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Note

A Short Proof of Fleischner’s Theorem

Angelos Georgakopoulos

Abstract

We give a short proof of the fact that the square of a finite graph is
Hamiltonian.

1 Introduction

The square G2 of a graph G is the graph on V (G) in which two vertices are
adjacent if and only if they have distance at most 2 in G. In 1974, Fleischner
[3, 4] proved that the square of every 2-connected finite graph has a Hamilton
cycle. Thomassen [7] extended this fact to locally finite 1-ended graphs, where
a Hamilton cycle is taken to be an infinite path containing all vertices. Using
Thomassen’s method, Řı́ha (see [8] or [2]) produced a shorter proof of Fleis-
chner’s Theorem. History repeated itself, and once again the study of infinite
graphs led to a new proof of Fleischner’s Theorem: a proof is presented here that
is shorter than Řı́ha’s, and uses techniques developed for the recent extension
of Fleischner’s Theorem to locally finite graphs with any number of ends1.

In [6] the present proof is adapted to give a short proof of another theorem
of Fleischner [3], stating that the total graph of every finite 2-edge-connected
graph has a Hamilton cycle.

2 Definitions

We will be using the terminology of [2]. Let G be a multigraph, and J a walk in
G. A pass of J through a vertex x is a subwalk of J of the form uexfv, where
e and f are edges. By lifting this pass we mean replacing it in J by the walk
ugv, where g is a u-v edge, if u 6= v, or by the trivial walk u if u = v (in fact,
the latter case will never occur).

A double edge is a pair of parallel edges, and a multipath is a multigraph
obtained from a path by replacing some of its edges by double edges. If C ⊆
G are multigraphs, then a C-trail in G is either a path having precisely its
endvertices (but no edge) in common with C, or a cycle having precisely one
vertex in common with C. A vertex y on some cycle C is called C-bound if all
neighbours of y lie on C.

1Settling a problem of Diestel [1], it is shown in [5] that the square of every locally finite
2-connected graph contains a Hamilton circle, a homeomorphic image of the complex unit
circle S1 in the topological space |G| formed by G and all its ends.

2



3 The proof

We will use the following lemma of Ř́ıha [8]. For the convenience of the reader
the proof is repeated here.

Lemma 1. If G is a 2-connected finite graph and x ∈ V (G), then there is a
cycle C ⊆ G that contains x as well as a C-bound vertex y 6= x.

Proof. As G is 2-connected, it contains a cycle C ′ that contains x. If C ′ is
a Hamilton cycle there is nothing more to show, so let D be a component of
G − C ′. Assume that C ′ and D are chosen so that |D| is minimal. Easily, C ′

contains a path P ′ between two distinct neighbours u, v of D whose interior
P̊ ′ does not contain x and has no neighbour in D. Replacing P ′ in C ′ by a
u-v–path through D, we obtain a cycle C that contains x and a vertex y ∈ D.
By the minimality of |D| and the choice of P ′, y has no neighbour in G−C, so
C satisfies the assertion of the lemma.

We will prove Fleischner’s Theorem in the following stronger form, which is
similar to the assertion proved by Řı́ha [8].

Theorem 1. If G is a 2-connected finite graph and x ∈ V (G), then G2 has a
Hamilton cycle whose edges at x lie in E(G).

Proof. We perform induction on |G|. For |G| = 3 the assertion is trivial. For
|G| > 3, let C be a cycle as provided by Lemma 1. Our first aim is to define,
for every component D of G − C, a set of C-trails in G2 + E′, where E′ will
be a set of additional edges parallel to edges of G. Every vertex of D will lie
in exactly one such trail, and every edge of an element of such a trail that is
incident with a vertex of C will lie in E(G) or in E′.

If D consists of a single vertex u, we pick any C-trail in G containing u, and
let ED be the set of its two edges. If |D| > 1, let D̃ be the (2-connected) graph
obtained from G by contracting G −D to a vertex x̃. Applying the induction
hypothesis to D̃, we obtain a Hamilton cycle H̃ of D̃2 whose edges at x̃ lie
in E(D̃). Write Ẽ for the set of those edges of H̃ that are not edges of G2.
Replacing these by edges of G or new edges e′ ∈ E′, we shall turn E(H̃) into
the edge set of a union of C-trails. Consider an edge uv ∈ Ẽ, with u ∈ D.
Then either v = x̃, or u, v have distance at most 2 in D̃ but not in G, and are
hence neighbours of x̃ in D̃. In either case, G contains a u–C edge. Let ED be
obtained from E(H̃)\ Ẽ by adding at every vertex u ∈ D as many u–C edges as
u has incident edges in Ẽ; if u has two incident edges in Ẽ but sends only one
edge e to C, we add both e and a new edge e′ parallel to e. Then every vertex
of D has the same degree (two) in (V (G), ED) as in H̃, so ED is the edge set
of a union of C-trails. Let G′ := (V (G), E(C)∪⋃D ED) be the union of C and
all those trails, for all components D of G− C together.

Let y be a C-bound vertex of C and pick a vertex z and edges d1, d2, g1, g2

of C, so that C = xg1z . . . d1yd2 . . . g2x (the vertices and edges named here need
not be distinct). We will add parallel edges to some edges of C − g1, to turn G′

into an eulerian multigraph GG — i.e. a connected multigraph in which every
vertex has even degree (and which therefore has an Euler tour [2]). Every vertex
in G′ − C already has degree 2. In order to obtain even degrees at the vertices
in C we consider these vertices in reverse order, starting with x and ending
with z. Let u be the vertex currently considered, and let v be the vertex to be
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considered next. Add a new edge parallel to uv if and only if u has odd degree
in the multigraph obtained from G′ so far. When finally u = z is considered,
every other vertex has even degree, so by the “hand-shaking lemma” z must
have even degree too and no edge parallel to g1 will be added. Let GG be the
resulting multigraph, and let CG = GG[V (C)].

If g2 has a parallel edge g′2 in GG, then delete both g2, g
′
2. If g2 has no

parallel edge, and d2 has a parallel edge d′2, then delete both d2 and d′2. Let
G6G be the resulting (eulerian) multigraph. If g2 has been deleted, then let P3

be the multipath CG − {g2, g
′
2}. If not, let P1 be the maximal multipath in CG

with endvertices x, y containing g1, and let P2 be the multipath containing all
edges in E(CG ∩G6G)− E(P1) (Figure 1).

P1

P2

P2

P3

g1

g2

g1

g2

g1

y y
y

zzz

x x x

P1 d2

Figure 1: The paths Pi (three cases). The bold edges are known to be single.

Our plan is to find an Euler tour J ′ of G6G that can be transformed into a
Hamilton cycle of G2. In order to endow J ′ with the required properties we will
derive it from an Euler tour of an auxiliary multigraph, which we define next.

For every i such that Pi has been defined, do the following. Write Pi =
xi0x

i
1 . . . x

i
li

with xi0 = x, and eij or just ej for the xij−1–xij edge of Pi in E(C).
Its parallel edge, if it exists, will again be denoted by e′j (when i is fixed). Now
for j = 1, . . . , li − 1, if e′j+1 exists, replace ej and e′j+1 by a new edge fj joining
xj−1 to xj+1; we say that fj represents the walk xj−1ejxje

′
j+1xj+1 (Figure 2).

Note that every such replacement leaves the current multigraph connected, and
it preserves the parity of all degrees. Hence, the multigraph G^ finally obtained
by all these replacements is eulerian, so pick an Euler tour J of G^. Transform
J into an Euler tour J ′ of G6G by replacing every edge in E(J)−E(G6G) by the
walk it represents.

xj−1 xj−1

xj+1 xj+1

xj xj

ej

fj

ej+1

e′j+1

Figure 2: Replacing ej and e′j+1 by a new edge fj .

Our next aim is to perform some lifts in J ′ to transform it into a Hamilton
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cycle. To this end, we will now mark some passes for later lifting. Start by
marking all passes of J ′ through x except for one arbitrarily chosen pass. We
want to mark some more passes, so that for any vertex v ∈ V (C) − x the
following assertion holds:

for any i, j, if v = xij then all passes of J ′ through v are marked
except for the pass containing eij .

(1)

This is easy to satisfy for v 6= y, as there is precisely one pair i, j so that v = xij
in that case. A difficulty can only arise if v = y = x1

l1
= x2

l2
, in case both P1 and

P2 contain y. By the definition of the Pi, this case only materialises if there are
no edges g′2, f

′
2 in GG, and as y is C-bound, it has degree at most 3 and hence

degree 2 in GG in that case. But then, there is only one pass of J ′ through v,
which consists of e1

l1
, e2
l2

, and leaving it unmarked satisfies (1).
So we assume that (1) holds, and now we claim that

for every edge e = uv in J ′, at most one of the two passes of J ′

that contain e is marked, and moreover if u = x, then the pass of
J ′ through v containing e is unmarked.

(2)

This is clear for edges in E(G6G)−E(CG), so pick an e ∈ Pi. If e = ej for some j,
then by (1) the pass of J ′ through xij containing e is unmarked; in particular, if
e is incident with x = xi0, then j = 1 and the pass of J ′ through xi1 containing e
is unmarked. If e = e′j , then e is not incident with x by the construction of G6G,
and an edge fj−1 was defined to represent the walk xj−2ej−1xj−1e

′
jxj . Since J

contained fj−1, this walk is a pass in J ′. This pass is unmarked by (1), because
it is a pass through xj−1 containing ej−1.

So we proved our claim, which implies that no two marked passes share an
edge. Thus we can now lift each marked pass of J ′ to an edge of G2, to obtain
a new closed walk H ′ in G2 +E′. Every vertex of G is traversed precisely once
by H ′, since by (1) we marked, and eventually lifted, for each vertex v of G all
passes of J ′ through v except precisely one pass. (This is trivially true for a
vertex u in G− C, as there is only one pass of J ′ through u and this pass was
not marked.) In particular, H ′ cannot contain any pair of parallel edges, so we
can replace every edge e′ in H ′ that is parallel to an edge e of G by e to obtain
a Hamilton cycle H of G2. Since by the second part of (2) no edge incident
with x was lifted at its other end, both edges of H at x lie in G as desired.

4 Total graphs

The subdivision graph S(G) of a graph G is the bipartite graph with partition
classes V (G), E(G) where x ∈ V (G) and e ∈ E(G) are joined by an edge if
x is incident with e in G. The total graph T (G) of G is the square of S(G);
equivalently, T (G) is the graph on V (G)∪E(G) where two vertices are adjacent
if the respective objects are adjacent or incident in G. Fleischner [3] proved
that:

Theorem 2. If G is a finite, 2-edge-connected graph then T (G) has a Hamilton
cycle.
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In [6] the proof of Section 3 was adapted to give a short proof of Theorem 2,
exploiting the fact that T (G) is the square of a graph. We do not repeat that
proof here, but we will point out the main differences to the proof in Section 3.

Instead of looking for a cycle C with a C-bound vertex, we just pick any cycle
C in G; the reason is that later we will consider the subdivision graph C ′ of C,
and then any of the vertices of degree 2 that will arise after subdividing an edge
will be C ′-bound. Again we use induction, and apply the induction hypothesis
to all components of S(G)−S(C ′) to obtain a set of C ′-trails covering all vertices
in S(G)−S(C ′) (this step is more complicated though). After constructing the
C ′-trails we have a very similar situation to that in the proof of Section 3, and
we can proceed in the same way; the fact that we have a big choice of C ′-bound
vertices only simplifies the proof.
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