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Abstract

By a theorem of Mader [5], highly connected subgraphs can be forced
in finite graphs by assuming a high minimum degree. Solving a problem
of Diestel [2], we extend this result to locally finite graphs. Here, it is
necessary to require not only high degree for the vertices but also high
vertez-degree (or multiplicity) for the ends of the graph, ie. a large number
of disjoint rays in each end. If, on the other hand, in addition to the high
vertex degrees, we only require high edge-degree for the ends (which is
defined as the maximum number of edge-disjoint rays in an end), Mader’s
theorem does not extend to infinite graphs. But, high minimum edge-
degree at the ends (together with high minimum degree at the vertices)
suffices to force highly edge-connected subgraphs in locally finite graphs.

1 Introduction

In a finite graph, high average degree forces the existence of a highly connected
subgraph:

Theorem 1 (Mader [5]). Any finite graph G of average degree at least 4k has
a k-connected subgraph.

In infinite graphs, there is no adequate notion of the ‘average degree’. So for
an extension of the theorem to infinite graphs we must replace ‘average degree’
with ‘minimum degree’.

But simply requiring high degree for the vertices is not enough, as the coun-
terexample of the infinite r-regular tree 7" demonstrates. Now, since an infinite
tree has rather ’thin’ ends, this suggests, as conjectured by Diestel [2], that a
minimum degree condition has to be imposed also on the ends of the graph.
In fact, let us define the vertex-degree of an end as the maximum number of
disjoint rays in it (this maximum exists, see [4]). Then the T" ceases to be
a counterexample, as each of its ends has vertex-degree 1. And indeed, with
this further condition on the vertex-degrees of the ends, Theorem 1 does extend
to locally finite graphs. As our main theorem we prove the following stronger
result (for this, let us call an induced connected subgraph of a graph G that
sends only finitely many edges to the rest of G a region; note that in particular,
any component of G is a region):

Theorem 2. Let k € N and let G be a locally finite graph such that each vertex
has degree at least 6k — 5k + 3, and each end has vertez-degree at least 6k —
9k + 4. Then every infinite region of G has a k-connected region.



On the other hand, the edge-degree of an end is defined as the maximum
number of edge-disjoint rays in it (the maximum exists, see [1]). But, it turns
out that high edge-degrees at the ends and high degrees at the vertices together
are not sufficient to force highly connected subgraphs, or even highly connected
minors, in infinite graphs. Indeed, in Section 4 we exhibit for all » € N a
locally finite graph of minimum degree and minimum edge-degree r that has no
4-connected subgraph and no 6-connected minor.

But high edge-degree at the ends (together with high degree at the ver-
tices) suffices to force highly edge-connected subgraphs in locally finite graphs,
moreover, such can be found in every infinite region:

Theorem 3. Let k € N and let G be a locally finite graph such that each vertex
has degree at least 4k + 1 and each end has edge-degree at least 2k — 1. Then
every infinite region of G has a k-edge-connected region.

In general, it is not possible to force finite highly (edge-) connected subgraphs
in infinite graphs by assuming high minimum degree and vertex- (or edge-)
degree; neither can we force infinite highly (edge-) connected subgraphs (see
end of Section 3).

2 Terminology

The basic terminology we use can be found in [3]. A 1-way infinite path is called
a ray, and the subrays of a ray are its tails. Two rays in a graph G are equivalent
if no finite set of vertices separates them; the corresponding equivalence classes
of rays are the ends of G. We denote the set of the ends of G by Q(G).

Let H be a subgraph of G, and write H C GG. The boundary 0H of H is the
set N(G — H) of all neighbours in H of vertices of G — H. We call H a region of
G if H is a connected induced subgraph which sends only finitely many edges
to G — H. Then H' C H is a region of G if and only if it is a region of H.

As in finite graphs, H is k-connected if |H| > k and no set of less than k
vertices separates H. Similarly, H is k-edge-connected if |H| > 1 and no set
of less than k edges separates H. Hence, if H is not k-edge-connected (and
non-trivial) then it has a cut of cardinality < k.

There are basically two possibilities how the vertex degree notion can be
extended to ends. The vertez-degree (also known as the multiplicity) of an end
w € Q(G) is the maximum number of (vertex-) disjoint rays in w. The edge-
degree of w (as suggested in [1]) is the maximum number of edge-disjoint rays
in w. These two degree concepts are well-defined, ie. the considered maxima do
indeed exist (see [4, 1]).

We use a lemma which follows immediately from [1, Corollary 18]:

Lemma 4. If a locally finite graph G has no cuts of cardinality < k € N then
each of its ends has edge-degree at least k.
3 Forcing highly edge-connected subgraphs

We start by proving our second result, Theorem 3, which is easier. For this, we
need a lemma.



Lemma 5. Let k € N and let G be a locally finite graph such that each vertex
has degree at least §y > 4k+1. Then every finite non-empty region C of G with
|E(C,G —C)| < %K has a k-connected subgraph.

Proof. Let v € V(C), and set Fo := E(C,G — C). By assumption, v has
degree at least dy in G, and thus degree at least éy — |F¢| > |F¢| in C.
Hence C contains more than |F¢| vertices, and therefore has average degree
d(C) > 6y — 1 > 4k. Thus Theorem 1 yields a finite k-connected subgraph of
C. O

We now prove Theorem 3, which we restate:

Theorem 3. Let k € N and let G be a locally finite graph such that each vertex
has degree at least 4k + 1 and each end has edge-degree at least 2k — 1. Then
every infinite region of G has a k-edge-connected region.

Proof. Let C be an infinite region of G, and assume that C' has no finite k-edge-
connected subgraph. We prove that then C has an infinite k-edge-connected
region H.

First, suppose that for every infinite region C' of C there is a non-empty
region C"" C C' — 8C" of C such that |E(C",G — C")| < 2k — 1. Then any
such C" is infinite, by Lemma 5 and by the assumption that C' contains no
finite k-edge-connected (and thus in particular no finite k-connected) subgraph.
Hence there exists a sequence C' =: Cy, C1, ... of infinite regions of C' such that
fori>1

(i) Cz g Ci_l — 80,'_1; and
(i) |E(C;,G - Cy)| <2k —1.

Now, as each of the C; is connected, there is a sequence (F;);eny of 0C;—
0C;+1 paths such that for ¢ > 1 the path P, starts in the last vertex of P;.
By (i), the paths P; are non-trivial, and hence, their union P := |J;2, P; is a
ray which has a tail in each of the C;. Let w be the end of G that contains
P. As, by assumption, w has edge-degree at least 2k — 1, there is a family R
of 2k — 1 edge-disjoint w-rays in G. For each ray R € R let ng denote the
distance its starting vertex has to 0C;. Set n := max{ng : R € R}. Then
by (i), all of the 2k — 1 disjoint rays in R start outside C,,41. But each ray
in R is equivalent to P, and hence eventually enters C,, 1, a contradiction as
|E(Cpy1,G — Cpy1] < 2k — 1 by (ii).

Hence, there is an infinite region C' of C so that for each non-empty region
C" C C" - 0C" of C holds that

|E(C",G —C")| > 2k — 1. 1)

Observe that as G is locally finite, there exist infinite regions C C' — dC" of
C: take, for example, any infinite component of C' — dC'. Now, choose an
infinite region H C C' — 9C" of C with |E(H,G — H)| minimal. By (1), F :=
E(H,G — H) consists of at least 2k — 1 edges.

We claim that H is the desired k-edge-connected region of C'. Indeed, sup-
pose otherwise. Then H has a cut F with |F| < k. We may assume that F is a
minimal cut, ie. leaves only two components D, D' in H— F. One of the two, say
D, is infinite. Then, by the choice of H, the cut Fp := E(D,G—D) C FUFgy



contains at least |F| edges. Hence, D is incident with all but at most |F’| edges
of Fg. Thus D' C C' — 9C" is a region of C with

[B(D',G — D')| < |Fu| - |Fu 0 Fp| + |F| < 2/F| < 2k — 1,
a contradiction to (1). O

Theorem 3 is best possible in the sense that high edge-degree is not suffi-
cient to force highly connected subgraphs, as we shall see in the next section.
Furthermore, it has two interesting corollaries.

Corollary 6. Let k € N and let C be an infinite region of a locally finite graph
G which has minimum vertex degree 4k + 1 and minimum edge-degree 2k — 1
at the ends. Then C has either infinitely many disjoint finite k-edge-connected
regions or an infinite k-edge-connected region.

Proof. Take an inclusion-maximal set D of disjoint finite k-edge-connected re-
gions of C' (which exists by Zorn’s Lemma), and assume that |D| < co. Since
C'":=C —Upep D C C is an infinite region of G, we may use Theorem 3 to
obtain a k-edge-connected region H of C. Then H is infinite by the choice of
D. O

The two configurations of Corollary 6 of which one necessarily appears need
not both exist. Indeed, an example for an infinite locally finite graph G which
has minimum degree and vertex- (and thus edge-) degree r for given r € N but
no infinite 3-edge-connected subgraph is obtained from the r x N grid by joining
each vertex to r disjoint copies of K™*1. Any infinite subgraph of G which is
at least 2-edge-connected is also a subgraph of the » x N grid, and hence is at
most 2-edge-connected.

On the other hand, there are also locally finite graphs of high minimum
degree and vertex-degree that have no finite highly edge-connected subgraphs.
For given r € N, add some edges to each level S; of the r-regular tree T" so that
in the obtained graph T each S; induces a path. The only end of 7" has infinite
vertex- and edge-degree, and the vertices of 7" have degree at least . Now, for
every finite subgraph H of T" there is last level of T that contains a vertex v
of H. Then v has degree at most 3 in H, and hence, H is not 4-edge-connected.

Corollary 7. Let k € N, and let G be a locally finite graph with minimum
verter degree 4k + 1 and minimum edge-degree 2k — 1 at the ends. Then there is
a countable set D of disjoint k-edge-connected regions of G such that |E(H,G —
H)| > max{2k, |H|} for each subgraph H of G —Jpcp D-

Proof. Let D be an inclusion-maximal set D of disjoint k-edge-connected regions
of G (which exists by Zorn’s Lemma). Since G is locally finite and therefore
countable, D is countable.

Observe that it suffices to show |E(H,G — H)| > max{2k, |H|} for induced
connected subgraphs H of G—|J,cp D, and consider such an H. If H is infinite,
then Theorem 3 and the (maximal) choice of D imply that H is not a region of
G, ie. that |E(H,G — H)| is infinite, as desired.

So assume that H is finite. Then in particular, H is a region of G, and
thus Lemma 5 ensures that |E(H,G — H)| > 2k. Also, |E(H,G — H)| > |H|,
as otherwise H has average degree d(H) > §(G) — 1 > 4k, and hence H has a
k-edge-connected subgraph by Theorem 1, contradicting the choice of D. |



4 High edge-degree at the ends does not force
highly connected subgraphs or minors

For given r € N we will construct a locally finite graph G, of minimum vertex
degree r and minimum edge-degree > r at the ends that has no 4-connected
subgraph and no 6-connected minor.

We start with an infinite rooted tree 7). in which each vertex sends r edges to
the next level. The graph G, will be obtained from T;. in the following manner.
Let Sp comnsist of the root of T, and for ¢ > 1 denote by S; the i-th level of
T.. Now, successively for i > 1, we add some vertices to S;, which results in
an enlarged ith level S}, and then add some edges between S; — S; and S;t1.
For this, consider those subsets of S; whose elements have the same neighbour

in S; ;. For each maximal such set S, fix an enumeration s1, 82,...,8, of S,
and add r — 1 new vertices v{,v5,... ,v5_; to S;. Denote by S! the set thus

obtained from S;. Then for each j < r — 1 and each S as above add all edges

Figure 1: The graph Gjs.

between vf and Ng,_, ({sj,5j+1})- This yields a graph G, on the disjoint union
of sets S1,.55,... as depicted in Figure 1 for r = 3.

Lemma 8. G, has minimum degree r ot the vertices and minimum edge-degree
> r at the ends.

Proof. By construction, G, has mimimum vertex degree r. To see that the
ends of G, have edge-degree at least r, we use Lemma 4; hence, it suffices
to show that G, has no cuts of cardinality less than r. This will be done by
proving inductively for n € N that the vertices in |JI_, S} cannot be separated
in G, by less than r edges. The assertion clearly holds for n = 0, as S} = Sp
consists of only one vertex. So suppose n > 0. By assumption, S/, ; cannot
be separated in G, by less that r edges, and by construction, S,,—; cannot be
separated in G, by less than r edges from any of the maximal subsets S of



S, whose elements have the same neighbour in S,,_;. Hence, we only need
to show that no such S together with the corresponding vy, vs,...,v5 | €
S/, — Sy, can be separated in G, by less than r edges. But this is easy: any
two vertices of S U {v{,v5,...,v7 |} are connected by r edge-disjoint paths in

G,[S" U Snpa- 0

Observe that every finite set A of vertices can be separated from any end w
by at most three vertices (namely by the neighbours of the unique component
of G, — S} that contains a ray in w, where ¢ is large enough so that A C S}).
Hence, each end of G, has vertex-degree at most 3.

In fact, Theorem 2 ensures that every graph of high minimum vertex degree
has either an end of small vertex-degree or a highly connected subgraph. We
shall see now that the latter is not the case for G,.

Lemma 9. G, has no 4-connected subgraph.

Proof. Suppose G, has a 4-connected subgraph H, and let ¢ € N so that V(H)N
Si # 0. Now, if there is vertex v € V/(H) — S}, then it can be separated in
G, (and thus also in H) from V(H) N S; by at most three vertices (namely by
the neighbours of the component of G, — S;,; that contains v). So, as H is
4-connected, V(H) — Sj,; must be empty. Hence, H is finite, implying that
there is a maximal j € N such that V(H) N S} # 0. But then by construction
of G, any vertex in V/(H) N S} has degree at most three in H, a contradiction
as H is 4-connected. O

It is slightly more difficult to prove that G, has no highly connected minor.
Lemma 10. G, has no 6-connected minor.

Proof. Suppose that G, has a 6-connected minor M. Then there is an n € N
so that each branch-set of M has a vertex in |J]_, Si. Furthermore, since M is
6-connected, each separator T C |J;-, S; of G, with |T| < 5 leaves a component
C of G, — T such that V(C) UT meets one and hence every branch-set of
M. So as each S} can be separated in G, from any component of G — S|
by at most three vertices, there is an ¢ < n such that each branch-set of M
meets S; U S;, ;. Moreover, there is a maximal set S of neighbours in S;;; of
the same vertex in S; such that each branch-set of M has a vertex in S’ :=
SUNg (S)U {v{,v5,... ,07}. Then |S'N S < 3.

We claim that M is also a minor of the finite graph G, (see Figure 2) which
is obtained from G,[S'] by adding an edge between every two vertices that are
neighbours of the same component of G, — S’. Indeed, each component C of
G, — S’ has at most three neighbours in S’. Hence, since M is 6-connected, C
meets only (if at all) those branch-sets of M that also meet Ng/(C). It is easy
to see that M is still a minor of the graph we obtain from G, by deleting C' and
adding all edges between vertices in Ng/(C). Arguing analogously for the other
components of G, — S, we see that M is also a minor of Gi.

As |S"'n S| < 3, all but at most 3 branch-sets of M in G’ have all their
vertices in |S" N Si,;|. Then these give rise to a 3-connected minor of G}, — Sj.
But each non-trivial block of G, — S] is a triangle and hence has no 3-connected
minor, yielding the desired contradiction. |

Note that the two latter results are best possible, since G, has a 3-connected
subgraph, the K*, and a 5-connected minor, the K.



Figure 2: The graph G} for |S' N S}| = 3.

5 Forcing highly connected subgraphs

We finally prove our main result, which we restate:

Theorem 2. Let k € N and let G be a locally finite graph such that each vertex
has degree at least 6k? — 5k + 3, and each end has vertex-degree at least 6k —
9k + 4. Then every infinite region of G has a k-connected region.

Proof. Let C be an infinite region of G, and assume that C' has no finite k-
connected subgraph. We shall then find an infinite region H of C which is
k-connected. Set &y := 6k% — 5k + 3 and g := 6k% — 9k + 4. Note that we may
assume that k£ > 1.

First, suppose that for every infinite region C' of C there is a region C"” C
C'—0C" of C such that |0C"| < dq and V(C") # 0C". Observe that each such
C" is infinite, as otherwise C" — dC" has minimum degree 6(C" —9C"") > §y —
dq + 1 > 4k. Then Theorem 1 yields a finite k-connected subgraph of C" C C,
contradicting our assumption. Hence, there exists a sequence C =: C1,Cy, ...
of infinite regions of C such that C; C C;—1 —90C;—1 and |0C;| < dq for all i > 1.

As in the proof of Theorem 3, we see that there is an end w € Q(G) that has
a ray R such that each of the C; contains a tail of R. As w has vertex-degree
at least dq, there are dq disjoint w-rays in G. The starting vertices of these
lie at finite distance to C1, hence, since C; C C; 1 — 0C; 1 for i > 1, there
is an n € N so that all of the dq disjoint w-rays start outside C,,. But (being
equivalent to R) each of these rays eventually enters C,,, a contradiction because
|0C,| < dq.

Hence, there is an infinite region C’ of C such that

|0C"| > 6bq for each region C" C C' —9C" of C with V(C") # 0C". (2)
For a region H C C' — 0C" of C write

Yg:i= Z maX{O,(SV_dH(U)}a
vEV(H)

and choose an infinite region H C C' — 9C' of C such that k|0H| + T g is
minimal. Observe that this sum is finite, since all vertices of H but those in



OH have degree > dy in H, and it is possible to choose H C C' — 8C" with
|0H| < oo because @G is locally finite. Then |0H| > dq by (2).

Assume that there is a vertex v € V(H) that has degree at most 2k — 1 in
H. Then dg—,(w) = dg(w) — 1 for each of the at most 2k — 1 neighbours w of
vin H, and dg_,(w') = dg(w') for all other vertices w' in H. Therefore,

FIOUH = v)| + Sy < k|OH| + b2k — 2) + S + (2k — 1) — 0y — dur(v))
< K|OH| + Sy + 2k(k + 1) — by
< k|6H| + Yq.

So any infinite component of H — v is a better choice than H, a contradiction.
We thus have shown that

du(v) > 2k for allv € V(H). (3)

We shall now prove that H is the desired k-connected region of C'. Indeed,
suppose otherwise. Then H has a separator T of cardinality < k, which we
may assume be a minimal separator. Note that each such separator leaves a
component D of H — T such that H — D is an infinite region of C. We claim
that T and D can be chosen such that for H' := H — D

dp (v) > 2 for each vertexv € T. (4)

Indeed, choose a separator T' of minimal cardinality in H and a component D
of H — T such that the number of vertices in 7" that have degree at most 1 in
H' is minimal. Suppose that there is a v € T so that dg:(v) < 1. Then the
minimality of T implies that dg:(v) = 1, and that the neighbour w of v in H'
does not lie in T'. By (3), w has degree at least 2k > 3 in H. Hence, since w ¢ T,
also dg (w) > 3. Thus the number of vertices in 7" := T\ {v} U {w} that have
degree at most 1 in H — (D U {v}) is smaller than the number of vertices in T'
that have degree at most 1 in H’. Now, the minimality of |T'| ensures that T" is
a minimal separator of H, and has minimal cardinality. Furthermore, DU{v} is
a component of H —T" (as T is a minimal separator and hence v sends an edge
to D), and H — (D U {v}) is infinite (as H' is), a contradiction to the choice of
T. This establishes (4).
We claim that

V(D) NOH| > 6o — [T). (5)
Then we obtain for the infinite region H' C C' — 8C’ of C that

0H'| < |0H| — |V(D) N OH| + |T|
< |0H| - 8q + 2|T).

Furthermore, by (4),

Y < Y+ Z maX{O, 6V —dm (U)}
veT

< X+ (6v — 2)|T,



and so

E|OH'| + S < k|0H| + Sg — kdo + By + 2k — 2)[T|
< k|0H| + Xy — kdq + (6k* — 3k + 1)(k — 1)
< k|3H|+EH,

contradicting the choice of H.

It remains to show the validity of (5). Suppose otherwise, ie. that [V(D) N
O0H| < éq — |T|. Then for the region D := G[V(D)UT] C C' — 9C" of C holds
that

|0D| = |T U (V(D)NOH)| < |T| + |V(D)NOH| < dq.

Hence by (2), V(D) = 8D, implying that V(D) C H. In particular, |D| < dq—
|T|. So each vertex v € V(D) has degree at most |[DUT —{v}| < do—1 = dy —4k
in H. Then dy — dg(v) > 4k, and thus

Y <Ty-— Z max{0,dy —dug(v)} + Z(dH('U) —du (v))
veV (D) veT

< Xm —4k|D|+|T||D|
< ¥g.

On the other hand, (3) ensures that |D| > k. So
|0H'| < |0H| - |D| + |T| < |0H],
and thus
k|OH'| + S < k|OH| + X p,

a contradiction to the choice of H. This completes the proof of (5), and hence
the proof of the theorem. O

Theorem 2 has two corollaries. The proof of the first is analogous to that of
Corollary 6.

Corollary 11. Let k € N and let C be an infinite region of a locally finite graph
of minimum vertex degree 6k*—5k~+3 and minimum vertez-degree 6k® —9k+4 at
the ends. Then C has either infinitely many disjoint finite k-connected regions
or an infinite k-connected region.

Again, these two configurations need not both exist, as the examples follow-
ing Corollary 6 illustrate.
The second corollary of Theorem 2 is an analogon of Corollary 7.

Corollary 12. Let k € N, and let G be a locally finite graph with minimum
vertex degree 6y > 6k — 5k + 3 and minimum vertez-degree 6 > 6k> — 9k + 4
at the ends. Then there is a countable set D of disjoint k-connected regions of
G such that |0H| > max{dq, 52| H| + 1} for each subgraph H of G —Upep D-



Proof. Asin the proof of Corollary 7, take an inclusion-maximal set D of disjoint
k-edge-connected regions of G, which then is countable.

Observe that we only need to consider induced connected subgraphs H of
G —Upep D- So let H be a such. If H is infinite, then Theorem 2 and the
choice of D imply that H is not a region, ie. that |0H]| is infinite, as desired.

So assume that H is finite. Then |[0H| > dq, as otherwise H — 0H has
minimum degree d(H —0H) > dy —dq+1 > 4k, and hence H has a k-connected
subgraph by Theorem 1, contradicting the choice of D.

Also, |0H| > E2L|H|. Indeed, suppose otherwise. Then H has average
degree

>6V|H—8H|+|6H| S dov +k—1

d(H > 4k
since we may assume that k¥ > 2. Thus Theorem 1 yields a k-connected subgraph
of H, a contradiction to the choice of D. O
References

[1] H. Bruhn and M. Stein. On end degrees and infinite circuits in locally finite
graphs. Submitted.

[2] R. Diestel. The cycle space of an infinite graph. To appear in Comb., Probab.
Comput.

[3] R. Diestel. Graph Theory (2nd edition). Springer-Verlag, 2000.

[4] R. Halin. Uber die Maximalzahl fremder unendlicher Wege in Graphen.
Math. Nachr., 30:63-85, 1965.

[6] W. Mader. Existenz n-fach zusammenhingender Teilgraphen in Graphen
mit geniigend hoher Kantendichte. Abh. Math. Sem. Univ. Hamburg, 37:86—
97, 1972.

10



