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Minors in graphs of large girth
Daniela Kiihn Deryk Osthus

Abstract

We show that for every odd integer g > 5 there exists a constant ¢ such
that every graph of minimum degree r and girth at least g contains a
minor of minimum degree at least ¢r(9t1)/4, This is best possible up to
the value of the constant ¢ for ¢ = 5,7 and 11. More generally, a well-
known conjecture about the minimal order of graphs of given minimum
degree and large girth would imply that our result gives the correct order
of magnitude for all odd values of g. The case g = 5 of our result implies
Hadwiger’s conjecture for Cy-free graphs of sufficiently large chromatic
number.

1 Introduction

Kostochka [9] and Thomason [17] independently showed that there exists a
constant ¢ such that every graph of average degree at least crv/logr contains
the complete graph K, of order r as minor. Random graphs show that this
gives the correct order of magnitude. Recently, Thomason [18] determined the
asymptotic value of the above constant c.

On the other hand, Thomassen [19] observed that if the girth of a graph G is
large, then G contains (complete) minors whose minimum degree is much larger
than that of G itself. In this paper we use probabilistic arguments to give more
precise asymptotic bounds: for example, we show that every graph G of girth
at least five and minimum degree r contains a minor of minimum degree ¢;7%/2
and that if the girth of GG is at least seven then G contains a minor of minimum
degree at least cor?. In both cases the bound on the minimum degree is best
possible up to the value of the constant. More generally, the main results of
this paper are as follows:

Theorem 1 Let k > 1 and r > 3 be integers and put g := 4k + 3. Then every
graph G of minimum degree r and girth at least g contains a minor of minimum
degree at least (r — 1)F+1/48 = (r — 1)(9+1)/4 /48,

Theorem 2 Letk > 1 and r > max{5k,2-10%} be integers and put g := 4k+1.
Then every graph G of minimum degree at least 4r and girth at least g contains
a minor of minimum degree at least r*+1/2/288 = r(9+1)/4 /288,

In addition to the two cases mentioned above, this is also best possible up
to the value of the constant for graphs G of girth 11. In fact, we will see in
Section 4 that the above results would give the correct order of magnitude (as
a function of r) for arbitrary girth g if there exist graphs of minimum degree r



and odd girth g whose order is at most ¢(r — 1)~1/2. The minimum order of
such graphs is known to lie between (r — 1)(9=1/2 and 4(r — 1)9=2, and it has
been conjectured (see e.g. Bollobds [4, p. 164]) that the lower bound gives the
proper order of magnitude.

An application of the result of Kostochka and Thomason mentioned in the
beginning to the minors obtained in Theorems 1 and 2 immediately yields the
following.

Corollary 3 For all odd integers g > 3 there exists ¢ = c¢(g) > 0 such that
every graph of minimum degree r and girth at least g contains a K; minor for
some

g+1
cr 4

t2>

g

logr
O

As every graph of chromatic number at least r contains a subgraph of mini-
mum degree at least 7 — 1 and every such graph contains a bipartite subgraph of
minimum degree at least (r —1)/2, Corollary 3 in turn implies that Hadwiger’s
conjecture (that every graph of chromatic number r contains K, as minor) is
true for Cy-free graphs of sufficiently large chromatic number:

Corollary 4 There exists an integer ro such that every Cy-free graph of chro-
matic number r > rg contains a K, minor. [l

In fact, in [11] we show that similar results (with weaker bounds) even hold
for K s-free graphs whose minimum degree (respectively chromatic number) is
sufficiently large compared with s. In Section 2 we also give a simple argument
which implies that Hadwiger’s conjecture holds for all graphs of girth at least
19 (Corollary 8).

At the other extreme, given an integer ¢, Theorem 1 with » = 3 shows that
every graph G of minimum degree at least three contains a minor of minimum
degree at least t if its girth is sufficiently large. This fact was first observed
by Thomassen [19], who obtained a bound on the girth linear in ¢. Diestel
and Rempel [7] reduced it to 6logyt + 4. Theorem 1 applied with » = 3 and
k = [logy t + 5] shows that the constant 6 can be reduced to 4:

Corollary 5 Let t > 3 be an integer. Then every graph of minimum degree at
least 3 and girth at least 4logyt 4+ 27 contains a minor of minimum degree at
least t. Hence there exists a constant ¢ such that every graph of minimum degree
at least 3 and girth at least 41logy t+2logy logy t+ ¢ contains a Ky minor. O

(The second part of Corollary 5 immediately follows from the first by an
application of the result of Kostochka and Thomason mentioned above.) As
already observed in [7], the existence of 3-regular graphs of girth at least g and
order at most ¢29/2 (which is a special case of the conjecture mentioned earlier)
would show that Corollary 5 is asymptotically best possible in the sense that the
constant 4 in the leading terms cannot be reduced any further (see Section 4).



The minimal order of such 3-regular graphs is known to lie between ¢;29/? and
C2 239 / 4.

Mader [16] proved that for every € > 0 and every graph H with A(H) > 3
there exists an integer g such that every graph G of average degree at least
A(H) — 1+ ¢ and girth at least g contains H as a topological minor. (His
bound on g is at least linear in |H| and also depends on £.) This implies that
for every € > 0 and every integer ¢ there exists an integer g such that every
graph of average degree at least 2 + ¢ and girth at least g contains a minor
of minimum degree t. Indeed, first apply the special (and much easier) case
A(H) = 3 of Mader’s result to obtain a 3-regular graph of large girth as a
minor and then the observation of Thomassen mentioned before Corollary 5 to
this minor. In [12] we strengthen Mader’s result for the case when H is a large
clique: for all € > 0 every graph of average degree at least t — 2 4+ ¢ and girth
at least 1000 contains a topological K; minor if ¢ is sufficiently large compared
with €. Also, based on techniques of Mader [15], in [10] we proved that for large
t every graph of minimum degree at least ¢ — 1 and girth at least 15 contains
a topological K; minor. This implies the conjecture of Hajés for all graphs
of girth at least 15 and sufficiently large chromatic number. See also [13] for
related results.

The paper is organized as follows. In Section 2 we introduce necessary defi-
nitions and collect some tools which we will need later on. We will also apply
an idea of Mader to prove Corollary 8. In Section 3 we then prove Theorems 1
and 2. In the final section we show that Theorem 1 and 2 are best possible up
to the value of the constant provided that the conjecture mentioned above is
true (which is known to be the case for girth 5,7 and 11).

2 Notation, tools and preliminary observations

The length of a cycle C or a path P is the number of its edges. The girth of a
graph G is the length of its shortest cycle and denoted by g(G). The distance
between two vertices z, ¥y of a graph G is the length of the shortest path joining
z to y and denoted by dg(z,y). Given £ € N, the £-ball B&(z) in G around a
vertex x is the subgraph of G induced by all its vertices of distance at most £
from z. If P = zy...20is a path and 1 < ¢ < j </, we write z;Pz; for its
subpath ;... x;.

We write e(G) for the number of edges of a graph G and |G| for its order.
We denote the degree of a vertex z € G by dg(z). The average degree of a
graph G is defined to be 2¢(G)/|G| and denoted by d(G). Given A, B C V(G),
an A-B edge is an edge of G with one endvertex in A and the other in B, the
number of these edges is denoted by e (A4, B). If A and B are disjoint, we write
(A, B)g for the bipartite subgraph of G whose vertex classes are A and B and
whose edges are all A-B edges in G.

A graph H is a minor of G if for every vertex h € H there is a connected
subgraph Gp of G such that all the G} are disjoint and G contains a Gp—
Gy edge whenever hh' is an edge in H. We say that H is the minor of G
obtained by contracting the Gp. (The vertex set of) G}, is called the branch set



corresponding to h.

Before we collect some tools which we will need in the proofs of Theorems 1
and 2, let us present a simple proposition which shows that if G is a graph of
large girth, then G contains minors whose minimum degree is much larger than
that of G itself. Its proof is the same as the beginning of Mader’s proof of his
main result of [15]. We include it here as it implies a counterpart (Corollary 8)
to Corollary 4 for graphs of small chromatic number. Moreover, it should help
to illustrate the basic ideas underlying the proofs of Theorems 1 and 2, which
use a probabilistic version of Mader’s argument.

Proposition 6 Let k > 1 and r > 3 be integers. Then every graph of girth
at least 8k + 3 and minimum degree r contains a minor of minimum degree at
least r(r — 1)k.

Proof. Let X be a maximal set of vertices of G that have pairwise distance at
least 2k + 1 from each other. Thus for distinct z,y € X the balls BE(z) and
Bk (y) are disjoint. Extend the BE(z) (z € X) to disjoint connected subgraphs
of G by first adding each vertex of distance k£ + 1 from X to one of the Bg(a:)
to which it is adjacent. Then add each vertex of distance k + 2 from X to
one of the subgraphs constructed in the previous step to which it is adjacent.
Continue in this fashion until each vertex of G lies in one of the constructed
subgraphs and denote the subgraph obtained from Bg(m) in this way by 7.
The choice of X implies that each vertex of G has distance at most 2k from
X. So each vertex of T}, has distance at most 2k from z in T,. Therefore, as
g(G) > 4k + 2, each T is an induced subtree of G. In particular BE(z) is a
tree in which every vertex that is not a leaf has degree at least  and in which
every leaf has distance k from z. So BE(z) (and thus also T,) has at least
r(r — 1)*¥~1 leaves. Hence T}, sends at least r(r — 1)¥ edges to vertices outside
Ty. As g(G) > 8k + 3, at most one edge of G joins T to a given other tree T,
(y € X\ {z}). Thus the graph obtained from G by contracting the trees T}
(z € X) has minimum degree at least r(r — 1)¥, as required. O

An application of the result of Kostochka and Thomason mentioned at the
beginning of Section 1 to the minor obtained in Proposition 6 for £ = 1 shows
that for sufficiently large r every graph G of minimum degree r and girth at
least 11 contains a K,; minor. For small r, we will apply the following result
of Mader (see [14] or [4, Ch. VIL.1]).

Theorem 7 For all integers t > 4 every graph of average degree > 16(t —
2)logy(t — 2) contains a K; minor. Moreover, every graph of average degree
> 10 contains a Ky minor.

As above, combining this with Proposition 6 leads to the observation that
Hadwiger’s conjecture is true for all graphs of girth at least 19:

Corollary 8 FEwery graph of girth at least 19 and minimum degree r contains
a K,41 minor. In particular, every graph of girth at least 19 and chromatic
number r contains a K, minor. O



In the proof of Theorem 2 we shall use the following two simple facts.

Proposition 9 FEvery graph G with at least one edge contains a subgraph of
average degree at least d(G) and minimum degree greater than d(G)/2.

Proposition 10 The verter set of every graph G can be partitioned into dis-
joint sets A, B such that the minimum degree of (A, B)q is at least §(G)/2.

Moreover, we will need the following Chernoff type bound (see [1, Thm. A.13]).

Lemma 11 Let X1,...,X,, be independent 0-1 random wvariables with P(X; =
1) =p for alli <mn, and let X := %" | X;. Then for all 0 < ¢ <1 we have

P(X < (1 - ¢)EX) < e ©EX/2,

3 Proof of Theorems 1 and 2

In the proof of Proposition 6 we covered the entire vertex set of our graph G
with suitable disjoint rooted trees 7, and considered the minor M obtained
by contracting these trees. Amongst other properties, these trees had radius
between k and 2k. If we could choose them all of radius at most k& while still
maintaining sufficiently many edges between the trees, this would reduce the
bound on the girth from 8k + 3 to 4k + 3. We will achieve this in the proof of
Theorem 1 by choosing the roots of the trees at random, albeit at the expense
that there will be a small number of vertices which do not lie in any of the
trees. The case when k = 1 (i.e. when the trees are stars) of the first part of
the proof is similar to an argument of Alon which shows the existence of small
dominating sets (i.e. sets of vertices to which every vertex has distance at most
one) in graphs of large minimum degree (see [1, Thm. 2.2]).

Proof of Theorem 1. We may assume that (r — 1)¥ > 48. Consider a
random subset X of V(G) which is obtained by including each vertex in X
with probability p := 4/(r —1)* independently of all other vertices. The branch
sets of our minor will be trees of radius at most & whose roots are the elements
of X. As g(G) > 2k+2 and §(G) = r, for each vertex z € G the graph B (z) is
a tree with at least (r — 1)* leaves. Call an edge e = zy of G bad if d(z, X) > k
or d(y,X) > k. Then

P(zy is bad) < P(BE(z) N X = 0) + P(BL(y) N X = 0)
= (1 -p)Be@| 4 (1 - p)IBEWI < 21 — p)(r=1*

< 2e7P(r-1)" = 2/et,

and so
E(number of bad edges) < 2e(G)/e?.

Markov’s inequality now implies

P(> e(G)/9 edges are bad) < 18/e* < 1/3.



Moreover, the expected size of X is p|G|, and so again, by Markov’s inequality,
P(IX| > 2/G]) < 1/2.

Thus with probability at least 1 —1/2 —1/3 > 0 there is an outcome X with
|X| < 2p|G| and so that at most e(G)/9 edges of G are bad.

Extend the vertices in X to disjoint connected subgraphs G (z € X) of G
with z € G, by first adding each vertex of distance one from X to a vertex in X
to which it is adjacent, then adding each vertex of distance two from X to one
of the subgraphs constructed in the previous step to which it is now adjacent
etc. Continue in this fashion until each vertex of G of distance at most k& from
X is contained in one of the graphs G, thus obtained. Then each vertex of
G, has distance at most k from z. As g(G) > 2k + 2, every G is an induced
subtree of G. So each edge of G that is not bad and does not lie in | J, x E(Gz)
joins distinct G,. Moreover, since g(G) > 4k + 3, there is at most one edge of
G joining a given pair of graphs G,. Thus for the minor M of G whose branch
sets are the G, we have

2(e(G) — |Uzex B(Go)| —e(G)/9) _ 16e(G) — 18|G]
AM) 2 ] > 5. 500]
SAr=9 4(r—1) 3 S (r —1)k+1
9p ' U

9 8~ 24

(The fourth inequality holds since » > 3.) By Proposition 9 the graph M
contains a subgraph of minimum degree at least (r — 1)¥+1/48, as desired.

[l

A result of Gyori [8] states that every Cg-free bipartite graph can be made
into a graph of girth at least 7 by deleting at most half of its edges. This
implies that the assertion of the g = 7 case of Theorem 1 remains true for
Ce-free graphs (with a modified constant).

To prove Theorem 2, we will again cover a large part of our graph G with
disjoint trees of radius k whose roots are chosen at random (similarly as in the
proof of Theorem 1). However, this time the girth is not large enough to ensure
that between every pair of these trees there is at most one edge. To deal with
such multiple edges we choose the trees more carefully and prove that firstly
there are still many (good) edges joining leaves of distinct trees and secondly
that only a small fraction of these edges is redundant in the sense that there
are many additional (good) edges joining the same pair of trees.

Proof of Theorem 2. First apply Proposition 10 to obtain a bipartite
subgraph G = (4, B)g of G of minimum degree at least 2r. We may assume
that |A| > |B|. Delete edges if necessary to obtain a bipartite subgraph Go of
G1 in which the degree of every vertex in A is precisely 2r. Thus d(Gs) > 2r.
Now apply Proposition 9 to obtain a subgraph H = (C, D)¢, of G2 of minimum
degree at least  + 1 and average degree at least 2r and where every vertex in
C has degree at most 2r.

We now assign orientations to the edges of H as follows. For every vertex
x € H choose any r + 1 of its neighbours in H and orient the edges between z



and these neighbours from z towards these. We thus obtain a graph H in which
every edge has either none, one or two orientations and in which the outdegree
of every vertex is precisely r + 1. We say that a path zy...zp in H is directed
from zg to z if each edge z;x;41 is oriented from xz; towards z; 1. So x;T;y1
may additionally be oriented from x;41 to z;. Given two vertices x and y of H
we write ci’(a:, y) for the length of the shortest directed path from z to y (and
set d(z,y) := oo if such a path does not exist). Given £ € N, we write §¢(z) for
the set of all those vertices y € H with d(z,y) = £. We define BY(z) to be the
subgraph of H which consists of all directed paths of length at most £ starting
at z. Note that if £ < 2k, then, as g(H) > 4k, the graph B%(z) is an induced
subtree of H with root z in which every edge is oriented away from the root
(and possibly also towards it). As the outdegree of every vertex of H is r + 1,
every vertex of B! (z) which is not a leaf has either r 4+ 1 or r + 2 neighbours in
BY(z) and every leaf has distance precisely £ from z. In particular,

rf <|§4@)| < (r+1)".

Consider a random subset X of V(H) which is obtained by including each
vertex of H in X with probability

1

p:= 4(7‘+ 1)k71/2

independently of all other vertices. For some suitable outcome X, the branch
sets of the desired minor in G will be subtrees of H of radius k£ and with roots
in X. Call a vertex v € H good if it satisfies the following three conditions.

(i) [5*(v) N X| > v/r/6.
(i) B¥1(v)n X = 0.
(iii) Each component of B¥(v) — v contains at most one vertex of S¥(v) N X.

We will now show that the probability that a given vertex v is good is quite
large. First note that, as r > bk,

= - v r k—1/2
E(15* () 0 X]) = pl3*(w)] > pr¥ = V7. ( )

4 r+1
S )
Since r > 2- 105, Lemma 11 with € := 1/6 implies that
P(|5*(v) N X| < +/7/6) < 1/25. (1)
Secondly,
1

E(|BkF! X|) = p|B¥1(v)| < 2p|S* ()] < ———
(] (v) N X|) = p| (v)| < 2p|S (v)l_Zm,



and hence, as r > 625, Markov’s inequality implies
P(B1(v) N X| > 1) < 1/50, (2)

Finally, given a component L of B¥(v) — v, let S(v,L) := LN §%(v). Writing
Zw,y for the sum over all unordered pairs x # y of vertices in S(v, L), we have

P(S(0, L) N X| >2) <3 P,y € X) < ('50‘; LN)pz
T,y

P )

= 2 32(r + 1)

As the outdegree of v is r + 1 and so Ek(v) — v has precisely 7 + 1 components,
it follows that

E(number of components L of B¥(v) — v for which |S(v, L) N X| > 2) < 1/32.
Hence Markov’s inequality implies that
P(there is a component L of B¥(v) — v for which |S(v, L) N X| > 2) < 1/32.
From (1), (2) and (3) together it now follows that ¥
P(v is not good) < 1/10.
Call an edge e of H good if both of its endvertices are good. Thus
P(e is not good) < 1/5,
and therefore
E(number of edges of H which are not good) < e(H)/5.
Hence Markov’s inequality shows that
P(> e(H)/2 edges of H are not good) < 2/5. (4)
Moreover, E(|X|) = p|H|, and so Markov’s inequality implies that
P(X| > 20lH]) < 1/2. (5)

Now (4) and (5) show that with probability at least 1 —2/5 — 1/2 > 0 there
is an outcome X with |X| < 2p|H| and such that at least half of the edges
of H are good. Let U be the set of all good vertices of H. We say that a
vertex & € X belongs to a vertex u € U if d(u,z) = k. So condition (i) in the
definition of a good vertex implies that at least 1/7/6 vertices in X belong to u.
As g(H) > 2k, there exists precisely one directed path P,; of length k from u
to a vertex z belonging to u. Given z € X, let U, denote the set of all the good
vertices to which = belongs, and let H, be the union of all paths P,, over all
u €Uz U, =0, we put Hy := z. As g(H) > 2k + 2, each H is an induced
subtree of H and U, is the set of its leaves.
Let us now prove the following claim.



If z,y € X are distinct, x belongs to u € U, y belongs to ' € U and
u # v then P,; and P, are disjoint. (+)
Suppose not and let z be the first vertex on P,; that is contained in P,,. Note
that |uPyyz| # |u'Pyyz| would imply the existence of either a directed u'-z
path or a directed u—y path of length < k. Hence |[uPy;2z| = |[u'Pyyz| (and
thus in particular z # u), as both u and ' are good vertices (cf. condition (ii)).
So if L is the component of B¥(u) — u containing z, then both z and y lie in
LN S%(u) N X, contradicting condition (iii) for w.

For every u € U choose a vertex z,, € X which belongs to u uniformly at
random independently of the other elements of U. For every x € X we then
define T, to be the subtree of H, consisting of the paths P,, for all those u € U,
with z,, = z. If there are no such paths we set T, := z. So every choice of the z,
(u € U) yields a family T, (z € X) of trees. Note that (*) implies that 7% and
Ty are disjoint whenever z # y. We will show that with non-zero probability
the x, will have the property that the minor M of H C G whose branch sets
are the T, (z € X) thus defined has large average degree. To do this, we will
show that with non-zero probability there are only a few pairs 77, T, such that
H contains many good T,~Ty edges. Then a large fraction of the good edges of
H will join different pairs T, T, and thus will correspond injectively to edges
of M. As X is relatively small, this will imply that M has large average degree.

T.NUs

x

zeCNX yeDNX

Figure 1: Tlustrating a cycle of length 14 in the final part of the proof of
Theorem 2 for £k =3 and g = 13.

Suppose that z,y € X are given, and let us first estimate the expected
number of good edges of H joining T to Ty. Recall that by definition, every
good T,~T) edge joins Ty NU, to TyNU,. As g(G) > 4k+1, for every component
L of H; — x there is at most one edge in H joining L to Hy. Similarly, for every
component L of H, — y there is at most one edge in H joining L to H,. So in
particular the U,~U, edges in H are independent and their number is at most
min{dg, (z),dn,(y)} < min{dg(z),dr(y)}. But as g(H) > 2k, every vertex in
U; has distance precisely k from z in H = (C,D)q,. Thus either U, C C or
Uz C D, and the same is true for U,. So if H contains a U,~U, edge, then one
of Uy, Uy must be contained in C' while the other one is contained in D. Hence
one of z,y lies in C. As every vertex in C has degree at most 2r in H, it follows



that H contains at most 2r edges joining U, to U,.

Consider a U,~U, edge ujug with u; € U, and up € Uy. Then u; ¢ U, and
uy & Uy, since g(H) > 2k + 2. So the probability that ujug is a T,~T, edge
equals the probability that z,, = = and z,, = y which in turn is the inverse of
the product of the number of vertices in X belonging to w; with the number
of vertices in X belonging to ug; so by (i) this probability is at most (6/+/7)2.
Hence

6\ 2
E(number of good T,-Ty edges in H) < ey (U, Uy) - (W)

< 2r- 36 =T2.
r
So Markov’s inequality implies that
P(H contains at least 144 good T,-T), edges) < 1/2. (6)

Given a good edge uius, call it overloaded if there are at least 144 good edges
of H which are distinct from ujug and join Ty, to Ty, . For 1 =1,2 let X; be
the set of all vertices in X belonging to u;. (So X1 N Xo = ().) For all z € X1,
y € Xo let Azy be the event that there are at least 144 good T,~T, edges which
are distinct from ujug. As the U,~U, edges of H are independent, and thus the
event that z,, =z and z,, = y is independent from A,,, we have

P(uqiueo is overloaded) < P(zy, =z, Ty, =y and A, is true
1 2 Y

z€X1, YEX2
(6)
< ¥ 11
oy X1 X 2 2
1, y€Xo
Thus
E(number of overloaded edges) = Z P(ujuy is overloaded)
uus€E(H[U))
<eg(U,U)/2.

But this means that for all w € U the vertices z, can be chosen in such a way
that for the trees T (z € X) thus defined at most half of the good edges of H
are overloaded. Let F' be the subgraph of H which consists of all those good
edges that are not overloaded. Thus

e(F) 2 eq(U,U)/2 > e(H)/A > r|H|/4.
Consider the minor M of H whose branch sets are the T,, and let e = ujug be
an edge of F. Recall that as g(H) > 2k + 2, the endpoints of e must lie in
distinct T, i.e. ,, 7# Z4,. As e is not overloaded, there are less than 144 other

edges of F' joining Ty, to Ty, . Thus to each edge of M there correspond at
most 144 edges of F, i.e. e(M) > e(F')/144. Hence

2(F H k+1/2
144[X| = 144 -2-2p|H| = 144

Proposition 9 implies that M contains a subgraph of minimum degree at least
rk+1/2 /288, as desired. a

10



We remark that the constants in Theorems 1 and 2 could be improved a
little by more careful calculations. Furthermore, the proof of the case k¥ = 1
(i.e. ¢ = 5) of Theorem 2 can easily be modified to give the following.

Theorem 12 There exists a constant ¢ > 0 such that for all integers t > 2
every Ko i-free graph G of minimum degree d contains a minor of minimum
degree at least cd®/? [t.

Proof. By choosing c sufficiently small, we may assume that r := [d/4] >
2108, It then suffices to make the following minor changes in the proof of the
case k = 1 of Theorem 2. Define H, p, X, U, H; and T, as before. For every
vertex € X there are now less than ¢ edges (instead of at most one) joining
a given leaf of the star H, to leaves of a given other star H, (y € X). So H
contains at most 2rt edges joining U, to Uy. Similarly as before, this shows that
with probability at most 1/2 the graph H contains at least 144t good T,-Ty
edges. This time we call a good edge ujus overloaded if there are at least 144t
good edges of H which are disjoint from ujug and join Ty, to Ty, . Again, it
follows that for all u € U the vertices z, can be chosen so that at most half
of the good edges are overloaded. But for each good edge wujus which is not
overloaded there are at most 144¢ + 2¢ other good edges joining Ty, to Ty,
(as there are at most ¢ edges joining u; to leaves of Ty, and vice versa). Thus
the minor M of H whose branch sets are the T, has average degree at least
r3/2 /146t. By Proposition 9, M contains a subgraph of minimum degree at
least r%/2/292t, as desired. O

More generally, in [11] we prove that for allt > s > 2 every K ;-free graph of
1
minimum degree at least r contains a graph of minimum degree pitaen o)

as minor. This implies that for sufficiently large r every 2r-connected K, ;-free
graph is r-linked (see [11]).

4 Upper bounds

The following simple proposition (which generalizes [7, Prop. 2.2]) shows that
the existence of small graphs of large girth can be used to prove upper bounds
on the minimum degree of minors in graphs of large girth.

Proposition 13 Let ¢, > 0 and let d,r be integers such that r > 2. Suppose
that G is a graph of mazimum degree at most cr and order at most c(r — 1)£
which contains a minor of minimum degree d. Then d < 2¢(r — 1)(¢+1D/2,

Proof. Suppose that H is a minor of G of minimum degree d. Let W C V(Q)
be a branch set corresponding to a vertex of H. As each vertex of W sends at
most cr edges to other branch sets, |W| > d/cr. Hence

dH| & &2
> le > s s 2
ofr ) 216> cr >cr_20(r—1)

This shows that d < 2¢(r — 1)(+1/2 as required. O
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We will now use Proposition 13 to observe that the truth of the following
well-known conjecture (see e.g. Bollobds [4, p. 164]) would show that for fixed
girth Theorems 1 and 2 are best possible up to the value of the constant and
also that the constant 4 in Corollary 5 cannot be replaced by a smaller one.

Conjecture 14 There exists a constant ¢ such that for all integers r,qg > 3
there is a graph of minimum degree at least v and girth at least g whose order
. g—1

is at most c(r — 1)L7271.

An observation of Tutte (see [4, Ch. ITI, Thm. 1.2]) shows that this would be
close to best possible: Consider any vertex x in a graph G of minimum degree
at least r and girth at least g. Then the graph obtained from the L%J—ball
around z by deleting any edges between vertices of distance L’;—IJ from z is

a tree. Since 0(G) > r, this tree (and so also G) has at least (r — 1)L’9;_IJ
vertices. This argument also shows that any graph G demonstrating the truth
of Conjecture 14 must have maximum degree at most cr. (Indeed, take for z
a vertex of maximum degree in G.) Thus by Proposition 13 with £ := L%J,
such a graph G has no minor of minimum degree at least 2¢(r — 1)%L%J. In
other words, the truth of Conjecture 14 would imply that Theorem 1 is best
possible up to the value of the constant, and so is Theorem 2 if the girth g is
fixed. Furthermore, it would also imply that Theorems 1 and 2 give the correct
order of magnitude even for graphs of fixed even girth.

There are several constructions which show that for infinitely many values of
r there are graphs of girth at least 5 and minimum degree r whose order is at
most 3(r —1)? (see e.g. Brown [6, Thm. 3.4(b)] or the proof of [5, Thm. 1.3.3)).
For g = 7,11 Benson [2] showed that for infinitely many integers r there are

graphs of minimum degree r and girth at least g whose order is at most 3(r —
-1
l)gT. Together with the above this implies the following

Proposition 15 For g = 5,7 and 11 there are infinitely many integers r for
which there exists a graph of minimum degree v and girth at least g that does

not contain a minor of minimum degree at least 6(r — 1)%. O

The best known general upper bound for the minimal order of graph of
minimum degree at least r and girth at least g was proved by Sauer. It implies
that for » > 3 and odd g > 3 the minimal order of such graphs is at most
4(r —1)972 (see [4, Ch. IIT, Thm. 1.4]).

Turning to the case 7 = 3, Weiss [20] proved that a construction of Biggs and
Hoare [3] yields infinitely many integers g for which there are 3-regular graphs
of girth g and order at most ¢239/%. Together with Proposition 13 this implies
that for infinitely many integers ¢ there are 3-regular graphs of girth at least
8logt— ¢ that have no minor of minimum degree ¢ (as was already observed by
Diestel and Rempel [7]). In particular, the constant 4 in Corollary 5 cannot be
replaced by a number smaller than 8/3. Again, the constant 4 in Corollary 5
would be best possible if Conjecture 14 holds for r = 3.
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