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Abstract

For each positive integer k, we give a finite set of Bondy–Chvátal
type conditions to a nondecreasing sequence d = (d1, . . . , dn) of nonneg-
ative integers such that every graph on n vertices with degree sequence
at least d is k-edge-connected. These conditions are best possible in the
sense that whenever one of them fails for d then there is a graph on n
vertices with degree sequence at least d which is not k-edge-connected.
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1 Introduction

All graphs considered here are supposed to be finite, undirected, and simple. For
terminology not defined here, the reader is referred to [6]. The degree sequence
of a graph G on n vertices is the unique nondecreasing sequence in Zn in which
every integer i occurs |Vi(G)|many times, where Vi(G) denotes the set of vertices
of degree i in G. A sequence d which is the degree sequence of some graph G is
called graphical, and any such G is a realization of d.

Degree sequences can be employed to provide sufficient conditions for certain
monotone graph properties. The probably best known result in this direction is
Chvátal’s Theorem [5] (see also [6]).

Theorem 1 [5] Let n ≥ 3 and d = (d1, . . . , dn) be a nondecreasing sequence of
nonnegative integers. Then every graph on n vertices with degree sequence at
least d has a hamilton cycle, if and only if dn > n− 1 or

dj ≤ j implies dn−j > n− j − 1 for all integers j with 1 ≤ j ≤ n−1
2 .

A quite similar condition gives a corresponding result for k-connectivity. The
following result is due to Bondy (if–part [3]) and Boesch (only-if–part & the
present form of Bondy’s condition [2]).
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Theorem 2 [3, 2] Let k ≥ 1, n ≥ k+1, and d = (d1, . . . , dn) be a nondecreasing
sequence of nonnegative integers. Then every graph on n vertices with degree
sequence at least d is k-connected, if and only if dn > n− 1 or

dj ≤ j+k−2 implies dn−k+1 > n−j−1 for all integers j with 1 ≤ j ≤ n−k+1
2 .

Recently, Bauer, Hakimi, Kahl, and Schmeichel investigated similar con-
ditions for k-edge-connectivity [1] and noticed that such conditions for k > 1
would probably look much more difficult than the two mentioned above. For
k = 2, they obtained the following result [1].

Theorem 3 [1] Let n ≥ 1 and d = (d1, . . . , dn) be a graphical sequence. Then
every graph on n vertices with degree sequence at least d is 2-edge-connected, if
and only if

1. d1 ≥ 2,

2. dj−1 ≤ j − 1 and dj ≤ j implies dn−1 > n − j − 1 or dn > n − j for all
integers j with 3 ≤ j ≤ n−1

2 , and

3. For n ≥ 4 even, dn
2
≤ n

2 − 1 implies dn−2 >
n
2 − 1 or dn > n

2 .

Beside the “Bondy–Chvátal type” condition 2. in Theorem 3, there are
two extra conditions involved. Redundancy questions arise: For example, it
is possible to incorporate condition 1. into 2. by extending the range of j to
1 ≤ j ≤ n−1

2 (where dj−1 ≤ j − 1 is considered only if j ≥ 2). Also, there is
some redundancy in 3.: The implication there is equivalent to its consequent,
because dn

2
> n

2 − 1 implies dn−2 >
n
2 − 1 by monotonicity of d, so 3. holds if

and only if (for n ≥ 4 even) dn−2 >
n
2 − 1 or dn > n

2 . On the other hand, in
this formulation, it is necessary to assume that G is graphical: If we would just
assume, say, that d is a nondecreasing sequence of nonnegative integers, then
there are no graphs with degree sequence at least d = (1, n, . . . , n︸ ︷︷ ︸

n− 1 times

) at all —

but 1. of Theorem 3 is not satisfied. For k = 3, Bauer, Hakimi, Kahl, and
Schmeichel conjectured the following [1].

Conjecture 1 [1] Let n ≥ 1 and d = (d1, . . . , dn) be a graphical sequence. Then
every graph on n vertices with degree sequence at least d is 3-edge-connected, if
and only if

1. d1 ≥ 3,

2. dj−2 ≤ j − 1 and dj ≤ j implies dn−2 > n − j − 1 or dn > n − j for all
integers j with 3 ≤ j ≤ n−1

2 ,
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3. dj−1 ≤ j − 1 and dj ≤ j + 1 implies dn−2 > n − j − 1 or dn > n − j for
all integers j with 3 ≤ j ≤ n−2

2 ,

4. dj−2 ≤ j − 1 and dj ≤ j implies dn−1 > n − j − 1 or dn > n − j + 1 for
all integers j with 3 ≤ j ≤ n−1

2 ,

5. for n ≥ 6 even, dn
2
≤ n

2 − 1 implies dn−4 >
n
2 − 1 or dn > n

2 ,

6. for n ≥ 5 odd, dn−1
2 −1 ≤

n−1
2 − 1 implies dn−3 >

n+1
2 − 1 or dn > n+1

2 ,
and

7. for n ≥ 4 even, dn
2
≤ n

2 − 1 implies dn−3 > n
2 − 1 or dn−1 > n

2 or
dn >

n
2 + 1.

In Conjecture 1, there are already three “Chvátal–Bondy type” conditions
(2., 3., 4.), which arise according to the three different “types” of cuts of order
2, plus four extra conditions.1 Again, 5. and 7. can be simplified similarly as
above.

Here, for each k ≥ 1, we construct a set of conditions to a nondecreasing se-
quence d = (d1, . . . , dn) of nonnegative integers such that every graph on n
vertices with degree sequence at least d is k-edge-connected. This condition will
be best possible in the sense that whenever it fails for d then there is a graph
on n vertices with degree sequence at least d which is not k-edge-connected.
Specialized to k = 2, we get Theorem 3 again, and spezialized to k = 3, this
verifies Conjecture 1.

2 Degree sequences and cuts

Let G be a graph and let X,Y ⊆ V (G). By EG(X,Y ) we denote the set of
edges of G which connect a vertex from X to one of Y . By ∂GX we denote the
set of vertices from X which have at least one neighbor outside X. The degree
sequence of X in G is the unique nondecreasing integer sequence in Z|X| in
which every integer i occurs |X ∩ Vi(G)| many times. By definition, the degree
sequence of G is the degree sequence of V (G) in G. The type of the pair (X,Y )
is the pair (a, b), where a, b are the degree sequences of X,Y , respectively, in
the graph (X ∪ Y,EG(X,Y )).

Throughout this paper, the set X ⊆ V (G) is a cut if 1 ≤ |X| ≤ |V (G)|/2.
Its order is |EG(X,V (G)−X)|, which equals |EG(∂GX, ∂G(V (G)−X))|. This
differs slightly from the common definitions of a cut, but an important feature
is shared by all of them: By Menger’s Theorem, G is k-edge-connected if and
only if |V (G)| > 1 and |EG(X,V (G) −X)| ≥ k holds for all nonempty proper

1Our formulation differs a little bit from the original one: Some conditions to the order of
n in 5., 6., 7. have been added carefully, mainly in order to keep the indices legal.
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subsets X of V (G) (see [6]), which is in turn equivalent to saying that G has at
least two vertices and no cut of order less than k.

The type of a cut X is the type of (∂GX, ∂G(V (G)−X)). Clearly, if X has type
((a1, . . . , ap), (b1, . . . , bq)) then X has order

∑p
i=1 ai =

∑q
i=1 bi. By definition,

1 ≤ ai ≤ q for all i ∈ {1, . . . , p} and 1 ≤ bi ≤ p for all i ∈ {1, . . . , q}, and
p = q = 0 may happen.

Let us deduce some set of inequalities involving the degree sequence from the
presence of a cut of a certain type. It is formulated in a way which let the proofs
work nicely, but we will work out an equivalent set in the next section, which
gives conditions similar to those in the statements mentioned in the previous
section when explicitely specialized.

Lemma 1 Let G be a graph on n ≥ 1 vertices with degree sequence d =
(d1, . . . , dn). Let X be a cut of type σ = ((a1, . . . , ap), (b1, . . . , bq)). Set j := |X|,
and, for each ` ≥ 0,

cj,` := cj,`(σ, n) :=
{
n− j − q if n− 2j ≤ `

0 otherwise

}
,

r` := r`(σ) := |{i ∈ {1, . . . , p} : ai ≤ `}|, and
sj,` := sj,`(σ, n) := |{i ∈ {1, . . . , q} : bi ≤ 2j − n+ `}|.

Then

1. max{1, p} ≤ j ≤ min{n/2, n− q}, and

2. dj−p+cj,`+r`+sj,` ≤ j − 1 + ` for all ` ≥ 0 with j + cj,` + r` + sj,` > p.

Proof. Let Y := V (G)−X and let H := (∂GX ∪ ∂GY,EG(∂GX, ∂GY )).

By definition, 1 ≤ |X| ≤ n/2. Since X contains p elements from ∂GX and Y
contains q elements from ∂GY , p ≤ |X| ≤ n− q follows, which implies 1.

To prove 2., consider ` ≥ 0 with j + cj,` + r` + sj,` > p. Since j − p + cj,` +
r` + sj,` ≤ j − p + n − j − q + p + q ≤ n, all indices in 2. are legal. Observe
that the neighborhood of each vertex v ∈ X − ∂GX is contained in X, implying
dG(v) ≤ j − 1 ≤ j − 1 + `. A vertex v in ∂GX with degree, say, ai in H has
degree at most j − 1 + ` in G if ai ≤ `, whereas a vertex v in ∂GY with degree,
say, bi in H has degree at most j − 1 + ` if n − j − 1 + bi ≤ j − 1 + `, that is
bi ≤ 2j − n + `. A vertex v ∈ Y − ∂GY has all its neighbors in Y , implying
dG(v) ≤ n− j − 1, and n− j − 1 ≤ j − 1 + ` holds if n− 2j ≤ `. Consequently,
there are at least |X − ∂GX| + cj,` + r` + sj,` many vertices of degree at most
j − 1 + ` in G, which implies 2. �

The “index condition” j + cj,` + r` + sj,` > p in 2. of Lemma 1 fails only if
j = p and cj,` = r` = sj,` = 0. Therefore, if we define in addition, d0 := 0, 2.
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of Lemma 1 holds if and only if dj−p+cj,`+r`+sj,` ≤ j − 1 + ` for all ` ≥ 0. This
will be convenient when we transform and specialize our conditions in the next
section.

A pair σ = (a = (a1, . . . , ap), b = (b1, . . . , bq)) of finite nondecreasing sequences
of nonnegative integers is bigraphical if there is a bipartite graph H without
isolated vertices and (possibly empty) color classes X,Y such that (a, b) is the
type of (X,Y ) in H. We call H a realization of σ, and define the order of σ to
be the number of edges of any realization, which is equal to

∑p
i=1 ai =

∑q
i=1 bi.

Again, 1 ≤ ai ≤ q for all i ∈ {1, . . . , p} and 1 ≤ bi ≤ p for all i ∈ {1, . . . , q} by
definition. It may happen that p = q = 0.

Lemma 2 Let σ = ((a1, . . . , ap), (b1, . . . , bq)) be bigraphical. Let n ≥ 1 and
d = (d1, . . . , dn) be a nondecreasing sequence of nonnegative integers and j be
an integer such that 1. and 2. of Lemma 1 are satisfied.

Then there is a graph G(n, j, σ) on n vertices with a cut of type σ and degree
sequence at least d.

Proof. Let H be a realization of σ, and let X ′, Y ′ be color classes such that
σ is the type of (X ′, Y ′) in H. Since 1. of Lemma 1 holds here, we may take
G := G(n, j, σ) as the union of H and two disjoint cliques on X,Y , respectively,
such that X has j vertices and contains X ′ and Y has n−j vertices and contains
Y ′. By construction, G has n vertices, X ′ = ∂GX and Y ′ = ∂GY , and X is a
cut of type σ of G. Let g = (g1, . . . , gn) be the degree sequence of G. We have
to prove that di ≤ gi for all i ∈ {1, . . . , n}.

Consider i ∈ {1, . . . , n}, and define a sequence f = (f0, f1, . . .) of nonnegative
integers by f` := j− p+ cj,` + r` + sj,` for ` ≥ 0. For ` ≥ max{n− 2j+ p, q} we
have f` = n by definition. Hence there exists a smallest ` ≥ 0 such that i ≤ f`.

Since f` ≥ i ≥ 1, we deduce di ≤ df` ≤ j − 1 + ` as 2. of Lemma 1 holds for
d here. By construction, G has minimum degree at least j − 1. For ` = 0, we
thus obtain di ≤ j − 1 + 0 ≤ g1 ≤ gi, so we may assume ` > 0. By choice of `,
i > f`−1.

Now ∂GX contains p− r`−1 vertices of degree exceeding j − 1 + `− 1, and ∂GY
contains q − sj,`−1 vertices of degree exceeding j − 1 + `− 1. Since the vertices
in Y − ∂GY have degree n − j − 1, which exceeds j − 1 + ` − 1 if and only if
n− 2j > `− 1, we count n− j − q− cj,`−1 further such vertices in Y − ∂GY . In
total, G contains p− r`−1 + q− sj,`−1 +n− j − q− cj,`−1 = n− f`−1 vertices of
degree exceeding `− 1. It follows that G has at most f`−1 vertices of degree at
most j − 1− `− 1. Consequently, gi > j − 1 + `− 1, so di ≤ j − 1 + ` ≤ gi. �
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3 Redundancy

At first sight, condition 2. of Lemma 1 encodes infinitely many conditions,
one for each `. However, all but finitely many of them are logically redundant,
because for fixed σ the subscript j − p+ cj,` + r` + sj,` takes only finitely many
distinct expressions of the form j+y or n+z (y, z integers). Let us take a closer
look at them, for some fixed n, j and σ as above. To avoid the cumbersome index
check condition, we set d0 := 0

For ` < n−2j, cj,` = sj,` = 0 holds, and the inequality of our condition collapses
to

dj−p+r` ≤ j − 1 + `. (L(`))

For ` ≥ q, r` = p, since ai ≤ q for all i ∈ {1, . . . , p}. Therefore, provided
that q < n − 2j (or, equivalently, j < (n − q)/2), (L(`)) holds for all ` with
0 ≤ ` < n− 2j if and only if (L(`)) holds for all ` ∈ {0, . . . , q}.

For ` ≥ n− 2j, we obtain

dn−q−p+r`+sj,` ≥ j − 1 + `. (S(`))

Substituting `− (n− 2j) =: x and defining tx := tx(σ) := |{i ∈ {1, . . . , q} : bi ≤
x}| we may rewrite

dn−q−p+rx+(n−2j)+tx ≤ n− j − 1 + x, (T (x))

(and (T (max{p, q− (n− 2j)})) implies (T (x)) for all x > max{p, q− (n− 2j)}).

Unfortunately, −p + rx+n−2j does not vanish for all x and j. However, if j
is not too close to n/2 then it does. To be more precise, if q ≤ n − 2j then
x+ n− 2j ≥ q, so rx+n−2j = p. Hence in these cases, (T (x)) collapses to

dn−q+tx ≤ n− j − 1 + x. (R(x))

Again, as tx = p for x ≥ q, (R(x)) holds for all x ≥ 0 if and only if it holds for
all x ∈ {0, . . . , p}, provided that q ≤ n− 2j.

Therefore, provided that q < n− 2j, condition 2. of Lemma 1 holds if and only
if (L(`)) holds for all ` ∈ {0, . . . , q} and (R(x)) holds for all x ∈ {0, . . . , p}. The
latter statement is true for q = n−2j, too: To see this, observe that condition 2.
of Lemma 1 holds if and only if (L(`)) holds for all ` ∈ {0, . . . , q−1} and (R(x))
holds for all ` ∈ {0, . . . , p}. However, if q = n− 2j then the inequality in (R(0))
is dn−q ≤ (n+ q)/2− 1, whereas the one in (L(q)) is d(n−q)/2 ≤ (n+ q)/2− 1;
as d is nondecreasing, (R(0)) thus implies (L(q)).

On the other hand, if q ≥ n − 2j, condition 2. of Lemma 1 holds if and
only if (L(`)) holds for all ` ∈ {0, . . . , n − 2j − 1} and (T (x)) holds for x ∈
{0, . . . ,max{p, q − (n − 2j)}}, as tx = q for x ≥ p and rx+n−2j = p for x ≥
q − (n− 2j).

We thus may reformulate the results of the preceeding section as follows.
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Theorem 4 Let σ = ((a1, . . . , ap), (b1, . . . , bq)) be bigraphical, and let

r` := r`(σ) := |{i ∈ {1, . . . , p} : ai ≤ `}|, for all ` ≥ 0, and
tx := tx(σ) := |{i ∈ {1, . . . , q} : bi ≤ x}|, for all x ≥ 0.

Let n ≥ 1 and d = (d1, . . . , dn) be a nondecreasing sequence of nonnegative
integers. Let j be an integer such that max{1, p} ≤ j ≤ min{n/2, n − q}. Set
d0 := 0.

Then there exists a graph on n vertices with a cut of j vertices of type σ with
degree sequence at least d if and only if the following conditions hold:

1. If j ≤ (n − q)/2 then dj−p+r` ≤ j − 1 + ` for all ` ∈ {0, . . . , q} and
dn−q+tx ≤ n− j − 1 + x for all x ∈ {0, . . . , p}.

2. If j > (n−q)/2 then dj−p+r` ≤ j−1+ ` for all ` ∈ {0, . . . , n−2j−1} and
dn−q−p+rx+(n−2j)+tx ≤ n−j−1+x for all x ∈ {0, . . . ,max{p, q−(n−2j)}}.

Proof. Let X be a cut of type σ with |X| = j in a graph G on n vertices with
degree sequence g = (g1, . . . , gn) at least d. Then, by Lemma 1, conditions 1.
and 2. are satisfied for g instead of d. As di ≤ gi for all i ∈ {1, . . . , n}, each of
the inequalities in 1. and 2. is satisfied, too, and thus 1. and 2. hold for d.

Conversely, if 1. and 2. hold for d then 2. of Lemma 1 holds, too, as we have
seen in the paragraphs just before this theorem. By Lemma 2, there exists a
graph G(n, j, σ) with a cut of j vertices and degree sequence at least d. �

Still there is some redundancy in the set of conditions of this theorem, because,
in general, r` and tx would not take all values from {0, . . . , q} and {0, . . . , p}.
(For example, if r` = r`+1, then (L(`)) implies (L(`+ 1)), so it is not necessary
to list (L(`+ 1)).)

We write down an important corollary, characterizing the nondecreasing finite
integer sequences d for which there are no graphs with degree sequence at least
d and cuts of some fixed type. That is, we vary j, and write the negations of 1.
and 2. of Theorem 4 as implications, where the antecedent is the conjunction of
all inequalities involving ` and the consequent is the disjunction of the negations
of all inequalities involving x.

Corollary 1 Let σ = ((a1, . . . , ap), (b1, . . . , bq)) be bigraphical. Let n ≥ 1 and
d = (d1, . . . , dn) be a nondecreasing sequence of nonnegative integers. Set d0 :=
0.

Then there exists no graph on n vertices with a cut of type σ and degree sequence
at least d if and only if the following conditions hold:

1. For all integers j with max{1, p} ≤ j ≤ (n− q)/2,
dj−p+r` ≤ j − 1 + ` for all ` ∈ {0, . . . , q} implies
dn−q+tx > n− j − 1 + x for some x ∈ {0, . . . , p}.
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2. For all integers j ≥ max{1, p} with (n− q)/2 < j ≤ min{n/2, n− q},
dj−p+r` ≤ j − 1 + ` for all ` ∈ {0, . . . , n− 2j − 1} implies
dn−p−q+rx+n−2j+tx > n− j − 1 + x for some x ∈ {0, . . . ,max{p, q − (n −
2j)}}.2

Let us refer to 1. as to the universal condition for σ. It rules out all cuts of
type σ whose number of vertices is at most (n − q)/2. When specializing to
some particular σ, we will list the extra conditions in 2. one after another, one
for each possible value of j. Formally, this will yield q such conditions.

One way to be more explicit when formulating these extra conditions is to
substitute j = (n − λ)/2, where λ ∈ {0, . . . , q − 1}; then 2. is equivalent to
saying that, for all λ ∈ {0, . . . , q − 1},

2.(λ) for n ≥ max{2 + λ, 2p+ λ, 2q − λ} having the same parity as λ,
d(n−λ)/2−p+r` ≤ (n− λ)/2− 1 + ` for all ` ∈ {0, . . . , λ− 1} implies
dn−p−q+rx+λ+tx > (n+ λ)/2− 1 + x for some x ∈ {0, . . . ,max{p, q− λ}}.

Let us refer to this statement as to the extra condition for σ and λ.

The reason for the presence of extra conditions is that, for j close to n/2, the
degree sequence d of the extremal graph G(n, j, σ) in the proof of Lemma 2 is
degenerated in a sense. Normally, if j is not too close to n/2, then the degree
sequence starts with j−p entries j−1 followed by j−1+a1, . . . , j−1+ap, and
ends with n− j− q entries n− j−1 followed by n− j−1 + b1, . . . , n− j−1 + bq;
in other words: if X,Y are taken as in the proof of Lemma 2 then the degrees
of the vertices from X − ∂GX, ∂GX, Y − ∂GY , and ∂GY occur in this order in
d. Figure 1 gives an example. (White “points” belong to vertices of ∂GX, black
ones to ∂GY .)

Now if n − j − 1 is small enough then j − 1 + ai might top it, and in fact it
might top even some of the n− j − 1 + bi′ . In other words: elements from ∂GX
might occur on both “sides” of the “Y − ∂GY ” segment in the degree sequence.
Figure 2 shows an example with all parameters but j being the same.

It is straightforward to implement an algorithm that produces the set of condi-
tions for some fixed σ. For σ = ((1), (1)), which is the only possible type of a
cut of order 1, we obtain the following.

Corollary 2 Let n ≥ 1 and d = (d1, . . . , dn) be a nondecreasing sequence of
nonnegative integers. Set d0 := 0.

Then there exists no graph on n vertices with a cut of type σ = ((1), (1)) and
degree sequence at least d, if and only if the following conditions hold:

1. (Universal condition for σ)
2For j = n/2 the antecedent of the implication in 2. is trivially true.
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1 8 13 3929

18.5

26

11

Figure 1: The degree sequence of G(39, 12, ((1, 2, 5, 7), (1, 1, 1, 1, 1, 1, 1, 1, 3, 4)).

dj−1 ≤ j − 1 and dj ≤ j implies dn−1 > n − j − 1 or dn > n − j for all
integers j with 1 ≤ j ≤ n−1

2 , and

2. (Extra condition for σ, λ = 0)
for n ≥ 2 even, dn−2 >

n−2
2 or dn > n

2 .

Let us show that the conditions of Theorem 2 and Corollary 2 are equivalent if
d is graphical of length n ≥ 2.

Suppose first that 1., 2., 3. of Theorem 3 hold. Then the universal condition
for σ holds by 2. of Theorem 3 for j ≥ 3 and by 1. of Theorem 3 for j ∈ {1, 2}.
Furthermore, 1. of Theorem 3 implies n ≥ 3 since G is graphical, so the extra
condition for σ and λ = 0 holds by 3. of Theorem 3.

Conversely, if the universal condition for σ and the extra condition for σ and
λ = 0 hold then 2. and 3. of Theorem 3 follow trivially. If n = 2 then d2 ≥ 2
follows from the extra condition for σ and λ = 0, contradicting the assumption
that d is graphical. If n ≥ 3 then we may apply the universal condition of σ
to j = 1, and d1 ≤ 1 would imply dn−1 > n − 2 or dn > n − 1. Since d is
graphical, dn ≤ n− 1 holds, so dn−1 = n− 1. But then at least two vertices of
any realization of d are adjacent to all others, contradicting d1 ≤ 1.

Let us now specialize Corollary 1 to σ ∈ {((2),(1, 1)),((1, 1),(2)), ((1, 1),(1, 1))},
which is the complete typography of cuts of order 2.

Corollary 3 Let n ≥ 1 and d = (d1, . . . , dn) be a nondecreasing sequence of
nonnegative integers. Set d0 := 0.
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18.5

1 13 17 28 39

21

16

Figure 2: The degree sequence of G(39, 17, ((1, 2, 5, 7), (1, 1, 1, 1, 1, 1, 1, 1, 3, 4)).

Then there exists no graph on n vertices with a cut of order 2 and degree sequence
at least d, if and only if the following conditions hold:

1. (Universal condition for σ = ((2), (1, 1)))
dj−1 ≤ j − 1 and dj ≤ j + 1 implies dn−2 > n − j − 1 or dn > n − j for
all integers j with 1 ≤ j ≤ n−2

2 ,

2. (Extra condition for σ = ((2), (1, 1)), λ = 0)
for n ≥ 4 even, dn−3 >

n−2
2 or dn−1 >

n
2 or dn > n+2

2 ,

3. (Extra condition for σ = ((2), (1, 1)), λ = 1)
for n ≥ 3 odd, dn−3

2
≤ n−3

2 implies dn−3 >
n−1

2 or dn > n+1
2 ,

4. (Universal condition for σ = ((1, 1), (1, 1)))
dj−2 ≤ j − 1 and dj ≤ j implies dn−2 > n − j − 1 or dn > n − j for all
integers j with 2 ≤ j ≤ n−2

2 ,

5. (Extra condition for σ = ((1, 1), (1, 1)), λ = 0)
for n ≥ 4 even, dn−4 >

n−2
2 or dn > n

2 ,

6. (Extra condition for σ = ((1, 1), (1, 1)), λ = 1)
for n ≥ 5 odd, dn−5

2
≤ n−3

2 implies dn−2 >
n−1

2 or dn > n+1
2

7. (Universal condition for σ = ((1, 1), (2)))
dj−2 ≤ j − 1 and dj ≤ j implies dn−1 > n − j − 1 or dn > n − j + 1 for
all integers j with 2 ≤ j ≤ n−1

2 , and
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8. (Extra condition for σ = ((1, 1), (2)), λ = 0)
for n ≥ 4 even, dn−3 >

n−2
2 or dn−1 >

n
2 or dn > n+2

2 .

We may wipe out 8. from the list, as it is equal to 2. We claim that if d is a
graphical sequence of length n ≥ 3 then 1. to 7. of Corollary 3 are equivalent
to 1. to 7. of Conjecture 1.

Suppose first that 1. to 7. of Conjecture 1 hold. By 1. of Conjecture 1, n ≥ 4 (as
d is graphical), the extra conditions for σ1 := ((2), (1, 1)), σ2 := ((1, 1), (1, 1)),
and σ3 := ((1, 1), (2)) hold in the case n ≤ 4, and the universal conditions hold
for j < 3. For j ≥ 3, the universal conditions hold by 3., 2., 4. of Conjecture
1, respectively. So let’s verify the extra conditions in the case n > 4. The extra
conditon for σ1 (or σ3) and λ = 0 follows from 7. of Conjecture 1, because
dn

2
> n

2 − 1 implies dn−3 > n−2
2 if n ≥ 6. The extra condition for σ1 and

λ = 1 follows from 7. of Conjecture 1. The extra condition for σ2 and λ = 0
follows from 5. of Conjecture 1, because dn

2
> n

2 − 1 implies dn−4 >
n
2 − 1 for

n ≥ 8, whereas for n = 6, dn−4 >
n
2 − 1 = 2 by 1. of Conjecture 1. Finally, the

extra condition for σ2 and λ = 1 follows from 2. of Conjecture 1, specialized to
j = n−1

2 (as dn−1
2

> n−1
2 implies dn−2 >

n−1
2 ) for n ≥ 7, whereas for n = 5,

dn−2 >
n−1

2 = 2 by 1. of Conjecture 1.

Conversely, let all the conditions from Corollary 3 hold. Then 5., 6., 7. from
Conjecture 1 follow from the extra conditions for σ2 and λ = 0, for σ1 and λ = 1,
and for σ1 (or σ3) and λ = 0, respectively. For j < n−1

2 , the statement of 2.
from Conjecture 1 follows from the universal condition for σ2; for j = n−1

2 ≥ 3
we deduce that n ≥ 7 is odd, and thus the statement follows from the extra
condition for σ2 and λ = 1. 3. and 4. from Conjecture 1 follow immediately
from the universal condition for σ1, σ3, respectively. Assume, to the contrary,
that 1. from Conjecture 1 does not hold, that is, d1 ≤ 2. For n ≥ 4, we
may apply the universal condition for σ1 to j = 1, implying dn−2 > n − 2 or
dn > n− 1; as d is graphical, dn ≤ n− 1, hence dn−2 = n− 1. It follows that at
least 3 vertices of any realization of d are adjacent to all others, contradicting
d1 ≤ 2. For n = 3, the extra condition for σ1 and λ = 1 implies dn > 2 = n− 1,
which is not possible as G is graphical.

4 Corollaries on edge connectivity

Corollary 4 Let n ≥ k ≥ 1 and d = (d1, . . . , dn) be a nondecreasing sequence
of nonnegative integers. Then every graph on n vertices with degree sequence at
least d is k-edge-connected, if and only if d satisfies 1. and 2. of Corollary 1
for all bigraphical pairs σ of order k − 1.

Proof. Suppose that every graph on n vertices with degree sequence at least
d is k-edge-connected and let σ be a bigraphical pair of order k − 1. Then G
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does not have a cut of type σ, and hence the conditions in Corollary 1 must be
satisfied.

Conversely, suppose that the conditions in Corollary 1 are satisfied, and let G
be a graph on n vertices with degree sequence at least d. If G would contain a
cut X of order less than k then we may add edges from X to Y := V (G)−X in
order to obtain a supergraph G+ of G where X is a cut of order k− 1, because
|X| · |Y | ≥ |V (G)| − 1 ≥ k − 1. Now G+ is a graph which does contain a cut
of order k − 1 and of some type σ. The degree sequence of G+ is at least the
degree sequence of G and, therefore, at least d, too, which contradicts Corollary
1. �

How complex are the conditions in Corollary 4, if we write them down line by
line, one for each universal or special condition, as we did in Corollary 2 and
Corollary 3? To give a rough estimate, we need some knowledge about the
number b(k) of bigraphical sequence pairs of order k (as we have seen, b(1) = 1
and b(2) = 3). The determination of b(k) seems to be a difficult problem [4],
even asymptotic results have not been developed yet. We can estimate b(k)
using knowledge on the number p(k) of partitions of k, as p(k) ≤ b(k) ≤ p(k)2:
The first inequality holds since (a, (1, . . . , 1︸ ︷︷ ︸

k times

)) is bigraphical for every reciprocal

a of a partition of k, and the second one holds since a, b are both reciprocals
of partitions of k if (a, b) is bigraphical. Hardy and Ramanujan proved that
p(k) ∼ 1

4k
√

3
eπ
√

2
3k [8], which gives an idea about the asymptotics of b(k). In

particular, it shows that b(k) is superpolynomial.

Whereas special conditions might imply each other (see 2. and 8. of Corollary
2), the universal condition Pσ′ for some σ′ of order k is not implied by the
conjunction of all the conditions Pσ with σ 6= σ′ of order at most k. To see this,
take n, j with j > 2k, n−j > 2k, and n−j−1 ≥ n

2 +k, and let G′ := G(n, j, σ′)
as in the proof of Lemma 2. The degree sequence d′ of G′ does not satisfy Pσ′ ,
as G′ contains a cut of type σ′. We show that if G is any graph on n vertices
with a cut X of some type σ and order at most k and degree sequence d at
least d′ then σ = σ′ and |X| = j; consequently, by Theorem 4, Pσ does hold
for all σ 6= σ′ of order at most k. So let σ′ = ((a′1, . . . , a

′
p′), (b

′
1, . . . , b

′
q′)) and

σ = ((a1, . . . , ap), (b1, . . . , bq)), and set Y := V (G)−X. Since G has minimum
degree at least j− 1 ≥ 2k and |∂GX| ≤ k, we see that X − ∂GX 6= ∅, and, thus,
|X| ≥ j. G has at least n− j vertices of degree at least n− j − 1; none of these
is contained in X (as the vertices from X have degree less than n

2 + k), and at
least one of them is in Y −∂GY , as n− j− 1 ≥ 2k. Hence |Y | ≥ n− j, implying
|X| = j and |Y | = n−j. For ` ∈ {0, . . . , q}, G′ has exactly j−p′+r`(σ′) vertices
of degree at most j− 1 + `. Hence G has at least n− (j− p′+ r`(σ′)) vertices of
degree exceeding j−1+`. As at most n−j of them are in Y and none of them is
in X − ∂GX, we deduce that at least p′− r`(σ′) of the ai, i ∈ {1, . . . , p}, exceed
`, for all ` ∈ {0, . . . , q}. But this implies p ≥ p′ (set ` = 0) and ai ≥ a′i for all
i ∈ {1, . . . , p′}. Consequently, a = a′, since

∑p
i=1 ai ≤ k =

∑p′

i=1 a
′
i. Similarly,
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for all x ∈ {0, . . . , q}, G has at least q′ − tx(σ′) vertices of degree exceeding
n− j − 1 + x, and these are all contained in ∂GY ; therefore, at least q′ − tx(σ′)
of the bi, i ∈ {0, . . . , q}, exceed x, implying b = b′ as above.

These considerations imply that none of the universal conditions in Corollary
4 is redundant, so any equivalent sublist of extra or universal conditions has
length at least b(k).

Nevertheless, the partitions of k can be generated by a straightforward recursive
algorithm, and to check wether a given pair σ = ((a1, . . . , ap), (b1, . . . , bq)) of
finite nondecreasing sequences of positive integers can be decided very fast,
too, because, by a Theorem of Gale and Ryser [7, 9], σ is bigraphical if
and only if

∑min{`,q}
µ=1 bq+1−µ ≤

∑`
µ=1 |{i ∈ {1, . . . , p} : ai ≥ µ}| holds for

all ` ∈ {1, . . . , k} (that is, the conjugate of [the reciprocal of] a majorizes the
reciprocal of b). Hence it is straightforward to implement an algorithm which
generates all bigraphical sequence pairs of order k.

Of course it is possible to find results similar to Corollary 4 for other types
of edge connectivity where the forbidden cuts can be characterized by their
types and their cardinality. An example is essential k+ 1-edge-connectivity. (A
graph is essentially k + 1-edge-connected if and only if it is k-edge-connected
and every k-cut has cardinality 1 and is, therefore, of type ((k), (1, . . . , 1︸ ︷︷ ︸

k times

)).)

Roughly, assuming n ≥ k+ 1, the respective set of conditions would consist (a)
of the universal conditions and extra conditions for every bigraphical pair σ of
order k, where, for σ = ((k), (1, ...., 1)) the range conditions to j in the universal
condition and to n in the extra conditions need to be modified such that the case
j = 1 is not covered3, plus (b) the universal condition for σ′ = ((k−1), (1, . . . , 1))
specialized to j = 14.

Corollary 5 Let n ≥ 2 and d = (d1, . . . , dn) be a nondecreasing sequence of
nonnegative integers. Then every graph on n vertices with degree sequence at
least d is 2-edge-connected, if and only if d satisfies 1. and 2. of Corollary 2.

As we have seen that, if d is a graphical sequences of length n ≥ 2, 1. and 2. of
Corollary 2 are equivalent to 1. and 2. of Theorem 3, Theorem 3 follows (the
equivalence statement of Theorem 3 is trivially true for n ≤ 2).

Corollary 6 Let n ≥ 3 and d = (d1, . . . , dn) be a nondecreasing sequence of
nonnegative integers. Then every graph on n vertices with degree sequence at
least d is 3-edge-connected, if and only if d satisfies 1. to 7. of Corollary 3.

3That is, take “2 ≤ j ≤ n−k
2

” instead of “1 ≤ j ≤ n−k
2

” and “n ≥ 3 + λ” instead of
“n ≥ 2 + λ”, respectively.

4Formally, one has to add all the extra conditions for σ′, specialized to n = 2 + λ, to this
list, too, but, since λ ∈ {0, . . . , k − 2}, they are always true as n ≥ k + 1. For graphical
sequences, one might take d1 ≥ k instead of the universal conditions to σ′.
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As we have seen that, if d is a graphical sequences of length n ≥ 3, 1. to 7. of
Corollary 3 are equivalent to 1. to 7. of Conjecture 1, this verifies Conjecture 1
(again, the equivalence statement there is trivially true for n ≤ 3).

Let us finish with a computer generated result; to characterize the sequences
d such that every graph with degree sequence at least d is 4-edge-connected,
we need some 20 conditions as follows, up to redundancy among the extra
conditons.

Corollary 7 Let n ≥ 1 and d = (d1, . . . , dn) be a nondecreasing sequence of
nonnegative integers. Set d0 := 0.

Then there exists no graph on n vertices with a cut of order 3 and degree sequence
at least d, if and only if the following conditions hold:

1. (Universal condition for σ = ((1, 1, 1), (1, 1, 1)))
dj−3 ≤ j − 1 and dj ≤ j implies dn−3 > n− j − 1 or dn > n− j for all integers
j with 3 ≤ j ≤ n−3

2
,

2. (Extra condition for σ = ((1, 1, 1), (1, 1, 1)), λ = 0)
for n ≥ 6 even, dn−6 >

n−2
2

or dn >
n
2
,

3. (Extra condition for σ = ((1, 1, 1), (1, 1, 1)), λ = 1)
for n ≥ 7 odd, dn−7

2
≤ n−3

2
implies dn−3 >

n−1
2

or dn >
n+1

2
,

4. (Extra condition for σ = ((1, 1, 1), (1, 1, 1)), λ = 2)
for n ≥ 8 even, dn−8

2
≤ n−4

2
and dn−2

2
≤ n−2

2
implies dn−3 >

n
2

or dn >
n+2

2
,

5. (Universal condition for σ = ((1, 1, 1), (1, 2)))
dj−3 ≤ j−1 and dj ≤ j implies dn−2 > n−j−1 or dn−1 > n−j or dn > n−j+1
for all integers j with 3 ≤ j ≤ n−2

2
,

6. (Extra condition for σ = ((1, 1, 1), (1, 2)), λ = 0)
for n ≥ 6 even, dn−5 >

n−2
2

or dn−1 >
n
2

or dn >
n+2

2
,

7. (Extra condition for σ = ((1, 1, 1), (1, 2)), λ = 1)
for n ≥ 7 odd, dn−7

2
≤ n−3

2
implies dn−2 >

n−1
2

or dn−1 >
n+1

2
or dn >

n+3
2

,

8. (Universal condition for σ = ((1, 1, 1), (3)))
dj−3 ≤ j − 1 and dj ≤ j implies dn−1 > n − j − 1 or dn > n − j + 2 for all
integers j with 3 ≤ j ≤ n−1

2
,

9. (Extra condition for σ = ((1, 1, 1), (3)), λ = 0)
for n ≥ 6 even, dn−4 >

n−2
2

or dn−1 >
n
2

or dn >
n+4

2
,

10. (Universal condition for σ = ((1, 2), (1, 1, 1)))
dj−2 ≤ j−1 and dj−1 ≤ j and dj ≤ j+1 implies dn−3 > n− j−1 or dn > n− j
for all integers j with 2 ≤ j ≤ n−3

2
,

11. (Extra condition for σ = ((1, 2), (1, 1, 1)), λ = 0)
for n ≥ 6 even, dn−5 >

n−2
2

or dn−1 >
n
2

or dn >
n+2

2
,

12. (Extra condition for σ = ((1, 2), (1, 1, 1)), λ = 1)
for n ≥ 5 odd, dn−5

2
≤ n−3

2
implies dn−4 >

n−1
2

or dn >
n+1

2
,

13. (Extra condition for σ = ((1, 2), (1, 1, 1)), λ = 2)
for n ≥ 6 even, dn−6

2
≤ n−4

2
and dn−4

2
≤ n−2

2
implies dn−3 >

n
2

or dn >
n+2

2
,
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14. (Universal condition for σ = ((1, 2), (1, 2)))
dj−2 ≤ j−1 and dj−1 ≤ j and dj ≤ j+1 implies dn−2 > n−j−1 or dn−1 > n−j
or dn > n− j + 1 for all integers j with 2 ≤ j ≤ n−2

2
,

15. (Extra condition for σ = ((1, 2), (1, 2)), λ = 0)
for n ≥ 4 even, dn−4 >

n−2
2

or dn−2 >
n
2

or dn >
n+2

2
,

16. (Extra condition for σ = ((1, 2), (1, 2)), λ = 1)
for n ≥ 5 odd, dn−5

2
≤ n−3

2
implies dn−3 >

n−1
2

or dn−1 >
n+1

2
or dn >

n+3
2

,

17. (Universal condition for σ = ((3), (1, 1, 1)))
dj−1 ≤ j − 1 and dj ≤ j + 2 implies dn−3 > n − j − 1 or dn > n − j for all
integers j with 1 ≤ j ≤ n−3

2
,

18. (Extra condition for σ = ((3), (1, 1, 1)), λ = 0)
for n ≥ 6 even, dn−4 >

n−2
2

or dn−1 >
n
2

or dn >
n+4

2
,

19. (Extra condition for σ = ((3), (1, 1, 1)), λ = 1)
for n ≥ 5 odd, dn−3

2
≤ n−3

2
implies dn−4 >

n−1
2

or dn−1 >
n+1

2
or dn >

n+3
2

,

20. (Extra condition for σ = ((3), (1, 1, 1)), λ = 2)
for n ≥ 4 even, dn−4

2
≤ n−4

2
implies dn−4 >

n
2

or dn >
n+2

2
.

Again, as in Corollary 3, we may wipe out 9. and 18. from the statement, as
they are equal to 6. and 11., respectively. (More generally, the extra conditions
for (a, b) and (b, a) are the same for λ = 0.) As mentioned above, the size of
explicit statements of this form for higher connectivity grows rapidly, so it is not
adequate to present them. For example, the respective statement for 9-edge-
connectivity would consist of 1393 conditions (disregarding a few redundancies
among extra conditions, see Table 1).

k p(k) b(k) p(k)2 c(k)
1 1 1 1 2
2 2 3 4 8
3 3 6 9 20
4 5 15 25 58
5 7 28 49 125
6 11 64 121 314
7 15 116 225 631
8 22 238 484 1393
9 30 430 900 2715

Table 1: The numbers p(k), b(k), p(k)2 and the total number c(k) of Bondy–
Chvátal type conditions needed to exclude cuts of order k, for 1 ≤ k ≤ 9.
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