
Space bounds for infinitary computation

Benedikt Löwe?

Institute for Logic, Language and Computation, Universiteit van Amsterdam,
Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands

Mathematisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn,
Beringstraße 1, 53115 Bonn, Germany

Fachbereich Mathematik, Universität Hamburg, Bundesstrasse 55, 20146 Hamburg,
Germany

e-mail: bloewe@science.uva.nl

Infinite Time Turing Machines (or Hamkins-Kidder machines) have been
introduced in [HaLe00] and their computability theory has been investigated
in comparison to the usual computability theory in a sequence of papers by
Hamkins, Lewis, Welch and Seabold: [HaLe00], [We00a], [We00b], [HaSe01],
[HaLe02], [We04], [We05] (cf. also the survey papers [Ha02], [Ha04] and [Ha05]).
Infinite Time Turing Machines have the same hardware as ordinary Turing Ma-
chines, and almost the same software. However, an Infinite Time Turing Machine
can continue its computation if it still hasn’t reached the Halt state after in-
finitely many steps (for details, see § 1).

In [Sc03], Schindler started the investigation of the corresponding complexity
theory by defining natural time complexity classes for Infinite Time Turing Ma-
chines. Schindler, Welch, Hamkins and Deolalikar have proved with methods of
descriptive set theory that the big open questions of standard complexity theory

P
?
= NP and P

?
= NP ∩ coNP have negative answers for Infinite Time Turing

Machines [Sc03,DeHaSc05,HaWe03].
For an ordinary Turing machine that stops in a finite number t of steps, it is

easy to define its space usage: during its computation, it has used at most t cells
of the tape, possibly less. This finite number of used cells can serve as a measure
of space usage. A halting computation will have used a finite amount of time
and space; if, however, time or space usage are infinite, then this corresponds
to usage of order type ω and automatically implies that the computation was
non-halting.

In this paper, we shall consider both Hamkins-Kidder machines and Koepke’s
Ordinal Machines as described in [Ko005a] and [Ko005b]. Koepke machines can
not only extend their computation into transfinite ordinal time, but they also
have ordinal-indexed cells on their tapes. Therefore, there is a natural notion
of space usage for computations on Koepke machines that corresponds to the
classical idea of space constraints on Turing Machines: just count the number
(order type) of cells being used.

? The author thanks Joel Hamkins (New York NY), Peter Koepke (Bonn), Philip
Welch (Bristol) and Joost Winter (Amsterdam) for discussions about infinitary com-
putation, and the anonymous referees for important comments.



This is very different for Hamkins-Kidder machines whose space is con-
strained to a tape of order type ω whereas time can have arbitrary ordinals
as order type. This asymmetry makes is hard to give a definition of space usage
that can be compared to time usage.

In this paper, we discuss the basics of possible definitions for space constraints
for the mentioned two types of infinitary Turing machine computations. In § 1, we
give all definitions needed in the paper and then briefly discuss space constraints
for Koepke’s machines in § 2 and space constraints for Hamkins-Kidder machines
in § 3. Finally, in § 4, we discuss nondeterministic computation.

This paper raises very general questions about infinitary algorithms. We list
them here and will explain the questions in more detail in the respective sections:

1. Are there any algorithms for Koepke’s ordinal machines that use the ad-
ditional transfinite space in order to compute more than Hamkins-Kidder
machines within time restrictions? (§ 2; Theorem 3 gives an example of a use
of the additional space, but it is not time efficient.)

2. Are there any algorithms for Hamkins-Kidder machines that compute com-
plicated sets with unlimited time but very simple snapshots on the scratch
tape? (§ 3; Question 10 provides a very basic test question.)

3. Are there any nondeterministic algorithms that are space efficient? (§ 4;
Proposition 11 gives a general description of nondeterministic algorithms
that mimic guess nondeterminism, but they are not space efficient.)

1 Definitions

In the following, we shall give a description of both Hamkins-Kidder machines
and Koepke’s ordinal machines.

Like ordinary Turing machines, both types of infinitary Turing machines con-
sist of an input tape, a scratch tape and an output tape, a reading/writing
head, a finite set of states and a program δ that assigns to a state s and the
content of a bit on the scratch tape and the input tape an action. The action
consists of moving the head right, moving the head left, writing on the output
tape, writing on the scratch tape, erasing on the scratch tape, or a combina-
tion of these actions. Note that we may not erase on the output tape; this is
to make sure that the program doesn’t abuse the output tape as a scratch tape
(in our definition of the space complexity, we shall only count the complexity of
snapshots on the scratch tape).1

In the case of the Hamkins-Kidder machines, all of the three tapes have order
type ω (as for ordinary Turing machines), in the case of the Koepke machines,
the tapes are class-sized with a cell for every ordinal. If we have a class-sized
tape, then we have to say what the machine will do if it in a cell indexed with
a limit ordinal and receives the comment “move left”. In that case, we’ll move
the reading/writing head to the 0th cell.

1 Since we’re only discussing decision problems here, i.e., the output is either 0 or 1,
this is equivalent to saying that the output tape has only one bit.



If we fix a machine T , an input x and an appropriate time α, then we write
sT

α(x) for the state that the machine is in and hT
α(x) for the position of the head

at time α with initial input x. If β is an index for a cell on the scratch tape, then
we write cT

α(x, β) for its content at time α. We also use cT
α(x) for the function

β 7→ cT
α(x, β) which we call the snapshot at time α. Note that this a function

with domain ω for Hamkins-Kidder machines, and a class function with domain
Ord for Koepke machines.

For finitary computation, the times α mentioned in the last definitions are
always finite. Infinitary Turing machines differ from a normal Turing machines
in that they are allowed to continue their computation beyond ω many stages
of computation. At a limit step of the computation, all the cells on the tape
are adjusted according to the limit behaviour of the entries along the infinite
computation: If 0 occurred cofinally often, the cell will get value 0 in the limit
step, if on the other hand, from a point on, 1 was written in the cell, the cell
will get value 1 (this corresponds to taking the liminf of the cell values). The
state of the machine at a limit stage λ will also be the liminf of the states below
λ. Note that while this is the definition from [Ko005a] for Koepke machines, it
is not the standard definition for Hamkins-Kidder machines: in [HaLe00], these
have a designated limit state that is assumed in all limit stages. In terms of
computational power, the two definitions for Hamkins-Kidder machines don’t
make a difference (as long as we have more than one tape).

The position of the reading/writing head at a limit stage λ is where our two
infinitary models differ: For the Hamkins-Kidder machines, the head will always
be moved to cell 0 at a limit stage: consequently, the head will never move to a
cell indexed with an infinite ordinal. For the Koepke machines, the head will be
moved to

hT
λ (x) := lim inf

sT
α (x)=sT

λ
(x)

hT
α(x).

Let us summarize the behaviour of the three types of machines in the follow-
ing table:

time tape(s) cells at limit head at limit

Turing machines ω ω n.a. n.a.

Hamkins-Kidder machines Ord ω lim inf first cell
Koepke machines Ord Ord lim inf lim inf

We say a machine accepts an input x if it reaches the Halt state and has 1
on the output tape at that time. If it yields 0, we say that it rejects the input
x. A set A is (Turing, Hamkins-Kidder, Koepke) decidable if there is a
(Turing, Hamkins-Kidder, Koepke) machine that accepts exactly the elements
of A and rejects exactly the reals not in A. Let us denote the set of Turing
(Hamkins-Kidder, Koepke) decidable sets by DecT (DecHK, DecK).

For all of the three types of machines, there is an obvious definition of time
usage for a halting computation: if T is a machine of the appropriate type that
reaches the Halt state at input x, then we write time(x, T ) for the first α such
that sT

α(x) = Halt. If f : R → Ord is a function assigning ordinals to inputs,



we say that T is an time f machine (or more simply, an f -machine) if for all
x, we have time(x, T ) < f(x).

Following Schindler [Sc03], we write Pf for the class of all sets of reals that
are decidable by f -machines. If f is the constant function f(x) = ξ, we also call
f -machines ξ-machines. We write Pξ for the class of all sets decidable by an
η-machine for some η < ξ. In order to distinguish the time classes for our types
of machines, we write PHK

f and PHK
ξ for the time classes for Hamkins-Kidder

machines and PK
f and PK

ξ for the time classes for Koepke machines.

Note that for Turing machines and Hamkins-Kidder machines, there is only
a set of snapshots, whereas for Koepke machines, there is a proper class of snap-
shots. This simple observation has a portentous consequence for Hamkins-Kidder
machines: they have far more time at their disposal than there are possible com-
putation situations. If there are two limit ordinals λ < λ∗ such that the compu-
tation at λ and λ∗ has the same state and snapshot and none of the cells with
the value 1 at λ changes its value between λ and λ∗, we call this a looping
situation.

Observation 1 (Hamkins-Lewis) A Hamkins-Kidder machine does not halt

if and only if its computation has a looping situation.

Proof. [HaLe00, Corollary 1.2].2 q.e.d.

The analogue of Observation 1 is not true for Turing and Koepke machines,
as they have exactly as much time as there are snapshots. In both cases consider
the empty input and the machine that writes 1 and moves right if it hits a 0.
This machine will never halt nor loop.

Another observation that will be important is that infinitary computations
can be done in initial segments of the constructible hierarchy. For a Hamkins-
Kidder machine T and any time α and input x, let cT

α(x) be the content of the
full tape (of order type ω) at time α (with input x and machine T ).

Observation 2 For any Hamkins-Kidder machine T , any ordinals α < ξ such

that ξ is admissible, and any x ∈ 2ω, we have that

cT
α(x) ∈ Lξ[x].

2 Koepke’s ordinal machines

Koepke’s analysis of ordinal machines from [Ko005a,Ko005b,Ko0Ko1∞] does
not pay attention to either computing resources or real numbers. Whereas we
are interested in decision problems, he is interested in creating (characteristic

2 The diligent reader checking this again [HaLe00] might notice that they write “the
cells which are 0 at the limit never subsequently turn into 1 (we allow the 1s to
turn to 0 and back again)”. This is due to the fact that [HaLe00] uses a limsup rule
instead of our liminf rule.



functions of) sets on the output tape and allows as input finite sets of ordinals
as parameters.

However, if you restrict your attention to decision problems, Koepke machines
are still more expressive than Hamkins-Kidder machines as the following result
shows:

Theorem 3 The halting problem for Hamkins-Kidder machines is Koepke de-

cidable. Hence, the set of Koepke decidable sets of reals is strictly bigger than

that of Hamkins-Kidder decidable sets.

Proof. By [HaLe00, Theorem 4.1], the Hamkins-Kidder halting problem is not
Hamkins-Kidder decidable but semi-decidable. We only have to give an algorithm
to decide the complement of the Hamkins-Kidder halting problem with a Koepke
machine.

We shall be using Observation 1. In order to find out whether a computation
doesn’t halt, we can just check whether a looping situation occurred in the
computation.

Since a Koepke machine has an unlimited amount of space, and every Ham-
kins-Kidder situation can be coded as a real, we can simulate the run of a
Hamkins-Kidder machine while keeping track of the entire computation on the
class-sized tape. It is now easy to check whether a looping situation occurred.

q.e.d.

If you look at the algorithm used to decide the Hamkins-Kidder halting
problem in this proof, you’ll notice that it is neither time nor space efficient.
This is a general problem with complexity theory for Koepke machines: while
Theorem 3 proves that you can use the size of the tape to compute more, there
is no known technique to use it in order to compute faster.

As a consequence, we do not know any non-trivial separation results of time
complexity for Hamkins-Kidder machines and Koepke machines.

Proposition 4 If ω2 ≤ α ≤ ωCK
1 , then PK

α = PHK
α .

Proof. Fix η < α. Given a set A that is Koepke decidable by an η-machine, we
will describe how we decide it with a Hamkins-Kidder η-machine. Note that the
original η-machine can never use more than the first η many cells of the class-size
tape.

Since η < ωCK
1 , we can produce a code of η on the scratch tape within ω

steps. After that, we use that code in order to think of the ω-tape as an η-tape
and run the Koepke algorithm on it. This combined algorithm takes ω + η = η

steps. q.e.d.

What if we allow a Koepke machine more than a constant amount of time?
Let f0(x) := ωx

1 . Then what is PK
f0

? By [DeHaSc05, Theorem 4.2 (ii)], PHK
f0

=

PHK
ωCK

1

; this was strengthened by Welch [We06, Proposition 2] to the following

result:

Proposition 5 (Welch) Every f0-machine is an ωCK
1 -machine.



An analogue of Proposition 5 for Koepke machines together with Proposition 4
would show that PK

f0
= PHK

f0
.

For a Koepke machine T , an input x and a time α, we write uT
α(x) :=

sup{β ; cT
α(x, β) 6= 0} for the space used at time α. If a Koepke machine with

input x reaches the Halt state at time time(x, T ), we write

space(x, T ) := sup{uT
ξ (x) ; ξ < time(x, T )}.

If f : R → Ord is a function assigning ordinals to inputs, we say that T is
an space f machine if for all x, we have space(x, T ) < f(x). In analogy to
Schindler’s P-notation for time complexity, we write PSPACEK

f for the class of

all sets decidable by space f machines and PSPACEK
ξ for the class of all sets

decidable by space η machines for some η < ξ.
As for ordinary Turing machines, we immediately get PK

f ⊆ PSPACEK
f (for

all functions f), as each new used cell on the scratch tape requires one unit of
time to be used or skipped.

Since Hamkins-Kidder machines are essentially just space ω Koepke ma-
chines, we can mimic arbitrary Hamkins-Kidder computations with space-boun-
ded Koepke machines:

Proposition 6 DecHK ⊆ PSPACEK
ω+2.

Proof. Let T be a Hamkins-Kidder machine deciding A. Based on T , we con-
struct a Koepke machine that can recognize when it is in a limit stage and that,
whenever it is in a limit stage, moves to cell 0. (If it happens to be in cell ω,
moving one step left will move the head to cell 0.) This machine mimics the
limit behaviour of T and uses the cells up to the ωth cell, i.e., is a space ω + 1
machine. q.e.d.

Corollary 7 P 6= PSPACE for Koepke machines, i.e., PK
ωω 6= PSPACEK

ωω .

Proof. Propositions 4 and 6 yield this simple separation result as follows:

PK
ωω = PHK

ωω $ DecHK ⊆ PSPACEK
ω+2 ⊆ PSPACEK

ωω .

q.e.d.savit

3 Hamkins-Kidder machines

For Hamkins-Kidder machines, the function uT
α(x) := sup{β ; cT

α(x, β) 6= 0}
as defined above will be equal to ω as soon as the entire tape is being used,
and consequently for almost all non-trivial T and x, we’ll have space(x, T ) = ω.
Thus, we have to use a different approach in order to get an informative measure
for space usage.



In this section, we shall give two different definitions of space usage for
Hamkins-Kidder machines. As above, let cT

α(x) be the content of the full tape
(of order type ω) at time α (with input x and machine T ). We can define

`T
α(x) := min{η ; cT

α(x) ∈ Lη[x]}, and

space0(x, T ) := sup{`T
ξ (x) ; ξ < time(x, T )}.

As before, we define a notion of space0 f machine for Hamkins-Kidder ma-
chines and derive a definition of the class PSPACEHK,0

f from it. Let us call a
function f : R → Ord admissible if for all x, the ordinal f(x) is x-admissible.

Proposition 8 For any admissible function f , we have PHK
f ⊆ PSPACEHK,0

f .

Proof. Let T be a machine deciding A in time f . That means that for all in-
puts x, the computation has length shorter than f(x). Fix some ξ < f(x). By
Observation 2, we have that cT

ξ (x) ∈ Lf(x)[x]. q.e.d.

Alternatively, we define

space1(x, T ) := sup

{

ω
cT

ξ (x)

1 ; ξ < time(x, T )

}

+ 1,

and a notion of space1 f machine and the class PSPACEHK,1
f .

Proposition 9 For any admissible function f , we have PHK
f ⊆ PSPACEHK,1

f .

Proof. Let T be a machine deciding A in time f . Fix x, then the computation
with input x has length shorter than f(x). As in the proof of Proposition 8, we
know that {cT

ξ (x) ; ξ < time(x, T )} ⊆ Lf(x)[x].

Towards a contradiction, assume that space1(x, T ) ≥ f(x), so there must

be some ξ such that ω
cT

ξ (x)

1 = f(x). But then there is a code z for f(x) that is
(Turing)-recursive in cT

ξ (x) ∈ Lf(x)[x], and hence z ∈ Lf(x)[x], contradicting the
x-admissibility of f(x). q.e.d.

Propositions 8 and 9 are instances of the slogan “Using space costs time”.
This is equally true for classical, finitary complexity theory. Even for finite time
Turing machines, it is not known whether P $ PSPACE. This question can be
rephrased as

“Are there space-efficient algorithms for problems that cannot be solved
quickly?”

Of course, this question can be applied to the three relations

PK
f ⊆ PSPACEK

f ,

PHK
f ⊆ PSPACEHK,0

f , and

PHK
f ⊆ PSPACEHK,1

f



as well. The first algorithm that comes to mind is the Hamkins-Lewis algorithm
for deciding Π1

1 sets [HaLe00, Count-Through Theorem 2.2]: it is not in Pf0

for f0 : x 7→ ωx
1 ; however, it is easily seen that this algorithm produces the

ill-founded part of the relation coded by x on the scratch tape which is not in
general in Lf(x)[x]. As a consequence, the algorithm uses both a lot of time and
a lot of space, and is no answer to the above question.

This example is illustrative in the following sense: looking at the different
infinitary algorithms that are at our disposal, the only way that they use their
infinite time is to produce more complicated reals on the scratch tape. This
observation might lead to the conjecture that time and space complexity for
infinitary computation are the same.

Let us highlight this bold conjecture with a precise test question: Call a
Hamkins-Kidder machine recursive if it halts on all inputs and for all x and α,
the real cT

α(x) is (Turing-)recursive. We define PSPACE? to be the class of sets
of reals that are decidable by recursive Hamkins-Kidder machines. Clearly,

PSPACE? ⊆ PSPACEHK,0
ωω =: PSPACE.

Question 10 Can we prove that PSPACE? ⊆ P := PHK
ωω ?

4 Nondeterministic computation

Savitch’s Theorem [Pa94, Theorem 7.5] tells us that for Turing computations,
nondeterminism does not increase space efficiency (in other words, PSPACE =
NPSPACE).

In this section, we briefly look at the interaction between nondeterminism
and our space complexity classes for Hamkins-Kidder machines and Koepke
machines.

In [Sc03], Schindler defined the class NPf without introducing a notion of
nondeterministic Hamkins-Kidder computation. For reals x and y, we define as
usual

y ∗ x(n) :=

{

y(k) if n = 2k, and
x(k) if n = 2k + 1.

We call a machine T a ∗-time f machine if it halts for all inputs and for all
x and y, we have that time(y ∗ x, T ) < f(x). A set A is in NPf if there is a
∗-time f machine T such that

x ∈ A ⇐⇒ ∃y(T (y ∗ x)↓ = 1).

If f is a constant function, we can replace the “∗-time f machine” with a “time
f machine”.

Schindler’s notion naturally connects to a notion of nondeterministic com-
putation: a nondeterministic Hamkins-Kidder machine is a machine with the
Hamkins-Kidder architecture but a instead of a program δ that is a function it
has a relation that gives a set of allowed actions. A nondeterministic Hamkins-
Kidder machine T is called a nondeterministic time f machine if all possible



T -computations with input x halt before time f(x). A set A is nondeterminis-
tically decidable by a machine T if there is at least one possible T -computation
that accepts x.

Proposition 11 Let f : R → Ord be a function such that for all x, we have

ω · f(x) = f(x). Then the following are equivalent for a set of reals A:

1. A ∈ NPf , and

2. A is nondeterministically decidable by a nondeterministic time f machine.

Proof. “⇒”: Let T be a ∗-time f machine for deciding A. At input x, we use the
first ω stages of the computation to generate arbitrary witnesses by the simple
program described by “write either 0 or 1 and move on”. Thus, a nondetermin-
istic Hamkins-Kidder machine can produce at stage ω of the computation all
possible values of y on the scratch tape. Now run T on the arrangement of x on
the input tape and y on the scratch tape as if it were y ∗ x on the input tape.
We know that T will reach the Halt state in less than f(x) steps. So the entire
computation uses less than ω +f(x) = f(x) steps and one of the branches of the
computation accepts x.

“⇐”: Let T be a nondeterministic time f machine deciding A. Then we can
see the computation of T at input x as a finitely branching tree of height at most
f(x) < ω1. The branching pattern in each branch b of the tree can be coded into
a real yb (the code is an element of WO coding the length of the computation
in the branch b, thus identifying each step of the computation with a natural
number, and a function assigning the behaviour of T at the computation step
coded by n in the branch b).

We can now define a ∗-time f machine T ∗ as follows: on input y ∗ x, the
machine checks whether y is a code (in the sense of the previous paragraph)
for a T -computation with input x, and –as long as it is–, follows this com-
putation. Note that each step of the T -computation may take ω steps in the
T ∗-computation, as T ∗ has to search for the next command to execute in the
code y. If at any point it turns out that y is not a code for a T -computation,
the machine Halts and returns 0.

If b is an accepting branch of T , then yb ∗ x will be accepted by T ∗, and for
each y, the computation with input y ∗ x will take at most ω · f(x) steps. q.e.d.

From the point of view of space constraints, it is easy to see that the proof of
Proposition 11 is highly inefficient: the nondeterministic computation contains
every single real as a potential snapshot of the scratch tape. This raises the
third general question: can we come up with a nondeterministic algorithm that
is space efficient?

More precisely, if T is a nondeterministic Hamkins-Kidder machine and b is
a branch through its computation tree at input x with the sequence 〈bγ ; γ < ξ〉
of snapshots occurring on the scratch tape during the computation along b, we
write

`γ(b) := min{η ; bγ ∈ Lη[x]},

space0(b) := sup{`γ(b) ; γ < ξ}, and



space1(b) := sup{ω
bγ

1 ; γ < ξ} + 1.

For i ∈ {0, 1}, we say that a Hamkins-Kidder machine T is a nondeterministic
spacei f machine if all possible T -computations with input x halt for all
branches b, we have spacei(b) < f(x). We say that A ∈ NPSPACEHK,i

f if it is

decidable by a nondeterministic spacei f machine.

Question 12 For what functions f do we have

PSPACEHK
f = NPSPACEHK,i

f ?

Analogously, we can define nondeterministic space classes NPSPACEK
f for

Koepke machines. Hamkins and Welch have noticed [HaWe03, Theorem 1.7]
that in general, nondeterministic Hamkins-Kidder computation can be more
powerful than deterministic Hamkins-Kidder computation. Their proof shows
that the Hamkins-Kidder halting problem is in NPHK

ω1
. Combining this result

with Propositions 6 and 11, we get that

PSPACEK
ω+1 $ NPSPACEK

ω+1.

References

[CoLöTo05] S. Barry Cooper, Benedikt Löwe, Leen Torenvliet (eds.), CiE 2005:
New Computational Paradigms, Papers presented at the conference
in Amsterdam, June 8-12, 2005, Heidelberg 2005 [Lecture Notes in
Computer Science 3526]

[DeHaSc05] Vinay Deolalikar, Joel D.Hamkins, Ralf-Dieter Schindler, P 6=
NP ∩ coNP for Infinite Time Turing Machines, Journal of Logic

and Computation 15 (2005), p. 577–592
[Ha02] Joel D.Hamkins, Infinite time Turing machines, Minds and Ma-

chines 12 (2002), p. 521–539
[Ha04] Joel D.Hamkins, Supertask Computation, in: [LöPiRä04, p. 141–158]
[Ha05] Joel D.Hamkins, Infinitary Computability with Infinite Time Turing

Machines in: [CoLöTo05, p. 180–187]
[HaLe00] Joel D.Hamkins, Andy Lewis, Infinite time Turing machines, Jour-

nal of Symbolic Logic 65 (2000), p. 567–604
[HaLe02] Joel D.Hamkins, Andy Lewis, Post’s problem for supertasks has both

positive and negative solutions, Archive for Mathematical Logic

41 (2002), p. 507–523
[HaSe01] Joel D.Hamkins, Daniel E.Seabold, Infinite time Turing machines

with only one tape, Mathematical Logic Quarterly 47 (2001),
p. 271–287

[HaWe03] Joel D.Hamkins, Philip D. Welch, Pf 6= NPf for almost all f ,
Mathematical Logic Quarterly 49 (2003), p. 536–540

[Ko005a] Peter Koepke, Turing Computations on Ordinals, Bulletin of Sym-

bolic Logic 11 (2005), p. 377–397
[Ko005b] Peter Koepke, Computing a model of set theory, in: [CoLöTo05,

p. 223–232]



[Ko0Ko1∞] Peter Koepke, Martin Koerwien, Ordinal computations, to appear

in: Barry Cooper, Benedikt Löwe, Dag Normann (eds.), Mathematics of
Computation at CiE 2005, special issue of the journal Mathematical

Structures in Computer Science

[LöPiRä04] Benedikt Löwe, Boris Piwinger, Thoralf Räsch (eds.), Classical and
New Paradigms of Computation and their Complexity Hierarchies, Pa-
pers of the conference “Foundations of the Formal Sciences III”, Dor-
drecht 2004 [Trends in Logic 23]

[Pa94] Christos H.Papadimitriou, Computational Complexity, Reading MA
1994

[Sc03] Ralf Schindler, P 6= NP for infinite time Turing machines, Monats-

hefte der Mathematik 139 (2003), p. 335–340
[We00a] Philip D.Welch, The length of infinite time Turing machine computa-

tions, Bulletin of the London Mathematical Society 32 (2000),
p. 129–136

[We00b] Philip D.Welch, Eventually infinite time Turing machine degrees: In-
finite time decidable reals, Journal of Symbolic Logic 65 (2000),
p. 1193–1203

[We04] Philip D.Welch, Determinacy and Post’s Problem for Infinite Time
Turing Machines, in: [LöPiRä04, p. 223–237]

[We05] Philip D.Welch, Arithmetical Quasi-inductive definitions and the
transfinite action of 1-tape Turing Machines, in: [CoLöTo05, p. 532–
539]

[We06] Philip D.Welch, Non-deterministic halting times for Hamkins-Kidder
Turing machines, this volume


