1 Extremal infinite graph theory

Following Bollobás [10], let us take the wider notion of extremal graph theory to
refer to how graph invariants (usually numerical) interact. A typical question
is how one invariant can be forced up or down in an arbitrary graph by making
assumptions about what values another invariant takes on that graph. Particu-
lar emphasis is usually given to pairs of invariants of which one is ‘local’ and
the other ‘global’. The following variant of Turán’s original such question is a
good case in point: for which function f(r), if any, can we force the presence of
a Kr minor in an arbitrary graph by assuming only that it has average degree
at least f(r)?

This type of question makes no immediate sense for an infinite graph,
because there is no obvious notion of ‘average degree’. So let us replace it by
‘minimum degree’. Now the question does make sense, but unlike in the finite
case it has a trivial negative answer: there are locally finite trees of arbitrarily
large minimum degree. Clearly, these have no Kr minor for r > 2.

What, then, makes infinite graphs so different in this respect? Since there
are finite graphs of both minimum degree and girth arbitrarily large [32], also
finite graphs of large minimum degree can look locally like trees. However, a
large finite tree also has many leaves, whose low degrees push its average degree
back below 2. Requiring a high average or minimum degree in a finite graph
therefore also has another effect, in addition to just fast growth: it forces us to
‘wrap up’ those leaves. The classical theorem of Mader [61] that a large enough
average degree forces any desired minor can thus be restated as saying that,
no matter how we do this ‘wrapping up’ (whether by adding edges, say, or by
identifying vertices), we will always create such a minor.
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The key idea for infinite graphs now is that compactifying a locally finite
graph by adding its ends wraps it up in a similar way, albeit at infinity. And
this wrapping-up can help us restore properties of finite graphs that are lost in
the naive transition from finite to infinite.

In fact, most of the time this restoration happens automatically: often, all
we have to do is allow circles when we used to wish for a cycle, and arcs when
we used to desire a path. These objects tend to exist as limits (or inside the
limits) of the cycles or paths whose existence was asserted by the finite theorems
that now fail. More precisely, this works whenever the cycles or paths whose
existence is claimed in the finite theorem can be found there by a process of
‘focusing in’, as discussed in Section 3. We shall see some more examples of
this phenomenon later in this section.

First, however, let us take advantage of ends as ‘wrapping’ in a more
direct way: by explicitly requiring them to have large degrees and seeing what
substructures this can force.

Consider again the aim of forcing a Kr minor, for r = 4 say. In other words,
we wish to force a TK4 subgraph by assuming some large enough minimum
degree. Assume for simplicity that our graph G is 2-connected. If G is finite, a
minimum degree of δ(G) > 3 will force a TK4 subgraph. Indeed, as κ(G) > 2
we can construct G starting from a cycle and adding paths, one at a time, that
share only their endvertices with the graph constructed so far. If G 6⊇ TK4,
those two vertices lie on a common earlier path, and they do not ‘cross’ other
paths grafted later on to this same earlier path; see Figure 4.1. This makes it
easy to see that after every construction step there is still a vertex of degree 2.

v

ω∄

FIGURE 4.1. A vertex or end of degree 2 in a graph G 6⊇ TK4

If G is infinite, however, we can go on grafting new paths on to any vertices
of degree 2, and after ω steps all such vertices have disappeared. But any graph
obtained in this way will have an end of vertex-degree 2. (In fact, every end
will have vertex-degree 2.) Indeed, using the infinity lemma we can find a
sequence of paths each grafted on to the previous one. These paths converge
to an end, which is easily seen to have vertex-degree 2. (Its edge-degree may
be higher.) We can therefore get an analogue of the finite theorem, that δ > 3
forces a TK4 subgraph, after all: every graph whose vertices and ends all have
(vertex-) degree at least 3 contains a TK4.
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So what kind of substructures can be forced by assuming that both vertices
and ends have large degree? The first theorem in this vein is due to Stein:

Theorem 4.1. [77] Let G be a locally finite graph.

(i) If δ(G) > 2k2 + 6k and every end of G has vertex-degree at least
2k2 +2k +1, then G has a (k +1)-connected subgraph.

(ii) If δ(G) > 2k and every end of G has edge-degree > 2k, then G has a
(k +1)-edge-connected subgraph.

The bounds in Theorem 4.1 are close to best-possible; see [77].
Theorem 4.1 uses vertex and end degrees to force not a concrete desired

subgraph but just some subgraph from a desired class. This is an interesting
variant of the original extremal problem, which is to force a concrete subgraph
(or minor etc.) by global assumptions such as on average or minimum degrees.
Forcing a concrete finite minor in an infinite graph by assuming that its vertex
and end degrees are large, unfortunately, takes us little further than the K4

example we saw earlier: already a K5 minor cannot be forced in this way. This
is because there are planar graphs with arbitrarily large degrees and only one
end, of infinite degree: just take a regular tree of large degree, and add edges
forming circuits Di, one for every i ∈ N, through all the vertices at distance i
from the root.

Forcing Kr minors for r > 5 is possible, however, with another notion of
end degrees: one is motivated less by topological considerations (such as to
give every end on a circle degree 2 there) than extremal ones. Call an induced
subgraph C of G a region of G if C is connected and its edge-boundary Be(C),
the set of edges of G between C and G− C, is finite. Then also the vertex
boundary Bv(C) of C, the set of vertices of C incident with an edge in Be(C),
is finite. Let us say that a nested sequence C1 ⊇ C2 ⊇ . . . of regions defines
an end ω of G if the sets Ĉi form a neighbourhood basis of ω in |G|, i.e., if
ω belongs to every Ci and

T
i Ci = ∅. Now let the relative degree of ω in G

be defined as the infimum, taken over all its defining sequences C1, C2, . . . of
regions, of the numbers

lim inf
i→∞

|Be(Ci)|
|Bv(Ci)|

.

Intuitively, the relative degree measures how many edges per boundary vertex
the regions around an end ω will at least send away from ω eventually, just
as the degree of a vertex measures the number of edges it sends away. Note
that the edge-degree of an end is always at least its relative degree [78], but the
vertex- and the relative degree of an end are not abstractly related. Relative
end degrees in subspaces can be defined analogously, taking the end-defining
regions in G but their vertex or edge boundaries in the subspace.

The notion of relative end degree was introduced by Stein. It works so
well that we get the following blanket adaptation of results from finite sparse
extremal graph theory:
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Theorem 4.2. [78] Let H be a class of finite graphs, and assume that d ∈ R
is such that every finite graph of average degree at least d has a minor in H.
Then every locally finite graph of minimum degree at least d whose ends all
have relative degree at least d has a minor in H.

Note that, despite the use of end degrees, the finite minors found by Theo-
rem 4.2 will be minors of finite subgraphs of G.26 This motivates the following
problem, where this will not be possible. Given a finite graph H and a standard
subspace X of |G|, define the minor relation H 4 X just as for graphs, with
closed and connected subspaces of X as branch sets (which may contain ends).

Problem 4.3. Does Theorem 4.2 extend to subspaces?

What about forcing infinite minors? From our earlier example we know
that by assuming large vertex and end degrees (non-relative) we cannot force
non-planar minors. But we can force most planar minors. Indeed, by a result
of Halin [51, 32] every graph G with an end of infinite vertex-degree contains
the half-grid N×Z as a minor, and similarly every graph with an end of large
enough finite vertex-degree contains an n×N grid (and hence any given finite
planar graph) as a minor. On the other hand, there are planar graphs of
arbitrarily large (finite) minimum degree and minimum vertex-degree for ends
that do not contain the half-grid as a minor [78]. It would be interesting to
find some natural strengthening of the degree assumption on ends that would
force a planar graph to contain the full grid, or even to contain every locally
finite planar graph, as a minor (cf. [33]). More generally:

Problem 4.4. What infinite minors can be forced by assuming large vertex
and end degrees (of any type)?

Let us return to our theme of how certain paths or cycles (with some
desired properties) whose existence in a finite graph is proved by some focusing
process can fail to exist in an infinite graph G, because (in G itself) that process
need not converge. Our aim will then be to show that such paths or cycles in
finite minors Gn of G can tend to a limit that is an arc or circle in |G| with
the desired properties.

For example, consider in a finite 3-connected plane graph a maximal se-
quence of nested cycles (not necessarily disjoint). This sequence will end with a
cycle that bounds a face. When we delete this cycle, it will not disconnect the
graph. Cycles, in any graph, whose deletion does not reduce the connectivity
of a graph by more than 3 are called connectivity-preserving. Cycles with the
property that deleting their edges does not reduce the edge-connectivity of the
graph by more than 2 are edge-connectivity-preserving. Such cycles exist in

26 It is easy to see that any finite minor of a graph G is also a minor of a finite subgraph
of G: just replace any infinite branchsets by finite subtrees that link the edges needed.
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every finite graph, and they can be found by a process of ‘focusing in’, just as
in the planar case; this was proved by Thomassen [81] for connectivity and by
Mader [65, 66] for edge-connectivity.27

In an infinite graph such cycles need not exist. Let us show this by con-
structing a counterexample, due to Aharoni and Thomassen [4]. This graph will
be locally finite, and will depend on a given integer k; so let us call it AT (k).
The graph AT (k) combines two properties that no finite graph can have at the
same time:

• it is k-connected (where k is as large as we like);

• deleting any cycle, or the edges of any cycle, disconnects the graph.

As a result of these two properties, the graphs AT (k) are counterexamples to a
number of statements which, for finite graphs, are well-known theorems. The
existence of connectivity-preserving cycles is one of these, and we shall meet
another below.

We shall construct AT (k) inductively from copies of some fixed finite k-
connected graph H. Let us choose H of girth at least k2; then H has a set X
of k vertices at distance at least k from each other. (For example, spread X
around a shortest cycle in H.) The idea now is to build AT (k) as a union of
finite graphs G0 ⊆ G1 ⊆ . . ., where each Gn+1 is obtained from Gn by grafting
on to any non-separating cycles of Gn some new copies of H, to make them
separating.

Formally, we begin with a copy G0 of H. Let us assume inductively that
we have constructed Gn in such a way that it is k-connected, that any Gn−1-
path28 in Gn has length at least k, and that the edges of any cycle contained
in Gn−1 separate Gn. We now consider separately every cycle C in Gn that
does not lie in Gn−1. By our second assumption about Gn, the cycle C has
some k edges that do not lie in Gn−1; subdivide these once. (Thus, on an
edge that lies on 3 such cycles of Gn we insert 3 subdividing vertices.) We
now take k fresh copies of H specific to our choice of C, and identify their
k-vertex sets X with those k subdividing vertices inserted on C. It is easy to
check that Gn+1 is again k-connected, that every Gn-path has length at least k
(because it links two vertices from X in a copy of H), and that the edges of
any cycle contained in the newly subdivided Gn (including those inside Gn−1)
separate Gn+1. Clearly, AT (k) = G0 ∪G1 ∪ . . . has the two desired properties.

The Aharoni-Thomassen graph AT (k) for k > 4 has neither connectivity-
preserving nor edge-connectivity-preserving cycles. However, it has edge-
connectivity-preserving circles, as indeed does every locally finite graph:

27 We remark that the connectivity-preserving cycle C found by Thomassen [81] is induced.
Hence if C ⊆ G with κ(G) = k +3, say, then every vertex of C sends at least k +1 edges to
G−C, which is k-connected. Thus, we also have the ‘mixed connectivity’ result that deleting
only the edges of C reduces the (vertex-) connectivity of G by at most 3.

28 See [32] for the notion of an H-path in G for a subgraph H ⊆ G.
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Theorem 4.5. [16] Let G be a locally finite graph, and k ∈ N. If G is (k +2)-
edge-connected, then |G| contains a circle C such that the subspace of |G|
obtained by deleting the edges in E(C) is k-edge-connected.

(Recall that, by Lemma 1.4, the graph G is (k + 2)-edge-connected if and
only if |G| is, and likewise for vertex-connectivity and general connectivity.)
Theorem 4.5 extends to standard subspaces [16].

The analogues of Theorem 4.5 for deleting vertices and/or ends are open:

Problem 4.6.

(i) If G is (k + 3)-connected, does |G| contain a circle C such that the
standard subspace of |G| obtained by deleting the vertices of C and all
their incident edges is k-vertex-connected?

(ii) If G is (k + 3)-connected, does |G| contain a circle C such that the
subspace of |G| obtained by deleting C and the edges incident with its
vertices is k-connected?

There are also versions of these theorems and problems for deleting paths
and arcs. Mader [65] proved that any two vertices of a finite graph G are linked
by a path whose edges we can delete without reducing the edge-connectivity
of G by more than 2. A construction very similar to that of AT (k) provides a
counterexample to this statement for locally finite graphs, but the correspond-
ing statement for arcs in |G| (joining two given vertices or ends) is true [16].
For vertex-connectivity, it is a well-known open problem of Lovász whether
or not there is even a function f : N→ N such that any two vertices of any
f(k)-connected finite graph can be linked by a path whose deletion leaves a
k-connected graph. The corresponding statement for arcs in |G|, in the spirit
of Problem 4.6, is also unknown.

Two classical theorems from finite extremal graph theory, due, respectively,
to Halin and Mader, say that if a finite graph is edge-minimal with the property
of being k-connected [52], or of being k-edge-connected [62], then it has a ver-
tex of degree only k. Since every finite k-connected or k-edge-connected graph
contains an edge-minimal such graph, these are fundamental results about the
structure of all finite k-connected or k-edge-connected graphs.

Unlike its edge-connectivity version, the vertex-connectivity version of the
above theorem remains true for infinite graphs [52] and k > 2: every edge-
minimal k-connected graph has a vertex of degree k. However, it is no longer
that interesting: as the double ladder shows for k = 2, an infinite k-connected
graph need not contain an edge-minimal such graph. The justification for
studying these minimal graphs, therefore, collapses.

However, if we extend our class of objects from graphs to all their standard
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subspaces, then edge-minimal objects exist by Lemma 3.1.29 For example,
we can now delete all the rungs in the double ladder: what remains is dis-
connected as a subgraph, but 2-connected in both senses as a subspace that
includes the ladder’s ends. The basic objects to investigate for a study of the
k-connected or k-edge-connected locally finite graphs, therefore, are their edge-
minimal k-vertex-connected or k-edge-connected standard subspaces—or their
edge-minimal k-connected subspaces if they exist:

Problem 4.7. Can we delete edges from any k-connected standard subspace
of |G| to obtain an edge-minimal k-connected standard subspace?

The graph of Figure 3.1, for example, does have an edge-minimal k-
connected standard subspace: just delete all but one of the broken edges in
Figure 3.1, or delete all the broken edges in Figure 4.2.

FIGURE 4.2. Deleting all the broken edges yields an edge-
minimal 3-connected standard subspace.

Edge-minimal k-edge-connected or k-vertex-connected standard subspaces
need not have a vertex of degree only k. Indeed, consider for k = 2 the carte-
sian product of a 3-regular tree T with an edge e; deleting all the ‘rungs’ (the
edges projecting to e) leaves a subspace consisting of the two copies of T glued
together at the ends. This subspace X is edge-minimally 2-edge-connected
and 2-vertex-connected, but every vertex is incident with 3 edges of X. Note,
however, that all the ends have edge- and vertex-degree 2 in X.

This observation suggests the following infinite analogues to Halin’s and
Mader’s finite theorems. Given k, let ‘k-highly connected’ mean any one of
‘k-edge-connected’, ‘k-vertex-connected’ or ‘k-connected’, and let ‘degree’ (for
an end) mean any one of ‘edge-degree’, ‘vertex-degree’ or ‘relative degree’.

Problem 4.8. Given k ∈ N, does every edge-minimal k-highly connected stan-
dard subspace of |G| contain a vertex or end of degree at most k?

29 Having noticed that a given k-connected or k-edge-connected graphs need not contain
an edge-minimal such subgraph, Halin [53, 54, 55] posed various problems to determine and
study those that do. The shift to subspaces, coupled with Lemma 3.1, solves this problem in
a much more satisfactory way.
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Halin’s finite theorem has been strengthened in various ways, and one
can ask about infinite analogues also of those strengthenings. For example,
Mader [63, 64] proved that in an edge-minimal k-connected graph every cycle
contains a vertex of degree k. Among other things this implies that every sub-
graph of an edge-minimal k-connected graph has a vertex of degree at most k:
either on a cycle, or else as a leaf. If Problem 4.8 has a positive answer, it will
be natural to ask (in the same informal terminology as above):

Problem 4.9. Given k, does every circle in an edge-minimal k-highly con-
nected standard subspace X of |G| contain a vertex or end whose degree in X
is at most k?

For finite cycles, Problem 4.9 has been answered positively by Stein [78].

Little is known about graphs that are minimally k-connected with respect
to deleting vertices rather than edges (let alone vertices or ends in subspaces).
Does every k-connected locally finite graph have a k-connected subgraph that
is minimal in the sense of not having a k-connected proper subgraph?

Perhaps this notion of minimality is too strong. Let us call a k-connected
graph G minimal if every k-connected H ⊆ G also satisfies H ⊇ G, that is,
has a subgraph isomorphic to G. An analogous definition can be adopted for
subspaces.30

Once we do have a minimal k-connected graph or standard subspace, what
can we say about its structure? Must such a graph be finite? Can it be (k +1)-
connected? Must it have a vertex or end whose degree is small in terms of k?
(By a theorem of Lick [60], every minimal k-connected finite graph has a vertex
of degree at most (3k− 1)/2.)

Problem 4.10. Does every k-connected graph or standard subspace contain
a minimal such object, for some suitable notion of ‘minimal’? If so, what are
its properties?

See Stein [78] for more on this topic.

Another nice example of how arcs and circles in |G| provide the natural
setting for a classical finite theorem is tree-packing. The finite theorem here,
due independently to Nash-Williams [68] and Tutte [84], says that a finite graph
contains k edge-disjoint spanning trees unless its vertex set admits a partition,
into ` sets say, such that G has fewer than k(`− 1) cross-edges, edges between
different partitions sets. (See [32].)

For infinite graphs, the Aharoni-Thomassen graph AT (2k) provides a
counterexample to this statement, even to its corollary that 2k-edge-connected
graphs have k edge-disjoint spanning trees [32]. Indeed, since AT (2k) is 2k-
edge-connected but the edge set of every cycle separates it, there can be no more

30 Embeddings between subspaces should map vertices to vertices.
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than two such trees: the edges of a fundamental circuit of one tree obtained
by adding an edge of another tree would separate the graph, so no third tree
could be spanning.

However, the finite tree-packing theorem has a topological analogue:

Theorem 4.11. [32] The following statements are equivalent for all k ∈ N and
locally finite multigraphs G:

(i) G has k edge-disjoint topological spanning trees.

(ii) For every finite partition of V (G), into ` sets say, G has at least k (`− 1)
cross-edges.

In particular, if G is 2k-edge-connected it has k edge-disjoint topological span-
ning trees.

Theorem 4.11 has an interesting history: while Nash-Williams had con-
jectured (incorrectly) that the finite tree-packing theorem ought to extend to
countable graphs verbatim, Tutte anticipated Theorem 4.11, even though he
could not express it in the now natural topological language. See [30] for details
of the story.

The problem of tree-packing is closely related to the arboricity of a graph:
the least number of forests that will cover its edges. For a finite graph G,
another classical theorem of Nash-Williams [69] says that the edges of G can
be covered by k forests if no set of ` vertices spans more than k(`−1) edges, the
number of edges on an `-set that k forests can at most provide. This theorem
extends verbatim to infinite graphs, by compactness.

In our topological setting, however, it is natural to ask for more: that we
can cover the edges of G by k topological forests, standard subspaces of |G| that
contain no circle. Interestingly, the above local sparseness condition no longer
implies this; see [76] for a counterexample of Bruhn. However, if we require
that our graphs are also ‘sparse at infinity’, by bounding their end degrees from
above, we get the following result of Stein:

Theorem 4.12. [76] Let k ∈ N, and let G be a locally finite graph. If no set of
(say) ` vertices of G induces more than k(`− 1) edges and every end of G has
edge-degree < 2k, then |G| contains k topological forests covering all its edges.

The bound of 2k in Theorem 4.12 is sharp [76].

Before we leave the subject of connectivity, let us briefly summarize what
is known about Menger’s theorem in |G|. When a, b are vertices in a locally
finite graph G, it is well known and easy to see that if we cannot separate a
from b by a set S of fewer than k vertices then there are k independent a–b
paths in G. This result does not gain from admitting a–b arcs in |G| instead
of just paths in G, since those arcs will still meet S (Lemma 1.3). Hence
neither the minimum size of an a–b separator nor the maximum number of
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a–b paths (arcs) changes. The problem becomes more interesting for standard
subspaces of |G|, and has been solved: since standard subspaces are locally
connected (Lemma 1.2), results of Whyburn [87] imply that both the point-to-
point and the set-to-set version of Menger’s theorem hold in them, as long as
k is finite. See [83] for what is known about Menger’s theorem in more general
1-dimensional spaces.

For infinite k, the correct version of Menger’s theorem to consider is the
set-to-set version in the form suggested by Erdős (see [32]). This states that
given two sets A,B of vertices there is a set of disjoint A–B paths and an A–B
separator consisting of a choice of one vertex from each of these paths. This
was proved for countable graphs by Aharoni [1], and for arbitrary graphs by
Aharoni and Berger [2]. These results have been extended to versions where A
and B are allowed to contain ends as well as vertices [18], and these have to be
connected by paths, rays, or double rays (not arbitary arcs in |G|). With these
assumptions, Menger’s theorem holds if A∩B = ∅ = A∩B, and this condition
is also necessary. If we allow arbitrary arcs in |G|, an example of Kühn (see [29])
shows that one even has to require that A∩B = ∅. In that case, however, we
once more have the situation that arcs cannot avoid separators that meet all
connecting paths, rays or double rays, so again the topological version offers
nothing new [29].

No versions of Menger’s theorem are known for standard subspaces of |G|
with k infinite.

A popular area of finite graph theory which, traditionally, has no infinite
counterpart is the theory of Hamilton cycles.31 When we replace ‘cycle’ with
‘circle’, however, hamiltonicity problems immediately make sense. So let us
call a circle in |G| a Hamilton circle of G if it contains every vertex of G. Since
circles are compact and hence closed in |G|, Hamilton circles also contain every
end.

What does a Hamilton circle look like? The answer to this question is
somewhat daunting: as soon as the graph has uncountably many ends (which
is the rule rather than the exception), any Hamilton circle must be wild [16],
as in Figure 1.1. Still, the notion of a Hamilton circle seems to be just the
right one to generalize hamiltonicity problems to infinite graphs. Let us look
at some of these.

From the extremal graph theory point of view, a particularly interesting

31 This is not to say that there have been no attempts. Nash-Williams and others sought
to replace Hamilton cycles by spanning rays or double rays. This approach works to some
extent for graphs with only one end (in which spanning double rays form circles). But it
runs into difficulties as soon as the graph has more than two ends, since no ray or double
ray can pass through a finite separator infinitely often. Realizing these difficulties, Halin
suggested replacing Hamilton cycles with ‘end-faithful’ spanning trees: spanning trees that
contain from every end exactly one ray starting at the root (which can be chosen arbitrarily).
This notion has led to some interesting problems that are still open—see e.g. [37]—but not
to any theory related to that of finite Hamilton cycles.
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problem is how local conditions can force the (global) existence of a Hamilton
cycle. Most popular among these are minimum degree conditions. When the
degrees needed are large not just in absolute terms but in terms of the order
of G (as in most classical results such as Dirac’s theorem [32]), such theorems
are hard to generalize to infinite G.

But there are also local degree conditions that force a Hamilton cycle in
a finite graph. For example, Asratian and Khachatrian [6] found a number
of local Hamiltonicity conditions, all implying of Dirac’s theorem, whose the
simplest version has the following infinite analogue:

Conjecture 4.13. A connected locally finite graph G of order at least 3 has a
Hamilton circle if d(u)+ d(w) > |N(u)∪N(v)∪N(w)| for every induced path
uvw in G.

A classical sufficient local Hamiltonicity condition that generalizes to
Hamilton circles is Fleischner’s theorem: the square G2 of a 2-connected fi-
nite graph G has a Hamilton cycle. (The nth power Gn of G is the graph
on V (G) with edges joining any pairs of vertices that have distance at most n
in G.) While this finite theorem is not easy, its infinite counterpart, conjectured
in [30] and proved by Georgakopoulos, is perhaps the deepest result about |G|
to date:

Theorem 4.14. [45] Let G be a locally finite connected graph.

(i) G3 has a Hamilton circle.

(ii) If G is 2-connected, then G2 has a Hamilton circle.

Thomassen [79] had previously proved (ii) for 1-ended graphs (in which a
Hamilton circle is a spanning double ray).

Georgakopoulos [43] conjectured that Theorem 4.14 should extend to
countable graphs that are not locally finite (see Section 5 for subtleties
about |G|). This is interesting, because at first glance it seems impossible.
For since Ω(G) will be a closed subset of any Hamilton circle of G, it must be
compact for the conjecture to be true. But Ω(G) is compact (if and) only if no
finite separator S ⊆ V (G) splits G into infinitely many components containing
rays—a property of locally finite graphs that usually fails in a countable graph.
But, fortuitously, it always holds in G2 (and in G3): since G is connected, any
component of G2−S sends a G-edge to S, but no two components can send a
G-edge to the same vertex of S, since this would create an edge of G2 between
those components. Hence G2−S has at most |S| components.

There are numerous other local density conditions that force a Hamil-
ton cycle in a finite graph. For example, line graphs are ‘locally dense’.
Thomassen [82] conjectured that every 4-connected line graph is hamiltonian,
and 7-connected finite line graphs indeed are [90]. Also, the line graph of a
4-edge connected finite graph is hamiltonian [26].
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Problem 4.15. Does sufficient connectivity force the line graph of a locally
finite connected graph to have a Hamilton circle?

Georgakopoulos [43] conjectured that this should be true with the same con-
nectivity assumptions as are currently known for finite graphs.

Another classical result about finite Hamilton cycles is Tutte’s hamiltonic-
ity theorem for 4-connected planar graphs. It was the following conjecture of
Bruhn (see [30]) that first advanced the notion of a Hamilton circle:

Conjecture 4.16. Every 4-connected locally finite planar graph has a Hamil-
ton circle.

Like the extension of Fleischner’s theorem, this appears to be a hard problem.
Partial results have been obtained by Bruhn & Yu [24] and by Cui, Wang &
Yu [28].

There are also very interesting results and conjectures about Hamilton
cycles in finite graphs asserting the sufficiency of conditions for their exist-
ence that are themselves global. Think of hamiltonicity problems for Cayley
graphs, for sparse expanders, or for products of graphs. Some of these may
be extendable to Hamilton circles, perhaps under additional assumption.

Let us close this section by remarking that most of the theorems and prob-
lems we discussed have meaningful analogues in arbitrary standard subspaces
of |G| rather than just |G| itself. Sometimes, these extensions are easy and can
be obtained by imitating the proof for |G|. But at other times they can be
challenging. The reader is invited to explore this further.

4.2 Cycle space applications

The earliest, and so far the most successful, applications of our topological
approach to locally finite graphs have been results which, for finite graphs,
relate the cycle space of G to it structural properties. We have seen one such
example: Theorem 2.5, which says that a standard subspace of |G| can be cov-
ered by a topological Euler tour if and only if its edge set lies in C(G). There
had been a number of earlier attempts to generalize Euler’s finite theorem to
infinite graphs, based on double rays as infinite analogues of finite cycles, but
these attempts were hampered from the outset by the handicap that a double
ray cannot visit more than |S|+1 components of G−S for any finite set S of
vertices, and hence could not really succeed.

Another early application is MacLane’s planarity criterion. Call a set
D ⊆ C(G) sparse if no edge of G lies in more than two elements of D. MacLane’s
theorem says that a finite graph is planar if and only if its cycle space has a
sparse generating subset. If the graph is 3-connected, these generators will
necessarily be its peripheral circuits (all but at most one), the face boundaries
in any drawing. (See [32], and [14] for a generalization to arbitrary surfaces.)
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For our infinite G, this fails unless we allow infinite circuits: the 3-connected
graph G in Figure 4.3, for example, has no finite face boundary containing the
edge e, so its finite peripheral circuits do not even generate Cfin(G).

e

FIGURE 4.3. The edge e lies on no finite face boundary,
so these do not generate the cycle space

Solving a long-standing problem of Wagner [86], Bruhn and Stein extended
MacLane’s theorem to infinite graphs, using |G|:

Theorem 4.17. [21] G is planar if and only if C(G) has a sparse generating
subset.

Just as MacLane turned the algebraic properties of the face boundaries of
a plane graph into a planarity criterion, Archdeacon, Bonnington and Little [5]
found an algebraic planarity criterion in terms of the ‘left-right-tours’ of finite
plane graphs. Bruhn et al [20] extended this to locally finite graphs, based on
possibly infinite ‘left-right-tours’ in |G|.

The planarity criterion of Kelmans and Tutte says that a finite 3-connected
graph is planar if and only if its set of peripheral circuits is sparse. This follows
from MacLane’s theorem and the theorem of Tutte that, in any 3-connected
finite graph (planar or not), the peripheral circuits generate the cycle space.

The Kelmans-Tutte theorem, too, fails for infinite graphs unless we al-
low circuits to be infinite: sparseness of the finite peripheral circuits alone
does not imply planarity [21]. But Bruhn [11] extended Tutte’s generating
theorem to the topological cycles space (Theorem 2.3 (ii)). Hence for C(G)
rather than Cfin(G), the infinite MacLane theorem implies the Kelmans-Tutte
criterion:

Theorem 4.18. If G is 3-connected, then G is planar if and only if every edge
lies in at most two peripheral circuits.

Another classical result in this context is Whitney’s duality theorem for
finite graphs. It is often thought of as a planarity criterion, but can equally be
viewed as a topological characterization of the graphs that have an (algebraic)
dual: that these are precisely the planar graphs. As explained in Section 2.5,
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duality for infinite graphs, and in particular any analogue of Whitney’s the-
orem, will work only in the class of graphs G satisfying condition (∗) from
Section 2.5 (that every two vertices can be separated by finitely many edges),
and for the topological cycle and cut spaces taken of the compactifications
G̃ obtained by adding only the undominated ends as new poins (and making
any other rays converge to their dominating vertex). In that setting, however,
Whitney’s theorem does generalize smoothly:

Theorem 4.19. [13] A graph satisfying (∗) has a dual if and only if it is planar.

By colouring-flow duality (see [32]), the four-colour theorem can be
rephrased as saying that the edge set of any finite planar bridgeless graph
G is the union of two algebraic cycles: this is equivalent to the existence of a
(Z2×Z2)-flow on G, which in turn is equivalent the the 4-colourability of any
dual of G. Since infinite planar graphs are 4-colourable by the Erdős – de Bruijn
theorem [32], Theorem 4.19 has the following double cover corollary:

Corollary 4.20. [13] Assume that G satisfies (∗), and let C(G) be based on
the space G̃. If G is planar and bridgeless, then E(G) is the union of two
algebraic cycles.

4.3 Flows in infinite graphs and networks

Most of this section deals with electrical flow in infinite networks: an exciting
field with rich connections to other branches of mathematics, and one where
the study of |G| has a natural well-recognized place. Towards the end of the
section we also discuss algebraic (group-valued) and (non-electrical) network
flows. Basing these on |G| rather than just G is likely to lead to an extension of
most of the known finite theory to locally finite graphs, just as in Sections 4.1–2.

A finite electrical network is a connected finite graph (V,E) whose (undi-
rected) edges e have real resistances r(e) > 0 assigned to them, and which has
two specified vertices s and t, called the source and the sink . A flow in this
network is a real function f :

→
E→R on the set of orientations →e and ←e of these

edges e such that f(→e) = −f(←e) for every e and
X

v

f(→e) = 0 for every vertex v /∈ {s, t}, (KH1)

where the sum
P

v f(→e) ranges over all edges →e at v oriented away from v.
The value of this flow f is the number

P
s f(→e). Using (KH1), one shows

easily that this number is equal to
P

~e∈ ~F f(→e) for every cut
→
F separating s

from t, oriented from the side containing s to that containing t.
For every i ∈ R, there is a unique flow f on G of value i that also satisfies

X

~e∈ ~C

f(→e)r(e) = 0 around every oriented circuit
→
C in G. (KH2)
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The existence of some flow of value i is clear: we just send a flow of value i
along an s–t path and let f(→e) = 0 elsewhere. To find a flow of value i that
also satisfies (KH2), one can use the total energy of f : the number

w(f) :=
X

e∈E(G)

f2(e)r(e) ,

where f2(e) := f2(→e) = f2(←e). It is easy to show that among all the flows of
value i there is one of minimum total energy, and a short calculation shows that
this flow satisfies (KH2). Uniqueness now comes for free, since there cannot
be two flows f, f 0 of the same value that both satisfy (KH2). Indeed, their
difference g = f − f 0 would be a flow of value 0 such that g(→e0) > 0 for some
oriented edge →e0. Using that

P
v g(→e) = 0 at every vertex v (including s and t

now, since g has value zero), we ‘move greedily along’ oriented edges of G,
starting at →e0, to find an oriented circuit

→
C with g(→e) > 0 for all →e ∈

→
C . Hence

g = f − f 0 does not satisfy (KH2), but it should, since f and f 0 do.
We remark that condition (KH2) is equivalent to the existence of a poten-

tial function inducing f , a function p:V →R related to f via Ohm’s law that
f(→e)r(e) = p(v)− p(u) for every oriented edge →e = uv of G: this is easily seen
by considering a spanning tree.

For the case that r(e) = 1 for all e, Ohm’s law says in topological terms (cf.
Section 5.3) that f = δ0p, where δ0 is the coboundary operator on 0-chains.
Then being ‘induced by a potential function via Ohm’s law’ is the same as
lying in the image of δ0. In our terminology, the image of δ0 is the oriented cut
space: every oriented cut f = λ

→
E(X,Y ) has the form δ0p (let p assign λ to the

vertices in Y and 0 to those in X), and conversely we can write any function
of the form f = δ0p as a sum of oriented atomic bonds λ

→
E(v). The fact that

it is precisely these functions f :
→
E→R that satisfy (KH2) then is the oriented

version of Theorem 2.7 (ii). Finally, such a function f = δ0p satisfies (KH1) if
and only if p is harmonic at every vertex v /∈ {s, t}: as

X

v

f(→e) =
X

v

(δ0p)(→e) =
µ X

u∈N(v)

p(u)
∂
− d(v) p(v) ,

the net flow out of a vertex v is zero if and only if p(v) equals the average of
the p-values at its neighbours.

So what about infinite networks? Let us specify two vertices s, t in our
locally finite connected graph G, and let a function r assign positive real resis-
tances to its edges. How do we define a ‘flow’ in G? Traditionally, this is done
as for finite networks, perhaps adding that

P
s f(→e) = −

P
t f(→e), since this no

longer follows from the other assumptions.
Let us see how far this definition will carry. Given any i ∈ R, there will still

be a flow of value i (just along an s–t path), there will be a flow of value i with
minimum total energy (defined as before) [47], and this flow will satisfy (KH2)
for finite circuits. However, there may now be more than one such flow of
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value i: Figure 4.4 shows a particularly striking example, which satisfies (KH2)
because the graph contains no circuit at all. (Note that its second flow ‘from s
to t’ would even exist if we deleted the edge st, disconnecting s from t.)

s t

s t

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

FIGURE 4.4. Two flows of value 1 satisfying (KH2)

Clearly, such ‘flows’ are of little interest, and one would like to amend the
definition so as to exclude them. But it has not been clear until recently how
this can be done without also excluding desirable flows. From our topological
perspective, however, this is much clearer: the requirement of

P
v f(→e) = 0

should be applied not only to vertices v, but also, somehow, to ends. (In the
second flow of Figure 4.4, a net flow of 1 disappears into the left end, while a
net flow of 1 emerges from the right end, violating the intended requirement at
both ends.)

The simplest way to make such an additional requirement for ends is with-
out mentioning ends directly: instead of (KH1) we require a condition that is
equivalent to (KH1) for finite networks, but not for locally finite ones: that
f should sum to zero across any finite oriented cut not separating s from t.
Formally:

P
~e∈ ~F f(→e) = 0 for every finite oriented cut

→
F of G that does

not separate s from t.
(KH10)

For reference, let us also restate (KH2) with explicit reference to finite
circuits only:

X

~e∈ ~C

f(→e)r(e) = 0 around every finite oriented circuit
→
C in G. (KH20)

A flow in our infinite network (G, r, s, t), then, is a function f :
→
E(G)→R

of finite total energy that satisfies (KH10) and satisfies f(→e) = −f(←e) for all
edges e. The value of this flow is the number

P
s f(→e); using (KH10) one can

show that this number equals the total value
P

~e∈ ~F f(→e) of f across any finite
oriented cut

→
F that does separate s from t, oriented from its side containing s

to that containing t.
With this definition of a flow, and assuming in addition that the total

resistance
P

e∈E(G) r(e) of the network is finite, Georgakopoulos [47] proved
that flows of a given value and satisfying (KH20) are indeed unique. This is
interesting, since (KH20) makes demands only on finite circuits, while the dif-
ference between two flows of the same value might have an infinite circuit as its
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carrier.32 In particular, we cannot prove uniqueness directly from (KH20), as
for finite graphs, but have to use a limit construction as discussed in Section 3.

Theorem 4.21. [47] Let G be a locally finite network, and let i ∈ R. If G has
finite total resistance, there is a unique flow in G of value i that satisfies (KH20).
These flows also satisfy (KH2) for infinite circuits

→
C .33

Theorem 4.21 is best possible in that uniqueness fails if we do not require
finite total resistance. And the assumption of finite total resistance is not, in
fact, unnatural. Indeed, if we interpret the numbers r(e) as edge lengths (as
in Figure 4.5), then r makes G into a metric space. Let G be its completion.
Georgakopoulos [46] showed that if

P
r(e) <∞ then G is homeomorphic to |G|,

by a homeomorphism that is the identity on G (Theorem 5.4). We shall look
at metric completions of G in more detail in Section 5.

Consider any locally finite connected graph G, a function r:E(G)→R+

such that
P

e∈E(G) r(e) < ∞, and a function p:V (G)→R such that f := δ0p/r
satisfies

P
~e∈ ~F f(→e) = 0 for every finite oriented cut

→
F of G. (KH100)

Then for any choice of s, t ∈ V (G), our function f is a flow in the network
(G, r, s, t) of value 0 that satisfies (KH20). Since the constant function

→
E→{0}

is also such a flow, Theorem 4.21 implies that our f is in fact constant with
value 0, and hence p too must have been constant.

However if we relax (KH100) to (KH1), there may be more such functions f
and p. And since we did not specify a source or sink among the vertices, these
functions are more natural than the example of Figure 4.4: f may be viewed
as a flow with (possibly many) sources and sinks at infinity, as in Figure 4.5.
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− − −
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FIGURE 4.5. A flow of value 1 from ω to ω0, with resis-
tances (top) and potentials (bottom)

To rule out other pathological examples, however, we should require now
that p extends continously to the ends:

Problem 4.22. Let G, r and p be given as above, with f = δ0p/r satisfying
(KH1) but not necessarily (KH100). Does p extend continuously to Ω(G)?

Some results in this direction can be found in the last section of Georgakopou-
los [47].

32 By the oriented version of Theorem 2.7 (i), it will lie in the oriented cycle space
→
C (G).

33 In particular, the infinite sum
P

~e∈ ~C
f(→e ) r(e) is well defined and finite.
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The converse of Problem 4.22 is the Dirichlet problem at infinity:

Problem 4.23. Which continuous functions p:Ω(G)→R extend continously
to V (G) so that δ0p/r satisfies (KH1)?

The Dirichlet problem has been widely studied; see, e.g., [7, 88, 89].

Let us close this section with a glance at how non-electrical network and
algebraic flow theory extend to locally finite graphs. As before, we wish to
exclude ‘flows’ that issue from or dissipate to infinity, and will adjust our defi-
nitions accordingly. Let G be a locally finite connected graph. Call a function
f on

→
E(G) symmetrical if f(→e) = −f(←e) for all oriented edges →e ∈

→
E(G).

Specifying two vertices s, t as source and sink turns G into a (non-electrical)
network. A flow through this network is a symmetrical function on

→
E(G) satis-

fying (KH10).

Problem 4.24. Extend the non-algorithmic aspects of network flow theory to
locally finite graphs, based on the above definition of a network flow.

The max-flow min-cut theorem has been extended in this way; see the last few
pages of [3].

Turning now to algebraic flows, let H be any abelian group. Call a symmet-
rical function f :

→
E(G)→H an H-flow on G if it satisfies (KH100) and f(→e) 6= 0

for all →e ∈
→
E. Such a function induces H-flows also on the finite minors Gn of G

defined in Section 3.1. It seems that, using compactness as explained in Sec-
tion 3.2. (and topological spanning trees wherever spanning trees are needed),
one can extend most—but not all—the standard results about H-flows in finite
graphs to locally finite graphs:

Problem 4.25. Extend the algebraic flow theory of finite graphs to locally
finite graphs, based on the above definition of an H-flow.

5. Outlook

The topological approach to studying locally finite graph discussed in this paper
can be taken further, in various directions. In this section we address some of
these:

• graphs that are not locally finite;

• locally finite graphs with finer ‘boundaries’ than ends, such as boundaries
of (Cayley graphs of) hyperbolic groups in the sense of Gromov;

• homology of non-compact spaces other than graphs;

• infinite matroids.
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5.1 Graphs with infinite degrees

Consider the two graphs shown in Figure 5.1, the fan and the double fan. In
each of theses graphs there is a ray R that is dominated by a vertex (respec-
tively, by two vertices).34

u

R
R

v w

ωω

FIGURE 5.1. Should the fat edge sets be circuits?

In both these graphs, the sum (mod-2) of all the triangle circuits equals
the set of heavy edges. These edges do not look like circuits: they are the edge
sets of a ray, or of a path of length 2. However, as thin sums of finite circuits,
these edge sets ought to be elements of the cycles space C(G): remember that
we need to allow infinite thin sums in C in order to make important applications
of C work, such as Mac Lane’s theorem. But if these sets of edges lie in C, they
ought to be disjoint unions of circuits (if we want Theorem 2.3 (i) to extend to
these graphs). Hence we feel compelled to admit those edge sets as circuits—or
to abandon much of the cycle space theory we just established for locally finite
graphs.

So can we make sense of the notion that those edge sets should be circuits?
Indeed it seems we can; and the answer has to do with what topology we choose
for |G| when G is not locally finite.

Let us be more formal. Let G be any connected graph. The ends of G
are defined as earlier, as equivalence classes of rays. As the topology on G
itself we take slightly fewer basic open sets than the identification topology for
a 1-complex does:35 around every vertex v we take as basic open sets only
the open stars E≤(v) of length ≤ for arbitrary but fixed ≤ < 0, the same ≤ for
every edge at v. (Then the sets E1/n(v) form a countable neighbourhood basis
of v. In the 1-complex topology, vertices of infinite degree have no countable
neighbourhood basis.) As basic open sets around ends ω we take for every
finite set S of vertices and every ≤ with 0 < ≤ 6 1 the open ≤-collar Ĉ≤(S,ω)
of C(S,ω).36 Note that, as for vertices, these ≤-collars have uniform width.

34 See the end of Section 2 for the formal definition of ‘dominate’.
35 That toplogy leads to a topology for |G| called TOP. Historically, this was the first

topology for |G| to be considered, but it has few advantages over the topologies MTOP and
VTOP discussed here. In particular, |G| under TOP is neither compact nor metrizable as
soon as a vertex has infinite degree. See [31, 34] for more.

36 More formally, let Ĉ≤(S, ω) be obtained from the set Ĉ(S, ω) defined in Section 1 by
replacing each open C–S edge e̊ = (c, s) with its initial open segment of length ≤, assuming
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Let us call this topology MTOP.37 Under this topology, |G| is clearly Haus-
dorff, in fact normal [75]. However, unless G is locally finite, |G| will no longer
be compact. (Indeed, consider an open cover that consists the middle half of e
for every edge e at some fixed vertex v, and one further open set to cover the
rest of |G| but none of the mid-points of edges at v. If v has infinite degree,
this cover has no finite subcover.)

In order to give |G| a chance to be compact, we have to take a coarser
topology still: we take the same open stars E≤(v) around vertices, but around
ends ω we take only the open sets Ĉ≤(S,ω) with ≤ = 1, our original sets Ĉ(S,ω).
This topology is called VTOP.

Theorem 5.1. [31] For every graph G = (V,E), not necessarily connected or
locally finite, the following statements are equivalent under VTOP:

(i) |G| is compact.

(ii) For every finite S ⊆ V , the graph G−S has only finitely many components.

(iii) Every closed set of vertices is finite.

For G countable and connected, Theorem 5.1 implies that |G| is compact
under VTOP if and only if G has a locally finite spanning tree, which can be
chosen normal [31]. Note that since VTOP agrees with TOP and MTOP on its
closed subspace Ω(G), condition (ii) of Theorem 5.1 characterizes, for any of
these topologies, the graphs whose end space Ω is compact.

We complete our excursion to the various topologies of |G| by mentioning
one more, known as ETOP. Strictly speaking, this is not a topology on |G|,38
but on a similar space obtained by adding to G its edge-ends rather than its
ends: the equivalence classes of rays under which two rays are equivalent if no
finite set of edges separates them. The basic open sets of this space are the
components of G−X left by deleting a finite set X of inner points of edges
(and an edge-end belongs to the component in which all its rays have a tail).39

If G is connected, as we assume, then this space is compact [74].
On the set of vertices and edge-ends, being separated by such a finite set X

(i.e., by a finite set of edges) is an equivalence relation. The open sets in ETOP

cannot distinguish such equivalent points. But identifying equivalent points
(including different vertices, such as the vertices v and w in Figure 5.1) yields
a compact Hausdorff space, which is metrizable if G was countable. See [50,
74, 46] for more on edge-ends and ETOP.

that e itself has length 1.
37 The ‘M’ comes from fact that MTOP makes |G| metrizable, at least for countable

connected G (see below).
38 . . . unless G is locally finite, in which case its edge-ends coincide with its usual ends.
39 Such a ‘component’ is a graph-theoretical component left by deleting from G the edges

containing points from X, together with the segements of these edges (after deleting X) that
have an endpoint in such a component.
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5.2 The identification topology

Let us turn back to our two graphs from Figure 5.1. Under MTOP, the sets of
fat edges are still far from being circuits. Under VTOP and ETOP, however,
they almost are: these topologies cannot distinguish an end from vertices dom-
inating it,40 and if we identified the end with their dominating vertices, the
fat edge sets would indeed become circuits. In the single fan on the left, this
does indeed look right: why introduce, when forming |G| from G, a new limit
point for the ray R if a natural limit point, the vertex u, already exists? In
the double fan on the right, however, one may have more qualms: identifying
both v and w with the end ω would result in the identification of two vertices,
changing the graph.

So shall we identify ends with their dominating vertices, or shall we not?
Before we describe a radical and intriguing answer to this question due to Geor-
gakopoulos [46], let us deal with the case when the dilemma does not arise: the
case that no end is dominated by more than one vertex. This is the case, for
example, for the graphs satisfying condition (∗) of Section 2: a natural class of
graphs that occurs quite independently of this problem. For such graphs G, let
G̃ denote the identification space obtained from |G| by identifying each vertex
with all the ends it dominates. This is a Hausdorff space—even under VTOP

when |G| fails to be Hausdorff [36]. Other features of the topology of G̃, such as
compactness, depend on the topology used for |G|. If VTOP was used on |G|,
the identification topology on G̃ is known as ITOP.

When G is 2-connected, then (∗) implies that G is countable, and that
no finite set of vertices separates G into infinitely many components. Then
|G| is compact under VTOP (Theorem 5.1), and hence so is G̃ under ITOP.
Answering a question of Sprüssel [75], Richter and Vella [73] extended this by
showing that G̃ is in fact ‘Peano’:

Theorem 5.2. [73] Let G be a 2-connected graph in which every two vertices
can be separated by finitely many edges.41 Then G̃ under ITOP is a compact,
connected, locally connected, metric space.

For more on G̃, see [36, 73, 83].

5.2 Compactification versus metric completion

As mentioned already in Theorem 1.1, the compactification |G| of a connected
and locally finite graph G is metrizable. When G is not locally finite, |G| with
our usual topology, VTOP, fails to be even Hausdorff (as soon as there is a

40 More generally, it is easy to see that a space |G| is Hausdorff under VTOP if and only
if no end of G is dominated.

41 This assumption can be weakened: it is only necessary to assume that no two vertices
can be linked by infinitely many independent paths [73]. Under this weaker assumption,
however, G̃ can contain arcs and circles consisting entirely of vertices or ends. Such spaces
were studied in [73].
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dominated end), and no vertex of infinite degree has a countable neighbour-
hood basis in the usual 1-complex topology. However, if we consider |G| with
MTOP, we have the following result:

Theorem 5.3. [31] For a connected graph G, and |G| endowed with MTOP,
the space |G| is metrizable if and only if G has a normal spanning tree.

Unless otherwise mentioned, the space |G| will in this section always carry the
topology MTOP.

Theorem 5.3 is interesting in both directions: as a characterization of the
graphs G for which |G| is metrizable, but also as an unexpected topological
characterization of the graphs admitting a normal spanning tree. These are
known to include all countable graphs, and they have been characterized by
two types of forbidden substructure [37]. But these substructures themselves
are not fully understood, and classifying them more accurately remains a chal-
lengeing open problem.

The metric which a normal spanning tree T of G induces on |G| is easy to
describe. We first assign length `(e) := 2−n to every tree-edge e from level n−1
to level n, the root being at level 0. This defines a metric on V (G)∪Ω(G), via

d`(x, y) :=
X

e∈xTy

`(e) ,

where xTy is the path, ray or double ray in T from x to y. We then extend
this metric to one on |G| by mapping every edge xy homeomorphically to a
real interval of length d`(x, y). As one can check [31], this metric induces the
topology MTOP on |G|.

Instead of defining distances between ends and other points explicitly, we
could also have defined them only for points of G itself (as above), and then
taken the completion of this metric space (G, d`). Since two Cauchy sequences
of points in (G, d`) are equivalent if and only if in |G| they converge to the
same end, this would have yielded the same result: the complete metric space
on G ∪ Ω(G) we defined explicitly above, and whose metric induces MTOP

on |G|.
Georgakopoulos [46] showed that this is not just a feature of our particu-

lar metric. Given any function `:E(G)→R+ assigning positive ‘edge lengths’,
defining distances between vertices u, v via

d`(u, v) = inf
X

e∈P

`(e) over all u–v paths P in G

and identifying any u, v with d`(u, v) = 0 defines a metric on the resulting
quotient space of V (G), which extends to a metric d` on the corresponding
quotient of the entire graph G once we fix homeomorphisms between the edges
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and real intervals of their respective lengths. Let us denote this metric space
as (G, d`), and the topology it induces on its completion as `-TOP. The metric
subspace induced by the completion points we added is the `-TOP boundary
of G.

Theorem 5.4. [46] If G is any countable connected graph and `:E(G)→R+

satisfies
P

e∈G `(e) < ∞, then completing the metric space (G, d`) yields the
edge-ends of G as completion points and ETOP as the induced topology of the
completion. If G is locally finite, this coincides with |G|.

In view of our earlier normal spanning tree example one should expect
that, for G locally finite, the finiteness condition in Theorem 5.4 can be relaxed
considerably without losing that the metric completion of G coincides with |G|:

Problem 5.5. Given a countable connected graph G, characterize the func-
tions `:E(G)→R+ for which the completion of (G, d`) coincides with |G|.

For functions ` not satisfying
P

e∈G `(e) < ∞, the metric-completion ap-
proach opens up a wide range of new possibilities over the purely topological
compactification approach, even for locally finite graphs. For example, the hy-
perbolic compactification of a locally finite hyperbolic graph G, as introduced
by Gromov [49], is sometimes defined in a somewhat roundabout way: in an
intermediate step one endows G with with a different (bounded) Gromov metric
(which on G itself is somewhat odd42), whose sole purpose is that its comple-
tion has a compact boundary that can then be combined with G in its original
topology to yield an interesting compact space.43 But Gromov [49] also proved
that the hyperbolic compactification of G can, alternatively, be obtained as
the completion of (G, d`) for a natural function ` of edge lengths (see [27] for a
detailed proof, or [46] for an indication), a result that makes its use—e.g. for the
study of hyperbolic groups—more accessible to a graph-theoretical approach.
Figure 5.2 shows a hyperbolic graph G with an assignment ` of edge lengths
for which the `-TOP boundary of (G, d`) is its hyperbolic boundary.

The flexibility of the metric-completion approach to defining a boundary
of an infinite graph G allows us to keep our options open regarding the opening
question of Section 5.1, the problem of how to define circuits—and the resulting
homology—in a graph with infinite degrees. Depending on the graphs under
investigation, we can choose our edge length function ` in whatever way seems
best to describe those graphs: we can choose whether or not we want two rays
from the same end to converge to a common point at infinity or not, or not
even to converge at all.

42 For example, it induces the discrete topology on G, including edges!
43 For example, this hyperbolic boundary refines the ‘end boundary’ Ω(G) of G induced

by |G|, and unlike Ω(G) it can have non-trivial connected components.

52



1
2

1

1

1
4

1
8

1
8

1
8

1
8

1
4

1 2/

1
2/

1
2/

1 2/

1 4/

1 4/

1 4/

1 8/

1 8/

1 8/

1 4/

1 4/

1
4/

1
4/

1 8/

FIGURE 5.2. A hyperbolic graph whose boundary is an arc
(the vertical bar on the right)

For example, for the fan G shown on the left in Figure 5.1 we could let `
assign length 2−n to the (one or) two edges down or sideways from the nth
vertex of the vertical ray. Then this ray converges in (G, d`) to the vertex u,
so (G, d`) is complete and induces ITOP on G. The double fan of Figure 5.1,
with a similar function ` of edge lengths, will have the two vertices of infinite
degree identified in (G, d`) (which is again already complete), the vertical ray
will converge to this identified new vertex, and the two bottom edges will form
a circle.

As another example, consider the powers T 2 and T 3 of the ℵ0-regular
tree T . While T 2 still has all the ‘original’ ends of T (and even some new
ones corresponding to the levels of T ), the graph T 3 does not. Indeed, since
every vertex v has infinitely many neighbours at a lower level than its own, or
at level 1 (the upper neighbours of the root), no finite set S of vertices can
separate v from the infinitely many vertices at level 1, which form a complete
subgraph in T 3. Hence T 3−S has only one component, and T 3 has only one
end! In the context of hamiltonicity problems for graph powers, however, we
may well want that G3 retains the end structure of G2, but that its vertices
and boundary points still form a compact set (so as to allow for Hamilton cir-
cles; see Section 4.1). Both these can be achieved by choosing ` appropriately
and considering the metric completion of (G3, d`) instead of the Freudenthal
compactification |G3| of G3.

But this flexibility comes at a cost: in order to benefit from our existing
cycle space theory and its applications in the case of locally finite graphs, we
need a homology theory that works in the generality of all metric spaces that
can arise as such completions, while defaulting to our topological cycle space
when the graph considered is locally finite. This homology theory will not just
be a minor adaptation of the definition of C(G), since the spaces that can arise
as completions need not look like graphs.44 For example, the boundary of the
hyperbolic graph of Figure 5.2 is an arc that contains no edge. In particular,

44 Gromov [49] observed that every compact metric space arises as the hyperbolic bound-
ary of a hyperbolic graph. Georgakopoulos [46] showed that a metric space arises as the
`-TOP boundary of a locally finite graph if and only if it is complete and has a countable
dense subset.
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there may be circles in this completion in which the edges they contain are not
dense; we shall therefore not be able to represent homology classes by sets of
edges, as we did in the case of C(G).

Problem 5.6. Extend the topological cycle space theory of locally finite
graphs to a homology theory for metric spaces that can arise as completions of
spaces of the form (G, d`).

As a step towards this goal, it will help to recast the topological cycle space
theory of Sections 1 and 2, even for locally finite graphs, as a homology theory
in the usual terms of algebraic topology [ 40]. We shall look at this problem
next. Some first steps towards Problem 5.6 itself are already taken in [46].

5.3 Homology

In this section, any undefined graph G will again be an arbitrary connected
and locally finite graph.

When the topological cycle space was first introduced [30, 34], the motiva-
tion was to extend the standard notion of the cycle space of a finite graph in
such a way that it could play a similar role for infinite graphs. In particular,
the various theorems relating C(G) to other structural properties of G, such as
planarity, should extend to the new notion. The topological cycle space C(G),
for locally finite G, has achieved this goal superbly—see Section 4—but at a
price: due to the ad-hoc manner of its definition, this new C(G), unlike Cfin(G),
is no longer obviously a special case of the first homology of either G or |G| in
any sense that would be standard in algebraic topology.

On the other hand, it seems desirable to recast our notion of C(G) in
terms of standard homology. This is for two reasons: our understanding of
C(G) might benefit from the vast body of knowledge available for standard
homology theories; and conversely, the ideas that went into the notion of C(G)
might throw a new light on the homology of more general spaces once we can
rephrase C(G) in such a way that it makes sense when G is not a graph.

For a finite or infinite graph G, its first simplicial homology group is the
same as, in our notation, Cfin(G). The elements of this group or vector space
are finite sets of edges.45 Hence as soon as G contains an infinite circuit,
C(G) differs from Cfin(G). But C(G) also differs from the simplicial homology
we would obtain from just allowing infinite (thin) sums of edges as 1-chains: in
this homology, the edges of a double ray would form an algebraic cycle, since
every vertex lies on two such edges and hence the boundary of this edge set is
zero, but this is not a cycle in our topological cycle space. Thus, C(G) cannot

45 We still take all our coefficients from Z2, for easier compatibility with our earlier treat-
ment of C(G). However all the results we describe hold with integer coefficients too, which
are indeed the setting in the papers we refer to.
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be described by an extension of simplicial homology obtained by just allowing
infinite chains.46

Another way to extend the simplicial homology of finite complexes to in-
finite ones is to take limits. In our situation, we could use the techniques from
Section 3 to do this. Indeed, recall that for the finite minors G0 4 G1 4 . . .
of G defined in Section 3.1 the algebraic cycles of Gm induce algebraic cycles
in Gn, for all n < m. The first simplicial homology groups of the Gn thus form
an inverse system of homomorphisms, and we could define the first homology
group of G as their inverse limit:47

Theorem 5.7. The maps D 7→ D ∩E(Gn) define a group isomorphism from
C(G) to lim←− (Cfin(Gn))n∈N .

While Theorem 5.7 points out an interesting aspect of C(G), it does not
capture all its relevant aspects. For even if we assume that representing C(G) as
lim←− C(Gn) captures all its relevant features as a group, the (abstract) homology
group of a graph does not capture all the relevant aspects of its homology.48

For example, recall that if G is 3-connected, then its peripheral circuits gener-
ate C(G) (Theorem 2.3 (ii)), and G is planar if and only if these circuits form a
sparse set (Theorem 4.18). In order to prove this for infinite G, we thus need
to know when a given edge set D ∈ C(G) is a peripheral circuit. If all we know
of D are its intersections with the edge sets of the finite minors Gn (as we
would if we viewed D as an element of lim←− (Cfin(Gn))n∈N), this would be hard
to decide; indeed it would not be obvious from this information whether D is
a circuit at all (see Section 3.2).

A more subtle approach, which has been pursued in [38, 40], is to see to
what extent C(G) can be captured by the singular homology of |G|. After all,
C(G) was defined via (the edge sets of) circles in |G|, which are just injective
singular loops. Can we extend this correspondence between injective loops and
circuits to one between H1(|G|) (singular) and C(G)?

There are two things to notice about H1(|G|). The first is that we can
subdivide a 1-simplex, or concatenate two 1-simplices into one, by adding a
boundary. Indeed, if σ: [0, 1]→ |G| is a path in |G| from x to y, say, and z
is a point on that path, there are paths σ0 from x to z and σ00 from z to y
such that σ0 + σ00 − σ is the boundary of a singular 2-simplex ‘squeezed’ on
to the image of σ. The second fact to notice is that inverse paths cancel in
pairs: if σ+ is an x–y path in |G|, and σ− an y–x path with the same image

46 By contrast, B(G), the set of all cuts, remains the image of the coboundary operator δ0

if we allow arbitrary infinite 0-cochains.
47 This is tantamount to taking the Čech homology of |G|; see [38].
48 This is reflected by the fact that, as abstract groups, C(G) hardly depends on G: by

Theorem 2.1, it is the direct product of as many copies of the coefficient ring as a topological
spanning tree of G has chords—i.e., of ℵ0 copies for most G.
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as σ+, then [σ+ + σ−] = 0 ∈ H1.49 These two facts together imply that every
homology class in H1 is represented by a single loop: given any 1-cycle, we first
add pairs of inverse paths between the endpoints of its simplices to make its
image connected in the right way, and then use Euler’s theorem to concatenate
the 1-simplices of the resulting chain into a single loop σ.

To establish the desired correspondence between H1(|G|) and C(G), we
would like to assign to a homology class in H1(|G|), represented by a single
loop σ, an edge set f([σ]) ∈ C(G). Intuitively, we do this by counting for each
edge e of G how often σ traverses it entirely (which, since the domain of σ is
compact, is a finite number of times), and let f([σ]) be the set of those edges e
for which this number is odd. Using the usual tools of homology theory, one can
make this precise in such a way that f is clearly a well defined homomorphism
H1(|G|)→ E(G),50 and whose image is easily seen to be C(G). What is not
clear at once is whether f is 1–1 and onto.

Surprisingly, f is indeed surjective—and this is not even hard to show.
Indeed, let an edge set D ∈ C(G) be given. Our task is to find a loop σ that
traverses every edge in D an odd number of times, and every other edge of G
an even number of times. As a first approximation, we let σ0 be a path that
traverses every edge of some fixed normal spanning tree of G exactly twice, once
in each direction; see Section 3.3 for how to construct such a loop. Moreover,
we construct σ0 in such a way that it pauses at every vertex v—more precisely,
so that σ−1

0 (v) is a union of finitely many closed intervals at least one of which
is non-trivial. Next, we write D as a thin sum D =

P
i Ci of circuits; such a

representation of D exists by definition of C(G). For each of these Ci we pick a
vertex vi ∈ Ci, noting that no vertex of G gets picked more than finitely often,
because it has only finitely many incident edges and the Ci form a thin family.
Finally, we turn σ0 into the desired loop σ by expanding the pause at each
vertex v to a loop going once round every Ci with v = vi. Using the methods
from Section 3.3 it is not hard to show that σ is continuous [38], and clearly it
traverses every edge of G the desired number of times.

Equally surprisingly, perhaps, f is not normally injective (see below). In
summary, therefore, the topological cycle space C(G) of G is related to the first
singular homology group of G as follows:

Theorem 5.8. [38] The map f :H1(|G|)→ E(G) is a group homomorphism
onto C(G), which has a non-trivial kernel if and only if G contains infinitely
many (finite) circuits.

49 To see that this sum is a boundary, subtract the constant 1-simplex σ with value x:
there is an obvious singular 2-simplex of which σ+ +σ−−σ is the boundary. Subtracting σ
is allowed, since σ = σ + σ−σ, too, is a boundary: of the constant 2-simplex with value x.

50 For each edge e, let fe: |G|→S1 be a map wrapping e once round S1 and mapping all
of |G|r e̊ to one point of S1. Let π denote the group isomorphism H1(S1; Z2)→Z2. Given
h ∈ H1(|G|), let f(h) := { e | (π ◦ (fe)∗)(h) = 1 ∈ Z2 }. See [38] for details.
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An example of a non-null-homologous loop in |G| whose homology class
maps to the empty set ∅ ∈ C(G) is easy to describe. Let G be the one-way in-
finite ladder L (with its end on the right), and define a loop ρ in L, as follows.
We start at time 0 at the top-left vertex, v0 say, and begin by going round the
first square of L in a clockwise direction. This takes us back to v0. We then
move along the horizontal edge incident with v0, to its right neighbour v1. From
here, we go round the second square in a clockwise direction, back to v1 and on
to its right neighbour v2. We repeat this move until we reach the end ω of L
on the right, say at time 1

2
∈ [0, 1]. So far, we have traversed the first vertical

edge and every bottom horizontal edge once (in the direction towards v0), every
other vertical edge twice (once in each direction), and every top horizontal edge
twice in the direction towards the end. From there, we now use the remaining
half of our time to go round the infinite circle formed by the first vertical edge
and all the horizontal edges one and a half times, in such a way that we end
at time 1 back at v0 and have traversed every edge of L twice, once in each
direction. Clearly, f maps (the homology class of) this loop ρ to 0 ∈ C(G).

ωL

v1 v2v0

ρ

FIGURE 5.3. The loop ρ is not null-homologous

The loop ρ is indeed not null-homologous [38], but it seems non-trivial
to show this. To see why this is hard, let us compare ρ to a loop winding
round a finite ladder in a similar fashion, traversing every edge once in each
direction. Such a loop σ is still not null-homotopic, but it is null-homologous.
To see this, we subdivide it into single edges: we find a finite collection of
1-simplices σi, two for every edge, such that [σ] =

£P
i σi

§
and every σi just

traverses its edge. Next, we pair up these σi into cancelling pairs: if σi and σj

traverse the same edge e (in opposite directions), then [σi + σj ] = 0. Hence
[σ] =

£P
i σi

§
= 0, as claimed. But we cannot imitate this proof for ρ and our

infinite ladder L, because homology classes in H1(|G|) are still finite chains: we
cannot add infinitely many boundaries to subdivide ρ infinitely often.

As it happened, the proof of the seemingly simple fact that ρ is not null-
homologous took a detour via the solution of a much more fundamental prob-
lem: the problem of understanding the fundamental group of |L|, or more gen-
erally, of |G| for a locally finite graph G. In order to distinguish ρ from bound-
aries, we looked for a numerical invariant Λ of 1-chains that was non-zero on ρ
but both linear and additive (so that Λ(σ1σ2) = Λ(σ1 +σ2) = Λ(σ1)+Λ(σ2) for
concatenations of 1-simplices σ1,σ2) and invariant under homotopies (so that
Λ(σ1σ2) = Λ(σ) when σ ∼ σ1σ2). Then, given a 2-simplex τ with boundary
∂τ = σ1 + σ2 − σ, we would have Λ(∂τ) = Λ(σ1σ2)−Λ(σ) = 0. We did not
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quite find such an invariant Λ, but a collection of similar invariants which,
together, can distinguish loops like ρ from boundaries.

In order to find such functions on 1-chains that are invariant under homo-
topies, it was necessary to find a combinatorial description for the homotopy
types of loops—that is, for the fundamental group of |G|. Such a combinatorial
characterization is given in [39], where π1(|G|) is characterized as a group of
(infinite) words of chords of a topological spanning tree—in the spirit of the
usual description of π1(G) for a finite graph as the free group generated by such
chords—and as as a subgroup of the inverse limit of these finitely generated
free groups. (The group π1(|G|) itself is not free, unless G is essentially finite.)

Not surprisingly, our topological cycle space C(G) can, as a group, be
viewed as the infinite abelianization of π1(|G|): the factor group of π1(|G|)
obtained by declaring two (reduced) words as equivalent if each letter occurs
in both the same number of times (regardless of position).

Let us return to our original goal: to see to what extent C(G) can be
captured by the singular homology of |G|. In view of Theorem 5.8, the goal
might be phrased as follows:

Problem 5.9. Devise a singular-type homology theory for locally compact
spaces with ends that coincides with C(G) when applied to |G| in dimension 1.

Some first steps in this direction were already taken in [38]. The approach
there was to allow only singular simplices whose vertices lie in G (i.e., are not
ends); to allow infinite chains that are locally finite at points of G—i.e., every
point in G has a neighbourhood meeting only finitely many simplices in the
given chain—but not necessarily at ends (reflecting the fact that, for example,
the union of all the vertical double rays in the grid defines an algebraic cycle
of which infinitely many 1-simplices contain the end); and to restrict the set
of cycles to those chains in the kernel of the boundary operator that could be
written as a (possibly infinite) sum of finite cycles.

This approach solves Problem 5.9 in an ad-hoc sort of way: it permits the
definition of homology groups for arbitrary locally compact spaces with ends,
it defaults to the topological cycle space for graphs in dimension 1—but it is
not a homology theory in the sense of the usual axioms [56, 41]. To achieve
the latter, one has to find a way of implementing the required restrictions as
conditions on chains rather than on cycles. This was done in [40]. However,
this is no more than a beginning, and more translation work remains to be
done—for example, of the duality theory indicated for C(G) in Section 2.

5.4 Infinite matroids

Traditionally, infinite matroids are defined like finite ones, with the additional
axiom that an infinite set is independent as soon as all its finite subsets ar
independent. This reflects the notion of linear independence in vector spaces,
and also the absence of the usual (finite) cycles in a graph: the bases of the cycle
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matroid of an infinite graph are then the edge sets of its (ordinary) spanning
trees. We shall call such matroids finitary. Note that the circuits in a finitary
matroid, the minimal dependent sets, are necessarily finite.

An important and regrettable feature of such finitary matroids is that the
additional axiom restricting the infinite independent sets spoils duality, one of
the key features of matroid theory. For example, any bond of a graph ought
to be a circuit in its dual matroid: a set of edges that is minimal with the
property of not lying in the complement of a spanning tree, or equivalently,
with the property of containing an edge from every spanning tree. Since fini-
tary matroids have no infinite circuits, the circuit matroid of a graph with an
infinite bound thus cannot have a finitary dual.

Our theory, however, suggests an obvious solution to this problem:
shouldn’t infinite matroids be defined in such a way that infinite circuits in
a graph can become matroid circuits, and topological spanning trees become
bases? Indeed, infinite circuits are not contained in the edge set of any topolo-
gical spanning tree (although they are contained in the edge set of an ordinary
spanning tree), while if we delete any edge from an infinite circuit, then its
remaining edges can be extended to a topological spanning tree by Lemma 1.5.

There are two main challenges in devising axioms for such a non-finitary
theory of infinite matroids: to avoid the mention of cardinalities, and to take
care of limits.51 In [15], such a theory has been proposed in terms of indepen-
dence axioms, and equivalent sets of basis and circuit axioms. There is also an
equivalent set of closure axioms, which was proposed by Higgs [57, 58, 59] long
before [15] but had gone largely unnoticed (perhaps due to a lack of examples),
and a combination of independence and exchange axioms developed from these
by Oxley [70, 71].52

With these axioms, duality works as expected from finite matroids: it is
exemplified by dual planar graphs (see below), there is a well-defined notion of
minors with contraction and deletion as dual operations, and so on.

If one takes the view that these matroids deserve further study, there are
two things to do: to complete the collection of axiom systems, and—perhaps
with their help—find more natural examples. An aspect of finite matroids that
is particularly resistant to a reformulation without cardinalities is rank:

Problem 5.10. Characterize the infinite matroids axiomatized in [15] in terms
of suitably defined ‘qualitative’ rank functions.

51 If one wants to have bases and circuits, one has to ensure that maximal independent
sets or minimal dependent sets exist: with infinite sets, this is no longer clear.

52 These matroids were known as B-matroids. Perhaps the fact that such very different
sets of axioms describing what are fundamentally the same objects were developed inde-
pendently speaks for the notion underlying both: it does appear that the infinite matroids
defined in [15], or equivalently the B-matroids studied by Higgs and Oxley, are the ‘right’
notion of an infinite matroid that deserves further study.
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So what non-finitary matroids are there? As had been our motivation, the
edge sets of the topological spanning trees of a locally finite graph G do indeed
form the bases of an infinite matroid in this theory, as do those of the ordi-
nary spanning trees. Let us denote these matroids by MTST(G) and MST(G),
respectively. Similarly, the sets of edges of G that do not contain a bond of G
form the independent sets of a matroid MB(G), and the sets of edges that do
not contain a finite bond of G form the independent sets of a matroid MFB(G).
Clearly, MST(G) and MB(G) form a pair of dual matroids, and by Lemmas 1.2
and 1.4 so do MTST(G) and MFB(G).

The same is true for the slightly more general identification spaces G̃ under
ITOP, defined in Section 5.2. Thus if G and G∗ are a pair of dual graphs sat-
isfying condition (∗) from Section 2.5, and we consider circuits and topological
spanning trees in the spaces G̃ and G̃∗, then MST(G) and MTST(G∗) form a
dual pair of matroids [15].

Much of the attractiveness of finite matroids stems from the fact that they
provide a unified framework for some essential common aspects of otherwise
disparate branches of mathematics. Whether or not the same can be said for
infinite matroids, axiomatized in this way, will depend on concrete examples
that have yet to be found—if possible, from as different areas of mathematics
as possible.

There is no doubt that non-finitary matroids are plentiful: as proved
in [15], the dual of any finitary connected matroid is non-finitary. However,
perhaps there are natural ‘primary’ matroids that are non-finitary and have
therefore gone unnoticed?

Problem 5.10.
(i) Find more natural examples of non-finitary matroids.

(ii) Find some natural examples of non-finitary matroids whose duals are
also non-finitary.

Theorem 2.16 seems to suggest that, given a locally finite graph G (or
one that satisfies (∗) from Section 2.5), there might be a matroid on the set
E(G)∪Ω(G) in which the sets F ∪Ψ with F ∪E(G) and Ψ ⊆ Ω(G) for whichS

F ∪Ψ contains no circle form the independent sets. However, as soon as we
try to apply basis or circuit exchange axioms to ends, we see that this fails.
For example, if two circles meet in exactly one end, we cannot delete the end
and find another circle in the rest (the union of all the edges of the two circles).
Similarly, in the double ladder we could choose as a basis B1 the union of one
double ray, all the rungs, and both ends, and as another basis B2 all the edges
that are not rungs and one of the two ends. If we delete the other end, ω say,
from B1, we cannot find an element of B2 rB1 (which would be an edge) that
we could add to B1−ω to form another basis.

More generally, the duality which Theorem 2.16 expresses for graphs with
ends cannot be expressed in terms of matroid duality. Indeed, suppose that,
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with the notation of Theorem 2.16, there is a matroid M on E∪Ω whose bases
are the sets F ∪Ψ (with F ⊆ E and Ψ ⊆ Ω) that form the subspaces X of |G| for
which X̃ is a spanning tree of G̃. Then M/Ω = MTST(G) and M\Ω = MST(G).
But one can show that, given any 2-connected graph G satisfying condition (∗)
of Section 2.5, there is no matroid M on any set E(G)∪X with X ∩E(G) = ∅
such that M/X = MTST(G) and M\X = MST(G). See [16] for details.

Richter et al. used a non-finitary matroid analogous to MTST(G) for their
proof of an extension of Theorem 4.19 (Whitney) to ‘graph-like spaces’; see [72]
in this volume.
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