Lamplighter graphs do not admit harmonic functions of finite energy

Agelos Georgakopoulos*
Technische Universität Graz
Steyrergasse 30, 8010
Graz, Austria

Abstract

We prove that a lamplighter graph of a locally finite graph over a finite graph does not admit a non-constant harmonic function of finite Dirichlet energy.

1 Introduction

The wreath product $G \imath H$ of two groups G, H is a well-known concept. Cayley graphs of $G \imath H$ can be obtained in an intuitive way by starting with a Cayley graph of G and associating with each of its vertices a lamp whose possible states are indexed by the elements of H, see below. Graphs obtained this way are called lamplighter graphs. A well-known special case are the Diestel-Leader (4) graphs $D L(n, n)$.

Kaimanovich and Vershik [8, Sections 6.1, 6.2] proved that lamplighter graphs of infinite grids $\mathbb{Z}^{d}, d \geq 3$ admit non-constant, bounded, harmonic functions. Their construction had an intuitive probabilistic interpretation related to random walks on these graphs, which triggered a lot of further research on lamplighter graphs. For example, spectral properties of such groups are studied in [2, 7, 10] and other properties related to random walks are studied in [5, 6, 14]. Harmonic functions on lamplighter graphs and the related Poisson boundary are further studied e.g. in [1, 9, 15. Finally, Lyons, Pemantle and Peres 11] proved that the lamplighter graph of \mathbb{Z} over \mathbb{Z}_{2} has the surprising property that random walk with a drift towards a fixed vertex can move outwards faster than simple random walk.

It is known that the existence of a non-constant harmonic function of finite Dirichlet energy implies the existence of a non-constant bounded harmonic function [16, Theorem 3.73]. Given the aforementioned impact that bounded harmonic functions on lamplighter graphs have had, it suggests itself to ask whether these graphs have non-constant harmonic functions of finite Dirichlet energy. For lamplighter graphs on a grid it is known that no such harmonic functions can exist, since the corresponding groups are amenable and thus admit no non-constant harmonic functions of finite Dirichlet energy [13. A. Karlsson

[^0](oral communication) asked whether this is also the case for graphs of the form $T \succ \mathbb{Z}_{2}$ where T is any regular tree. In this paper we give an affirmative answer to this question. In fact, the actual result is much more general:

Theorem 1.1. Let G be a connected locally finite graph and let H be a connected finite graph with at least one edge. Then $G \imath H$ does not admit any non-constant harmonic function of finite Dirichlet energy.

Indeed, we do not need to assume that any of the involved graphs is a Cayley graph. Lamplighter graphs on general graphs can be defined as in the usual case when all graphs are Cayley graphs; see the next section.

As an intermediate step, we prove a result (Lemma 3.1 below) that strengthens a theorem of Markvorsen, McGuinness and Thomassen 12 and might be applicable in order to prove that other classes of graphs do not admit nonconstant Dirichlet-finite harmonic functions.

2 Definitions

We will be using the terminology of Diestel [3]. For a finite path P we let $|P|$ denote the number of edges in P. For a graph G and a set $U \subseteq V(G)$ we let $G[U]$ denote the subgraph of G induced by the vertices in U. If G is finite then its diameter $\operatorname{diam}(G)$ is the maximum distance, in the usual graph metric, of two vertices of G.

Let G, H be connected graphs, and suppose that every vertex of G has a distinct lamp associated with it, the set of possible states of each lamp being the set of vertices $V(H)$ of H. At the beginning all lamps have the same state $s_{0} \in V(H)$, and a "lamplighter" is standing at some vertex of G. In each unit of time the lamplighter is allowed to choose one of two possible moves: either walk to a vertex of G adjacent to the vertex $x \in V(G)$ he is currently at, or switch the current state $s \in V(H)$ of x into one of the states $s^{\prime} \in V(H)$ adjacent with s. The lamplighter graph $G \imath H$ is, then, a graph whose vertices correspond to the possible configurations of this game and whose edges correspond to the possible moves of the lamplighter. More formally, the vertex set of G \} H is the set of pairs (C, x) where $C: V(G) \rightarrow V(H)$ is an assignment of states such that $C(v) \neq s_{0}$ holds for only finitely many vertices $v \in V(G)$, and x is a vertex of G (the current position of the lamplighter). Two vertices (C, x) and $\left(C^{\prime}, x^{\prime}\right)$ of $G \imath H$ are joined by an edge if (precisely) one of the following conditions holds:

- $C=C^{\prime}$ and $x x^{\prime} \in E(G)$, or
- $x=x^{\prime}$, all vertices except x are mapped to the same state by C and C^{\prime}, and $C(x) C^{\prime}(x) \in E(H)$.

This definition of $G \imath H$ coincides with that of Erschler [6].
The blow-up of a vertex $v \in V(G)$ in $L=G \imath H$ is the set of vertices of L of the form (C, v). Similarly, the blow-up of a subgraph T of G is the subgraph of L spanned by the blow-ups of the vertices of T. Given a vertex $x \in V(L)$ we let $[x]$ denote the vertex of G the blow-up of which contains x.

An edge of L is a switching edge if it corresponds to a move of the lamplighter that switches a lamp; more formally, if it is of the form $(C, v)\left(C^{\prime}, v\right)$. For a switching edge $e \in E(L)$ we let $[e]$ denote the corresponding edge of H. A ray
is a 1-way infinite path; a 2-way infinite path is called a double ray. A tail of a ray R is an infinite (co-final) subpath of R.

A function $\phi: V(G) \rightarrow \mathbb{R}$ is harmonic, if for every $x \in V(G)$ there holds $\phi(x)=\frac{1}{d(x)} \sum_{x y \in E(G)} \phi(y)$, where $d(x)$ is the number of edges incident with x. Given such a function ϕ, and an edge $e=u v$, we let $w_{\phi}(e):=(\phi(u)-\phi(v))^{2}$ denote the energy dissipated by e. The (Dirichlet) energy of ϕ is defined by $W(\phi):=\sum_{e \in E(G)} w_{\phi}(e)$.

3 Proof of Theorem 1.1

We start with a lemma that might be applicable in order to prove that other classes of graphs do not admit non-constant Dirichlet-finite harmonic functions. This strengthens a result of [12, Theorem 7.1].

Lemma 3.1. Let G be a connected locally finite graph such that for every two disjoint rays S, Q in G there is a constant c and a sequence $\left(P_{i}\right)_{i \in \mathbb{N}}$ of pairwise edge-disjoint $S-Q$ paths such that $\left|P_{i}\right| \leq c i$. Then G does not admit a nonconstant harmonic function of finite energy.

Proof. Let G be a locally finite graph that admits a non-constant harmonic function ϕ of finite energy; it suffices to find two rays S, Q in G that do not satisfy the condition in the assertion.

Since ϕ is non-constant, we can find an edge $x_{0} x_{1}$ satisfying $\phi\left(x_{1}\right)>\phi\left(x_{0}\right)$. By the definition of a harmonic function, it is easy to see that $x_{0} x_{1}$ must lie in a double ray $D=\ldots x_{-1} x_{0} x_{1} \ldots$ such that $\phi\left(x_{i}\right) \geq \phi\left(x_{i-1}\right)$ for every $i \in \mathbb{Z}$; indeed, every vertex $x \in V(G)$ must have a neighbour y such that $\phi(y) \geq \phi(x)$.

Define the sub-rays $S=x_{0} x_{1} x_{2} \ldots$ and $Q=x_{0} x_{-1} x_{-2} \ldots$ of D. Now suppose there is a sequence $\left(P_{i}\right)_{i \in \mathbb{N}}$ of pairwise edge-disjoint $S-Q$ paths such that $\left|P_{i}\right| \leq c i$ for some constant c.

Note that by the choice of D there is a bound $u>0$ such that $u_{i}:=$ $\left|\phi\left(s_{i}\right)-\phi\left(q_{i}\right)\right| \geq u$ for every i, where $s_{i} \in V(S)$ and $q_{i} \in V(Q)$ are the endvertices of P_{i}.

For every edge $e=x y$ let $f(e):=|\phi(y)-\phi(x)|$. Let X_{i} be the set of edges e in P_{i} such that $f(e) \geq 0.9 \frac{u}{c i}$, and let Y_{i} be the set of all other edges in P_{i}. As $\left|P_{i}\right| \leq c i$ by assumption, the edges in Y_{i} contribute less than $0.9 u$ to u_{i}, thus $\sum_{e \in X_{j}} f(e)>0.1 u$ must hold. But since $f(e) \geq 0.9 \frac{u}{c i}$ for every $e \in X_{j}$, we have $\sum_{e \in X_{j}} w_{\phi}(e)>0.1 \times 0.9 \frac{u^{2}}{c i}$. As the sets X_{j} are pairwise edge-disjoint, and as the series $\sum_{i} 1 / i$ is not convergent, this contradicts the fact that $\sum_{e \in E(G)} w_{\phi}(e)$ is finite.

We now apply Lemma 3.1 to prove our main result.
Proof of Theorem 1.1. We will show that $L:=G \imath H$ satisfies the condition of Lemma 3.1 from which then the assertion follows. So let S, Q be any two disjoint rays of L.

Since L is connected we can find a double ray D in L that contains a tail S^{\prime} of S and a tail Q^{\prime} of Q. Let s_{0} (respectively, q_{0}) be the first vertex of S^{\prime} (resp. Q^{\prime}). Let V_{0} be the set of vertices of G the blow-up of which meets the path $s_{0} D q_{0}$. Note that V_{0} induces a connected subgraph of G, because the
lamplighter only moves along the edges of G. Thus we can choose a spanning tree T_{0} of $G\left[V_{0}\right]$.

For $i=1,2, \ldots$ we construct an $S^{\prime}-Q^{\prime}$ path P_{i} as follows. Let s_{i} be the first vertex of S^{\prime} not in the blow-up of V_{i-1}, and let q_{i} be the first vertex of Q^{\prime} not in the blow-up of V_{i-1}. Let $V_{i}:=V_{i-1} \cup\left\{s_{i}, q_{i}\right\}$, and extend T_{i-1} into a spanning tree T_{i} of $G\left[V_{i}\right]$ by adding two edges incident with s_{i} and q_{i} respectively; such edges do exist: their blow-up contains the edges of S^{\prime}, Q^{\prime} leading into s_{i}, q_{i} respectively.

We now construct an $s_{i}-q_{i}$ path P_{i}. Pick a switching edge $e=s_{i} s_{i}^{\prime}$ incident with s_{i}. Then let X_{i} be the unique path in L from s_{i}^{\prime} to a vertex q_{i}^{+}with $\left[q_{i}^{+}\right]=\left[q_{i}\right]$ such that X_{i} is contained in the blow-up of T_{i}. Pick a switching edge $f=q_{i}^{+} q_{i}^{-}$incident with q_{i}^{+}. Then follow the unique path Y_{i} in L from q_{i}^{-}to a vertex s_{i}^{+}with $\left[s_{i}^{+}\right]=\left[s_{i}\right]$ such that Y_{i} is contained in the blow-up of T_{i}. Let $e^{\prime}=s_{i}^{+} s_{i}^{-}$be the switching edge incident with s_{i}^{+}such that $\left[e^{\prime}\right]=[e]$. Finally, let Z_{i} be a path from s_{i}^{-}to the unique vertex q_{i}^{\prime} with $\left[q_{i} q_{i}^{\prime}\right]=[f]$, such that the interior of Z_{i} is contained in the blow-up of V_{i-1} and Z_{i} has minimum length under all paths with these properties. Such a path exists because every lamp at a vertex in $G-V_{i-1}$ has the same state in s_{i}^{-}and q_{i}^{\prime}; indeed, the lamps in $G-V_{i}$ were never switched in the above construction, the lamp at $\left[s_{i}\right]$ was switched twice on the way from s_{i} to s_{i}^{-}using the same switching edge [e], which means that its state in both endpoints of Z_{i} coincides with that in s_{i} and q_{i}, and finally the lamp at $\left[q_{i}^{\prime}\right]$ has the same state in both endpoints of Z_{i}, namely the state $[f]$ leads to. Now set $P_{i}:=s_{i} s_{i}^{\prime} X_{i} q_{i}^{+} q_{i}^{-} Y_{i} s_{i}^{+} s_{i}^{-} Z_{i} q_{i}^{\prime} q_{i}$.

It is not hard to check that the paths P_{i} are pairwise disjoint. Indeed, let $i<j \in \mathbb{N}$. Then, by the choice of the vertices s_{j}, q_{j} and the construction of P_{j}, it follows that for every inner vertex x of P_{j}, the configuration of x differs from the configuration of any vertex in P_{i} in at least one of the two lamps at $\left[s_{j}\right]$ and $\left[q_{j}\right]$.

It remains to show that there is a constant c such that $\left|P_{i}\right| \leq c i$ for every i. To prove this, note that $\left|P_{i}\right|=\left|X_{i}\right|+\left|Y_{i}\right|+\left|Z_{i}\right|+4$; we will show that the latter three subpaths grow at most linearly with i, which then implies that this is also true for P_{i}.

Firstly, note that $\operatorname{diam}\left(T_{i}\right)-\operatorname{diam}\left(T_{i-1}\right) \leq 2$ since $V\left(T_{i}\right):=V\left(T_{i-1}\right) \cup$ $\left\{s_{i}, q_{i}\right\}$. By the choice of X_{i} we have $\left|X_{i}\right| \leq \operatorname{diam}\left(T_{i}\right)$, from which follows that there is a constant c_{1} such that $\left|X_{i}\right| \leq c_{1} i$. By the same argument, we have $\left|Y_{i}\right| \leq c_{1} i$.

It remains to bound the length of Z_{i}. For this, note that if T is a finite tree and $v, w \in V(T)$, then there is a $v-w$ walk W in T containing all edges of T and satisfying $|W| \leq 3|E(T)|$; indeed, starting at v, one can first walk around the "perimeter" of T traversing every edge precisely once in each direction $(2|E(T)|$ edges), and then move "straight" from v to w (at most $|E(T)|$ edges). Thus, in order to choose Z_{i}, we could put a lamplighter at the vertex and configuration indicated by s_{i}^{-}, and let him move in $T_{i} \subset G$ along such a walk W from $\left[s_{i}^{-}\right]$ to $\left[q_{i}^{\prime}\right]$, and every time he visits a new vertex x let him change the state of x to the state indicated by q_{i}^{\prime}. This bounds the length of Z_{i} from above by $3\left|E\left(T_{i}\right)\right| \operatorname{diam}(H)$, and since $\left|E\left(T_{i}\right)\right|-\left|E\left(T_{i-1}\right)\right|=2$ and H is fixed, we can find a constant c_{2} such that $\left|Z_{i}\right| \leq c_{2} i$ for every i. This completes the proof that $\left|P_{i}\right|$ grows at most linearly with i.

Thus we can now apply Lemma 3.1 to prove that $G \imath H$ does not admit a non-constant harmonic function of finite energy.

Problem 3.1. Does the assertion of Theorem 1.1 still hold if H is an infinite locally finite graph?

Lemma 3.1 might be applicable in order to prove that other classes of graphs do also not admit non-constant Dirichlet-finite harmonic functions. For example, it yields an easy proof of the (well-known) fact that infinite grids have this property.

References

[1] S. Brofferio and W. Woess. Positive harmonic functions for semi-isotropic random walks on trees, lamplighter groups, and DL-graphs. Potential Anal., 24(3):245-265, 2006.
[2] W. Dicks and T. Schick. The spectral measure of certain elements of the complex group ring of a wreath product. Geom. Dedicata, 93:121-137, 2002.
[3] R. Diestel. Graph Theory (3rd edition). Springer-Verlag, 2005.
Electronic edition available at:
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory.
[4] R. Diestel and I. Leader. A conjecture concerning a limit of non-Cayley graphs. J. Algebraic Combinatorics, 14:17-25, 2001.
[5] A. Erschler. On drift and entropy growth for random walks on groups. Ann. Probab., 31(3):1193-1204, 2003.
[6] A. Erschler. Generalized wreath products. Int. Math. Res. Not., 2006:1-14, 2006.
[7] R.I. Grigorchuk and A. Zuk. The lamplighter group as a group generated by a 2-state automaton, and its spectrum. Geom. Dedicata, 87(1-3):209-244, 2001.
[8] V.A. Kaimanovich and A.M. Vershik. Random walks on discrete groups: Boundary and entropy. Ann. Probab., 11:457-490, 1983.
[9] A. Karlsson and W. Woess. The Poisson boundary of lamplighter random walks on trees. Geom. Dedicata, 124:95-107, 2007.
[10] F. Lehner, M. Neuhauser, and W. Woess. On the spectrum of lamplighter groups and percolation clusters. Mathematische Annalen, 342:69-89, 2008.
[11] R. Lyons, R. Pemantle, and Y. Peres. Random walks on the lamplighter group. The Annals of Probability, 24(4):1993-2006, 1996.
[12] S. Markvorsen, S. McGuinness, and C. Thomassen. Transient random walks on graphs and metric spaces with applications to hyperbolic surfaces. Proc. London Math. Soc., 64:1-20, 1992.
[13] G. Medolla and P.M. Soardi. Extension of Foster's averaging formula to infinite networks with moderate growth. Math. Z., 219(2):171-185, 1995.
[14] C. Pittet and L. Saloff-Coste. On random walks on wreath products. Ann. Probab., 30(2):948-977, 2002.
[15] Ecaterina Sava. A note on the poisson boundary of lamplighter random walks. To appear in Monatshefte für Mathematik.
[16] P.M. Soardi. Potential theory on infinite networks., volume 1590 of Lecture notes in Math. Springer-Verlag, 1994.

[^0]: *Supported by FWF grant P-19115-N18.

