HAMBURGER BEITRÄGE ZUR MATHEMATIK

Heft 242

On the number of contractible triples in 3-connected graphs

Matthias Kriesell, Hamburg

On the number of contractible triples in 3-connected graphs

Matthias Kriesell

April 6, 2006

Abstract

McCuaig and Ota proved that every 3-connected graph G on at least 9 vertices admits a *contractible triple*, i. e. a connected subgraph H on three vertices such that G - V(H) is 2-connected. Here we show that every 3-connected graph G on at least 9 vertices has more than |V(G)|/10 many contractible triples. If, moreover, G is cubic, then there are at least |V(G)|/3 many contractible triples, which is best possible.

AMS classification: 05c40, 05c75.

Keywords: Connectivity, contractible triple.

1 Introduction

All graphs considered here are supposed to be finite, simple, and undirected. For terminology not defined here the reader is referred to [2] or [3].

A connected subgraph H of a 3-connected graph G is called contractible if G-V(H) is 2-connected, or, equivalently, if the graph G/V(H) obtained from G-V(H) by adding a new vertex and making it adjacent to all neighbors of V(H) in G is 3-connected. A contractible triple is a contractible subgraph on three vertices, and an edge xy of G is called contractible if $G(\{x,y\})$ is contractible. Tutte proved that every 3-connected graph G on at least 5 vertices contains a contractible edge [8]. It follows already from his proof that G has more than one contractible edge, and later it has been proved that there must be at least |V(G)|/2 many [1], which is best possible in general.

As a generalization of TUTTE's theorem, McCuaid and Ota conjectured that for every integer $\ell \geq 3$, there exists a (smallest) integer $f(\ell)$ such that every 3-connected graph on at least $f(\ell)$ vertices admits a contractible subgraph on exactly ℓ vertices [7]. Observing that a cube $K_2 \times K_2 \times K_2$ has no contractible triples at all, they determined f(3) = 9 by showing the following:

Theorem 1 [7] Every 3-connected graph on at least 9 vertices has a contractible triple.

Later, it has been proved that f(4) = 8 [6], but the existence of $f(\ell)$ is not settled for any $\ell \geq 5$ yet.

Here we concentrate on generalizing Theorem 1 by showing that every 3-connected graph G on at least 9 vertices has more than |V(G)|/10 many contractible triples (Theorem 5). This improves to |V(G)|/3 for cubic graphs G (Corollary 1). As the contractible triples of some 3-connected cubic graph in which every vertex is on exactly one triangle are precisely these triangles, the bound in Corollary 1 is sharp, and the order of the bound in Theorem 5 in terms of |V(G)| is best possible.

2 Links, extendability, centrally splitted wheels

Let us recall some concepts from [6]. A link L in some graph G is an induced subpath of G such that each vertex of L has degree 2 in G. It is called maximal, if there is no link M in G such that L is a proper subgraph of M, and it is called removable if G - V(L) is 2-connected. Hence every removable link in a 2-connected graph is maximal. We call two disjoint subgraphs P, Q of G nonadjacent if $V(P) \cap N_G(V(Q)) = \emptyset$.

A contractible subgraph H of some 3-connected graph G is called extendible if $G(V(H) \cup \{z\})$ is contractible for some $z \in V(G) - V(H)$. If there is only one such z then we call H uniquely extendible. A contractible edge xy is called extendible if $G(\{x,y\})$ is extendible. Extendability and the presence of removable links in G - V(H) are intimately connected by the following theorems.

Theorem 2 [6] If a contractible subgraph H of some 3-connected graph G is not extendible then G - V(H) either induces a cycle or admits two disjoint nonadjacent removable links each of which is of order at least 2.

Theorem 2 extends easily to the case of uniquely extendible subgraphs, as it has been discussed in [5]. We need the satement only for |V(H)| = 1:

Theorem 3 [5, Theorem 12] If a vertex h of some 3-connected graph G is incident with exactly one contractible edge then G-h admits a removable link of order at least 2.

When looking for contractible subgraphs in some graph G we often may assume that G is minimally 3-connected, as every contractible subgraph of G is a contractible subgraph of every supergraph of G on the same vertex set. This has several advantages; we extract two of them from the considerations in [4].

Lemma 1 [4, (9)] Every triangle of a minimally 3-connected graph has at least two vertices of degree 3.

Lemma 2 [4, Satz 6] Every minimally 3-connected graph G has at least $\frac{2}{5}(|V(G)|+3)$ vertices of degree 3.

Let us first count the number of contractible triples in a very special class of minimally 3-connected graphs (those in which there is an edge whose "contraction to h" produces a wheel with center h).

Lemma 3 Let G be a minimally 3-connected graph on at least 6 vertices and let xy be a contractible edge such that $G - \{x, y\}$ is a cycle. Then G has at least $|V(G)| - 2 - |\{z \in \{x, y\} : d_G(x) \le 4\}|$ many contractible triples.

Proof. Set $C := G - \{x, y\}$. If there exists a $z \in N_G(x) \cap N_G(y)$ then $z \in V(C)$ and $d_G(z) = 4$, so $d_G(x) = d_G(y) = 3$ by Lemma 1, implying that $|V(G)| = |V(C)| + |\{x, y\}| = |(N_G(x) \cup N_G(y)) \cap V(C)| + 2 \le 3 + 2$ — a contradiction. Hence $N_G(x) \cap V(C)$ and $N_G(y) \cap V(C)$ form a partition of V(C).

Let \mathcal{Q} denote the set of subpaths of C on three vertices. For $z \in \{x, y\}$, set $\mathcal{Q}_z := \{P \in \mathcal{Q} : N_G(z) \cap V(C) \subseteq V(P)\}$ and observe that $P \in \mathcal{Q}$ is contractible if and only if $P \notin \mathcal{Q}_x \cup \mathcal{Q}_y$. Furthermore, if $N_G(z) \cap V(C)$ consists of two adjacent vertices c, d then let \mathcal{R}_z consist of the triangle cdz, which is contractible, otherwise set $\mathcal{R}_z := \emptyset$

If $d_G(z) \geq 5$ then $\mathcal{Q}_z = \emptyset$, and if $d_G(z) = 4$ then $|\mathcal{Q}_z| \leq 1$. If $d_G(z) = 3$ then $|\mathcal{Q}_z| \leq 2$, where equality is attained if and only if $\mathcal{R}_z \neq \emptyset$. Hence $|\mathcal{Q}_z| \leq \varepsilon_z + |\mathcal{R}_z|$, where $\varepsilon_z := 1$ if $d_G(z) \leq 4$ and $\varepsilon_z := 0$ otherwise.

Now $(\mathcal{Q} - (\mathcal{Q}_x \cup \mathcal{Q}_y)) \cup \mathcal{R}_x \cup \mathcal{R}_y$ consists of $|V(C)| - |\mathcal{Q}_x| - |\mathcal{Q}_y| + |\mathcal{R}_x| + |\mathcal{R}_y| \ge |V(C)| - \varepsilon_x - \varepsilon_y = |V(G)| - 2 - |\{z \in \{x,y\} : d_G(x) \le 4\}|$ many contractible triples, which proves the Lemma. Q.E.D.

3 Cube fragments as certificates for not being on contractible triples

Let $T \subseteq V(G)$ be an arbitrary separating set of G. A T-fragment is the union of the vertex sets of at least one but not of all components of G - T. If F is a T-fragment then so is $\overline{F}^{(T,G)} := V(G) - (F \cup T)$, where we omit the superscript (T,G) if it's clear from the context.

If F' is a T'-fragment and $F \cap F' \neq \emptyset$ then $F \cap F'$ is a $(T - \overline{F'}) \cup (T' - \overline{F})$ -fragment, a fact which will be used throughout without any further reference.

A vertex $x \in T$ is essential for T if T - x does not separate G, or, equivalently, if x has neighbors in every component of G - T. In particular, if all but at most one neighbor of x are contained in T then x can't be essential for T.

Observe that (*) if T, T' are separators and T separates two essential vertices of T' from each other then T' separates T, too: For let F be a T-fragment and both $x \in F$ and $y \in \overline{F}$ be essential members of T'; then for every T'-fragment F' there exists an x, y-path of length at least 2 whose inner vertices are in F'; so each T'-fragment must intersect T, and, consequently, T' separates T.

Let $\kappa(G)$ denote the *(vertex) connectivity* of G, and let $\mathcal{T}(G)$ denote the set of smallest separating sets of G, i. e. the separating sets of cardinality $\kappa(G)$. It is obvious that every member of some $T \in \mathcal{T}(G)$ is essential for that T. Moreover, it is easy to see that an edge xy of a 3-connected graph nonisomorphic to K_4 is contractible if and only if $\{x,y\}$ is not a subset of any smallest separating set.

A set F of vertices of degree 3 in a graph G is a *cube fragment* of G if the graph obtained from $G(F \cup N_G(F))$ by adding a new vertex and making it adjacent to all vertices of $N_G(F)$ is a cube. In this case, F contains exactly one vertex x not adjacent to $N_G(F)$, which is called its *peak*. Obviously, the peak of a cube fragment of a 3-connected graph is not contained in any contractible triple. The main result of this section states that if, conversely, x is not on a contractible triple but on a contractible edge xy where $d_G(x) = d_G(y) = 3$, then it must be the peak of a particular cube fragment, unless G is one of some small exceptional graphs.

Let $W_4 = C_4 * K_1$ denote the wheel on 5 vertices.

Theorem 4 Let xy be a contractible edge in a 3-connected graph G nonisomorphic to one of W_4 , $K_2 \times K_3$, $K_{3,3}$ such that $d_G(x) = d_G(y) = 3$ and such that x is not contained in a contractible triple. Then x is the peak of a cube fragment F and all vertices in $N_G(F)$ have degree 3 in G.

Proof. Clearly, xy is not extendible and $E_G(\{x,y\}) = 4$. It is easy to see that if $G - \{x,y\}$ induces a 3- or 4-cycle then $G \cong W_4$, $G \cong K_3 \times K_2$, or $G \cong K_{3,3}$.

Hence, by Theorem 2, $G - \{x,y\}$ admits a pair P = pq, S = st of nonadjacent removable links of order 2, where each of p,q,s,t has degree 3 in G. If $V(P) \subseteq N_G(y)$ or $V(Q) \subseteq N_G(y)$ then stx or pqx would be a contractible triangle. Hence we may assume without loss of generality that $px,qy,sx,ty \in E(G)$. Let $X := \{p,q,s,t,x,y\}$, and let a,b,c,d denote the neighbors of p,q,s,t, respectively, in V(G) - X. (Some of them may coincide.)

If $|N_G(X)| = 2$ then $\{a,b\} = \{c,d\}$ and $ab \in E(G)$; if (a,b) = (d,c) then $G(\{p,s,x\})$ would be a contractible triple, and if, otherwise, (a,b) = (c,d) then G would be a cube, in which *every* vertex is the peak of some appropriate cube fragment.

Hence we may assume that $|N_G(X)| > 2$. Note that px is contractible, since

 $G-\{p,q,x,y\}$ is 2-connected and q,y are adjacent to each other and to distinct vertices of the latter subgraph. Since x is not contained in a contractible triple, px is not extendible. By Theorem 2, $G-\{p,x\}$ has two distinct nonadjacent removable links. As q,y are on the same maximal link of $G-\{p,x\}$, a,s must form another removable link of $G-\{p,x\}$. This implies a=b and $d_G(a)=3$. Hence $F:=\{p,s,x,y\}$ is a cube fragment, x is its peak, and every vertex in $N_G(F)=\{a,q,t\}$ has degree 3. Q.E.D.

Although the peak of a cube fragment is not on a contractible triple, it is often possible to find a number of contractible triples "close" to x as follows:

Lemma 4 Let F be a cube fragment of a 3-connected graph G nonisomorphic to a cube such that every vertex in $T := N_G(F)$ has degree 3. Then any of the six paths of order 3 which intersects each of F, T, \overline{F} is contractible.

Proof. Let $x \in T$, let w be the vertex in $N_G(x) \cap \overline{F}$, and let $y \neq z \in N_G(t) \cap F$. Then wx is contractible, for otherwise there would be a vertex v such that $\{v, w, x\}$ separates y from z — but there are two openly disjoint y, z-paths in $G(F \cup T - \{x\})$ and thus, in $G - \{w, x\}$, contradiction. Hence for distinct $a, b \in \overline{F} - \{w\}$ there exist two openly disjoint a, b-paths in $G - \{w, x\}$; as at most one of them intersects $F \cup T$ and as $G(F \cup T - \{w, x, y\})$ is connected, there exist two openly disjoint a, b-paths in $G - \{w, x, y\}$, too. Since G is not a cube, the two vertices in $T - \{x\}$ have distinct neighbors in \overline{F} , and so for each $c \in (F \cup T) - \{x, y\}$ there exist two c, \overline{F} -paths in $G - \{w, x, y\}$ which have only c in common. Hence $G - \{w, x, y\}$ is 2-connected.

A combination of Theorem 4 and Lemma 4 leads now to a sharp bound for the number of contractible triples in a *cubic* 3-connected graph.

Corollary 1 Every cubic 3-connected graph G on at least 9 vertices has |V(G)|/3 many contractible triples.

Proof. Consider any $x \in V(G)$. If x is contained in exactly one 4-cycle C of G then let f(x) denote the vertex in C not adjacent to x, if x is contained in exactly two 4-cycles and these cycles share exactly one vertex y distinct from x then let f(x) := y, and in all other cases, let f(x) := x.

Let \mathcal{F} be the set of all cube fragments F in G such that all vertices in $N_G(F)$ have degree 3. For each $F \in \mathcal{F}$, let $A(F) := F \cup N_G(F)$ and observe that, since G is not a cube, $E_G(A(F))$ consists of 3 independent edges. Consequently, if $x \in A(F)$ then f(x) is the peak of F, and so A(F), A(F') are disjoint for distinct F, F' from \mathcal{F} .

For $F \in \mathcal{F}$, let $B(F) := A(F) \cup N_G(A(F))$; so |B(F)| = 10.

Consider $x \in V(G)$. If $x \in B := \bigcup_{F \in \mathcal{F}} B(F)$ then choose any $\varphi(x) \in \mathcal{F}$ with $x \in B(\varphi(x))$ and define $\alpha(x)$ to be the set of those six paths of order 3 which

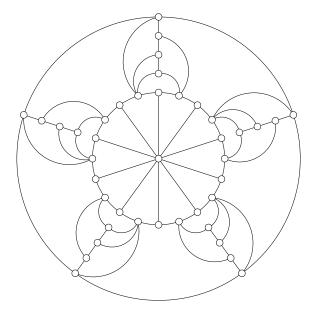


Figure 1: When Theorem 4 is not applicable.

intersect each of $\varphi(x)$, $N_G(\varphi(x))$, $\overline{\varphi(x)}$. By Lemma 4, the paths in $\alpha(x)$ are contractible.

Otherwise, x must be on some contractible triple H by Theorem 4, and we set $\beta(x) := H$.

If $\varphi(x) \neq \varphi(x')$ for $x, x' \in B$ then $\alpha(x), \alpha(x')$ are disjoint, as a path in $\alpha(x)$ must intersect $\varphi(x)$, a path in $\alpha(x')$ must intersect $\varphi(x')$, and $\varphi(x), \varphi(x')$ are disjoint.

If $x \in V(G) - B$ and $x' \in B$ then $\beta(x) \notin \alpha(x')$ as the vertices of every path of $\alpha(x')$ are contained in $B(\varphi(x'))$, whereas $x \in V(\beta(x))$ is not.

Since $|\varphi^{-1}(F)| \leq |B(F)| = 10$ for all $F \in \mathcal{F}$ and $|\beta^{-1}(H)| \leq 3$ for every contractible subgraph H, we deduce that there are at least $|V(G) - B|/3 + 6 \cdot |F| \geq |V(G) - B|/3 + 6 \cdot |B|/10 \geq |V(G)|/3$ many contractible triples. Q.E.D.

4 The general argument

Unfortunately, the statement of Theorem 4 does not generalize in a simple way when there is no restriction to $d_G(y)$. To illustrate the problems let's have a look at the central vertex y in the graph of Figure 1. Its neighbor x in the north is not on any contractible triple. Suppose we wanted to assign just one contractible

triple $\gamma(x)$ to x, similar as we did with the six paths of $\alpha(x)$ in the proof of Corollary 1. Theorem 4 does not apply here, but, by Theorem 2, we still find a contractible edge xy_x incident with x; in our example, $y_x := y$ would do it. Since xy is not extendible, it is then possible to employ Theorem 2 once more to find a contractible triple $\gamma(x)$ which either contains y or is in the neighborhood of $\{x,y\}$ (and we will do this later in the proof of Theorem 5). The problem is that y could have many other neighbors x' of degree 3 not on a contractible triple such that x'y is contractible — in Figure 1 half of the edges x'y play the same role — and to each of them one and the same contractible triple could have been assigned. Hence $\gamma(x)$ is possibly "far from being an injection" and useless to bound the number of contractible triples from below.

We will overcome this problem by being more careful when choosing y_x . The following Lemma is the key observation in our counting argument.

Lemma 5 Let G be a minimally 3-connected graph nonisomorphic to K_4 . Let

$$W := \{x \in V(G) : d_G(x) = 3, x \text{ is not on a contractible triple}\},$$

and for $y \in V(G)$, let

$$X(y) := \{x \in N_G(y) \cap W : xy \text{ is contractible}\}.$$

Then for every $x \in W$ there exists a $y \in V(G)$ such that $x \in X(y)$ and $d_G(y) = 3$ or $X(y) = \{x\}$.

Proof. Note that $\kappa(G) = 3$ and let $x \in W$. The subgraph induced by x is contractible, and it is extendible by Theorem 2 since $G \not\cong K_4$. Hence xy is contractible for some $y \in N_G(x)$, that is, $x \in X(y)$. Let $a \neq b$ be the two vertices in $N_G(x) - \{y\}$. We may assume that $d_G(y) > 3$ and that there exists an $x' \in X(y) - \{x\}$ (for otherwise the statement would follow). Since $G - \{x, y\}$ is 2-connected and G is minimally 3-connected, $a, b \notin N_G(y)$ by Lemma 1.

Since $G(\{x,y,x'\})$ is not contractible, there exists a vertex t such that $T:=\{x,y,x',t\}$ separates G. Since xy is contractible, |T|=4, and since x'y is contractible, x is essential for T. Hence there exists a T-fragment F_a such that $a \in F_a$ and $b \in \overline{F_a} =: F_b$; in particular, $ab \notin E(G)$.

It follows from Theorem 3 that one of xa, xb is contractible, so $G - \{x, a, b\}$ is connected, and it possesses a cut vertex as $G(\{x, a, b\})$ is not contractible. We choose a cut vertex z in $G - \{x, a, b\}$ and, if possible, we choose z nonadjacent to t.

Claim 1. $z \neq y$.

Suppose, to the contrary, that z=y. Then a,b are essential for $T_0^+:=\{x,a,b,z=y\}$ (as xy is contractible), so T_0^+ separates x' from t (cf. (*)). Since $N_G(x)\subseteq T_0^+$, we find a $T_0:=\{a,b,z=y\}$ -fragment F_0 such that $t\in F_0$ and

 $x, x' \in \overline{F_0}$. Then $F_a \cap \overline{F_0} = \emptyset$ and $F_b \cap \overline{F_0} = \emptyset$, for otherwise one of the latter sets would be an $\{a, x', z = y\}$ -fragment or a $\{b, x', z = y\}$ -fragment, respectively, as they contain no neighbors of x — but this violates the contractibility of x'y. Consequently, $\overline{F_0} = \{x, x'\}$, and $N_G(x') = N_G(x)$.

Let $c \in \{a, b\}$. Assume for a while that $d_G(c) = 3$. Then we may suppose that cx is not contractible (for otherwise the statement would follow for y := c), hence c, x are contained in some $T_1 \in \mathcal{T}(G)$. As x is essential for T_1, T_1 separates y from the vertex d in $\{a, b\} - \{c\}$, and as x' is a common neighbor of $y, d, x' \in T_1$ follows. But then a has only one neighbor outside T_1 , so it can't be essential for T_1 , which is absurd.

It follows that $d_G(a), d_G(b) > 3$. As $ay, by \notin E(G), L := F_a \cap F_0 \neq \emptyset$ and $R := F_b \cap F_0 \neq \emptyset$. By Thereom 3, one of ax, bx is contractible; without loss of generality, let bx be contractible. Since $G(\{x, x', b\})$ is not contractible, there exists a vertex v such that $T_2 := \{x, x', b, v\}$ separates G, and since xb is contractible, $|T_2| = 4$ follows, and x' is essential for T_2 . Consequently, there exists a T_2 -fragment F_2 such that $a \in F_2$ and $z = y \in \overline{F_2}$. As L is an $\{a, t, z = y\}$ -fragment, there exists an a, z = y-path of length at least 2 whose inner vertices are in $L \neq \emptyset$, so $v \in L$ follows.

But then all vertices in $R \cup \{t, z = y\}$ are in the same component of $G - T_2$ (and, thus, in $\overline{F_2}$), as R is a $\{b, t, z = y\}$ -fragment and for each vertex $r \in R \neq \emptyset$ there exists a system of three $r, \{b, t, z = y\}$ -paths which have pairwise only r in common and whose inner vertices are in R. In particular, $t \in \overline{F_2}$. For each $\ell \in L - \{v\}$, there exists a system of three $\ell, \{a, t, z = y\}$ -paths which have pairwise only ℓ in common and whose inner vertices are in L; either the ℓ, t - or the $\ell, z = y$ -path avoids v, so $\ell \in \overline{F_2}$. Consequently, $F_2 = \{a\}$, and $N_G(a) = \{x, x', v\}$, contradicting $d_G(a) > 3$.

This proves Claim 1.

Since x is not essential for the separator $\{x, a, b, z\}$ of G, $T_0 := \{a, b, z\} \in \mathcal{T}(G)$, and we may take a T_0 -fragment F_0 such that $x \in \overline{F_0}$. By Claim 1, it follows $y \in \overline{F_0}$ and, thus, $F_0 \cap (\{a, b\} \cup N_G(y)) = \emptyset$.

Claim 2. $t \in F_0$ and $x' \in \overline{F_0}$

There is an a,b-path P of length at least 2 whose inner vertices are in F_0 . Hence T intersects F_0 . Since $x,y\in\overline{F_0},\ x'\in N_G(y)\subseteq (T_0\cup\overline{F_0})-\{a,b\}$ and $t\in F_0$ follow; assume, to the contrary, that $x'\in T_0$, so x'=z; for some $c\in\{a,b\},\ F_c$ contains a neighbor of y, so $\emptyset\neq F_c\cap\overline{F_0}=:L$; since x has no neighbor in L, L must be a $\{c,x',y\}$ -fragment, contradicting the contractibility of x'y. This proves Claim 2.

Claim 3. Let $c \in \{a, b\}$. If xc is contractible then the edges cf with $f \in F_0$ are not.

We may assume c = b without loss of generality. Let $f \in N_G(b) \cap F_0$ and suppose,

to the contrary, that bf is contractible. Since $G(\{x,b,f\})$ is not contractible, there exists a vertex v such that $T_1:=\{x,b,f,v\}$ separates G. Since bx is contractible, $|T_1|=4$, and since xb,bf are contractible, x,f (and v) are essential for T_1 . Hence T_1 separates T_0 (cf. (*)), and, therefore, it separates a from a. Let a be a a-fragment with a is essential for a-fragment with a-fragment a-fragment with a-fragment a-fragment with a-fragment a-fra

If $v \in F_0$ then $\overline{F_0} \cap \overline{F_1}$ is an $\{b, x, z\}$ -fragment, contradicting the contractibility of bx.

Consequently, $v \in \overline{F_0}$, and $F_0 \cap F_1 = \emptyset$ (for otherwise $F_0 \cap F_1$ would be an $\{a, b, f\}$ -fragment, contradicting the contractibility of bf). Similarly, $F_0 \cap \overline{F_1} = \emptyset$, for otherwise the latter set would be a $\{b, f, z\}$ -fragment, contradicting the contractibility of bf. Hence $F_0 = \{f\}$.

If $L:=\overline{F_0}\cap F_1$ was empty then $F_1=\{a\}$ would follow, and $N_G(a)=\{f,v,x\}$. We may assume that xa is not contractible, for otherwise our statement would follow with y:=a. Hence there exists a vertex z' such that $T_0':=\{x,a,z'\}\in \mathcal{T}(G)$. There exists a T_0' -fragment F_0' with $b\in F_0'$ and $y\in \overline{F_0'}$. It follows $f\in T_0'\cup F_0'$, so $f\in F_0'$ and $v\in \overline{F_0'}$ as a is essential for T_0' .

Now z' is a cut vertex of $G - \{a, b, x\}$ (separating v from f). By choice of z we conclude z' = z.

If $R := F'_0 \cap \overline{F_0} \neq \emptyset$ then the latter set would be an $\{a, b, z, x\}$ -fragment; but neither a nor x have neighbors in R, so R is a $\{b, z\}$ -fragment — contradiction. Hence $F'_0 = \{f, b\}$. But then $d_G(b) = 3$ as b is not adjacent to a, and the statement of our lemma follows for y := b.

Consequently, $L \neq \emptyset$, and, as x has no neighbor in L, L is an $\{a, b, v\}$ -fragment. Therefore, we find an a, b-path P of length at least 2 whose inner vertices are in L. As P, afb are two openly disjoint a, b-paths which do not contain $x' \in N_G(y \in \overline{F_0} \cap \overline{F_1})$, T can't separate a from b in G, a contradiction.

This proves Claim 3.

Claim 4. For $c \in \{a, b\}$, either $z \in F_c$, or $F_c = \{c\}$ and $N_G(c) = \{x, x', t\}$.

Suppose that $z \in \overline{F_c}$. Then $F_c \cap F_0 = \emptyset$, as otherwise the latter set would be a $\{c,t\}$ -fragment. Furthermore, $F_c \cap F_0 = \emptyset$, for otherwise the latter set would be an $\{x,y,x',c\}$ -fragment without neighbors of x and, therefore, a $\{y,x',c\}$ -fragment, which contradicts the contractibility of x'y. Hence $F_c \subseteq T_0$, so $F_c = \{c\}$. Since $yc \notin E(G)$, $N_G(c) = T - \{y\} = \{x,x',t\}$. This proves Claim 4.

As we noticed before, by Theorem 3, there exists a $c \in \{a, b\}$ such that cx is contractible. We may assume that $d_G(c) > 3$ (for otherwise the statement would follow with y := c). By Claim 4, $z \in F_c$, and, again by Claim 4, $\overline{F_c}$ consists of the vertex $d \in \{a, b\} - \{c\}$, where $N_G(d) = \{x, x', t\}$. We may assume that xd is not contractible, for otherwise the statement of our lemma would follow for

y := d.

Claim 5. $x'c \notin E(G)$.

Suppose that $x'c \in E(G)$. Since xd is not contractible, there exists a vertex v such that $T_2 := \{x, d, v\}$ separates G. As x is essential for T_2 , there exists a T_2 -fragment F_2 such that $c \in F_2$ and $y \in \overline{F_2}$. Since x' is a common neighbor of $c, y, x' \in T_2$ follows, implying that x' = v. But then d is not essential for T_2 , a contradiction — which proves Claim 5.

Claim 6. For $f \in N_G(c) \cap (\overline{F_0} - \{x, x'\})$, cf is not contractible.

Suppose, to the contrary, that cf is contractible. Since $G(\{x,c,f\})$ is not contractible, there exists a vertex v such that $T_2 := \{x,c,f,v\}$ separates G. Since cx is contractible, $|T_2| = 4$, and since cf is contractible, x is essential for T_2 . Hence there exists a T_2 -fragment F_2 such that $d \in F_2$ and $y \in \overline{F_2}$. As x' is a common neighbor of $d, y, x' \in T_2$ follows, implying that x' = v. Let p be the neighbor of x' distinct from d, y.

If $p \in \overline{F_2}$ then d is the unique vertex in $N_G(\{x,x'\}) \cap F_2$, and $(T_2 - \{x,x'\}) \cup \{d\} = \{c,f,d\}$ separates G (it separates $t \in F_2 \neq \{d\}$ from y), which contradicts the contractibility of cf. If, otherwise, $p \in F_2$ then y is the unique vertex in $N_G(\{x,x'\}) \cap \overline{F_2}$. Since $d_G(y) > 3$ and $c \notin N_G(y)$, $\overline{F_2} \neq \{y\}$, and so $(T_2 - \{x,x'\}) \cup \{y\}$ separates G, which contradicts again the contractibility of cf.

This proves Claim 6.

We are now able to accomplish the proof by showing $X(c) = \{c\}$. It suffices to prove that for every $f \in N_G(c) - \{x\}$, cf is not contractible. This is immediate if $f = z \in T_0$, it follows from Claim 3 if $f \in F_0$, and it follows from Claim 5 and Claim 6 if $f \in \overline{F_0}$.

Theorem 5 Every 3-connected graph G on at least 9 vertices has more than |V(G)|/10 contractible triples.

Proof. Let \mathcal{F} , $A(\cdot)$, $B(\cdot)$, B be as in the proof of Corollary 1. Observe that $A(F) \cap A(F') = \emptyset$ for $F \neq F'$ in \mathcal{F} and |B(F)| = 10 for all $F \in \mathcal{F}$ hold under our present, weaker conditions, too. Let V_3 denote the set of vertices of degree 3 in G.

Consider $x \in V_3$. If $x \in B$ then we choose any $\varphi(x) \in \mathcal{F}$ with $x \in B(\varphi(x))$ and define $\alpha(x)$ to be the set of those six paths of order 3 which intersect each of $\varphi(x), N_G(\varphi(x)), \overline{\varphi(x)}$. By Lemma 4, the paths in $\alpha(x)$ are contractible.

If $x \in V_3 - B$ is on a contractible triple H then we set $\beta(x) := H$.

If $x \in V_3 - B$ is not on a contractible triple then, by Lemma 5, there exists a vertex $y := y_x$ such that xy is contractible and either $d_G(y) = 3$, or $d_G(y) > 3$

and there is no $x' \in N_G(y)$ of degree 3 not on a contractible triple such that x'y is contractible. Note that if $d_G(y) = 3$ then x would be the peak of some cube fragment $F \in \mathcal{F}$ by Theorem 4 and, thus, in B. Hence $d_G(y) > 3$.

If $G' := G - \{x,y\}$ is a cycle then the entire statement of the theorem follows from Lemma 3. Otherwise, G' contains a pair of disjoint nonadjacent removable links P,Q with $|V(Q)| \ge |V(P)| \ge 2$ by Theorem 2. Since G is minimally 3-connected, every vertex in $V(P) \cup V(Q)$ must be adjacent to exactly one of x,y. We now define a contractible triple $\gamma(x) := H_{xy}$ as follows.

If P=pq then x can't be adjacent to V(P) (for otherwise $G(\{p,q,x\})$ would be a contractible triple as $d_G(y)>3$), and we define $\gamma(x)$ to be the contractible triangle $H_{xy}:=G(\{p,q,y\})$. Otherwise, $|V(Q)|\geq |V(P)|\geq 3$. If P or Q contains a subpath pqr of order 3 such that $p,q,r\in N_G(y)$ then this path is contractible and we set $\gamma(x):=H_{xy}:=pqr$. Otherwise, x has a neighbor p in V(P) and a neighbor $q\in V(Q)$. If p was an inner vertex of P and q was an inner vertex of Q then pxq would be a contractible triple, which is not possible; therefore, there are adjacent neighbors v,w of y in P or in Q, and we choose $\gamma(x):=H_{xy}=vwy$, which is a contractible triangle.

Let \mathcal{C} be the set of contractible triples and let $C := \bigcup_{C \in \mathcal{C}} V(C)$. Then

 $lpha : V_3 \cap B \longrightarrow \mathcal{P}(\mathcal{C}),$ $\beta : (V_3 - B) \cap C \longrightarrow \mathcal{C}, \text{ and}$ $\gamma : (V_3 - B) - C \longrightarrow \mathcal{C}.$

For $x, x' \in (V_3 - B) - C$ and for distinct $y = y_x, y' = y_{x'}$ we observe that $H_{xy} \neq H_{x'y'}$, as y can be reconstructed from H_{xy} to be the unique common neighbor of all vertices of degree 3 in $V(H_{xy})$. Since $y_x \neq y_{x'}$ for $x \neq x'$ by choice of $y_x, y_{x'}, \gamma$ is an injection.

For $x \in (V_3 - B) \cap C$ and $x' \in V_3 \cap B$, $\beta(x)$ is not contained in $\alpha(x')$, since the vertices of every path of $\alpha(x')$ are contained in $B(\varphi(x'))$, whereas $x \in V(\beta(x))$ is not.

For $x \in (V_3 - B) - C$ and $x' \in V_3 \cap B$, $\gamma(x)$ is not contained in $\alpha(x')$, since the two vertices in $B(\varphi(x')) \subseteq V_3$ of any path in $\alpha(x')$ do not have a common neighbor at all, whereas y_x is the common neighbor of the vertices of degree 3 in $\gamma(x)$.

Since $|\varphi^{-1}(F)| \leq |B(F)| = 10$ and $|(\beta \cup \gamma)^{-1}(H)| \leq 4$ for all $H \in \mathcal{C}$, we thus deduce that there are at least $|V_3 - B|/4 + 6 \cdot |\mathcal{F}| \geq |V_3 - B|/4 + 6 \cdot |B|/10 \geq |V_3|/4$ many contractible triples in G.

As $|V_3| > \frac{2}{5} |V(G)|$ by Thereom 2, the statement follows. Q.E.D.

References

- [1] K. Ando, H. Enomoto, and A. Saito, "Contractible edges in 3-connected graphs", J. Comb. Ser. B 42 (1987), 87–93.
- [2] J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications", MacMillan (1976).
- [3] R. Diestel, "Graph Theory", Graduate Texts in Mathematics 173, 3rd edition Springer (2005).
- [4] R. Halin, "Untersuchungen über minimale *n*-fach zusammenhängende Graphen", Math. Ann. 182 (1969), 175–188.
- [5] M. KRIESELL, "A survey on contractible edges in graphs of a given vertex connectivity", Graphs and Combinatorics 18 (2002), 1–30.
- [6] M. KRIESELL, "Contractible subgraphs in 3-connected graphs", Journal of Combinatorial Theory (B) 80 (2000), 32–48.
- [7] W. McCuaig and K. Ota, "Contractible triples in 3-connected graphs", J. Combin. Theory (B) 60 (1994), 308–314.
- [8] W. T. Tutte, "A theory of 3-connected graphs", Nederl. Akad. Wet., Proc., Ser. A 64 (1961), 441–455.

Author's Address:

Matthias Kriesell Mathematisches Seminar der Universität Hamburg Bundesstraße 55 D–20146 Hamburg Germany