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We point out some basic properties of the partial ordering which a
poset P induces on its power set, defining A � B to mean that every
element of A lies below some element of B. One result is that if P is
a WQO then P decomposes uniquely into finitely many indivisible sets
A1, . . . , An (that are essential parts of P in the sense that P �� P �Ai).

This note collects together some observations I made in the context of compar-
ing graph properties by the graph minor relation [ 2 ], but which apply more
generally to arbitrary subsets of a given poset. They are all simple and ought to
be well known, but I have been unable to find a source. The main observation
is that the subsets of an infinite poset P can be decomposed in a way that
resembles factoring: there are ‘indivisible’ sets that behave like primes, and if
P is a WQO then it factors uniquely into such indivisible sets.

Let (P,�) be any poset, typically infinite. (Countable will do to make
things intersting, and a particularly interesting case will be that P is a WQO.)
Given subsets A, B ⊆ P , let us write A � B to express that for every a ∈ A

there is a b ∈ B such that a � b. This is a quasi-ordering on the power set of P ,
which induces a partial ordering on the set P of ∼-equivalence classes of subsets
of P , where A ∼ B if A � B and B � A. Although we shall continue to speak
about the subsets themselves rather their equivalence classes, we shall often
distinguish them only up to equivalence to derive properties of this poset P.
For A, B ⊆ P we write A < B if A � B but A �∼ B (ie. B �� A).

The first problem we address is whether we can always find particular-
ly typical representatives of these equivalence classes, in the following sense.
Given an infinite set A ⊆ P , we can obtain numerous equivalent sets just by
‘adding junk’: for every A′ < A we clearly have A∪A′ ∼ A. This process is
not easily reversible: if we are given A∪A′ as a single set, we may not be able
to identify and discard its ‘inessential’ part A′. So it seems that ‘lean’ sets not
containing large amounts of such junk are particularly desirable representatives
of their equivalence classes.

To make this precise, let us call an infinite set A ⊆ P lean if A � A′ for
every A′ ⊆ A with |A′| = |A|. (For example, the set of finite stars and the set
of finite paths are both lean under the minor relation for graphs, but the set of
finite trees is not lean.) Then our first question is: which infinite sets A ⊆ P

are equivalent to some lean set A′ ⊆ P , possibly with A′ ⊆ A?
Clearly some are not: the union U of the set of finite stars and the set of

finite paths, for instance, is not equivalent to any lean set of finite graphs. The
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reason is that U splits naturally into its two constituent subsets of stars and
paths—which are incomparable under � and hence cannot be equivalent to all
of U . One of our aims below will be to show that, for countable sets A, such
splitting is the only possible obstruction to the existence of an equivalent lean
set. So let us make this splitting precise.

Let A be any subset of P . We call A′ ⊆ A small in A if A′ < A (ie. if
A �� A′), and large in A if A � A′. The complements of small sets we call
‘essential’; thus, A′ ⊆ A is essential in A if A �� A � A′, or equivalently if
A′ �� A�A′. Note that subsets of a small subset of A are also small in A (and
hence supersets of large or essential sets are again large or essential, respective-
ly), and that an essential subset A′ of A is also essential in every set A′′ with
A′ ⊆ A′′ ⊆ A.

If A is the union of two small subsets A1, A2 ⊆ A, we call A divisible.
Replacing A2 by A2 � A1 if necessary we can always ensure that these small
subsets are disjoint; we then say that A splits into these two subsets.

The small subsets of an indivisible set A form a set-theoretic ideal: their
finite unions (as well as their subsets) are again small in A. This follows from
the following factoring lemma, in which the indivisible sets appear as primes:

Lemma 1. If A is indivisible and A � B1 ∪B2, then A � B1 or A � B2.

Proof. For i = 1, 2 put Ai := { a ∈ A | ∃ b ∈ Bi : a � b }. Our assumption of
A � B1 ∪B2 implies that A = A1 ∪A2. So as A is indivisible the Ai cannot
both be small, ie. one of them satisfies A � Ai � Bi. �

Lemma 1 implies that, unlike leanness, divisibility and indivisibility are
invariant under equivalence:

Corollary 2. If A is indivisible and A ∼ B then B is indivisible.

Proof. If B = B1 ∪B2 then B � A � Bi for some i ∈ { 1, 2 } by Lemma 1, so
Bi is not small. �

Since lean sets are indivisible, Corollary 2 implies that only indivisible sets
can be equivalent to lean sets. But is every infinite indivisible set equivalent to
some lean set, perhaps even a lean subset? In general, this looks like a difficult
problem: the naive approach of recursively splitting small subsets off a given
indivisible set ‘until it becomes lean’ is obviously fraught with problems; for
example, it may happen that after any finite number of steps one still has a
non-lean indivisible set but after ω steps the entire set has disappeared.

For countable sets, however, there is a very simple characterization of
divisibility which essentially implies a positive answer to the above question:
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Proposition 3. For every countable set A ⊆ P the following statements are

equivalent:

(i) A is indivisible;

(ii) A has an equivalent lean subset or a greatest element;

(iii) A contains a chain C such that A � C;

(iv) every two elements of A have a common upper bound in A.

Proof. (i)→(iv) Suppose a1, a2 ∈ A have no commen upper bound in A. Then
the sets A1 := { a ∈ A | a1 �� a } and A2 := { a ∈ A | a2 �� a } are small in A

but have union A, so A is divisible.
(iv)→(iii) Enumerate A as { a1, a2, . . . } and use (iv) to construct the de-

sired chain c1 � c2 � . . . inductively, choosing each cn above (�) both an

and cn−1.
(iii)→(ii) If C has a maximal element, then this is the greatest element

of A. If not, then C has a cofinal subchain of order type ω. This subchain is
lean and equivalent to C, and hence also to A.

(ii)→(i) If A has a greatest element x then a subset of A is large if and
only if it contains x. So A cannot split into two small subsets (which would
also be large). If A is equivalent to a lean (and thus indivisible) set, then A is
indivisible by Corollary 2. �

What about uncountable sets A? As it turns out, the equivalence of (i)
and (iv) above remains valid, but these conditions no longer imply (ii) and (iii):

Proposition 4. An arbitrary set A ⊆ P is indivisible if and only if every two

elements of A have a common upper bound in A.

Proof. The forward implication was shown in the proof of Propositions 3,
which made no use of countability in this part. For the converse, let A = A1∪A2

and assume that A1 is small; we show that A2 is large, ie. that A � A2.
Since A �� A1, there exists an x ∈ A such that A1 fails to meet the up-

closure �x� = { a ∈ A | x � a } of x in A. So �x� ⊆ A2. By assumption, there
exists for every a ∈ A some b ∈ A such that a, x � b, ie. with b ∈ �x� ⊆ A2. So
A � A2 as desired. �

Here is an example of an uncountable poset P that is indivisible but fails
(for A = P ) to satisfy (ii) and (iii) of Proposition 3. We construct P recursively
in ω steps, starting with a set of ℵ1 minimal elements. At each step, we add
one element z above every pair x, y of elements from previous steps, leaving z

unrelated to all the other elements.
By construction, any two elements of P have a common upper bound in P ,

so by Proposition 4 the set P is indivisible. On the other hand, every down-
set �x� is finite, and so any chain C in P (which is clearly countable) has a
countable down-closure and thus fails to satisfy P � C as required in (iii). For
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the same reason, any A ⊆ P equivalent to P must be uncountable. Then A

meets one of the ω levels of P in an uncountable subset A′. Thus |A′| = |A| = ℵ1

but P �� A′, and hence A �� A′ as A ∼ P . Therefore A is not lean, showing
that P is a counterexample to (ii).

Let us now leave the subject of equivalent lean sets or subsets, and take
a closer look at divisible and indivisible sets A for their own sake. Since now
all that matters is the structure of A, we lose nothing by just considering the
divisibility of P itself.

Lemma 1 suggests that the analogy to factoring which the word ‘divisibil-
ity’ suggests may be deeper than one would at first expect. And indeed, we
have the following pretty ‘prime factor theorem’ for WQOs:

Theorem 5. If P is a WQO, then P can be partitioned into finitely many

indivisible essential subsets A1, . . . , An. This partition is unique up to equi-

valence; in fact, every indivisible essential subset of P is equivalent to one of

the Ai.

For the proof we need as a lemma the forward implication of the following ob-
servation relating the ordering on P to that on its power set. Again, I expect
this lemma to be folklore among WQO specialists but include the proof for
completeness.

Lemma 6. P is a WQO if and only if all chains A1 > A2 > . . . of subsets of

P are finite.

Proof. For the forward implication, let A1 > A2 > . . . be a strictly descending
chain of subsets of P . Since A1 �� A2, there is an a1 ∈ A1 such that a1 �� a

for all a ∈ A2. Then a1 �� a even for all a ∈ Ai with i � 2, because Ai � A2.
Similarly, A2 has an element a2 �� a for all a ∈ Ai with i � 3, and so on. We
thus obtain a sequence a1, a2, . . . with ai ∈ Ai for each i and such that ai �� aj

whenever i < j. As P is a WQO every such sequence is finite, and hence so is
our chain A1 > A2 > . . . .

Conversely, if P is not a WQO it contains a is a bad sequence a1, a2, . . . :
an infinite sequence such that ai �� aj for all i < j. Then the tails { ai, ai+1, . . . }
of this sequence form an infinite strictly descending chain of subsets of P . �

Proof of Theorem 5. Let us begin by constructing some sets A∗
1, . . . , A

∗
n sim-

ilar to the desired partition sets A1, . . . , An. We do this recursively in finitely
many steps, at each step modifying a finite list L of subsets of P until no fur-
ther modifications are possible. We start with the one-element list L = {P }.
At each step of the construction, we first check whether any element of L is
inessential in

⋃
L; if so, we delete it from the list and proceed to the next step.

If not, we try to find a divisible element of L. If none exists, we terminate the
construction. If some A ∈ L is divisible, we split it into disjoint small subsets
A′ and A′′ to replace A in L, and proceed to the next step.
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If this construction continues indefinitely, then by König’s infinity lem-
ma [ 1 ] there is an infinite chain C1 > C2 > . . . of subsets of P (each chosen as
a small subset of the previous), which by Lemma 6 cannot exist. So the con-
struction terminates after finitely many steps, with a list L∗ = {A∗

1, . . . , A
∗
n }

of disjoint indivisible subsets of P that are essential in P ∗ :=
⋃
L∗. Since every

construction step (in particular, the deletion of inessential subsets) preserves
the initial property of L that P �

⋃
L, we have P � P ∗. We can therefore

find a partition A1 ∪ . . .∪An of P such that

Ai � A∗
i ⊆ Ai (1)

(and hence Ai ∼ A∗
i ) for every i: the sets

A′
i := {x ∈ P | ∃ a ∈ A∗

i : x � a } ⊇ A∗
i

cover P , and to obtain the Ai we just make them disjoint by trimming off
any overlaps outside the (disjoint) A∗

i ; then A∗
i ⊆ Ai ⊆ A′

i � A∗
i for all i, as

required.
Since the A∗

i are indivisible and Ai ∼ A∗
i , the Ai are indivisible by Co-

rollary 2. Let us now show that every Ai is essential in P . If not, then
Ai �

⋃
j �=i Aj and therefore

A∗
i ⊆ Ai �

⋃

j �=i

Aj �
⋃

j �=i

A∗
j

by (1), which contradicts the fact that A∗
i is essential in P ∗.

To complete the proof, it remains to show that every essential indivisible
subset B of P is equivalent to one of the sets A1, . . . , An. For each i = 1, . . . , n,
put Bi := B ∩Ai. Then B = B1 ∪ . . .∪Bn, and since B is indivisible we have
B � Bi for some i by Lemma 1, and hence B ∼ Bi ⊆ Ai. If B ∼ Ai we are
done; if not, then Bi is small in Ai. Then Ai � Bi is large in Ai (because Ai is
indivisible), ie. Ai � Ai � Bi. Thus

B � Bi ⊆ Ai � Ai � Bi ⊆ P � B,

which contradicts our assumption that B is essential in P . �

We remark that the essential sets A∗
1, . . . , A

∗
n from the proof of Theorem 5

can easily be ‘constructed’ directly (and seen to be essential in P ), as fol-
lows. Note first that a subset of P is essential if and only if it contains the
entire up-closure �x� in P of one of its points x. Using Proposition 4 and the
fact that P contains no infinite antichain, one easily shows that above each
point of P there is a point x whose up-closure �x� in P is indivisible. Thus if
{ a1, . . . , an } is any maximal set of points with disjoint indivisible up-closures,
then these up-closures A∗

i := �ai� are indivisible essential subsets of P such that
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P � A∗
1 ∪ · · · ∪A∗

n. The partition P = A1 ∪ · · · ∪An for the theorem is then
obained exactly as in the proof: by replacing each A∗

i with its down-closure
and making these disjoint by trimming off overlaps.

Note that in this proof we only use that P has no infinite antichain, or
indeed that P contains no induced copy of the binary tree. Therefore either of
these assumptions can replace the stronger WQO assumption in Theorem 5.
A full characterization of the countable posets that factor into indivisible es-
sential subsets will be given in [ 3 ]; the corresponding problem for larger posets
remains open.
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