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Abstract

Eberhard proved that for every sequence (pk), 3 ≤ k ≤ r, k 6= 5, 7
of non-negative integers satisfying Euler’s formula

P

k≥3
(6 − k)pk = 12,

there are infinitely many values p6 such that there exists a simple convex
polyhedron having precisely pk faces of length k for every k ≥ 3, where
pk = 0 if k > r. In this paper we prove a similar statement when non-
negative integers pk are given for 3 ≤ k ≤ r, except for k = 5 and k = 7.
We prove that there are infinitely many values p5, p7 such that there exists
a simple convex polyhedron having precisely pk faces of length k for every
k ≥ 3. We derive an extension to arbitrary closed surfaces, yielding maps
of arbitrarily high face-width. Our proof suggests a general method for
obtaining results of this kind.
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1 Introduction

Let G be a cubic plane graph, and let pk (k ≥ 1) denote the number of its
k-gonal faces. It is a simple corollary of Euler’s formula that

∑

k≥1

(6 − k)pk = 12. (1)

It is natural to ask for which sequences (pk)k≥1 satisfying (1) there exists a cubic
plane graph whose face lengths comply with the sequence (pk). This question is
even more interesting when additional restrictions on the graph are given. The
most important case is to consider graphs of 3-dimensional convex polyhedra,
so called polyhedral graphs . By Steinitz’s Theorem, this is the same as requiring
the graphs to be 3-connected.

The general problem about the existence of polyhedral graphs with given
face lengths is still wide open. However, there are many special cases that have
been solved. For example [9, Theorem 13.4.1], it is known that there exists a
simple polyhedron with six quadrangular faces and p6 faces of size six if and only
if p6 6= 1; and there exists a simple polyhedron with twelve pentagonal faces
and p6 faces of size six (a “fullerene” graph) if and only if p6 6= 1. A similar case
of four triangular faces and p6 faces of length 6 has infinitely many exceptions:
such a polyhedron exists if and only if p6 is even. We refer to [9] for a complete
overview. The most fundamental result in this area is the following classical
theorem of Eberhard [3], stating that there is always a solution provided we are
allowed to replace p6 (whose value does not affect the satisfaction of (1)) by a
large enough integer. Call a polyhedron simple if its graph is cubic.

Theorem 1.1 (Eberhard [3]). For every sequence (pk), 3 ≤ k ≤ r, k 6= 6 of

non-negative integers satisfying (1), there are infinitely many values p6 such

that there exists a simple convex polyhedron having precisely pk faces of length

k for every k ≥ 3, where pk = 0 if k > r.

Eberhard’s proof is not only long and messy but also some of its parts may
not satisfy today’s standards of rigor. Grünbaum [9] gave a simpler complete
proof utilizing graphs and Steinitz’s Theorem. This result was strengthened
by Fisher [5] who proved that there is always a value of p6 that satisfies p6 ≤
p3 + p4 + p5 +

∑
k≥7

pk.
Grünbaum also considered a 4-valent analogue of Eberhard’s theorem. Fisher

[6] proved a similar result for 5-valent polyhedra, establishing existence for all
admissible sequences of face lengths if p4 ≥ 6.

Various other generalizations of Eberhard’s theorem have been discovered.
Papers by Jendrol’ [10, 11] give a good overview and bring some of today’s most
general results in this area. Some other relevant works include [1, 2, 4, 8, 13].
Several papers treat extensions of Eberhard’s theorem to the torus [7, 12, 15, 16]
and more general surfaces [10]. It is worth pointing out that on the torus there is
precisely one admissible sequence (namely p5 = p7 = 1 and pi = 0 for i /∈ {5, 7}),
for which an Eberhard-type result with added hexagons does not hold [12].

2



In this paper we consider a similar problem that is also motivated by (1).
Let us suppose that we are given face lengths as before but we are only allowed
to change p5 and p7 (or p6−t and p6+t for some t, 1 ≤ t ≤ 3). In this case,
we think of pk (for k ≥ 3, k 6= 5, 7) as being fixed and p5, p7 as being free to
choose. Equation (1) determines the difference s = p7 − p5, and we are asking
if there exist p5 and p7 = p5 + s with a polyhedral realization. We give an
affirmative answer to this question, and derive an extension solving the corre-
sponding problem on an arbitrary closed surface. Our construction gives simple
polyhedral maps on a surface, and one can impose the additional conditions
that these maps have large face-width and their graphs be 3-connected. More
precisely, we prove

Theorem 1.2. Let (pk), 3 ≤ k ≤ r, k 6= 5, 7 be a sequence of non-negative

integers, let S be a closed surface, and let w be a positive integer. Then there

exist infinitely many pairs of integers p5 and p7 such that there is a 3-connected

map realizing S, with face-width at least w, having precisely pk faces of length

k for every k ∈ {3, . . . , r}.

It is worth observing that the extension of Eberhard’s Theorem to a surface
S other than the sphere needs an adjustment in (1); the right hand side has
to be replaced by 6χ(S). However, in our setting the formula adjusts itself by
using an appropriate number of pentagons and heptagons.

Finally, as we point out in Section 4, our proof suggests a general method
for obtaining results of this kind.

2 Definitions

A finite sequence p = (p3, p4, . . . , pr) is plausible for a closed surface S if

∑

3≤k≤r

(6 − k)pk = 6χ(S) (2)

where χ(S) is the Euler characteristic of S. By Euler’s formula, (2) is a necessary
condition for the existence of a cubic graph embeddable in S with precisely pk

k-gons for 3 ≤ k ≤ r and no other faces. If there exists a cubic graph which
is 2-cell embeddable in S with precisely pk faces of length k for 3 ≤ k ≤ r and
no other faces, then we say that p is realizable in S. If

∑
3≤k≤r(6 − k)pk = 0,

then we call p a neutral sequence. For any two such sequences, one can consider
their sum which is defined in the obvious way. Let us observe that the sum of a
neutral sequence and a plausible sequence is a plausible sequence. We would like
to understand in this context which plausible sequences are realizable, and try to
do so by asking when a sum of a plausible sequence with an appropriate neutral
sequence is realizable. For the neutral sequence (0, 0, 0, 1) this is Eberhard’s
theorem.

The most important building block in both Eberhard’s as well as our proofs is
a construction called a triarc. A triarc is a plane graph T such that the boundary
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C of the outer face of T is a cycle, and moreover the following conditions are
satisfied (examples are the graphs in Figure 3 with the half-edges in the outer
face removed):

• every vertex of T − C has degree 3 in T ;

• C contains distinct vertices x, y, z of degree 2 (called the corners of the
triarc) such that the degrees (in T ) of the vertices on each of the three
paths in C −{x, y, z} alternate between 2 and 3, starting and ending with
a vertex of degree 2.

A side of a triarc T as above is a subpath of C that starts and ends at distinct
corners of T and does not contain the third corner. The length of a side P of T
is the number of inner vertices of degree 2 on P ; note that although the corners
of a triarc have degree 2, they are not counted when calculating the lengths of
its sides. A triarc with sides of lengths a, b, c is called an (a, b, c)-triarc. Of
course, we can flip or rotate such a triarc and consider it, for example, as a
(b, a, c)-triarc.

Triarcs are very versatile tools. Firstly, if the length of some side of a triarc
T equals the length of some side of another triarc R, then T and R can be glued
together along those sides to yield a new plane graph with all inner vertices
having degree 3; see for example Figure 9. Secondly, every triarc T has zero
total curvature; to see this, take two copies of T , turn one of them upside down,
glue them along a common side to obtain a ‘parallelogram’ (see Figure 9 again),
and identify opposite sides of this parallelogram to obtain a graph embeddable in
the torus. But perhaps the most important property of triarcs is the possibility
to ‘glue’ them together to obtain larger triarcs; we describe this operation below.

2m

2l

2m

2l

Figure 1: Glueing two triarcs with two sides of even length together using the tile of
Figure 2.
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Figure 2: In a configuration of 4 hexagons we may contract the central edge and then
‘uncontract’ it in the other direction. A ‘tile’ consisting of two pentagons and two
heptagons results; we use such tiles in Figure 1.

Suppose we have an (a1, b1, c1)-triarc and an (a2, b2, c2)-triarc such that b1 =
2m and c2 = 2l are even. Then, we may combine these triarcs (and several
pentagons and heptagons) to construct an (a1 + a2, b1 + b2, c1 + c2)-triarc. To
do this, we identify a corner (and an incident edge) of the first triarc with a
corner (and an edge) of the second triarc —see Figure 1— so that the two
identified corners yield a vertex of degree 3 on a side of length a1 + a2 in
a new triarc. Then, we can add a “parallelogram” consisting of hexagons to
obtain an (a1 + a2, b1 + b2, c1 + c2)-triarc. However, we do not want to add
hexagons. Instead, we decompose the parallelogram into tiles each consisting
of four hexagons as depicted in Figure 1, and replace each of these tiles by two
pentagons and two heptagons as indicated in Figure 2.

We are going to use this operation of glueing two triarcs into a larger one
several times in the following section.

3 Proof of Theorem 1.2

We are ready to state and prove our main result. Let us observe that, unlike
Eberhard’s Theorem, we do not need to assume that the given face-lengths form
a plausible sequence (although we make this assumption in the formulation of
the theorem) because given a sequence (pk), 3 ≤ k ≤ r, k 6= 5, 7, the sequence
can always be appended by appropriate values p5 and p7 to become plausible.

Theorem 3.1. Let p = (p3, p4, . . . , pr) be a plausible sequence for the sphere.

Then there exist infinitely many integers n ∈ N such that the sequence p + n ·
(0, 0, 1, 0, 1) is realizable in the sphere.

Proof. We will give an explicit construction of a cubic graph embeddable in the
sphere whose face sequence is of the form p + n · (0, 0, 1, 0, 1). The rough plan
for this is as follows. For each face imposed by the sequence p, we create a basic

triarc containing this face as well as some pentagons and heptagons. Then,
we glue all these triarcs together and extend to a triarc with sides of suitable
lengths. Finally, we construct a new triarc having the same side lengths, and
glue these two triarcs together (as explained later) to obtain the desired graph
embedded in the sphere.

To construct a basic triarc for a k-gon (we will make pk copies of it), we
surround the k-gon by three heptagons and k − 3 pentagons as shown in the
right half of Figure 3 (where the k-gon we are surrounding happens to be a
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pentagon). Note that we can always make the basic triarc isosceles with the
equal sides having even length. We call the k-gon we started with the nucleus

of this triarc.
Having constructed all basic triarcs, our next step is to glue them all together

to obtain a single triarc T containing them all. We do so recursively, attaching
one basic triarc at a time as shown in Figure 1, where we use many copies of
the ‘tile’ in Figure 2 in order to build the parallelogram needed. Each time we
use this glueing operation we are assuming that both triarcs in Figure 1 are
isosceles, with the equal sides having even length, and align them so that the
two equal even sides are the upper left and upper right side. Note that the
resulting triarc is also isosceles with two equal sides of even length. Thus, we
can continue recursively to glue all basic triarcs into one isosceles triarc T .

Our next aim is to enlarge T into an equilateral triarc T ′ with sides of length
n, where n is a multiple of 8 and satisfies n ≡ 2 (mod 3), using only pentagons
and heptagons. To this end, we will use the glueing operation of Figure 1 and
many copies of a (4, 4, 3)-triarc and a (2, 2, 4)-triarc. Figure 3 shows how to
construct those triarcs with pentagons and heptagons only.

7

5

5 5

55
5

5

7

7

7

7

7
7

7

5

5

5

7

7

7

Figure 3: A (4, 4, 3)-triarc and a (2, 2, 4)-triarc.

Note that glueing T ′ with a (4, 4, 3)-triarc (as in Figure 1) keeps it isosceles
and decreases the difference of lengths between the “base” and the other two
sides by 1, while glueing with a (2, 2, 4)-triarc increases that difference by 2.
Thus, recursively glueing with such triarcs we can enlarge T into an equilateral
triarc S with sides of even length.

Moreover, using the glueing operation of Figure 1 three times, once with a
(2, 2, 4)-triarc and twice with a (4, 4, 3)-triarc, we can increase the side-lengths
by (2, 2, 4)+(4, 4, 3)+(4, 4, 3) = (10, 10, 10). Thus we can increase the length of
each side of S by 10. Since 10 ≡ 1 (mod 3), we can use this operation to enlarge
S into an equilateral triarc S′ with even sides of length 2 (mod 3). Moreover,
since performing this operation three times increases the length of each side by
30, and 30 ≡ 6 (mod 8), we can enlarge S′ into an equilateral triarc T ′ with the
length of each side being a multiple of 8 and congruent to 2 modulo 3.

Next, we are going to construct a triarc R that has the same side lengths
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as T ′ but consists of pentagons and heptagons only. By glueing together a
(2, 2, 4)-triarc, a (2, 4, 2)-triarc and a (4, 2, 2)-triarc (that is, the same triarc in
three different rotations) we get an (8, 8, 8)-triarc, which we will call D. Since
the sides of T ′ have length a multiple of 8, by glueing copies of D together
recursively as in Figure 1 we can indeed construct a triarc R that has the same
dimensions as T ′.

We can now combine R and T ′ together to produce a cubic graph tiling
the sphere as shown in Figure 4. By construction, this graph has for every
k ∈ N\{0, 1, 2, 5, 7} precisely pk faces of size k, and moreover it has at least
p5 pentagons and at least p7 heptagons. Thus its face sequence is of the form
p+(0, 0, n, 0, m) for some n, m ∈ N+. Since both p and p+(0, 0, n, 0, m) satisfy
Euler’s formula (the former by assumption, the latter because the plane graph
we just constructed implements it), we have n = m.

This completes the construction and shows the existence of one particular
value of n as desired. However, observe that the construction of T ′ and R allows
us to make the side lengths of these triarcs arbitrarily large. This shows that
we can get examples for infinitely many values of n and thus completes the
proof.

R

T ′

Figure 4: Glueing R and T ′ together along a “ring” consisting of pentagons and
heptagons. This operation is possible because we made sure that every side of T ′, and
thus also of R, has length congruent to 2 (mod 3).

We now turn from planar graphs to maps on arbitrary (compact) surfaces.
A map on a surface S is a graph together with a 2-cell embedding in S. A map
is polyhedral if all faces are closed disks in the surface and the intersection of
any two faces is either empty, a common vertex or a common edge. If the graph
of the map is cubic, then we say that the map is simple.

A cycle contained in the graph of a map is contractible if it bounds a disk
on the surface. The edge-width of a map M is the length of a shortest non-
contractible cycle in M . The face-width of M is the minimum number of faces,
the union of whose boundaries contains a non-contractible cycle. We refer the
reader to [14] for more about the basic properties and the importance of these
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parameters of maps. At this point we only note that a map is polyhedral if
and only if its graph is 3-connected and its face-width is at least three, see [14,
Proposition 5.5.12]. We also note that if r is the largest length of a face of M ,
then the edge-width of M cannot exceed r

2
times the face-width of M .

We now restate and prove our main result, Theorem 1.2.

Corollary 3.2. Let (pk), 3 ≤ k ≤ r, k 6= 5, 7 be a sequence of non-negative inte-

gers, let S be a closed surface, and let w be a positive integer. Then there exist in-

finitely many pairs of integers p5 and p7 such that the sequence (p3, p4, p5, . . . , pr)
is realizable in S and there is a 3-connected realizing map of face-width at least

w.

Proof. Let us first describe a construction that does not necessarily achieve the
desired face-width; we will later explain how to modify this construction in order
to get large face-width.

The rough sketch of this construction is as follows. Firstly, we increase the
number of hexagons in the sequence (pk) to p′6 := p6 + 2h + c, where h is
the number of handles of S and c the number of its crosscaps (by the surface
classification theorem we may assume that one of h, c is zero, but we do not have
to). It follows from Theorem 3.1 that we can increase the numbers p5 and p7

of this sequence to some appropriate values so that the resulting sequence p′ is
realized by a map on the sphere. We will then use the 2h+c auxilliary hexagons
of this map we added above to introduce some handles and/or crosscaps. After
doing so, all auxilliary hexagons will have disappeared, and we obtain a map on
S whose sequence of faces differs from (pk) by some pentagons and heptagons
only.

More precisely, similarly to the proof of Theorem 3.1, we construct a basic
triarc for each face in p′, but with one modification: for each hexagon we con-
struct a triarc like the one in Figure 5 (on the left) rather than one with two
even sides of equal lengths (in fact, we need this modification for the auxiliary
hexagons only, but we might as well use it for the original hexagons in p as
well).

3

3 32 2

22

2 2

4 4

4

Figure 5: On the left: the new basic triarc for a hexagon. On the right: extending
the triarc from the left into an equilateral triarc with even sides.

Next, we proceed as in Theorem 3.1 to glue all basic triarcs together into one
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triarc T . However, since we now have basic triarcs with all sides odd (the ones of
Figure 5), the glueing operation of Figure 1 will not work for these triarcs. For
this reason, we first extend each such triarc into an equilateral triarc with even
sides using three copies of the (2, 2, 4)-triarc of Figure 3 as shown in Figure 5
(right).
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Figure 6: The situation arising after introducing a handle. The 12-cycle C consists
of the dashed and the thick edges.

We continue imitating the proof of Theorem 3.1 to obtain a cubic graph
G embedded in a homeomorphic copy S′ of the sphere that contains all basic
triarcs. We will now perform some cutting and glueing operations on both S′

and G to obtain a new surface, homeomorphic to S, with a cubic graph G′

embedded in it.
Suppose that h > 0. Then, pick h pairs (F1, F

′
1), . . . , (Fh, F ′

h) of hexagonal
faces of G, such that all the faces Fi and F ′

i are distinct (there are enough
hexagonal faces by our choice of the sequence p′). Now for each pair (Fi, F

′
i )

perform the following operations. Cut out the two discs of S′ corresponding to
Fi, F

′
i , and glue their boundaries together with a half-twist; that is, each vertex

of the boundary of Fi is identified with the midpoint of an edge of F ′
i and vice-

versa. This operation creates a handle in S′, and the embedded graph remains
cubic; however, it also gives rise to some unwanted faces: the length of each
face that was incident to Fi or F ′

i has now been increased by 1. We thus have
the situation depicted in Figure 6, where C is the cycle of length 12 resulting
from the boundaries of Fi and F ′

i . Recall that since every hexagon is put in
a basic triarc like the one in Figure 5, the lengths of the faces on each side of
C alternate between 6 and 8 as shown in Figure 6. But now, contracting and
uncontracting each of the three thick edges (in the way explained in Figure 2)
turns each of the faces incident with C into a heptagon.

On the other hand, if c > 0, then pick c distinct hexagonal faces F1, . . . , Fc,
and for every i cut out the disc corresponding to Fi and glue in its place the
outside of the hexagon of Figure 7 with a half twist. Each such operation gives
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Figure 7: The gadget used to create a crosscap inside a hexagon.

rise to a new crosscap, but also to unwanted faces just like in Figure 6. But
again, contracting and uncontracting each of the three thick edges we can turn
all these unwanted hexagons and octagons into heptagons.

Thus, after all these operations have been completed, we obtain a surface
with h handles and c crosscaps with a cubic graph embedded in it whose face se-
quence is p+(0, 0, n, 0, m) for some n, m ∈ N+. Note that all auxiliary hexagons
in p′ − p have disappeared after the above operations. As in the previous proof,
n = m must hold by Euler’s formula.

Clearly, our maps are 3-connected. It remains to discuss how to modify this
construction to obtain maps with arbitrarily large face-width. By the remark
preceding Corollary 3.2, it suffices to construct maps with arbitrarily large edge-
width z since the face lengths are bounded from above by r. This is achieved
as follows.

First of all, we make every basic triarc used in the construction large enough
that the distance from its nucleus to the boundary of the triarc is at least z and
the length of each side of each triarc is at least 3z. This can be achieved by the
method we used in the proof of Theorem 3.1 to enlarge T into an equilateral
triarc T ′.

Next, we replace the auxiliary hexagons used in order to add handles and
crosscaps with 6N -gons, where N is odd and greater than z/2. Of course,
this will force us to add some more pentagons to our sequence pk to make it
plausible. Note that we can generalize the triarc on the left of Figure 5 so that
the inner 6-gon is replaced by a 6N -gon surrounded by three heptagons and
6N − 3 pentagons, arranged in a symmetric way so that any two heptagons
separate 2N − 1 pentagons from the rest. We will make use of the fact that
2N − 1 is odd. We need to adapt the right half of Figure 5 as well, since the
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inner triarc has now grown larger. For this, note that each side of the inner
triarc has now length 2N +1, and so in order to use the method of the right half
of Figure 5 the three peripheral triarcs must have a base of length 2N + 2 (in
addition to having their other two sides of equal length). Since we chose N to
be odd, it turns out that 2N + 2 is a multiple of four, and so we can construct
the required peripheral triarcs by glueing several (2, 2, 4)-triarcs together using
Figure 1 into a (N + 1, N + 1, 2N + 2)-triarc.

Moreover, the crosscap gadget shown in Figure 7 can be generalized so that
the inner 6-gon is replaced by a 6N -gon that is surrounded by 3N heptagons
and 3N pentagons, arranged alternatingly around the 6N -gon (here it is also
important that we chose N to be odd).

When the time comes to insert crosscaps or glue pairs of such 6N -gons
together (after a half-twist), we obtain a similar configuration as in Figure 6,
but with 3N thick edges. Some of these thick edges are surrounded by faces of
lengths 8, 6, 8, 6 (as in Figure 6), while others are surrounded by four hexagons
or by one octagon and three hexagons. Note, however, that for parity reasons
we can make sure that every octagon is incident with a thick edge, and still
every fourth edge on the dashed cycle is thick. Finally, the contract-uncontract
operation of Figure 2 turns these faces into pentagons and heptagons only.

Let us now argue that the resulting map G has edge-width at least z. Recall
that the surface S is obtained from a plane graph G′, embedded in the sphere,
that is composed of large basic triarcs T1, . . . , Tm, some large parallelograms
used to glue the basic triarcs together into a large triarc T , and a remainder
X comprising the material we used to enlarge T into T ′, the ring of Figure 4,
and the triarc R. Let Li be the nucleus of Ti. Then S is obtained from G′ by
glueing the crosscap gadget into some of the 6N -gons Li, and/or by identifying
some pairs Li, Lj of the 6N -gons to create handles.

We claim that for every basic triarc Ti such that the nucleus Li of Ti is a
6N -gon, and

for every side P of Ti, there is a set of z pairwise disjoint Li–P paths. (3)

Indeed, recall that in order to construct Ti, we first surrounded Li by several
pentagons and heptagons, 6N in total, to obtain a triarc T 1

i , then we performed
the operation of the right half of Figure 5 to obtain a triarc T 2

i , and finally
we enlarged this into a larger triarc T 3

i = Ti using the operation of Figure 1
several times. Now given any side P ′ of T 2

i it is possible to find, within T 2
i ,

a set of z pairwise disjoint Li–P
′ paths, see Figure 8. Then, every time

we use the operation of Figure 1 while enlarging T 2
i into T 3

i , it is possible to
recursively propagate those paths to reach the side of T 3

i corresponding to P ′;
if P ′ is included within a side of T 3

i then nothing needs to be done, and if not
then we can propagate our paths through the parallelogram of Figure 1 while
keeping them disjoint (this is true even after performing the contract-uncontract
operations of Figure 2). This proves our claim (3).

Next, we claim that any two nuclei Li, Lj can be joined by z pairwise disjoint
paths in G′. Indeed, this follows easily from (3) and the fact that whenever we
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Figure 8: Constructing z disjoint Li–P ′ paths, in the case that the auxilliary hexagons
are replaced with 42-gons (6N for N = 7). In light gray are the (2, 2, 4)-triarcs, in dark
gray the modified hexagonal tiles from the gluing operation of Figures 1 and 2. The
16 thick paths are the ones we need to prove that our graphs have large face-width.

glue two triarcs T, T ′ together as in Figure 1 by a parallelogram R with side-
lengths m, n, then we can find a set of m pairwise disjoint paths within R joining
its two opposite sides of length m, as well as a set of min(m, n) pairwise disjoint
paths within R joining the sides of T and T ′ incident with R.

We now distinguish two cases: if the surface S is orientable then, easily, any
non-contractible cycle C in G must yield a cycle C′ in G′, with |C′| ≤ |C|, that
separates some nucleus Li from some other nucleus Lj in G′, and so the above
observation implies that |C| ≥ z as desired (in fact, we have |C| ≥ 2z because
the graph is cubic and so any two paths that have a common inner vertex must
have a common edge).

If, on the other hand, S is non-orientable, then a non-contractible cycle C in
G will either yield a cycle C′ as above, in which case the same argument applies,
or it will yield a path P ′ in G′ whose endpoints were identified when introducing
crosscaps. Recall that we made every basic triarc used in the construction large
enough that the distance from its nucleus to the boundary of the triarc is at
least z, thus P ′ is, without loss of generality, contained within one of the triarcs
in which a crosscap was introduced. With the help of Figure 8 and Figure 7
(modified with a 6N -gon replacing the hexagon as described above) it is now
not hard to see that |P ′| ≥ z as desired.
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4 Other neutral sequences

In this paper we concentrated on the neutral sequence (0, 0, 1, 0, 1), but we
believe that our methods and results apply in a much more general setting
—see also Section 5— and it is the purpose of this section to explain this.

In Section 3 we showed that every plausible sequence can be extended into
a realizable one by adding pentagons and heptagons only. In what follows we
are going to give a rough sketch of a proof that an arbitrary neutral sequence
s can be used to extend any plausible sequence into a realizable one under
the assumption that a couple of basic building blocks can be constructed using
precisely the faces that appear in some multiple of s. We expect that our
construction will help yield more general results in the future, by showing that
these building blocks can indeed be constructed.

So let p = (p3, p4, . . . , pr) be a plausible sequence for the sphere or the torus,
and let s = (p′3, p

′
4, . . . , p

′
t) be a neutral sequence. In order to prove that there

is some n so that p + ns is realizable, it suffices to find some k ∈ N for which
it is possible to construct the following building blocks using precisely the faces
that appear in some multiple of s:

(i) a (k, k, k)-triarc;

(ii) a (k, k, k − 1)-triarc;

(iii) for every non-zero entry pl in p, a triarc containing a face of size l, such
that the length of two of the sides of this triarc is a multiple of k;

(iv) a “ring” like the one in Figure 4 (using the faces from s in the right propor-
tion rather than pentagons and heptagons) for combining two equilateral
triarcs.

k
k

k
k

kk

k

�
k - 1 �

k - 1

Figure 9: Constructing a parallelogram out of two (k, k, k − 1)-triarcs.

Indeed, to begin with, construct a parallelogram with all sides of length k
out of two (k, k, k−1)-triarcs (supplied by (ii)) as shown in Figure 9. (In figures
explaining our construction, we shall use triarcs made of hexagonal faces, but
this is for illustration purposes only; in fact they have to be made of multiples
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of s.) This also allows us to construct any parallelogram with dimensions mk, lk
for every m, l ∈ N.

Next, similarly to the construction in Theorem 3.1, construct a ‘basic’ triarc
as in (iii) for each face-length l for which pl 6= 0; in fact, we construct pl copies
of this basic triarc for every l. Then, using the parallelograms we constructed
earlier, we recursively glue all those triarcs together into a single triarc T , in a
manner very similar to the operation of Figure 1.

mk m
k

m
k

mk k

k
k

�
(m + 1)k

�
(m + 1)k �

(m + 1)k

Figure 10: Increasing the length each side of a triarc by k.

By recursively glueing the resulting triarc with a (k, k, k−1)-triarc provided
by (ii) using the glueing operation of Figure 1, we can transform T into an
equilateral (mk, mk, mk)-triarc T ′ for some (large) m ∈ N.

Using the glueing operation of Figure 1 it is possible to construct a triarc
R with the same side-lengths as T ′, using only (k, k, k)-triarcs (provided by (i))
and the above parallelograms; see Figure 10.

In the case of the sphere, we can combine R and T ′ by using the “ring”
provided by (iv) to complete the construction.

mk

mk

mk

R

T ′

Figure 11: Glueing R and T ′ together. The black dots depict the faces imposed by
the sequence p.

If the underlying surface S is the torus, we glue R and T ′ together along
one of their sides to obtain a parallelogram, and glue two opposite sides of this
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parallelogram together to obtain a cylinder C both of whose bounding cycles
are in-out alternating cycles of length mk, see Figure 11. We then glue the two
bounding cycles of C together to obtain a realization of a torus.

If p is plausible for some other surface S, then we would need additional
gadgets like those used in the proof of Corollary 3.2.

5 Outlook

Trying to achieve a better understanding of the implications of Euler’s formula,
we studied the question of whether, given a plausible sequence p, and a neutral
sequence q, it is possible to combine p and q into a realizable sequence p + nq,
but we did so in very restricted cases. The general problem remains wide open;
in particular, we would be interested to see an answer to the following problem.

Problem 5.1. Given a closed surface S, is it true that for every plausible

sequence p for S, and every neutral sequence q, there is an n ∈ N such that

p + nq is realizable in S with the exception of only finitely many pairs (p, q)?

(As mentioned in the introduction, if S is the torus then the list of excep-
tional pairs (p, q) cannot be empty.)
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