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ZUR MATHEMATIK

Heft 242

On the number of contractible

triples in 3-connected graphs

Matthias Kriesell, Hamburg

März 2006



On the number of contractible triples

in 3-connected graphs

Matthias Kriesell

April 6, 2006

Abstract

McCuaig and Ota proved that every 3-connected graph G on at
least 9 vertices admits a contractible triple, i. e. a connected subgraph H
on three vertices such that G − V (H) is 2-connected. Here we show that
every 3-connected graph G on at least 9 vertices has more than |V (G)|/10
many contractible triples. If, moreover, G is cubic, then there are at least
|V (G)|/3 many contractible triples, which is best possible.

AMS classification: 05c40, 05c75.
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1 Introduction

All graphs considered here are supposed to be finite, simple, and undirected.
For terminology not defined here the reader is referred to [2] or [3].

A connected subgraph H of a 3-connected graph G is called contractible if G−
V (H) is 2-connected, or, equivalently, if the graph G/V (H) obtained from G−
V (H) by adding a new vertex and making it adjacent to all neighbors of V (H)
in G is 3-connected. A contractible triple is a contractible subgraph on three
vertices, and an edge xy of G is called contractible if G({x, y}) is contractible.
Tutte proved that every 3-connected graph G on at least 5 vertices contains
a contractible edge [8]. It follows already from his proof that G has more than
one contractible edge, and later it has been proved that there must be at least
|V (G)|/2 many [1], which is best possible in general.

As a generalization of Tutte’s theorem, McCuaig and Ota conjectured that
for every integer ` ≥ 3, there exists a (smallest) integer f(`) such that every
3-connected graph on at least f(`) vertices admits a contractible subgraph on
exactly ` vertices [7]. Observing that a cube K2 ×K2 ×K2 has no contractible
triples at all, they determined f(3) = 9 by showing the following:
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Theorem 1 [7] Every 3-connected graph on at least 9 vertices has a contractible
triple.

Later, it has been proved that f(4) = 8 [6], but the existence of f(`) is not
settled for any ` ≥ 5 yet.

Here we concentrate on generalizing Theorem 1 by showing that every 3-con-
nected graph G on at least 9 vertices has more than |V (G)|/10 many contractible
triples (Theorem 5). This improves to |V (G)|/3 for cubic graphs G (Corollary
1). As the contractible triples of some 3-connected cubic graph in which every
vertex is on exactly one triangle are precisely these triangles, the bound in
Corollary 1 is sharp, and the order of the bound in Theorem 5 in terms of
|V (G)| is best possible.

2 Links, extendability, centrally splitted wheels

Let us recall some concepts from [6]. A link L in some graph G is an induced
subpath of G such that each vertex of L has degree 2 in G. It is called maximal,
if there is no link M in G such that L is a proper subgraph of M , and it is
called removable if G − V (L) is 2-connected. Hence every removable link in
a 2-connected graph is maximal. We call two disjoint subgraphs P,Q of G
nonadjacent if V (P ) ∩NG(V (Q)) = ∅.

A contractible subgraph H of some 3-connected graph G is called extendible if
G(V (H) ∪ {z}) is contractible for some z ∈ V (G)− V (H). If there is only one
such z then we call H uniquely extendible. A contractible edge xy is called ex-
tendible if G({x, y}) is extendible. Extendability and the presence of removable
links in G− V (H) are intimately connected by the following theorems.

Theorem 2 [6] If a contractible subgraph H of some 3-connected graph G is
not extendible then G − V (H) either induces a cycle or admits two disjoint
nonadjacent removable links each of which is of order at least 2.

Theorem 2 extends easily to the case of uniquely extendible subgraphs, as it has
been discussed in [5]. We need the satement only for |V (H)| = 1:

Theorem 3 [5, Theorem 12] If a vertex h of some 3-connected graph G is
incident with exactly one contractible edge then G − h admits a removable link
of order at least 2.

When looking for contractible subgraphs in some graph G we often may assume
that G is minimally 3-connected, as every contractible subgraph of G is a con-
tractible subgraph of every supergraph of G on the same vertex set. This has
several advantages; we extract two of them from the considerations in [4].
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Lemma 1 [4, (9)] Every triangle of a minimally 3-connected graph has at least
two vertices of degree 3.

Lemma 2 [4, Satz 6] Every minimally 3-connected graph G has at least
2
5 (|V (G)|+ 3) vertices of degree 3.

Let us first count the number of contractible triples in a very special class of min-
imally 3-connected graphs (those in which there is an edge whose “contraction
to h” produces a wheel with center h).

Lemma 3 Let G be a minimally 3-connected graph on at least 6 vertices and
let xy be a contractible edge such that G−{x, y} is a cycle. Then G has at least
|V (G)| − 2− |{z ∈ {x, y} : dG(x) ≤ 4}| many contractible triples.

Proof. Set C := G−{x, y}. If there exists a z ∈ NG(x)∩NG(y) then z ∈ V (C)
and dG(z) = 4, so dG(x) = dG(y) = 3 by Lemma 1, implying that |V (G)| =
|V (C)| + |{x, y}| = |(NG(x) ∪ NG(y)) ∩ V (C)| + 2 ≤ 3 + 2 — a contradiction.
Hence NG(x) ∩ V (C) and NG(y) ∩ V (C) form a partition of V (C).

Let Q denote the set of subpaths of C on three vertices. For z ∈ {x, y}, set
Qz := {P ∈ Q : NG(z)∩V (C) ⊆ V (P )} and observe that P ∈ Q is contractible
if and only if P 6∈ Qx ∪ Qy. Furthermore, if NG(z) ∩ V (C) consists of two
adjacent vertices c, d then letRz consist of the triangle cdz, which is contractible,
otherwise set Rz := ∅

If dG(z) ≥ 5 then Qz = ∅, and if dG(z) = 4 then |Qz| ≤ 1. If dG(z) = 3
then |Qz| ≤ 2, where equality is attained if and only if Rz 6= ∅. Hence |Qz| ≤
εz + |Rz|, where εz := 1 if dG(z) ≤ 4 and εz := 0 otherwise.

Now (Q− (Qx ∪Qy))∪Rx ∪Ry consists of |V (C)| − |Qx| − |Qy|+ |Rx|+ |Ry|
≥ |V (C)| − εx− εy = |V (G)| − 2− |{z ∈ {x, y} : dG(x) ≤ 4}| many contractible
triples, which proves the Lemma. Q.E.D.

3 Cube fragments as certificates for not being
on contractible triples

Let T ⊆ V (G) be an arbitrary separating set of G. A T -fragment is the union
of the vertex sets of at least one but not of all components of G− T . If F is a
T -fragment then so is F

(T,G)
:= V (G)− (F ∪T ), where we omit the superscript

(T,G) if it’s clear from the context.

If F ′ is a T ′-fragment and F∩F ′ 6= ∅ then F∩F ′ is a (T−F ′)∪(T ′−F )-fragment,
a fact which will be used throughout without any further reference.
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A vertex x ∈ T is essential for T if T − x does not separate G, or, equivalently,
if x has neighbors in every component of G−T . In particular, if all but at most
one neighbor of x are contained in T then x can’t be essential for T .

Observe that (*) if T, T ′ are separators and T separates two essential vertices
of T ′ from each other then T ′ separates T , too: For let F be a T -fragment and
both x ∈ F and y ∈ F be essential members of T ′; then for every T ′-fragment
F ′ there exists an x, y-path of length at least 2 whose inner vertices are in F ′;
so each T ′-fragment must intersect T , and, consequently, T ′ separates T .

Let κ(G) denote the (vertex) connectivity of G, and let T (G) denote the set of
smallest separating sets of G, i. e. the separating sets of cardinality κ(G). It is
obvious that every member of some T ∈ T (G) is essential for that T . Moreover,
it is easy to see that an edge xy of a 3-connected graph nonisomorphic to K4 is
contractible if and only if {x, y} is not a subset of any smallest separating set.

A set F of vertices of degree 3 in a graph G is a cube fragment of G if the graph
obtained from G(F ∪ NG(F )) by adding a new vertex and making it adjacent
to all vertices of NG(F ) is a cube. In this case, F contains exactly one vertex x
not adjacent to NG(F ), which is called its peak. Obviously, the peak of a cube
fragment of a 3-connected graph is not contained in any contractible triple. The
main result of this section states that if, conversely, x is not on a contractible
triple but on a contractible edge xy where dG(x) = dG(y) = 3, then it must be
the peak of a particular cube fragment, unless G is one of some small exceptional
graphs.

Let W4 = C4 ∗K1 denote the wheel on 5 vertices.

Theorem 4 Let xy be a contractible edge in a 3-connected graph G nonisomor-
phic to one of W4, K2×K3, K3,3 such that dG(x) = dG(y) = 3 and such that x
is not contained in a contractible triple. Then x is the peak of a cube fragment
F and all vertices in NG(F ) have degree 3 in G.

Proof. Clearly, xy is not extendible and EG({x, y}) = 4. It is easy to see that
if G− {x, y} induces a 3- or 4-cycle then G ∼= W4, G ∼= K3 ×K2, or G ∼= K3,3.

Hence, by Theorem 2, G − {x, y} admits a pair P = pq, S = st of nonadjacent
removable links of order 2, where each of p, q, s, t has degree 3 in G. If V (P ) ⊆
NG(y) or V (Q) ⊆ NG(y) then stx or pqx would be a contractible triangle. Hence
we may assume without loss of generality that px, qy, sx, ty ∈ E(G). Let X :=
{p, q, s, t, x, y}, and let a, b, c, d denote the neighbors of p, q, s, t, respectively, in
V (G)−X. (Some of them may coincide.)

If |NG(X)| = 2 then {a, b} = {c, d} and ab ∈ E(G); if (a, b) = (d, c) then
G({p, s, x}) would be a contractible triple, and if, otherwise, (a, b) = (c, d) then
G would be a cube, in which every vertex is the peak of some appropriate cube
fragment.

Hence we may assume that |NG(X)| > 2. Note that px is contractible, since
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G−{p, q, x, y} is 2-connected and q, y are adjacent to each other and to distinct
vertices of the latter subgraph. Since x is not contained in a contractible triple,
px is not extendible. By Theorem 2, G − {p, x} has two distinct nonadjacent
removable links. As q, y are on the same maximal link of G− {p, x}, a, s must
form another removable link of G − {p, x}. This implies a = b and dG(a) = 3.
Hence F := {p, s, x, y} is a cube fragment, x is its peak, and every vertex in
NG(F ) = {a, q, t} has degree 3. Q.E.D.

Although the peak of a cube fragment is not on a contractible triple, it is often
possible to find a number of contractible triples “close” to x as follows:

Lemma 4 Let F be a cube fragment of a 3-connected graph G nonisomorphic
to a cube such that every vertex in T := NG(F ) has degree 3. Then any of the
six paths of order 3 which intersects each of F, T, F is contractible.

Proof. Let x ∈ T , let w be the vertex in NG(x)∩F , and let y 6= z ∈ NG(t)∩F .
Then wx is contractible, for otherwise there would be a vertex v such that
{v, w, x} separates y from z — but there are two openly disjoint y, z-paths in
G(F ∪ T − {x}) and thus, in G − {w, x}, contradiction. Hence for distinct
a, b ∈ F − {w} there exist two openly disjoint a, b-paths in G − {w, x}; as at
most one of them intersects F ∪ T and as G(F ∪ T − {w, x, y}) is connected,
there exist two openly disjoint a, b-paths in G− {w, x, y}, too. Since G is not a
cube, the two vertices in T − {x} have distinct neighbors in F , and so for each
c ∈ (F ∪ T )−{x, y} there exist two c, F -paths in G−{w, x, y} which have only
c in common. Hence G− {w, x, y} is 2-connected. Q.E.D.

A combination of Theorem 4 and Lemma 4 leads now to a sharp bound for the
number of contractible triples in a cubic 3-connected graph.

Corollary 1 Every cubic 3-connected graph G on at least 9 vertices has
|V (G)|/3 many contractible triples.

Proof. Consider any x ∈ V (G). If x is contained in exactly one 4-cycle C of
G then let f(x) denote the vertex in C not adjacent to x, if x is contained in
exactly two 4-cycles and these cycles share exactly one vertex y distinct from x
then let f(x) := y, and in all other cases, let f(x) := x.

Let F be the set of all cube fragments F in G such that all vertices in NG(F )
have degree 3. For each F ∈ F , let A(F ) := F ∪NG(F ) and observe that, since
G is not a cube, EG(A(F )) consists of 3 independent edges. Consequently, if
x ∈ A(F ) then f(x) is the peak of F , and so A(F ), A(F ′) are disjoint for distinct
F, F ′ from F .

For F ∈ F , let B(F ) := A(F ) ∪NG(A(F )); so |B(F )| = 10.

Consider x ∈ V (G). If x ∈ B :=
⋃

F∈F
B(F ) then choose any ϕ(x) ∈ F with

x ∈ B(ϕ(x)) and define α(x) to be the set of those six paths of order 3 which
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Figure 1: When Theorem 4 is not applicable.

intersect each of ϕ(x), NG(ϕ(x)), ϕ(x). By Lemma 4, the paths in α(x) are
contractible.

Otherwise, x must be on some contractible triple H by Theorem 4, and we set
β(x) := H.

If ϕ(x) 6= ϕ(x′) for x, x′ ∈ B then α(x), α(x′) are disjoint, as a path in α(x)
must intersect ϕ(x), a path in α(x′) must intersect ϕ(x′), and ϕ(x), ϕ(x′) are
disjoint.

If x ∈ V (G)− B and x′ ∈ B then β(x) 6∈ α(x′) as the vertices of every path of
α(x′) are contained in B(ϕ(x′)), whereas x ∈ V (β(x)) is not.

Since |ϕ−1(F )| ≤ |B(F )| = 10 for all F ∈ F and |β−1(H)| ≤ 3 for every
contractible subgraph H, we deduce that there are at least |V (G)−B|/3+6 · |F |
≥ |V (G)−B|/3 + 6 · |B|/10 ≥ |V (G)|/3 many contractible triples. Q.E.D.

4 The general argument

Unfortunately, the statement of Theorem 4 does not generalize in a simple way
when there is no restriction to dG(y). To illustrate the problems let’s have a look
at the central vertex y in the graph of Figure 1. Its neighbor x in the north is not
on any contractible triple. Suppose we wanted to assign just one contractible
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triple γ(x) to x, similar as we did with the six paths of α(x) in the proof of
Corollary 1. Theorem 4 does not apply here, but, by Theorem 2, we still find
a contractible edge xyx incident with x; in our example, yx := y would do it.
Since xy is not extendible, it is then possible to employ Theorem 2 once more to
find a contractible triple γ(x) which either contains y or is in the neighborhood
of {x, y} (and we will do this later in the proof of Theorem 5). The problem
is that y could have many other neighbors x′ of degree 3 not on a contractible
triple such that x′y is contractible — in Figure 1 half of the edges x′y play the
same role — and to each of them one and the same contractible triple could
have been assigned. Hence γ(x) is possibly “far from being an injection” and
useless to bound the number of contractible triples from below.

We will overcome this problem by being more careful when choosing yx. The
following Lemma is the key observation in our counting argument.

Lemma 5 Let G be a minimally 3-connected graph nonisomorphic to K4. Let

W := {x ∈ V (G) : dG(x) = 3, x is not on a contractible triple},

and for y ∈ V (G), let

X(y) := {x ∈ NG(y) ∩W : xy is contractible}.

Then for every x ∈ W there exists a y ∈ V (G) such that x ∈ X(y) and dG(y) = 3
or X(y) = {x}.

Proof. Note that κ(G) = 3 and let x ∈ W . The subgraph induced by x is
contractible, and it is extendible by Theorem 2 since G 6∼= K4. Hence xy is
contractible for some y ∈ NG(x), that is, x ∈ X(y). Let a 6= b be the two
vertices in NG(x)− {y}. We may assume that dG(y) > 3 and that there exists
an x′ ∈ X(y)−{x} (for otherwise the statement would follow). Since G−{x, y}
is 2-connected and G is minimally 3-connected, a, b 6∈ NG(y) by Lemma 1.

Since G({x, y, x′}) is not contractible, there exists a vertex t such that T :=
{x, y, x′, t} separates G. Since xy is contractible, |T | = 4, and since x′y is
contractible, x is essential for T . Hence there exists a T -fragment Fa such that
a ∈ Fa and b ∈ Fa =: Fb; in particular, ab 6∈ E(G).

It follows from Theorem 3 that one of xa, xb is contractible, so G − {x, a, b} is
connected, and it posesses a cut vertex as G({x, a, b}) is not contractible. We
choose a cut vertex z in G− {x, a, b} and, if possible, we choose z nonadjacent
to t.

Claim 1. z 6= y.

Suppose, to the contrary, that z = y. Then a, b are essential for T+
0 :=

{x, a, b, z=y} (as xy is contractible), so T+
0 separates x′ from t (cf. (*)). Since

NG(x) ⊆ T+
0 , we find a T0 := {a, b, z = y}-fragment F0 such that t ∈ F0 and
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x, x′ ∈ F0. Then Fa ∩ F0 = ∅ and Fb ∩ F0 = ∅, for otherwise one of the latter
sets would be an {a, x′, z=y}-fragment or a {b, x′, z=y}-fragment, respectively,
as they contain no neighbors of x — but this violates the contractibility of x′y.
Consequently, F0 = {x, x′}, and NG(x′) = NG(x).

Let c ∈ {a, b}. Assume for a while that dG(c) = 3. Then we may suppose that cx
is not contractible (for otherwise the statement would follow for y := c), hence
c, x are contained in some T1 ∈ T (G). As x is essential for T1, T1 separates y
from the vertex d in {a, b}−{c}, and as x′ is a common neighbor of y, d, x′ ∈ T1

follows. But then a has only one neighbor outside T1, so it can’t be essential
for T1, which is absurd.

It follows that dG(a), dG(b) > 3. As ay, by 6∈ E(G), L := Fa ∩ F0 6= ∅ and
R := Fb ∩ F0 6= ∅. By Thereom 3, one of ax, bx is contractible; without loss of
generality, let bx be contractible. Since G({x, x′, b}) is not contractible, there
exists a vertex v such that T2 := {x, x′, b, v} separates G, and since xb is con-
tractible, |T2| = 4 follows, and x′ is essential for T2. Consequently, there exists
a T2-fragment F2 such that a ∈ F2 and z = y ∈ F2. As L is an {a, t, z = y}-
fragment, there exists an a, z =y-path of length at least 2 whose inner vertices
are in L 6= ∅, so v ∈ L follows.

But then all vertices in R ∪ {t, z = y} are in the same component of G − T2

(and, thus, in F2), as R is a {b, t, z=y}-fragment and for each vertex r ∈ R 6= ∅
there exists a system of three r, {b, t, z = y}-paths which have pairwise only
r in common and whose inner vertices are in R. In particular, t ∈ F2. For
each ` ∈ L − {v}, there exists a system of three `, {a, t, z = y}-paths which
have pairwise only ` in common and whose inner vertices are in L; either the
`, t- or the `, z = y-path avoids v, so ` ∈ F2. Consequently, F2 = {a}, and
NG(a) = {x, x′, v}, contradicting dG(a) > 3.

This proves Claim 1.

Since x is not essential for the separator {x, a, b, z} of G, T0 := {a, b, z} ∈ T (G),
and we may take a T0-fragment F0 such that x ∈ F0. By Claim 1, it follows
y ∈ F0 and, thus, F0 ∩ ({a, b} ∪NG(y)) = ∅.

Claim 2. t ∈ F0 and x′ ∈ F0

There is an a, b-path P of length at least 2 whose inner vertices are in F0. Hence
T intersects F0. Since x, y ∈ F0, x′ ∈ NG(y) ⊆ (T0 ∪ F0) − {a, b} and t ∈ F0

follow; assume, to the contrary, that x′ ∈ T0, so x′ = z; for some c ∈ {a, b}, Fc

contains a neighbor of y, so ∅ 6= Fc ∩ F0 =: L; since x has no neighbor in L,
L must be a {c, x′, y}-fragment, contradicting the contractibility of x′y. This
proves Claim 2.

Claim 3. Let c ∈ {a, b}. If xc is contractible then the edges cf with f ∈ F0

are not.

We may assume c = b without loss of generality. Let f ∈ NG(b)∩F0 and suppose,
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to the contrary, that bf is contractible. Since G({x, b, f}) is not contractible,
there exists a vertex v such that T1 := {x, b, f, v} separates G. Since bx is
contractible, |T1| = 4, and since xb, bf are contractible, x, f (and v) are essential
for T1. Hence T1 separates T0 (cf. (*)), and, therefore, it separates a from z.
Let F1 be a T1-fragment with a ∈ F1 and z ∈ F1. As x is essential for T1, y ∈ F1

follows.

If v ∈ F0 then F0 ∩ F1 is an {b, x, z}-fragment, contradicting the contractiblity
of bx.

Consequently, v ∈ F0, and F0 ∩ F1 = ∅ (for otherwise F0 ∩ F1 would be an
{a, b, f}-fragment, contradicting the contractibility of bf). Similarly, F0 ∩ F1 =
∅, for otherwise the latter set would be a {b, f, z}-fragment, contradicting the
contractibility of bf . Hence F0 = {f}.

If L := F0 ∩ F1 was empty then F1 = {a} would follow, and NG(a) = {f, v, x}.
We may assume that xa is not contractible, for otherwise our statement would
follow with y := a. Hence there exists a vertex z′ such that T ′

0 := {x, a, z′} ∈
T (G). There exists a T ′

0-fragment F ′
0 with b ∈ F ′

0 and y ∈ F ′
0. It follows

f ∈ T ′
0 ∪ F ′

0, so f ∈ F ′
0 and v ∈ F ′

0 as a is essential for T ′
0.

Now z′ is a cut vertex of G− {a, b, x} (separating v from f). By choice of z we
conclude z′ = z.

If R := F ′
0 ∩ F0 6= ∅ then the latter set would be an {a, b, z, x}-fragment; but

neither a nor x have neighbors in R, so R is a {b, z}-fragment — contradiction.
Hence F ′

0 = {f, b}. But then dG(b) = 3 as b is not adjacent to a, and the
statement of our lemma follows for y := b.

Consequently, L 6= ∅, and, as x has no neighbor in L, L is an {a, b, v}-fragment.
Therefore, we find an a, b-path P of length at least 2 whose inner vertices are
in L. As P, afb are two openly disjoint a, b-paths which do not contain x′ ∈
NG(y ∈ F0 ∩ F1), T can’t separate a from b in G, a contradiction.

This proves Claim 3.

Claim 4. For c ∈ {a, b}, either z ∈ Fc, or Fc = {c} and NG(c) = {x, x′, t}.

Suppose that z ∈ Fc. Then Fc ∩ F0 = ∅, as otherwise the latter set would be
a {c, t}-fragment. Furthermore, Fc ∩ F0 = ∅, for otherwise the latter set would
be an {x, y, x′, c}-fragment without neighbors of x and, therefore, a {y, x′, c}-
fragment, which contradicts the contractibility of x′y. Hence Fc ⊆ T0, so Fc =
{c}. Since yc 6∈ E(G), NG(c) = T − {y} = {x, x′, t}. This proves Claim 4.

As we noticed before, by Theorem 3, there exists a c ∈ {a, b} such that cx is
contractible. We may assume that dG(c) > 3 (for otherwise the statement would
follow with y := c). By Claim 4, z ∈ Fc, and, again by Claim 4, Fc consists of
the vertex d ∈ {a, b} − {c}, where NG(d) = {x, x′, t}. We may assume that xd
is not contractible, for otherwise the statement of our lemma would follow for
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y := d.

Claim 5. x′c 6∈ E(G).

Suppose that x′c ∈ E(G). Since xd is not contractible, there exists a vertex v
such that T2 := {x, d, v} separates G. As x is essential for T2, there exists a
T2-fragment F2 such that c ∈ F2 and y ∈ F2. Since x′ is a common neighbor of
c, y, x′ ∈ T2 follows, implying that x′ = v. But then d is not essential for T2, a
contradiction — which proves Claim 5.

Claim 6. For f ∈ NG(c) ∩ (F0 − {x, x′}), cf is not contractible.

Suppose, to the contrary, that cf is contractible. Since G({x, c, f}) is not con-
tractible, there exists a vertex v such that T2 := {x, c, f, v} separates G. Since
cx is contractible, |T2| = 4, and since cf is contractible, x is essential for T2.
Hence there exists a T2-fragment F2 such that d ∈ F2 and y ∈ F2. As x′ is a
common neighbor of d, y, x′ ∈ T2 follows, implying that x′ = v. Let p be the
neighbor of x′ distinct from d, y.

If p ∈ F2 then d is the unique vertex in NG({x, x′})∩F2, and (T2−{x, x′})∪{d} =
{c, f, d} separates G (it separates t ∈ F2 6= {d} from y), which contradicts
the contractibility of cf . If, otherwise, p ∈ F2 then y is the unique vertex
in NG({x, x′}) ∩ F2. Since dG(y) > 3 and c 6∈ NG(y), F2 6= {y}, and so
(T2 − {x, x′}) ∪ {y} separates G, which contradicts again the contractibility of
cf .

This proves Claim 6.

We are now able to accomplish the proof by showing X(c) = {c}. It suffices to
prove that for every f ∈ NG(c)−{x}, cf is not contractible. This is immediate
if f = z ∈ T0, it follows from Claim 3 if f ∈ F0, and it follows from Claim 5 and
Claim 6 if f ∈ F0. Q.E.D.

Theorem 5 Every 3-connected graph G on at least 9 vertices has more than
|V (G)|/10 contractible triples.

Proof. Let F , A(·), B(·), B be as in the proof of Corollary 1. Observe that
A(F ) ∩ A(F ′) = ∅ for F 6= F ′ in F and |B(F )| = 10 for all F ∈ F hold under
our present, weaker conditions, too. Let V3 denote the set of vertices of degree
3 in G.

Consider x ∈ V3. If x ∈ B then we choose any ϕ(x) ∈ F with x ∈ B(ϕ(x)) and
define α(x) to be the set of those six paths of order 3 which intersect each of
ϕ(x), NG(ϕ(x)), ϕ(x). By Lemma 4, the paths in α(x) are contractible.

If x ∈ V3 −B is on a contractible triple H then we set β(x) := H.

If x ∈ V3 − B is not on a contractible triple then, by Lemma 5, there exists a
vertex y := yx such that xy is contractible and either dG(y) = 3, or dG(y) > 3
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and there is no x′ ∈ NG(y) of degree 3 not on a contractible triple such that x′y
is contractible. Note that if dG(y) = 3 then x would be the peak of some cube
fragment F ∈ F by Theorem 4 and, thus, in B. Hence dG(y) > 3.

If G′ := G − {x, y} is a cycle then the entire statement of the theorem follows
from Lemma 3. Otherwise, G′ contains a pair of disjoint nonadjacent removable
links P,Q with |V (Q)| ≥ |V (P )| ≥ 2 by Theorem 2. Since G is minimally 3-
connected, every vertex in V (P )∪V (Q) must be adjacent to exactly one of x, y.
We now define a contractible triple γ(x) := Hxy as follows.

If P = pq then x can’t be adjacent to V (P ) (for otherwise G({p, q, x}) would
be a contractible triple as dG(y) > 3), and we define γ(x) to be the contractible
triangle Hxy := G({p, q, y}). Otherwise, |V (Q)| ≥ |V (P )| ≥ 3. If P or Q
contains a subpath pqr of order 3 such that p, q, r ∈ NG(y) then this path is
contractible and we set γ(x) := Hxy := pqr. Otherwise, x has a neighbor p in
V (P ) and a neighbor q ∈ V (Q). If p was an inner vertex of P and q was an
inner vertex of Q then pxq would be a contractible triple, which is not possible;
therefore, there are adjacent neighbors v, w of y in P or in Q, and we choose
γ(x) := Hxy = vwy, which is a contractible triangle.

Let C be the set of contractible triples and let C :=
⋃

C∈C
V (C). Then

α : V3 ∩B −→ P(C),
β : (V3 −B) ∩ C −→ C, and
γ : (V3 −B)− C −→ C.

For x, x′ ∈ (V3 − B) − C and for distinct y = yx, y′ = yx′ we observe that
Hxy 6= Hx′y′ , as y can be reconstructed from Hxy to be the unique common
neighbor of all vertices of degree 3 in V (Hxy). Since yx 6= yx′ for x 6= x′ by
choice of yx, yx′ , γ is an injection.

For x ∈ (V3 −B) ∩C and x′ ∈ V3 ∩B, β(x) is not contained in α(x′), since the
vertices of every path of α(x′) are contained in B(ϕ(x′)), whereas x ∈ V (β(x))
is not.

For x ∈ (V3 − B) − C and x′ ∈ V3 ∩ B, γ(x) is not contained in α(x′), since
the two vertices in B(ϕ(x′)) ⊆ V3 of any path in α(x′) do not have a common
neighbor at all, whereas yx is the common neighbor of the vertices of degree 3
in γ(x).

Since |ϕ−1(F )| ≤ |B(F )| = 10 and |(β ∪ γ)−1(H)| ≤ 4 for all H ∈ C, we thus
deduce that there are at least |V3 − B|/4 + 6 · |F| ≥ |V3 − B|/4 + 6 · |B|/10 ≥
|V3|/4 many contractible triples in G.

As |V3| > 2
5 |V (G)| by Thereom 2, the statement follows. Q.E.D.
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