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Abstract

We prove that every finite 4-connected graph G has at least 1
34
·

(|E(G)| − 2|V (G)|) many contractible edges.
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1 Introduction

All graphs considered here are supposed to be finite, simple, and undirected.
For terminology not defined here we refer to [1] or [2].

An edge e = xy in a k-connected graph G is called k-contractible if the graph
G/e obtained from G identifying x, y and simplifying the result is k-connected.
It is easy to see that every edge of a connected graph is 1-contractible, and it
is a well known fact that every vertex of a 2-connected graph nonisomorphic
to K3 is incident with a 2-contractible edge. The corresponding statement for
3-connected graphs fails, but it is still true that for an arbitrary vertex x in a 3-
connected graph nonisomorphic to K4 there is a 3-contractible edge at distance
0 or 1 from x (references in [7]).
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No such result holds for 4-connected graphs, as there are 4-connected graphs
without 4-contractible edges; these are squares of cycles of length at least 5 and
4-connected line graphs of cubic graphs, and there are no other graphs without
4-contractible edges [3, 9]. As they are all 4-regular, every 4-connected graph G
whose average degree d(G) is larger than 4 must have at least one 4-contractible
edge.

Here we refine these results substantially by showing that the number of 4-
contractible edges in a 4-connected graph is at least |V (G)| · c · (d(G) − 4) for
some constant c > 0. We prove that c ≥ 1

68 and construct examples showing
c ≤ 1

10 .

2 Concepts and preliminary results

For a graph G, let κ(G) denote its (vertex) connectivity, and let T (G) := {S ⊆
V (G) : G − S disconnected and |S| = κ(G)} denote the set of its smallest
separating sets. For T ∈ T (G), a T -fragment is the union of the vertex sets of
at least one but not of all components of G−T . Note that a given T -fragment F
determines T to be NG(F ). If F is a T -fragment then so is F := V (G)−(F ∪T ).
A T -fragment of cardinality 1 is called trivial, and T ∈ T (G) is trivial if there
exists a trivial T -fragment, that is, T = NG(x) for some vertex of degree κ(G).

We say that e ∈ E(G) is covered by T ⊆ V (G) if V (e) ⊆ T . Note that an edge e
of a non-complete graph G of connectivity k is not k-contractible if and only if it
is covered by some smallest separating set. We call it trivially non-k-contractible
if it is covered by some trivial smallest separating set, that is, if the endvertices
of e have a common neighbor of degree k.

An S ∈ T crosses T ∈ T (G), if S intersects every T -fragment. It is easy to
see that S crosses T if and only if T crosses S, which is in turn equivalent to
saying that S intersects at least two components of G−T . Furthermore, we call
S ⊆ T (G) cross free if any two members of S do not cross.

Consider a T -fragment F and an S-fragment A of G. It is well known that if
F ∩A 6= ∅ then

|F ∩ S| ≥ |A ∩ T |,

and if equality holds here then F ∩A is a TG(F,A)-fragment, where

TG(F,A) := (T ∩A) ∪ (T ∩ S) ∪ (F ∩ S).

For a proof, see [6] or [8]. Applications of these statements to some pair of
fragments will be indicated by (*) throughout. In particular, if F ∩ A 6= ∅ and
F ∩A 6= ∅ then F ∩A is a TG(F,A)-fragment and F ∩A is a TG(F ,A)-fragment.
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Let D be a digraph. For t ∈ V (D), a vertex s 6= t with ts ∈ E(D) is called
an outneighbor of t, and we let N+

D (t) denote the set of all outneighbors of t.
Similarly we let N−D (t) := {s ∈ V (D)− {t} : st ∈ E(D)}.

We call a ∈ V (D) a root of D if for every t ∈ V (D) there exists a directed
a, t-path and D is edge-minimal with respect to this property. If a root exists
then it is uniquely determined and we call D a tree. Now let D be a tree with
root a. It is easy to see that |N−D (a)| = 0 and |N−D (t)| = 1 for all t ∈ V (D)−{a}.
A vertex s ∈ V (D) is called a leaf if N+

G (s) = ∅. A vertex t ∈ V (D) is called
a pseudo-leaf if it is not a leaf and every s ∈ N+

G (t) is a leaf. To truncate the
pseudo-leaf t means to delete N+

D (t) from D. A subtree D′ of D is called good
if it can be obtained from D by a sequence of pseudo-leaf truncations. Observe
that if |V (D)| ≥ 2 then D has a pseudo-leaf. Therefore, pseudo-leaf truncation
can be used as an inductive device within the set of all good subtrees of D.

The Hasse-digraph of a finite partially ordered set (V,≤) is the digraph on V
where there is an edge from s to t if and only if s < t and s < r < t for no
r ∈ V . We call (V,≤) a tree order if its Hasse-digraph is a tree. Note that, in
this case, the root of the Hasse-digraph is the minimum element of (V,≤).

Theorem 1 [6] Let G be a noncomplete graph and S ⊆ T (G) such that no two
members of S cross. Among all T -fragments with T ∈ S, choose an inclusion
minimal one, say A.

Then for each S ∈ S there exists a unique component C(S) of G − S with
A ⊆ V (C(S)), and the partial order on S defined by

S ≤ T :←→ V (C(S)) ⊆ V (C(T ))

is a tree order with minimum element NG(A).

Let us summarize some properties of the objects in Theorem 1.

Lemma 1 Let G, S, A, C(·), ≤ be as in Theorem 1.

(i) For S, T ∈ S, T ∩ C(S) 6= ∅ implies S < T .

(ii) If S, T ∈ S are not comparable with respect to ≤ then C(S) ∩ C(T ) = ∅.

(iii) For S ∈ S, (
⋃

R≤S R) ∩ (
⋃

T≥S T ) ⊆ S.

Proof. To prove (i), consider S, T ∈ S with T ∩C(S) 6= ∅. Then T is not equal
to S, and T cannot intersect C(S). For every z ∈ C(S), there is a z,A-path P
in C(S), and P does not intersect T , hence z ∈ C(T ). It follows C(S) ⊂ C(T ),
which proves (i).
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To prove (ii), consider S, T ∈ S and suppose that Y := C(S) ∩ C(T ) is not
empty. Then Y is an R-fragment (*), where R = TG(C(S), C(T )) = (S ∩C(T ))
∪ (S ∩ T ) ∪ (C(S)∩ T ). If S = T then S, T are trivially comparable, otherwise
S ∩ C(T ) 6= ∅ or T ∩ C(S) 6= ∅, implying T < S or S < T by (i). This proves
(ii).

To prove (iii), consider R,S, T ∈ S such that R ≤ S ≤ T . Then R ∩ C(S) = ∅
by (i), and T ∩C(S) = ∅ since C(S) ⊆ C(T ). Consequently, R ∩ T ⊆ S, and so
(iii) follows by the distributive law. 2

Our second ingredient is tailored to 4-connected graphs. The following result
has already been mentioned in the introduction.

Theorem 2 [3] [9] Every 4-connected graph G without any 4-contractible edges
is either the square of a cycle of length at least 5 or the line graph of a cubic
essentially 4-edge-connected graph. In particular, G is 4-regular.

Let V4(G) denote the set of vertices of degree 4 in G. The following statement
is extracted from Claim 1 in the proof of Lemma 4 in [5].

Lemma 2 Let w be a vertex of a 4-connected graph G such that every edge
incident with w is not 4-contractible. Let F be a T -fragment of G such that T
contains w and a neighbor of w. Then F is intersected by some triangle which
contains w and a neighbor of w of degree 4.

From this one deduces the following.

Lemma 3 Suppose that uab is a triangle in a 4-connected graph G such that
u ∈ V (G) − V4(G) and a, b ∈ V4(G). Then one of a, b is incident with a
contractible edge.

Proof. Suppose, to the contrary, that all edges incident with a or b are not
contractible. Let T ∈ T (G) cover ab such that the set S(T ) of edges incident
with a or b covered by T is as large as possible. Let F be a T -fragment not
containing u.

If u ∈ T then each of a and b has at least one neigbor in each of F, F . Hence
a has a unique neighbor x ∈ F , b has a unique neighbor y ∈ F , and a has a
unique neighbor z ∈ F . By assumption, az is covered by some T ′ ∈ T . T ′

separates NG(a)−{z} = {x, u, b}. It follows that x 6= y (for otherwise, F = {x}
because NG(F − {x}) ⊆ (T − {a, b}) ∪ {x} cannot separate G, and so uby was
a triangle). By Lemma 2, applied to w = a, axu must be a triangle, so xub is
a path, implying that T ′ contains u and separates x from b, which implies that

4



there is a t ∈ T ′∩F . Now T ′ = {z, u, a, t}, and, for any T ′-fragment F ′, if F ′∩F
was not empty then it was a {u, a, z, s}-fragment for either s = b or s being the
element in T − {u, a, b}; but a had no neighbor in F ′ ∩ F , which is impossible.
Hence F = {z} — but then ax is contractible because NG(a)− {x} = {u, b, z}
is a triangle.

Hence u ∈ F . Then |F | > 1, since u has degree exceeding 4, and so NG({a, b})∩
F cannot consist of u only (for otherwise (T − {a, b}) ∪ {u} would separate
F −{u} from F ∪ {a, b}, which is absurd). So one of a, b, say, a, has a neighbor
z ∈ F −{u}. Then a has a unique neighbor x in F , and, by Lemma 2 applied to
w = a, F is intersected by some triangle containing w, which must be abx. Let y
be the neighbor of b distinct from a, x, u and note that S(T ) ⊆ {ab, by}. Consider
a smallest separating set T ′ covering az. Since T ′ must separate NG(a)− {z},
which induces a path ubx, b ∈ T ′ follows. Hence {ab, az} ⊆ S(T ′). By choice
of T , S(T ) = {ab, by} and S(T ′) = {ab, az}. In particular, y ∈ T − T ′ and
NG({a, b}) ∩ F = {x}, which implies F = {x}. Since ax, by 6∈ S(T ′) and
xy ∈ E(G), there exists a T ′-fragment F ′ containing x, y. But then NG(a)∩F ′ =
NG(b)∩F ′ = {u}, which implies that (T ′−{a, b})∪{u} separates F ′−{u} 6= ∅
from F ′ ∪ {a, b} — a contradiction. 2

Lemma 4 Suppose that uab is a triangle in a 4-connected graph G such that
b ∈ V4(G) and u, a ∈ V (G)−V4(G). Suppose that A is an S-fragment such that
a ∈ A and u, b ∈ S, and |A| ≥ 2. Then b is incident with a contractible edge.

Proof. Suppose, to the contrary, that b is not incident with a contractible edge.
By Lemma 2, there exists a triangle ∆ intersecting A and containing b and a
neighbor c of b of degree 4. Since c 6= b, b has exactly one neighbor x ∈ A. By
assumption, bx is covered by some T ∈ T . T separates NG(b)− T .

Case 1. ∆ = ubc

Then c ∈ A, and T spearates a from c. Hence there exists a t ∈ A ∩ T , so
T = {t, u, b, x}. Since A 6= {x}, there exists a T -fragment F intersecting A. By
(*), |F ∩ S| = |F ∩ S| = 1, and F ∩ A is an R := TG(F,A)-fragment, where
b ∈ R. But b has no neighbor in F ∩A.

Case 2. ∆ = abc and c ∈ A.

Then T separates c from u, so a ∈ T . Let F be a T -fragment such that c ∈ F
and u ∈ F . It follows that A ∩ F = ∅ (for otherwise the latter set would be
an R := TG(A,F )-fragment, which would not contain a neighbor of b ∈ R).
Furthermore, A ∩ F = ∅ (for otherwise, |R := TG(A,F )| > 4 holds, since b has
no neighbor in A∩F ; but then |TG(A,F )| < 4, implying that A ⊆ T . But then
|F ∩S|, |F ∩S| ≥ 2, contradicting the fact that b ∈ T ∩S). Hence F ⊆ S. Since
u has degree exceeding 4, |F | ≥ 2. Furthermore, |T ∩ A| ≥ 2 (if |T ∩ A| ≤ 1, it
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follows from (*) that |A| = |T ∩A| = 1, which contradicts the assumption that
|A| ≥ 2). But then |F ∩ S| ≥ |A ∩ T | ≥ 2, too, which contradicts b ∈ T ∩ S.

Case 3. ∆ = abc and c ∈ S.

Then T separates c from u, so a ∈ T . Let A′ be one of A,A, so |A′| ≥ 2, and
let F be a T -fragment. Assume for a while that A′ ∩ F 6= ∅. Then the latter
set cannot be a TG(A′, F )-fragment because it does not contain a neighbor
of b. Hence |F ∩ S| > |A′ ∩ T | ≥ 1, and |A′ ∩ T | > |F ∩ S| ≥ 1. Now
A′ ∩ F = ∅ by (*), and A′ ∩ F = ∅ (for otherwise |A′ ∩ T | > 1, too, implying
|T | = |A′∩T |+ |S∩T |+ |A′∩T | ≥ 2+2+1, which is impossible). Hence A′ ⊆ S,
and |A′| ≤ |T | − |T ∩ S| − |T ∩ A′| ≤ 1, which is absurd. Hence A′ ∩ F = ∅,
which implies V (G) ⊆ S ∪ T as A′, F have been choosen arbitrarily; but then
|V (G)| ≤ 8− |S ∩ T | ≤ 7, which contradicts |V (G)| = |A|+ |S|+ |A| ≥ 8. 2

3 The main result

For an edge e in a graph G of connectivity k we write e → z if z has degree k
and NG(z) is the unique member of T (G) which covers e.

Theorem 3 Every 4-connected graph G has at least 1
34 · (|E(G)| − 2|V (G)|)

many 4-contractible edges.

Proof. Let a(G) denote the number of contractible edges of G and let b(G) :=
|E(G)| − 2|V (G)|. For simplicity, we call the 4-contractible edges of G con-
tractible, and the others noncontractible.

We have to prove that a(G) ≥ 1
34b(G). Suppose this is not true and take a

minimum counterexample G. Then b(G) > 0, so G is not 4-regular. Hence
a(G) > 0 by Theorem 2, thus b(G) > 34. In particular, |V (G)| > 8, as b(G) ≤
|E(G)| ≤ 28 for |V (G)| ≤ 8.

Let N be the set of all edges which can be covered by some member of T (G),
let M ⊆ N be the set of all edges which can be covered by some trivial member
of T (G), and let L be the set of edges e with V (e) ⊆ V4(G).

Choose a sequence A1, . . . , Ak of fragments such that every edge in N −M −L
is covered by some NG(Ai) (i ∈ {1, . . . , k}) and such that (k, |A1|, . . . , |Ak|) is
lexicographically minimal among all these choices. In particular, 2 ≤ |Ai| ≤
|Ai|, and, as |V (G)| > 8, |Ai| > 2.

For all i ∈ {1, . . . , k}, Si := NG(Ai) must cover at least one edge from N−M−L,
and Ai can’t occur twice in the sequence — otherwise, we could remove it from
the sequence, which decreases k and violates the minimality constraint.
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Let S := {S1, . . . , Sk}.

Claim 1. S is cross free.

Suppose (reductio ad absurdum) that Si, Sj do cross for distinct i, j.

First assume that i < j, so |Ai| ≤ |Aj |. If, for F ∈ {Aj , Aj}, X := Ai ∩ F 6= ∅
and Y := Ai ∩ F 6= ∅ then X,Y are fragments and every edge covered by Si or
Sj is covered by NG(X) = TG(Ai, F ) or NG(Y ) = TG(Ai, F ). As |X| < |Ai|,
replacing Ai, Aj with X,Y at their respective positions in the sequence will
violate the minimality constraint. Hence one of Ai, Ai is contained in Sj or
one of Aj , Aj is contained in Si. If j < i then the latter statement follows
symmetrically.

Suppose that F ∈ {Ai, Ai} is contained in Sj and consider F ′ ∈ {Aj , Aj}. If
F ′ ∩ F 6= ∅ then |Si ∩ F ′| ≥ |F ∩ Sj | = |F | ≥ 2, and if, otherwise, F ′ ⊆ Si then
|Si ∩ F ′| ≥ 2 holds trivially. Hence |Si ∩ F ′| = |Si ∩ F ′| = 2; if F ′ ∩ F 6= ∅ or
F ′ ∩ F 6= ∅ then |F | = 2, and, otherwise, |F | = 2 trivially. It follows F = Ai.

The argument of the preceeding paragraph works with swapped i, j, too. We
may assume without loss of generality that Ai = {x, y} ⊆ Sj . If Aj = {x′, y′} ⊆
Si, too, then we may assume, without loss of generality, that dG(x) + dG(y) ≥
dG(x′) + dG(y′). This choice is designed to simplify some later case analysis.

Aj ∩ Si = {a, u}, and Aj ∩ Si = {b, v}. Note that there is no edge connecting
one of a, u to one of b, v. For simplicity, set A := Ai = {x, y} and S := Si =
{a, u, b, v}.

Subclaim 1.1. There is no z ∈ A such that {x, y, a, u, z} or {x, y, b, v, z}
separates G.

Let T := {x, y, a, u, z}. Since G is 4-connected, every component of G − T
contains a neighbor of {x, y} ⊆ T , which is either b or v. So G− T has exactly
two components. Let C,C denote their vertex sets, where b ∈ C and v ∈ C.

Since b, v are not adjacent and S covers a member of N−M−L, au ∈ N−M−L
follows. Since b is not adjacent to a or u, C 6= {b} follows, so X := C ∩A is not
empty. As NG(X) ⊆ {b, a, u, z}, X is a {b, a, u, z}-fragment, and as au 6∈ M ,
|X| ≥ 2 follows. There exists a b, a-path in X ∪ {b, a} intersecting X, so X
intersects Sj . Analogously, Y := C ∩A is a {v, a, u, z}-fragment intersecting Sj ,
so |X ∩ Sj | = |Y ∩ Sj | = 1.

From Aj ∩ X 6= ∅ we deduce 1 = |X ∩ Sj | ≥ |Aj ∩ {b, a, u, z}| ≥ 2, which is
absurd. So Aj ∩ X 6= ∅, which implies 1 = |X ∩ Sj | ≥ |Aj ∩ {b, a, u, z}|, and
so b is the unique vertex in Aj ∩ (X ∪ {b, a, u, z}). Analogously, v is the unique
vertex in Aj ∩ (Y ∪ {v, a, u, z}), and hence Aj = {b, v} follows. Consequently,
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b, v are independent vertices of degree 4, so NG(b) = NG(v) = Sj is a trivial
member of T (G), a contradiction.

The same argument works if we swap the roles of Aj and Aj ; hence Subclaim
1.1. follows.

Since S covers a member of e ∈ N−M−L and since the following arguments will
not rely on the fact that |Aj | ≤ |Aj |, we may assume without loss of generality
that au ∈ N −M − L and a 6∈ V4(G) from now on.

Subclaim 1.2. The edges xy, bx, by, vx, vy are present in G, the graph G′ :=
(G−{x, y}) + {ab,av,ub,uv} is 4-connected, and if {ux, uy} ⊆ E(G) or dG(u) >
4 then every edge from E(G′) − E(G′(S)) that is 4-contractible in G′ is a 4-
contractible edge in G, too.

(Note that if ax, uy ∈ E(G) then G′ = G/ax/uy, whereas otherwise, ay, ux ∈
E(G) and G′ = G/ay/ux.)

If x has degree 5 then xy, bx, vx in E(G) follows trivially, if x has degree 4 then
it can’t be adjacent to both a and u, as au ∈ N−M−L, hence xy, bx, vx ∈ E(G)
in either case. Symmetrically, by, vy ∈ E(G), which proves the first statement
of Subclaim 1.2.

Consider a smallest separator T of G′. If some component of G − T does not
intersect S then T separates G, too, and |T | ≥ 4 follows. Otherwise, b, v are in
distinct components of G′ − T , so that a, u ∈ T ; hence T ∪ {x, y} separates G,
and |T | ≥ 4 follows from Subclaim 1.1. Hence G′ is 4-connected.

Finally, let e ∈ E(G′)−E(G′(S)) and suppose that e is 4-contractible in G′. If
it was not 4-contractible in G then there would be a T ∈ T (G) with V (e) ⊆ T .
Observe that T intersects A, for otherwise it would separate G′, violating the
fact that e is 4-contractible in G′.

If there is some T -fragment F containing y then F ∩ S is one of {a}, {u}. Now
if F ∩ A 6= ∅ then the latter set is a fragment whose neighborhood covers e (*)
and which separates G′, too, contradicting the fact that e is 4-contractible in
G′. So F equals one of {a}, {u}. Since dG(a) > 4, F = {u}. So dG(u) 6> 4 and
{ux, uy} 6⊆ E(G), a contradiction.

Hence y ∈ T and, symmetrically, x ∈ T . Suppose that |T ∩ S| = 1. Since
|V (G)| > 8, there exists a T -fragment F such that F ∩ A 6= ∅. Then |F ∩ S| ≥
|T ∩ A| = 2. Since |S − T | = 3, this forces |F ∩ S| = 2. But then TG(F,A)
is a member of T (G) such that V (e) ⊆ TG(F,A), and TG(F,A) ∩ A = ∅, a
contradiction. Thus T ∩ S = ∅. Therefore, T ∩ A = V (e). If T = NG(s) for
some s ∈ S then s ∈ {b, v}; as dG(s) = dG′(s), this contradicts our assumption
that e is 4-contractible in G′. Hence |F ∩ S| ≥ 2 and, therefore |F ∩ S| = 2 for
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every T -fragment F . Since |V (G)| > 8, X := F ∩ A 6= ∅ for some T -fragment
F , hence X is a TG(F,A)-fragment of G and of G′ covering e, a contradiction.

This proves Subclaim 1.2.

Subclaim 1.3. If sz is not 4-contractible for some s ∈ S and z ∈ {x, y} such
that each vertex in {a, u} − {s} is adjacent to the vertex in {x, y} − {z} then
sz → t, where t is the unique vertex such that {s, t} ∈ {{a, u}, {b, v}}.

Suppose T ∈ T (G) covers sz. Since b, v are adjacent to x and to y by Subclaim
1.2, it follows by the condition to s, z that NG(z) − {s} has a spanning star
centered at the vertex w in {x, y} − {z}. As T separates NG(z) − T , w ∈ T
follows, so A ⊆ T . There exists a T -fragment F such that F ∩ S = {t} for
some t ∈ S − {s}, so F ∩ A = ∅ (as otherwise |F ∩ S| ≥(∗) |A ∩ T | = 2), and,
consequently, F = {t}. This proves Subclaim 1.3.

We distinguish three cases, according to the possible degrees of x, y.

Case 1.1. dG(x) = dG(y) = 5.

Take G′ as in Subclaim 1.2. Then, for every s ∈ S, dG(s) = dG′(s), and sx is
4-contractible if and only if sy is 4-contractible by Subclaim 1.3. Furthermore,
ux, uy are 4-contractible by Subclaim 1.3 as ux 6→ a.

Hence a(G) ≥ a(G′)− |E(G′(S))|+ |{ux, uy}| ≥ a(G′)− 6 + 2. We sharpen this
to a(G) > a(G′), which will cause a contradiction.

Recall that for each s ∈ S, sx is 4-contractible if and only if sy is 4-contractible
(by Subclaim 1.3). Hence, if sx is 4-contractible for all s ∈ S then a(G) ≥
a(G′)− |E(G′(S))|+ 8 > a(G′) follows.

If sx is not 4-contractible in G for some s ∈ S then sx→ t for some unique t ∈ S
by Subclaim 1.3; as t has degree 4 in G′, too, all edges in E(G′(S)) nonincident
with t are not 4-contractible in G′ (so all but at most 3). Hence, if s is the unique
s ∈ S such that sx is not 4-contractible in G then a(G) ≥ a(G′)−3+6 ≥ a(G′),
and, otherwise, if there exists an s′ ∈ S−{s} such that s′x is not 4-contractible
in G then s′x → t′ 6 t and every edge in E(G′(S)) not connecting t, t′ is not
4-contractible in G′, so a(G) ≥ a(G′)− 1 + 2 > a(G′).

Now b(G) = b(G′) + 5− 2 · 2 = b(G′) + 1. By choice of G, a(G) ≥ a(G′) + 1 ≥
1
34b(G

′) + 1 = 1
34b(G)− c+ 1 > a(G)− 1

34 + 1, a contradiction.

Case 1.2. Either dG(x) = 5, dG(y) = 4, or dG(x) = 4, dG(y) = 5

By symmetry of x, y it suffices to analyze the subcase that dG(x) = 5, dG(y) = 4.
Note that if bv ∈ E(G), then bv ∈ M because it is covered by NG(y). Thus au
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is the unique edge from N −M − L covered by S.

We first consider the case that y is not adjacent to a. The edges sx with
s 6= a are not 4-contractible as they are covered by Sj and NG(y), and uy is
4-contractible by Subclaim 1.3, as uy 6→ a.

Take G′ as in Subclaim 1.2. Then dG′(s) = dG(s) for s ∈ {u, b, v}, and b(G) =
b(G′) + 4− 2 · 2 = b(G′).

Now {a, u} 6= Aj , since dG(a) > 4 but ay 6∈ E(G), so X := Aj ∩A is nonempty
and a TG(Aj , A)-fragment of G whose neighborhood contains a, u and does not
intersect A. Hence X is a fragment of G′, too, so au is not 4-contractible in G′.
Also if xy 6∈ N −M −L, then NG(X) covers all edges from N −M −L covered
by S or Sj , which contradicts the minimality of k. Thus xy ∈ N −M − L, and
hence dG(b), dG(v) ≥ 5. Since dG(x) = 5 and dG(y) = 4, it follows from the
choice of x and y that Aj ∩A 6= ∅. Hence Aj ∩A is a TG(Aj , A)-fragment of G
and G′. Thus if bv ∈ E(G), then bv is not 4-contractible in G′ as well.

We are aiming to show that a(G) ≥ a(G′). If all three edges ax, by, vy are 4-
contractible in G then a(G) ≥ a(G′)−|{ab, av, ub, uv}|+|{uy, ax, by, vy}|, so the
statement follows. If ax is not 4-contractible in G then ax→ u by Subclaim 1.3,
so ab, av are not 4-contractible in G′, if by is not 4-contractible in G then by → v
by Subclaim 1.3, so ab, ub are not 4-contractible in G′, if vy is not 4-contractible
in G then vy → b by Subclaim 1.3, so av, uv are not 4-contractible in G′. Hence,
if at most two of ax, by, vy are not 4-contractible in G then at most two of
ab, av, ub, uv are 4-contractible in G′ and a(G) ≥ a(G′)−2+1+ |{uy}| ≥ a(G′),
and if all of ax, by, vy are not 4-contractible in G then no edge of ab, av, ub, uv
is 4-contractible in G′ and a(G) ≥ a(G′) + |{uy}| ≥ a(G′). Hence, in either case
a(G) ≥ a(G′), and, by choice of G, a(G) ≥ a(G′) ≥ 1

34b(G
′) = 1

34b(G) > a(G),
which is absurd.

Hence it remains to consider the case that y is adjacent to a and, therefore,
nonadjacent to u. We may assume that u has degree 4, for otherwise we could
swap the roles of a, u. Furthermore, ux, ay are 4-contractible in G by Subclaim
1.3, as neither ux → a nor ay → u holds. Note that Claim 2 is not applicable
here. In order to proceed similarly as above, we reduce G in a different way.

Subclaim 1.4. We have xy ∈ N−M−L (so dG(b), dG(v) ≥ 5, and Aj∩A 6= ∅).

For otherwise, the two vertices in Sj ∩ A form the unique edge e in N −M −
L covered by Sj . If Z := A ∩ Aj 6= ∅ then Z would be a fragment whose
neighborhood covers all the edges from N −M −L covered by S or by Sj , and
hence we can replace Aj , Ai by Z in our sequence to obtain a shorter one with the
desired properties, contradicting the choice. So Aj = {a, u} and u is adjacent
to both endvertices of e. Since dG(u) = 4, this contradicts e ∈ N −M − L.
Thus xy ∈ N −M − L. Hence dG(b), dG(v) ≥ 5, and it follows from the choice
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of x and y that Aj ∩A 6= ∅, which proves Subclaim 1.4.

Let G′ := G/vx/by. Then dG′(u) = dG(u) = 4, dG′(a) = dG(a) > 4, dG′(b) ≤
dG(b), dG′(v) ≥ dG(v).

Consider a smallest separating set T of G′. Suppose, to the contrary, that
|T | ≤ 3. Then T does not separate G, so it separates S and hence T = {a, v, z}
for some z ∈ A. Now {a, v, z, x} is a smallest separator of G, and there is an
{a, v, z, x}-fragment C such that u ∈ C and b, y ∈ C. Since u has two neighbors
in A, X := C ∩ A is not empty and, thus, an {a, u, v, z}-fragment, and since
au ∈ N −M − L, |X| > 1 follows.

If C = {b, y} then b has degree 4, as ab 6∈ E(G). This contradicts Subclaim 1.4.

Hence |C| > 2, so Y := C ∩ A is not empty and, thus, a {a, b, v, z}-fragment.
As both NG(X), NG(Y ) contain a ∈ Aj and v ∈ Aj , Sj must intersect X,Y .
Hence |X ∩ Sj | = |Y ∩ Sj | = 1. Since X ∩ Sj ⊇ (Y ∩ Sj) ∪ {x, y}, this implies
|X ∩ Sj | = 3. Similarly, |Y ∩ Sj | = 3. From |X| > 1 we now deduce that either
Aj ∩ X 6= ∅, which implied |Aj ∩ NG(X)| ≥(∗) 3, or that Aj ∩ X 6= ∅, which
implied |Aj∩NG(X)| ≥(∗) 3. As the latter is not true, we deduce |Aj∩NG(X)| ≥
3 and Aj ∩X = ∅, so z ∈ Aj . Now |NG(Y )∩Aj | = |NG(Y )∩Aj | = 2, implying
that Y ∩ Aj = Y ∩ Aj = ∅ (*). Since z ∈ Aj , we now obtain Aj ∩ A =
(Aj ∩X) ∪ (Aj ∩ Y ) = ∅, which contradicts Subclaim 1.4.

Hence we proved that G′ is 4-connected. Now consider an edge e ∈ E(G′) −
E(G′(S)) and suppose that it is 4-contractible in G′ but not in G. Then V (e) is
contained in some T ∈ T (G) of cardinality 4, which does not separate G′ and,
therefore separates S. So x ∈ T .

If T = NG(s) for some s ∈ S then dG(s) = 4 and hence s = u by Subclaim
1.4. But then since dG′(u) = dG(u) = 4, e covered by NG′(u) would not be
4-contractible in G′.

Hence T 6= NG(s) for all s ∈ S. If y ∈ T then |F ∩ S| = 2 for every T -fragment
F , and hence T ∩ A = V (e). As |V (G)| > 8, there exists a T -fragment F such
that F ∩F is not empty and, therefore, a fragment whose neighborhood contains
V (e) and does not intersect A, contradicting the fact that e is 4-contractible in
G′.

Hence y ∈ F for some T -fragment F and, therefore, F∩S = {u}. As T 6= NG(u),
F∩A is not empty and, therefore, a fragment whose neighborhood contains V (e)
and does not intersect A, again a contradiction.

Hence we proved that every edge in E(G′) − E(G′(S)) which is 4-contractible
in G′ is 4-contractible in G, too.

We claim that a(G) > a(G′).
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As Aj ∩ A is not empty by Subclaim 1.4, and, therefore, a fragment whose
neighborhood does not intersect A and contains b, v, the edge bv (if it exists) is
not 4-contractible in G′. As av is covered by NG′(u), it is not 4-contractible in
G′ either, so E(G′(S)) has at most three 4-contractible edges. Since both by, vy
are 4-contractible in G by Subclaims 1.3 and 1.4, a(G) ≥ a(G′)− 3 + 4 > a(G′)
follows.

As b(G) = b(G′) + 4 − 2 · 2 if bv 6∈ E(G) and b(G) = b(G′) + 5 − 2 · 2 if
bv ∈ E(G) we deduce b(G′) ≥ b(G)− 1, and a(G) ≥ a(G′) + 1 ≥ 1

34b(G
′) + 1 ≥

1
34b(G)− 1

34 + 1 > a(G)− 1
34 + 1, a contradiction.

Case 1.3. dG(x) = dG(y) = 4.

We are coming back to Sj here. Sj must cover an edge e ∈ N −M − L. As
xy 6∈ N −M − L, Sj ∩ Aj = V (e) and e is the unique edge in N −M − L
covered by Sj . If bv was an edge then it would be in M , so au is the unique
edge in N −M − L covered by S. Furthermore, X := A ∩ Aj is not empty, as
dG(a) > 4 and a is not adjacent to both x and y. As |A ∩ Sj | = |Aj ∩ S|, X is
a fragment whose neighborhood V (e)∪ {a, u} covers all edges from N −M −L
that are covered by S, Sj . Hence we may replace Ai = A,Aj in our sequence
with X to obtain a shorter one with the desired properties — which contradicts
our choice.

This proves Claim 1.

Let X :=
⋃k

i=1E(G(Si)) be the set of edges covered by one of S1, . . . , Sk. Let
P := {(u, a) : ua ∈ E(G) − X,u ∈ V (G) − V4(G)} and let Q := {(x, y) :
xy ∈ E(G) is 4-contractible}. We establish a map ϕ : P → Q according to the
following rules. The stages of the choice process are labelled for later reference.

Consider (u, a) in P .

1st choice. If ua is contractible then set ϕ(u, a) := (u, a).

Otherwise, ua is trivially noncontractible because ua is not covered by some Si;
hence u, a have a common neighbor b of degree 4.

2nd choice. If a has degree 4 then, by Lemma 3, we may choose a contractible
edge xy with x ∈ {a, b} such that |{b}− {x}| · dG(y) is as large as possible, and
set ϕ(u, a) := (x, y). That is, we take x = a if possible, and in this case we take
y of largest possible degree.

Otherwise, a has degree exceeding 4, and we look at the edge ub instead of ua.

3rd choice. If ub is contractible then set ϕ(u, a) := (u, b).
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So we may assume that ub is noncontractible; in contrast to ua, ub could well
be covered by some Si.

4th choice. If ub is covered by some Si then b is incident with some contractible
edge bz, z 6= u. This follows directly from Lemma 4, applied to Si for S. We
choose z in such a way that dG(z) is minimal and set ϕ(u, a) := (b, z).

Final choice. Hence we may assume that ub is trivially noncontractible, implying
that u, b have a common neighbor c of degree 4. Clearly, c 6= a, as a has degree
exceeding 4. It follows from Lemma 3 again that there exists a contractible
edge xy with x ∈ {b, c}, where y 6= u. We choose it in such a way that (|{b} −
{x}|, dG(y)) is lexicographically minimal, and set ϕ(u, a) := (x, y).

We say that (x, y) is ith choice for (u, a) if it has been chosen in the ith part of
the rule.

Claim 2. |ϕ−1(x, y)| ≤ 4 for each (x, y) ∈ Q. In particular, |P | ≤ 4|Q|.

If x has degree exceeding 4 then |ϕ−1(x, y)| ≤ 4, for if ϕ(u, a) = (x, y) then
either first choice applied to (u, a) = (x, y), or the third choice applied to (u, a)
where u = x and a is one of at most 3 common neighbors of u and y.

So we may assume that x has degree 4. If ϕ(u, a) = (x, y) then the second, the
fourth, or the final choice applied to (u, a), where u is a neighbor of x of degree
exceeding 4 distinct from y such that ux is noncontractible.

Let U := NG(x)− V4(G)− {y}.

Subclaim 2.1. If |U | = 3 then |ϕ−1(x, y)| ≤ 4

Let u ∈ U . If (x, y) is second choice for some (u, a) then (x, y) = (a, b) and
y ∈ V4(G) follows (b as in the choice rule), since from the fact that y is the only
neighbor of x with degree 4, it follows that {a, b} = {x, y}, and hence the rule
in the 2nd choice implies a = x. Similarly, if (x, y) is final choice for (u, a) then
(x, y) = (b, c) and y ∈ V4(G) follows (b, c as in the choice rule). Hence either
a = x (2nd choice), or a has degree exceeding 4 and is one of the three neighbors
of x distinct from u (4th or final choice).

Let U = {u1, u2, u3}. Suppose that u1u2 ∈ E(G) −X and, for each i ∈ {1, 2},
(x, y) is the fourth choice for some (ui, ai) with ai ∈ (U −{ui})∪{y}. We prove
that Subclaim 2.1. holds in this situation and the symmetric ones, which we
will therefore call nice.

By definition, there exist Si ∈ S covering uix for i ∈ {1, 2}. Since u1u2 not
contained in X, there exist Si-fragments Fi for i ∈ {1, 2} such that u1 ∈ S1∩F2

and u2 ∈ S2 ∩ F1. Since S1, S2 do not cross, we conclude that F1 ⊆ F2 and
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F2 ⊆ F1. Since x must have neighbors in each of F1, F2, u3 ∈ Fi and y ∈ F3−i

for some i ∈ {1, 2}.

If (x, y) was a choice for some (u3, a) then it is fourth choice as u3, y are not
adjacent, so there exists an S3 ∈ S covering u3x and separating NG(x)−{u3} =
{u1, u2, y}, thus separating y from u1 and u2; but this is impossible since S3

does not intersect Fi, as S3, Si do not cross.

If (x, y) was a choice for some (ui, a) then it is fourth choice and a ∈ {u3, u3−i},
since ui, y are not adjacent.

If (x, y) was second choice for some (u3−i, a) then a = x, if it was final choice for
some (u3−i, a) then a = ui, and if it was fourth choice for some (u3−i, a) then
a = ui or a = y. Observe that the latter case implies that y ∈ V (G)−V4(G), so
that (x, y) can not be second choice (for (u3−i, a) at the same time. Hence
ϕ−1(x, y) ⊂ {(ui, u3), (ui, u3−i), (u3−i, x), (u3−i, ui), (u3−i, y)}, which accom-
plishes the discussion of the nice situation.

Now if y has degree 5 then it can only be fourth choice, and it follows straight-
forward that if |ϕ−1(x, y)| ≥ 5 then there is a good situation. Hence we may
assume that y has degree 4, implying that (x, y) is not a choice for any (ui, y).

Without loss of generality, there exists an ` ∈ {0, 1, 2, 3} such that, for i ∈
{1, 2, 3}, (x, y) is choice for some (ui, a) if and only if i ≤ `. If ` ≤ 1 then
|ϕ−1(x, y)| ≤ 4 follows from the initial paragraph of the proof of the actual
subclaim. If ` = 3 then y is not adjacent to all of u1, u2, u3, since otherwise
NG({x, y}) = {u1, u2, u3}, violating 4-connectivity. Say, y is not adjacent to
u1. Then (x, y) is fourth choice for some (u1, a), where a ∈ {u2, u3}, so a = u2

without loss of generality. There exists an S1 ∈ S covering u1x. Now we may
assume that (x, y) is not fourth choice for some (u2, a), for otherwise we had
a good situation. So u2y ∈ E(G), but then u3y 6∈ E(G) (for otherwise y ∈ S1

because S1 separates NG(x)−S1; so S1 covers xy — but xy is contractible). So
(x, y) is fourth choice for (u3, a), where a ∈ {u1, u2}. Now a 6= u2 (for otherwise
u2 ∈ S1 because S1 separates NG(x)−S1, so S1 covers u1u2 — but u1u2 6∈ X).
Hence a = u1. But then, again, we have a good situation.

It remains to consider the case ` = 2. Suppose that |ϕ−1(x, y)| ≥ 5. Then
u1u2 ∈ E(G)−X. If (x, y) is not fourth choice then both u1, u2 are adjacent to y;
so u3 is not adjacent to y (for otherwise, NG({x, y}) = {u1, u2, u3}, contradicting
4-connectedness). Thus NG(x) − {u3} = {u1, u2, y} induces a complete graph,
and hence xu3 is contractible. Since dG(u3) > dG(y), this implies that the
second choice for (ui, x) must be (x, u3) for i ∈ {1, 2}. Hence ϕ−1(x, y) ⊆
{(u1, u2), (u1, u3), (u2, u1), (u2, u3)}, and we are done.

Hence (x, y) is fourth choice for, say, (u1, a), and we may assume that it is
not fourth choice for any (u2, a

′), for otherwise we had a nice situation. Hence
u1x is covered by some S1 ∈ S, and u2y ∈ E(G). But then u3y 6∈ E(G)
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(for otherwise y ∈ S1 because S1 separates NG(x) − S1, but xy can not be
covered by xy since xy is contractible). Now if (x, y) is choice for some (u1, a)
then a ∈ {u2, u3}, and if it is choice for some (u2, a

′) then a′ ∈ {x, u1, u3}.
Hence ϕ−1(x, y) ⊆ {(u1, u2), (u1, u3), (u2, x), (u2, u1), (u2, u3)}. Assume, to the
contrary, that equality holds here. Then u2u3 ∈ E(G), which forces u2 ∈ S1.
Therefore u2x ∈ X, which implies (u2, x) 6∈ ϕ−1(x, y), a contradiction.

This proves Subclaim 2.1.

The next subclaim deals rules out a special situation in the final choice.

Subclaim 2.2. If (x, y) is final choice for some (u, a) where |{b} − {x}| > 0 (b
as in the final choice rule) then |ϕ−1(x, y)| ≤ 4.

Let b, c be as in the final-choice-rule and let d denote the neighbor of b distinct
from u, a, c. The minimality constraint there implies that every edge incident
with b is noncontractible. Let T be a smallest separating set covering bd. Then
u ∈ T as T separates the path auc formed by NG(b)−{d}. There is a T -fragment
F such that a is the unique neighbor of b in F and c is the unique neighbor of
b in F . By Lemma 2, applied to w = b, a is adjacent to d and d has degree 4.
In view of Lemma 4, we have |F | = 1. Thus F = {c}. Since xy is contractible
but cd = xd is not, we have d 6= y, so NG(c = x) = {y, u, b, d}. If ud ∈ E(G),
then NG({b, d}) = {a, u, c}, a contradiction. Thus ud 6∈ E(G).

Now it is easy to conclude that ϕ−1(x, y) ⊆ {(u, a), (u, b), (u, c), (u, y)}: Con-
sider (u′, a′) ∈ ϕ−1(x, y); then u′ ∈ NG(x)−V4(G) where u′x is noncontractible,
which implies u′ = u; if a′ 6∈ {b, c, y} then a′ is a neighbor of u in F , so (x, y)
must be final choice for (u, a′) as x = c is not adjacent to a′. Let b′, c′ denote
the respective vertices b, c as in the final-choice-rule; consequently, c′ = c, b′ is
a common neighbor of u, a′, c, hence b′ ∈ {y, b}. If b′ = y then we would have
chosen (y, x) rather than (x, y) when chosing ϕ(u, a′), so b′ = b. As a is the
unique neighbor of b ∈ F , a′ = a follows.

This proves Subclaim 2.2.

By Subclaim 2.2, we may assume that if (x, y) has been chosen for (u, a) then
either x = a or a is a common neighbor of u and x. Hence, if |U | ≤ 1, then
|ϕ−1(x, y)| ≤ 4 holds, and it suffices to consider the case that |U | = 2.

Let U = {u1, u2} and let z denote the neighbor of x distinct from u1, u2, y. By
the preceeding paragraph, ϕ−1(x, y) ⊆ {(u1, x), (u1, y), (u1, z), (u1, u2), (u2, x),
(u2, y), (u2, z), (u2, u1)}

If (x, y) is choice for some (ui, y) then it can’t be 2nd choice because of the
maximality constraint in the 2nd-choice-rule; therefore, y has degree exceeding
4.
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Case 2.1. z is adjacent to both u1, u2.

Let d denote the neighbor of z distinct from u1, u2, x. Then zd is contractible
(for if, otherwise, zd was covered by some smallest separating set T then x ∈ T
follows; for some T -fragment F , {x, z} had only one neighbor u in F , which is
among u1, u2; as F is not trivial, (T − {x, y}) ∪ {u} separates F − {u} from
F ∪ {x, y}, which is impossible).

Observe that ϕ−1(x, y) ⊆ {(u1, x), (u1, y), (u1, u2), (u2, x), (u2, y), (u2, u1)},
since, by the maximality constraint in the 2nd-choice-rule, we choose (z, d)
for (ui, z) rather than (x, y). We thus may assume u1u2 ∈ E(G) (for oth-
erwise ϕ−1(x, y) ⊆ {(u1, x), (u1, y), (u2, x), (u2, y)}), We may assume that for
some i ∈ {1, 2}, (x, y) is a choice for both (ui, y) and (ui, u3−i) (for otherwise
|ϕ−1(x, y)| ≤ 4, too); but this yields a contradiction: Without loss of generality,
i = 1; it follows that y has degree exceeding 4. Then xz is not contractible, for
otherwise, according to the minimality constraints in the 4th- and final-choice-
rule, respectively, we would have choosen (x, z) rather than (x, y) for (u1, u2).
So let T be a separator covering xz. As T separates NG(x)− {z}, it must con-
tain u1, and there is a T -fragment F such that u2 ∈ F and y ∈ F . Then d is
the unique neighbor of z in F , and u2 is the unique neighbor of x and of z in F .
Consequently, (T − {x, z}) ∪ {u2} separates F − {u2} from the other vertices,
contradicting the 4-connectedness of G.

So |ϕ−1(x, y)| ≤ 4 in Case 2.1.

Case 2.2. z is adjacent to none of u1, u2.

We may assume that (x, y) is choice for at least one of (u1, y), (u2, y), for oth-
erwise ϕ−1(x, y) ⊆ {(u1, x), (u1, u2), (u2, x), (u2, u1)}. Hence y has degree ex-
ceeding 4. But then, for each i ∈ {1, 2}, ui, x have no common neighbor of
degree 4, hence (x, y) is not a choice for (ui, x), implying that ϕ−1(x, y) ⊆
{(u1, y), (u1, u2), (u2, y), (u2, u1)}.

Case 2.3. z is adjacent to exactly one of u1, u2.

Say, u2z ∈ E(G).

(*) If u1y, u1u2 ∈ E(G) then (x, y) is not a choice for (u2, z).

Suppose, to the contrary, that (x, y) is a choice for (u2, z). Then it is a 2nd
choice, and, by the maximality constraint in the 2nd-choice-rule, all edges in-
cident with z are noncontractible. Let T be a smallest separating set covering
zx. Since T separates NG(x)− {z}, u1 ∈ T follows. There exists a T -fragment
F such that y is the unique neighbor of x in F and u2 is the unique neighbor
of x in F . As F is not trivial, u2 can’t be the unique neighbor of z in F (for
otherwise (T −{x, z})∪{u2} would separate G), hence z has only one neighbor
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in F , say, d, and only one neighbor in T , which is x. By Lemma 2, applied
to w = z, it follows that x, z and d = y form a triangle. But then xy is not
contractible, as it is covered by NG(z). This proves (*).

Suppose that {(u1, x), (u2, z)} ⊆ ϕ−1(x, y). Then u1x is noncontractible and
u1, x must have a common neighbor of degree 4, which must be y. Hence (x, y)
can’t be choice for (u1, y), (u2, y). We thus may assume that u1u2 ∈ E(G),
for otherwise ϕ−1(x, y) ⊆ {(u1, x), (u2, x), (u2, z)}. Now (*) applies, yielding a
contradiction.

Hence it follows that at most one of (u1, x), (u2, z) is in ϕ−1(x, y). We thus
may assume that u1u2 ∈ E(G) and that at least one of (u1, y), (u2, y) is in
ϕ−1(x, y) (otherwise, |ϕ−1(x, y)| ≤ 4). In particular, y has degree exceeding 4.
Now if (u1, x) ∈ ϕ−1(x, y) then u1x is not contractible and u1, x have a common
neighbor of degree 4, which is impossible.

Hence (u1, x) 6∈ ϕ−1(x, y).

We may assume that (u2, y) ∈ ϕ−1(x, y) (for otherwise, u1y ∈ E(G), and, by
(*), ϕ−1(x, y) ⊆ {(u1, y), (u1, u2), (u2, x), (u2, u1)}).

In particular, u2y ∈ E(G). If (x, y) was a choice for (u2, z) then, as in the proof
of (*), all edges incident with z are noncontractible. Let again T be a smallest
separating set covering zx. Since T separates NG(x) − {z}, u2 ∈ T , and there
exists a T -fragment F such that y is the unique neighbor of x in F and u1 is the
unique neighbor of x in F . Let p be the unique neighbor of z in F and let q be
the unique neighbor of z in F . Note that p 6= y, as xy is contractible and, thus,
not covered by NG(z), and that q 6= u1 as u1z 6∈ E(G). By Lemma 2, applied
to w = z, we deduce that z, p, u2 form a triangle where p has degree 4 and that
z, q, u2 form a triangle where q has degree 4. Let T ′ be a smallest separating set
covering zp. As NG(z)− {p} induces a path qu2x, u2 ∈ T ′ follows. Let F ′ be a
T ′-fragment such that x is the unique neighbor of z in F ′ and q is the unique
neighbor of z in F ′. As there exists an x, q-path whose inner vertices are in F ,
T ′ intersects F . Hence T, T ′ cross and T ′ = {u2, z, p} ∪ (T ′ ∩ F ′). Therefore,
y 6∈ T ′, which implies y ∈ F ∩F ′, and TG(F, F ′) = {u2, z, x, p}. However, z has
no neighbor in F ∩ F ′, so {u2, x, p} separates G, a contradiction.

Hence (u2, z) 6∈ ϕ−1(x, y). Now assume, to the contrary, that ϕ−1(x, y) =
{(u1, y), (u1, u2), (u2, x), (u2, y), (u2, u1)}. Observe that (x, y) is a 4th or a final
choice for (u1, y). From the minimality constraints in the corresponding rules
we deduce that xz is noncontractible, for otherwise we would have chosen (x, z)
rather than (x, y).

But xz is contractible, because NG(x)− {z} is a triangle u1u2y and cannot be
separated by any set covering xz.

This proves Claim 2.
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Let Q4 := Q ∩ {(x, y) : x ∈ V4(G)} and let K := {(x, y) : xy ∈ X, x ∈
V (G)− V4(G)}.

Claim 3. 6(|P |+ |Q4|) ≥ |K|.

Recall that, by Claim 1, S is cross free. Observe that A1 is inclusion minimal
among all T -fragments with T ∈ S. Hence we may apply Theorem 1 (with A1

for A), and obtain C(·) and a tree order (S,≤) as there. Let D be the Hasse
digraph of (S,≤).

For a good subtree D′ of D and u ∈ V (G), let S(D′, u) := {S ∈ V (D′) : u ∈ S},
and let S∗(D′, u) denote the maximal elements of S(D′, u) with respect to ≤.
Furthermore, let the subgraph GD′ of G defined by V (GD′) :=

⋃
S∈V (D′) S

and E(GD′) :=
⋃

S∈V (D′)E(G(S)) ∩ (X − L). If u ∈ V (G) − V4(G) then let
ψ(D′, u) := |S∗(D′, u)|, if u ∈ V4(G) ∩ V (GD′) and u has at least one neighbor
in GD′ then let ψ(D′, u) := 1. In all other cases, set ψ(D′, u) := 0.

We first look at some properties of these sets when D′ = D. Let R(u) :=
{(u, x) : ux ∈ E(G)−X}, and let Q(u) := {(u, x) : ux ∈ E(G)−N}.

Subclaim 3.1. |R(u)| ≥ |S∗(D,u)| for each u ∈ V (G).

Consider S ∈ S∗(D,u). Then u ∈ S must have a neighbor xS ∈ C(S); uxS is not
covered by some T ∈ S, for otherwise S < T by (i) of Lemma 1, contradicting
the maximality of S. Hence (u, xS) ∈ R(u). By (ii) of Lemma 1, the sets C(S),
S ∈ S∗(D,u) are pairwise disjoint, and hence the (u, xS), S ∈ S∗(D,u), are
pairwise distinct. This proves Subclaim 3.1.

Subclaim 3.2. Q(u) 6= ∅ for each u ∈ V4(G) with at least one neighbor in GD.

Let x be a neighbor of u in GD. Assume, to the contrary, that Q(u) = ∅. Since
ux ∈ X, there exists a member S0 of S which covers ux. Choose a nontrivial
smallest separating set S and an S-fragment F with u ∈ S and F ⊆ C(S0) so
that F is inclusion minimal. Let a be a neighbor of u in F . If ua ∈ N −M
and if we let T be a nontrivial smallest separating set covering ua, then since
S ∩ T 6= ∅, S and T do not cross (see the first three paragraphs of the proof of
Claim 1), and hence we see that there exists a T -fragment F ′ such that F ′ ⊆ F
by arguing as in the proof of (i) of Lemma 1, a contradiction. Thus ua ∈ M .
Since x ∈ S0 ⊆ S ∪F , x 6= a. Since ua ∈M , it follows that u, a have a common
neighbor c of degree 4. Since uc ∈ L, uc 6∈ E(GD), so x 6∈ {a, c}.

Now choose a nontrivial smallest separating set R and an R-fragment B with
u ∈ R and B ⊆ C(S) such that B is inclusion minimal. Recall that |B| ≥ 2.
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Let b be a neighbor of u ∈ B. Arguing as in the preceding paragraph, we see
that ub ∈M and x 6= b.

It follows that u, b have a common neighbor d of degree 4, and, again, x 6∈ {b, d}.
Since a, c, x are distinct, b, d, x are distinct, and a 6= b, we deduce that c = d.
But then either (S − {u, c}) ∪ {a} separates F − {a} from all other vertices, or
(T − {u, d}) ∪ {b} separates B − {b} from all other vertices, a contradiction.

This proves Subclaim 3.2.

Subclaim 3.3.
∑

u∈V (GD′ ) ψ(D′, u) ≥ |E(GD′)|/3 for all good subtrees of D.

We prove this by induction on |D′|. For V (GD′) = {S} we observe dGD′ (u) ≤ 3
for every u ∈ S, and hence

∑
u∈V (GD′ ) ψ(D′, u) ≥ |{u ∈ V (GD′) : dGD′ (u) ≥ 1}|

≥
∑

u∈V (GD′ ) dGD′ (u)/3 ≥ |E(GD′)|/3.

For |V (GD′)| ≥ 2, take any pseudo-leaf T of GD′ and let D′′ be obtained
from D′ by truncating T . By (iii) of Lemma 1,

⋃
N+

D′(T ) ∩ V (GD′′) ⊆ T ,
and hence |E(GD′)|− |E(GD′′)| ≤

∑
u∈V (GD′ )−V (GD′′ ) dGD′ (u). The right hand

side is bounded from above by
∑

R∈N+
D′ (T )

∑
u∈R−V (GD′′ )−V4(G) dGD(R)(u) +∑

u∈V4(G)∩(V (GD′ )−V (GD′′ )) dGD′ (u). Obviously, dGD(R)(u) ≤ 3 for all R ∈ S;

since every vertex u ∈ R ∈ N+
D′(T ) has a neighbor in C(R), which is not in

V (GD′), dGD′ (u) ≤ dG(u) − 1 holds. Hence we may estimate each term of
the sums by 3, thus obtaining |E(GD′)|/3 − |E(GD′′)|/3 ≤

∑
R∈N+

G
D′

(T ) |R −
V (GD′′)− V4(G)| +

∑
u∈V4(G)∩(V (GD′ )−V (GD′′ )) ψ(D′, u).

For each u ∈ V (GD′)− V (GD′′) it follows {R ∈ N+
G′

D
(R) : u ∈ R} ⊆ S∗(D′, u);

so
∑

R∈N+
G

D′
(T ) |R−V (GD′′)−V4(G)|=

∑
u∈V (GD′ )−V (GD′′ )−V4(G) |{R ∈ N

+
G′

D
(R) :

u ∈ R}| ≤
∑

u∈V (GD′ )−V (GD′′ )−V4(G) ψ(D,u). Therefore, |E(GD′)|/3−|E(GD′′)|/3
≤
∑

V (GD′ )−V (GD′′ ) ψ(D′, u).

Since ψ(D′′, u) ≤ ψ(D′, u) for every u ∈ V (GD′′), we obtain by the induction
hypothesis |E(GD′)|/3 ≤

∑
u∈V (GD′′ ) ψ(D′′, u)+

∑
u∈V (GD′ )−V (GD′′ ) ψ(D′, u) ≤∑

u∈V (GD′ ) ψ(D′, u).

This proves Subclaim 3.3.

Now, for Q4(u) := {(x, y) ∈ Q4 : x = u}, |P |+ |Q4| =
∑

u∈V (G)−V4(G) |R(u)|+∑
u∈V4(G)Q4(u)≥

∑
u∈V (GD)ψ(D,u)≥ |E(GD)|/3≥

∑
u∈V (GD)−V4(G)dGD

(u)/6
= |K|/6. This proves Claim 3.

Let’s put the inequalities of Claim 2 and Claim 3 together. On the one hand,
|K|+ |P | = |{(x, y) : xy ∈ E(G), x ∈ V (G)− V4(G)} =

∑
x∈V (G)−V4(G) dG(x)
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= 2|E(G)| − 4|V4(G)| = ≥ 2|E(G)| − 4|V (G)| = 2b(G). On the other hand,
|K| + |P | ≤ 6|P | + 6|Q4| + |P | ≤ 7|P | + 6|Q| ≤ 34|Q| = 34 · 2a(G). Hence
a(G) ≥ 1

34b(G), contradicting our assumption that G is a counterexample to
the statement. 2

4 A lower bound for the optimal constant

We now construct graphs showing that we can’t expect a constant better that 1
5

in Theorem 3. Let ` > 4 be an integer such that `−1 is divisible by 3 and `·(`−1)
is divisible by 12. Set m :=

(
`
2

)
. Then, by the results in [4], we can partition

K` into m/6 many copies of K4. For i ∈ {1, . . . ,m/6}, let {ai, bi, ci, di} denote
the vertex sets of either copy. Let G` be obtained from K` by adding m/6
many disjoint new 4-cycles Ci := piqirisipi, i ∈ {1, . . . ,m6}, and connecting
each Ci to K` by adding the edges aipi, aiqi, bipi, biqi and ciri, cisi, diri, diqi.
Then G` is 4-connected, has ` + 4 ·m/6 vertices, has m + 12 ·m/6 edges, but
has only 2m/6 many contractible edges, namely the edges qiri and sipi for each
i ∈ {1, . . . ,m/6}. Hence the ratio of |E(G`)| − 2|V (G`)| and the number of
contractible edges of G` tends to 1

5 as ` tends to infinity, proving that we can’t
expect a constant larger than 1

5 in Theorem 3.
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