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Abstract

We show that for every ε > 0 there exists an r0 = r0(ε) such that for
all integers r ≥ r0 every graph of average degree at least r + ε and girth
at least 1000 contains a subdivision of Kr+2. Combined with a result of
Mader this implies that for every ε > 0 there exists an f(ε) such that for
all r ≥ 2 every graph of average degree at least r + ε and girth at least
f(ε) contains a subdivision of Kr+2. We also prove a more general result
concerning subdivisions of arbitrary graphs.

1 Introduction

A classical result of Mader states that for every r there exists a smallest number
d(r) such that every graph G of average degree larger than d(r) contains a
subdivision of the complete graph Kr on r vertices. Bollobás and Thomason [2]
as well as Komlós and Szemerédi [5] independently proved that d(r) = O(r2).
As Jung [4] observed, the complete bipartite graph Ks,s with s = br2/8c shows
that this is the correct order of magnitude. However, Mader [11] showed that if
the girth of the graph G is large, then the necessary lower bound on the average
degree already suffices:

Theorem 1 (Mader) For every integer r ≥ 2 and every ε > 0 there exists an
integer g(r, ε) such that every graph G of average degree at least r+ ε and girth
at least g(r, ε) contains a subdivision of Kr+2.

As there are r-regular graphs of arbitrarily large girth, this result is best
possible in the sense that the condition ε > 0 is necessary. Mader’s bound on
the girth required is quadratic in r and also depends on ε. The main result of
this paper is that large but constant girth suffices, provided that r is sufficiently
large compared with ε:

Theorem 2 Let ε > 0 and let r be an integer such that r ≥ max{100, 400/ε2}.
Then every graph of average degree at least r+ε and girth at least 1000 contains
a subdivision of Kr+2.

It is easily seen that the condition that r depends on ε is necessary (Propo-
sition 7). The case ε = 3/4 of Theorem 2 answers Question 3.11 of [10] in the
affirmative for sufficiently large r (see Corollary 9).

If we combine Theorem 1 with Theorem 2, we obtain a strengthened version
of the former where the girth still depends on ε but not on r:

1



Corollary 3 For every ε > 0 there exists an integer f(ε) such that for all r ≥ 2
every graph G of average degree at least r+ ε and girth at least f(ε) contains a
subdivision of Kr+2.

Indeed, given ε, let r0 := max{100, 400/ε2}. Then it suffices to choose f(ε)
larger than both 1000 and g(r, ε) for all r ≤ r0.

Generalizing Theorem 1 to arbitrary graphs, Mader [11] proved the following.

Theorem 4 (Mader) For every graph H with ∆(H) ≥ 3 and every ε > 0
there exists an integer g(H, ε) such that every graph G of average degree at
least ∆(H)− 1 + ε and girth at least g(H, ε) contains a subdivision of H.

His bound on g(H, ε) is at least linear in the number of edges of H and also
depends on ε. It is easily seen that in contrast to Theorem 1, the bound on
the necessary girth must depend on H. Our next result determines the order
of magnitude of the girth required for graphs H whose maximum degree is
sufficiently large compared with ε.

Theorem 5 Let ε ≥ 0 and let H be a graph with ∆(H) ≥ max{100, 400/ε2}+1.
Then every graph G of average degree at least ∆(H)− 1 + ε and girth at least
1000 log |H|

log(∆(H)+1) contains a subdivision of H.

Note that this immediately implies Theorem 2. Moreover, the bound on the
girth in Theorem 5 is best possible up to the value of the constant 1000 [6,
Prop. 12]. We prove Theorem 5 by extending techniques of Mader [11].

Let us now mention a few related results. First note that Theorem 2 implies
that, for sufficiently large r, every graph of minimum degree r and girth at
least 1000 contains a subdivision of Kr+1. Based on techniques of Mader [9],
we proved in [6] that in fact a girth of 15 already suffices. This implies that
the conjecture of Hajós that every graph of chromatic number r contains a
subdivision of Kr (which is false in general) is true for all graphs of girth at
least 15 and sufficiently large chromatic number.

If we only seek ordinary minors instead of topological ones, then the condition
on the girth can be relaxed even more. In [8] we prove that for every s there
exists a constant c > 0 such that every Ks,s-free graph of average degree at

least r already contains a Kt minor for all t ≤ cr1+ 1
2(s−1) /(log r)4. Furthermore,

in [7] we show that for every odd integer g there exists a constant c > 0 such
that every graph G of girth at least g and average degree at least r contains
a minor of average degree at least cr

g+1
4 . A conjecture of Bollobás about the

minimal order of graphs of given minimum degree and large girth (which is
known to be true for girth 5, 7 and 11) would imply that this is best possible
up to the value of the constant c.

2 Terminology

All logarithms in this paper are base e, where e denotes the Euler number. The
length of a cycle C or a path P is the number of its edges. The girth of a graph
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G is the length of its shortest cycle and denoted by g(G). The distance dG(x, y)
between two vertices x, y of a graph G is the length of the shortest path joining
x to y. Given r ∈ N and a vertex x ∈ G, the r-ball Br

G(x) in G around x is
the subgraph of G induced by all its vertices of distance at most r from x, the
r-shell SrG(x) in G around x is the subgraph induced by all vertices of distance
precisely r from x.

We write e(G) for the number of edges of a graph G and |G| for its order.
We denote the degree of a vertex x ∈ G by dG(x) and the set of its neighbours
by NG(x). Given r ∈ N, we write V >r(G) for the set of all vertices of degree
greater than r in G. We denote by δ(G) the minimum degree of G, by ∆(G)
its maximum degree and by d(G) := 2e(G)/|G| the average degree of G. Given
disjointA,B ⊆ V (G), we write eG(A,B) for the number of edges inG betweenA
and B. Similarly, if H and H ′ are disjoint subgraphs of G, we put eG(H,H ′) :=
eG(V (H), V (H ′)). We denote by NG(A) the set of all those neighbours of
vertices in A that lie outside A.

A subdivision of a graph G is a graph TG obtained from G by replacing the
edges of G with internally disjoint paths. The branch vertices of TG are all
those vertices that correspond to vertices of G. Given r ∈ N, we say that a
graph G is r-linked if |G| ≥ 2r and for every 2r distinct vertices x1, . . . , xr and
y1, . . . , yr of G there exist disjoint paths P1, . . . , Pr such that Pi joins xi to yi.

Given a tree T and disjoint subtrees T1, . . . , Tk of T , we say that T can be
split into T1, . . . , Tk if each vertex of T lies in one of the Ti. If T is a subtree
of a graph G, we say that T sends out an edge e if e joins a vertex of T to a
vertex of G − T . If T is a family of subtrees of a graph G, we say that V (G)
can be covered by the trees in T if they are disjoint and every vertex of G lies
in one of them.

3 Two observations

Let us first observe that the condition that r depends on ε is necessary in
Theorem 2 (and thus also in Theorem 5). To do this, we need the following
bound on the minimum order of an r-regular graph of large girth which is due
to Sauer (who proved a slightly sharper bound, see e.g. [1, Ch. III Thm. 1.4′]).

Theorem 6 For all integers r ≥ 3 and all odd g ≥ 3 there exists an r-regular
graph of girth at least g whose order is at most 4(r − 1)g−2.

Proposition 7 For all integers g, r ≥ 3 there exists a graph G of average degree
at least r + 1

2(r−1)2g−3 and girth at least g which does not contain a subdivision
of Kr+2.

Proof. Apply Theorem 6 to obtain an r-regular graph G′ of girth at least
2g − 1 and order at most 4(r − 1)2g−3. Let x be any vertex on a shortest cycle
C in G′ and let y ∈ C be a vertex whose distance from x in C is g − 1. Then
the graph G obtained from G′ by adding the edge xy has girth at least g and
precisely two of its vertices have degree greater than r. So G cannot contain a
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subdivision of Kr+2. But

d(G) ≥ 2(e(G′) + 1)
|G′|

≥ r|G′|+ 2
|G′|

≥ r +
1

2(r − 1)2g−3
,

as desired. �

In [10, Question 3.11] Mader asked whether for all r ≥ 4 every graph G with
r+ 2 ≤ g(G) <∞ and more than r

2(|G| − (r− 1)) edges contains a subdivision
of Kr+1. These bounds on the average degree and the girth were arrived at by
extrapolating from small values of r (see also [9]). We will now use the case
ε = 3/4 of Theorem 2 to answer this question in the affirmative for large r
(Corollary 9). We will also need the following observation of Tutte.

Proposition 8 Let g ≥ 3 and r ≥ 2 be integers. Then every graph G of girth
at least g and minimum degree at least r satisfies |G| ≥ (r − 1)b

g−1
2
c.

Proof. Put k := bg−1
2 c and let x ∈ V (G). Then the graph obtained from

Bk
G(x) by deleting all edges with both endvertices in SkG(x) is a tree in which

every vertex that is not a leaf has degree at least r and every leaf has distance
precisely k from x. So this tree (and thus also G) has at least (r− 1)k vertices.

�

Corollary 9 There exists an integer r0 such that for every r ≥ r0 every graph
G with r + 2 ≤ g(G) < ∞ and more than r

2(|G| − (r − 1)) edges contains a
subdivision of Kr+1.

Proof. We will prove the corollary for r0 := 1000. Let G′ be a minimal
subgraph of G which satisfies e(G′) > r

2(|G′| − (r − 1)) and |G′| ≥ r + 2. Note
that in fact this implies |G′| ≥ r+3. (Otherwise G′ would either be a forest or a
cycle of length r+2, since g(G′) ≥ r+2. But then e(G′) > r

2((r+2)−(r−1)) =
3r
2 > r+ 2.) Let us now show that δ(G′) > r/2. Suppose not and let x ∈ G′ be

a vertex of minimum degree. Then |G′ − x| ≥ r + 2 and

e(G′ − x) >
r

2
(|G′| − (r − 1))− r

2
=
r

2
(|G′ − x| − (r − 1)),

contradicting the minimality of G′.
Since g(G′) ≥ r + 2 ≥ 1002, Proposition 8 implies that |G′| ≥ ( r2 − 1)500.

Thus

d(G′) > r

(
1− r − 1

|G′|

)
≥ r − 1

4
,

and so Theorem 2 with ε := 3/4 implies that G′ contains a subdivision of Kr+1.
�
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4 Proof of Theorem 5

We now turn to the proof of Theorem 5. We will need the following lemma due
to Mader [9, 11]. An explicit proof of the version stated below can be found
in [6].

Lemma 10 Let c ≥ 1 be an integer and let G be a graph of minimum degree
at least 2c. Then there exist disjoint non-empty sets A,B ⊆ V (G) and a set
E of |B| independent A–B edges such that every vertex in B has at least two
neighbours in A, |B| < c, NG(A) ⊆ B and so that the graph G∗ obtained from
G[A ∪B] by contracting the edges in E is dc/3e-connected.

We also need the following result of Bollobás and Thomason [2].

Theorem 11 Let k ≥ 1 be an integer. Then every 22k-connected graph is k-
linked and every graph of average degree at least 44k2 contains a subdivision
of Kk.

The other main ingredients of the proof of Theorem 5 are as follows. Firstly,
in Lemma 12 we show that we may assume that the vertices of our given graph
G can be covered by trees which have small radius, are not too large and all
send out many edges to other trees. Secondly, in Lemma 15 we prove that if a
subgraph of G has average degree at least ∆(H)− 1 + ε and large girth then it
contains |H| vertices of degree ∆(H) which are reasonably far apart. Similar
statements also appear in [11]. But the proofs are much easier there since the
graph G had larger girth. The proof of Theorem 5 itself then closely follows
the lines of Mader. However, the argument is a little simpler since we assume
that ∆(H) is large and the calculations are somewhat different since we have a
smaller bound on the girth, so we give the proof for completeness.

The strategy of the proof of Theorem 5 is as follows. We will use Lemma 12 to
cover the vertex set of G with a family T of disjoint trees. As G has large girth,
there are no multiple edges between these trees. So the graph G′ obtained from
G by contracting each tree in T has large minimum degree and thus contains
a highly connected subgraph G′′. By Theorem 11, G′′ is highly linked and so
we may link suitable disjoint stars in G′′ to obtain a subdivision of H. This
corresponds to a subdivision of H in G (and not only to H as an ordinary minor)
if each of the stars in G′′ corresponds to a subdivided star in G. But such stars
may not exist in G′′. So instead of moving to a highly connected subgraph as
above, we will apply Lemma 10 to G′ to find sets A and B as described there.
The aim then is to link disjoint stars in the graph G∗ defined in Lemma 10 to
obtain a subdivision of H in G∗. Again, each of these stars must correspond
to a subdivided star in G to ensure that this subdivision corresponds to one
in G. Lemma 15 will be used to show that G′[A ∪ B] contains a set X ′ of |H|
vertices such that each vertex x′ ∈ X ′ corresponds to a tree in T which contains
a vertex x of degree at least ∆(H) and such that the distance between every
two vertices from X ′ is reasonably large. The images in G∗ of the vertices in
X ′ will be the centres of the stars in G∗ and so the vertices x will become the
branch vertices of our subdivision of H in G.
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Lemma 12 Let h, r, s be integers such that h > r ≥ 44 and s ≥ 3 log h/ log(r/3).
Suppose that G is a graph of minimum degree at least r/2 and girth at least
8s+2. Then either G contains a subdivision of Kh or else V (G) can be covered
by disjoint induced subtrees of G of order at most (r/3)3s and radius at most
4s such that each of these trees sends out at least (r/3)s edges.

For the proof of this lemma we will need the following two simple proposi-
tions.

Proposition 13 Let G be a graph of minimum degree at least 3. Suppose that
T is an induced subtree of G and ∆ ≥ ∆(T ) ≥ 1. If |T | > ∆2, then T can be
split into disjoint subtrees such that each of these trees has at most ∆2 vertices
and sends out at least ∆ edges.

Proof. Let us first show that T can be split into disjoint subtrees such that
each of them has between ∆ − 1 and ∆2 vertices. Orient each edge e of T
towards the larger component of T − e, breaking ties arbitrarily. Consider a
sink x ∈ T and let T ′ be the largest component of T − x. Then |T ′| > ∆ − 1,
since dT (x) ≤ ∆ and |T | > ∆2. By definition of x, |T − T ′| ≥ |T ′| > ∆− 1. If
necessary, we may continue in this fashion to split T ′ and T − T ′ into trees of
the required order.

To complete the proof of the proposition, it suffices to show that every subtree
T ′ of T sends out at least |T ′|+ 2 edges. But as T (and thus T ′) is induced in
G, we have

2e(T ′) + e(T ′, G− T ′) =
∑
x∈T ′

dG(x) ≥ 3|T ′|.

Therefore e(T ′, G− T ′) ≥ |T ′|+ 2, as required. �

Proposition 14 If G is a graph such that d(F ) ≤ d for every subgraph F of
G, then the edges of G can be oriented in such a way that the outdegree of every
vertex is at most d.

Proof. By induction on |G|. Let x be a vertex of minimum degree in G, orient
all the (at most d) edges incident to x away from x and apply the induction
hypothesis to G− x. �

Proof of Lemma 12. Let X be the set of all vertices of G of degree at
least (r/3)s. Let A be the set of all those vertices in R := G − X that have
at least two neighbours in X. Let B be the set of all those vertices of R − A
that have distance at most 2s from A in R and put C := V (R) \ (A ∪ B). If
C is non-empty, let Z be a maximal set of vertices in C such that the distance
in R between every two of them is at least 2s + 1. Thus the balls Bs

R(z) are
disjoint for different z ∈ Z. Extend these balls to disjoint connected subgraphs
of R by first adding every vertex of R of distance s + 1 from Z to one of the
Bs
R(z) to which is it adjacent. Then add each vertex of distance s+2 from Z to

one of the subgraphs constructed in the previous step to which it is adjacent.
Continue in this fashion until each vertex of R of distance at most 2s from Z
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lies in one of the subgraphs and let T ′z denote the subgraph of R obtained from
Bs
R(z). By the choice of Z, each vertex in C has distance at most 2s from Z in

R and thus it lies in some T ′z. Let D be the set of all those vertices of R that
lie in some T ′z. As each vertex of T ′z has distance at most 2s from z in T ′z, we
have D ∩A = ∅.

For all vertices a ∈ A choose disjoint trees T ′a ⊆ R with a ∈ T ′a such that they
cover A∪B and so that each vertex of T ′a has distance at most 2s from a in T ′a.
As g(G) ≥ 4s+2, each T ′a is an induced subtree of G. Let Ta be the component
of T ′a−D containing a. Given a ∈ A, consider a component L of T ′a−D which is
distinct from Ta. Let vL denote the unique neighbour of L that lies on the a–L
path in T ′a. So vL ∈ D and every vertex of L has distance at most 2s from vL in
T ′a. Add L (together with the vL–L edge in T ′a) to the unique T ′z with z ∈ Z that
contains vL. Carry this out for all such components L and every a ∈ A. Let Tz
be the connected subgraph of R obtained from T ′z in this way. Then each vertex
of Tz has distance at most 4s from z in Tz. As g(G) ≥ 8s+ 2, this implies that
Tz is an induced subtree of G. Moreover, as Tz contains Bs

R(z) ⊆ R−A, it has
at least (r/2−2)s leaves and so Tz sends out at least (r/2−2)s+1 ≥ (r/3)s edges.
As the maximum degree of Tz is less than (r/3)s, we may apply Proposition 13
to split each Tz with |Tz| > (r/3)2s into subtrees of order at most (r/3)2s such
that each of them sends out at least (r/3)s edges. Let A∗ denote the set of all
those vertices a ∈ A for which |Ta| ≤ (r/3)2s and split all the Ta with a ∈ A\A∗
similarly. Let T be the family consisting of all the trees thus obtained from
the Tv with v ∈ (A \ A∗) ∪ Z. So the trees in T form a suitable covering of all
vertices except those in X ∪

⋃
a∈A∗ V (Ta) ⊆ X ∪ A ∪ B and it remains to deal

with these vertices. (In particular, we are already done if X = ∅.)
For each a ∈ A∗ choose two of its neighbours in X, x1

a and x2
a say. As

g(G) > 4, the sets {x1
a, x

2
a} are distinct for different vertices a ∈ A∗. Consider

the auxiliary graph F on X in which two vertices x, y ∈ X are joined by an
edge if there exists a vertex a ∈ A∗ such that x = x1

a and y = x2
a. Note that

we may assume that every subgraph of F has average degree less than 44h2.
Indeed, if d(F ′) ≥ 44h2 for some F ′ ⊆ F then, by Theorem 11, F ′ (and thus
also G) would contain a subdivision of Kh. So Proposition 14 implies that the
edges of F can be oriented in such a way that the outdegree of every vertex of
F is at most 44h2. Thus we may partition the vertices in A∗ into disjoint sets
A∗x (x ∈ X) of size at most 44h2 such that each vertex in A∗x is joined to x.

For all x ∈ X, let Tx be the subtree of G which consists of x together with
the Ta for all a ∈ A∗x and all edges between x and A∗x. Then each vertex of Tx
has distance at most 2s + 1 from x in Tx. As g(G) ≥ 4s + 4, it follows that
each Tx must be an induced subtree of G. As |Ta| ≤ (r/3)2s for all a ∈ A∗x, the
order of Tx is at most

1 + 44h2 ·
(r

3

)2s
≤ h3

(r
3

)2s
≤
(r

3

)3s
.

Moreover, using dG(x) ≥ (r/3)s, it is easily seen that Tx sends out at least
(r/3)s edges. So together the trees Tx (x ∈ X) and the trees in T are as
desired. �
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Lemma 15 Let ε > 0 and let g, h, k, r be integers such that h > r ≥ max{100, 100/ε2}
and g ≥ max{24dlog h/ log re+1, 4k+11}. Suppose that G is a graph of girth g
and average degree at least r + ε. Then there are at least h vertices in V >r(G)
such that the distance between every two of them is greater than k.

For the proof of Lemma 15 we need the following two easy propositions. A
proof of the first one can be found in [3, Prop. 1.2.2].

Proposition 16 Every graph G with at least one edge contains a subgraph of
average degree at least d(G) and minimum degree greater than d(G)/2.

Proposition 17 Let k ≥ 1 be an integer and suppose that G is a non-empty
graph of girth at least 2k + 1. Then d(G) ≤ 2|G|1/k + 2 ≤ 4|G|1/k.

Proof. Clearly, we may assume that d(G) > 4. Apply Proposition 16 to obtain
a subgraph F of G of minimum degree r > d(G)/2. Proposition 8 implies that

|G| ≥ |F | ≥ (r − 1)k ≥ bd(G)/2ck,

as required. �

Proof of Lemma 15. Suppose not. Then for some ` < h there are distinct
vertices x1, . . . , x` in V >r(G) such that V >r(G) is contained in Bk

G(x1) ∪ · · · ∪
Bk
G(x`). For all i = 1, . . . , `, choose a connected subgraph Txi of Bk+1

G (xi) such
that xi ∈ Txi , the Txi are disjoint for distinct i, each vertex of Txi has distance
at most k + 1 from xi in Txi and such that

V (Tx1) ∪ · · · ∪ V (Tx`) = V (Bk+1
G (x1)) ∪ · · · ∪ V (Bk+1

G (x`)) =: X.

Let Y := NG(X). Extend the Txi to disjoint connected subgraphs T ′x1
, . . . , T ′x`

by adding each vertex y ∈ Y to some tree Txi adjacent to y. So each vertex of
T ′xi has distance at most k + 2 from xi in T ′xi . Since g(G) ≥ 2k + 6, each T ′xi is
an induced subtree of G.

Both G[X] and G[X ∪ Y ] have average degree at most 4r1/4. (∗)

To prove that d(G[X ∪ Y ]) ≤ 4r1/4, let us first assume that |T ′xi | ≤ h2 for all
i = 1, . . . , `. As g(G) ≥ 24dlog h/ log re+ 1, Proposition 17 implies that

d(G[X ∪ Y ]) ≤ 4|X ∪ Y |
log r

12 log h ≤ 4(h · h2)
log r

12 log h = 4r1/4.

Thus we may assume that |T ′xi | ≥ h2 for some i. So |X ∪ Y | ≥ h2. As
g(G) ≥ 4k + 11, at most one edge of G joins a given pair T ′xi , T

′
xj . Hence

d(G[X ∪ Y ]) ≤ 2

(
h
2

)
+
∑`

i=1 e(T
′
xi)

|X ∪ Y |
≤ h2 + 2|X ∪ Y |

|X ∪ Y |
≤ 1 + 2 < 4r1/4.

The proof for G[X] is exactly the same except that we consider the Txi instead
of the T ′xi . This completes the proof of (∗).
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Case 1. e(X,Y ) ≤ (r − 4r1/4)|X|.
Recalling that every vertex of G−X has degree at most r in G, we find

d(G)|G| =
∑
v∈G

dG(v) =
∑
v∈X

dG[X](v) +
∑

v∈G−X
dG(v) + e(X,Y )

≤ 4r1/4|X|+ r|G−X|+ (r − 4r1/4)|X| = r|G|,

a contradiction to our assumption on G.

Case 2. e(X,Y ) > (r − 4r1/4)|X|.
As d(G[X ∪ Y ]) ≤ 4r1/4, we have

2r1/4|X ∪ Y | ≥ e(G[X ∪ Y ]) ≥ e(X,Y ) > (r − 4r1/4)|X|,

and thus

|Y | >

(
r3/4

2
− 3

)
|X| ≥ 4r3/4

10
|X| ≥ 4r1/4

ε
|X|. (1)

As by definition, X contains all vertices in V >r(G) together with all their
neighbours, we have e(X,Y ) ≤ r|X|. Therefore,

d(G)|G| =
∑
v∈G

dG(v) =
∑
v∈X

dG[X](v) +
∑

v∈G−X
dG(v) + e(X,Y )

≤ 4r1/4|X|+ r|G−X|+ r|X|
(1)
< ε|Y |+ r|G| < (r + ε)|G|,

which is again a contradiction to our assumption on G. �

We will also need the following observation [11, Lemma 2.2].

Lemma 18 Let δ ≥ 3 and g ≥ 12 be integers. Let A be a non-empty set
of vertices of a graph G of minimum degree δ and girth at least g such that
|NG(A)| < δ. Then |A| ≥ (δ − 1)g/4.

For convenience, instead of proving Theorem 5 directly, we prove the follow-
ing slightly more technical statement.

Theorem 19 Given ε > 0 and a graph H with r := ∆(H)−1 ≥ max{100, 100/ε2},
let s := d3 log |H|/ log(r/3)e. Then every graph G of average degree at least
r + 2ε and girth at least 192s+ 31 contains a subdivision of H.

Let us first check that Theorem 19 indeed implies Theorem 5.

Proof of Theorem 5. Put r := ∆(H)− 1. We have to show that the integer
s defined in Theorem 19 satisfies 192s + 31 ≤ 1000 log |H|/ log(r + 2). First
note that r/3 ≥ (r + 2)3/4 for all r ≥ 100. So

s ≤ 3 log |H|
log((r + 2)3/4)

+ 1 = 4
log |H|

log(r + 2)
+ 1.

Since log |H|/ log(r + 2) ≥ 1, this yields the required inequality. �
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Proof of Theorem 19. First note that we may assume that ε ≤ 1. Put
h := |H|. By replacing G with a suitable subgraph, we may assume that every
proper subgraph of G has average degree less than r + 2ε. Thus in particular
the minimum degree of G is at least r/2. Apply Lemma 12 to G. Clearly, we
may assume that the lemma returns a family T of disjoint induced subtrees
of G covering V (G) as described there. Let G′ be the graph obtained from G
by contracting each tree in T . As each tree in T has radius at most 4s and
g(G) ≥ 16s + 3, a given pair of trees T1, T2 ∈ T is joined by at most one edge
of G. Since each tree T ∈ T sends out at least (r/3)s edges, it follows that the
minimum degree of G′ is at least (r/3)s. Moreover, we have

g(G′) ≥ g(G)
8s+ 1

≥ 24.

For every vertex v ∈ G′, let Tv denote the tree in T that contracts to v. Given
a set V of vertices of G′, let Ṽ denote the set of all those vertices of G that
lie in a tree Tv with v ∈ V . Apply Lemma 10 with c := b(r/3)s/2c to G′ to
find sets A,B ⊆ V (G′) and a set E of |B| independent A–B edges as described
there. We will now show that d(G[Ã∪ B̃]) ≥ r+ ε. So suppose on the contrary
that

e(G[Ã ∪ B̃]) <
(r

2
+
ε

2

)
|Ã ∪ B̃|. (2)

The minimality of G implies that

e(G− Ã) <
(r

2
+ ε
)
|G− Ã|. (3)

As NG′(A) ⊆ B and thus NG(Ã) ⊆ B̃, adding (2) and (3) gives

e(G) ≤ e(G[Ã ∪ B̃]) + e(G− Ã) <
(r

2
+ ε
)
|G| − ε

2
|Ã|+

(r
2

+
ε

2

)
|B̃|. (4)

As every tree in T has at most (r/3)3s vertices, we have |B̃| ≤ (r/3)3s|B| ≤
(r/3)4s. On the other hand, Lemma 18 implies that

|Ã| ≥ |A| ≥
((r

3

)s
− 1
)g(G′)/4

≥
((r

3

)s
− 1
)6
≥
(r

3

)5s
.

Together with (4) and the fact that ε ≥ 10/r1/2 this shows

e(G) <
(r

2
+ ε
)
|G| − 5(r/3)5s

r1/2
+ r · (r/3)4s ≤

(r
2

+ ε
)
|G|,

which contradicts our assumption on G. This proves that d(G[Ã∪ B̃]) ≥ r+ ε.
Let G̃ be the subgraph of G[Ã ∪ B̃] obtained by successively deleting all

vertices of degree at most one. So δ(G̃) ≥ 2 and d(G̃) ≥ r+ ε. For every vertex
b ∈ B, let T ′b be the minimal subtree of Tb which contains all vertices of Tb
that send an edge to Ã ∪ (B̃ \ V (Tb)). As b has at least two neighbours in A
(Lemma 10), T ′b is non-empty and each vertex of T ′b has degree at least two in
G[Ã∪

⋃
b′∈B V (T ′b′)]. As NG(Ã) ⊆ B̃, every vertex in Ã has degree at least r/2
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in G[Ã ∪
⋃
b′∈B V (T ′b′)]. Thus G̃ consists of precisely all the Ta with a ∈ A, all

the T ′b with b ∈ B and all edges between these trees.
Put T ′a := Ta for all a ∈ A. So the trees T ′v with v ∈ A ∪ B cover V (G̃).

As g(G̃) ≥ 4 · (48s+ 5) + 11, we may apply Lemma 15 with k := 48s+ 5 to G̃
to find vertices x1, . . . , xh in V >r(G̃) which have distance at least 48s+ 6 from
each other in G̃. Let vi ∈ A ∪B be such that xi ∈ T ′vi . Let Si be a subdivided
star in G̃ with centre xi and r + 1 leaves such that each leaf is a neighbour of
T ′vi and every other vertex of Si lies in T ′vi . (Such an Si exists since d

G̃
(xi) > r

and δ(G̃) ≥ 2.) If some leaf y of Si lies in a tree T ′v such that viv ∈ E, then
extend Si by adding a path running from y through T ′v to a neighbour of T ′v
which does not lie in T ′vi . Note that the graph obtained from G̃ by contracting
each T ′v with v ∈ A∪B is precisely G′[A∪B]. As g(G̃) ≥ 24s+ 4, the leaves of
(the extended) Si lie in different T ′v, and so each Si corresponds to a subdivided
star S′i in G′[A ∪ B] with centre vi and r + 1 leaves. As dG(xi, xj) ≥ 48s + 6,
the S′i are all disjoint and furthermore no edge from E joins distinct S′i. Let
G∗ be the graph obtained from G′[A∪B] by contracting the edges in E. Then
each S′i corresponds to a star S∗i in G∗ with r + 1 leaves and all these S∗i are
disjoint. As G∗ is dc/3e-connected (Lemma 10) and

c

3
≥
(r

3

)s
· 1

6
− 1 ≥ h3

6
− 1 ≥ h2 · 100

6
− h2 ≥ 22

(
h

2

)
+ h,

the graph obtained from G∗ by deleting the centres of the S∗i is
(
h
2

)
-linked (The-

orem 11). Thus in G∗ we may link the leaves of the S∗i to obtain a subdivision
of H whose branch vertices are the centres of the S∗i . By construction, this
corresponds to a subdivision of H in G with branch vertices x1, . . . , xh. �

We remark that with more elaborate calculations the constants in Theorems 2
and 5 can be improved a little. Also the constant in the bound on the girth
can be reduced further at the expense of raising the bound on ∆(H) (and vice
versa).
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