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Abstract

We obtain three results concerning the topological cycle space C of a
locally finite connected graph G. Confirming a conjecture of Diestel we
show that through every edge set E ∈ C there is a topological Euler tour,
a continuous map from the circle S1 to the end compactification |G| of G

that traverses every edge in E exactly once and traverses no other edge.
Second, we show that for every sequence (τi)i∈N of topological x–

y paths in |G| there is a topological x–y path in |G| all of whose edges lie
eventually in every member of some fixed subsequence of (τi). As a corol-
lary we obtain a short proof of one of the fundamental theorems about C,
that every E ∈ C is a disjoint union of edge sets of circles in |G|.

Third, we show that every set of edges not containing a finite odd cut
of G extends to an element of C.

1 Introduction

Erdős et al. [16] characterised the infinite graphs G containing an Euler tour,
that is, a two-way infinite walk traversing every edge of G precisely once. Al-
though their result is best possible, it is not really satisfying: graphs with more
than two ends cannot have such an Euler tour, so we cannot generalise to arbi-
trary infinite graphs the well-known theorems about Euler tours in finite ones.
However, Diestel and Kühn [13] proposed a new concept of an Euler tour, called
a topological Euler tour, that does allow such theorems to generalise to arbitrary
infinite graphs, at least locally finite ones.

A topological Euler tour of a locally finite (multi-)graph G is a continuous
map σ : S1 → |G| traversing every edge of G precisely once. Here, |G| is the
Freudenthal compactification [17] of G, a topological space consisting of G and
its ends, and S1 is the unit circle in the real plane. (See Section 2 for precise
definitions.) Unlike the approach of [16], this definition makes it possible to
have a topological Euler tour in a graph that has more than two ends.

For example, the following theorem can be considered as a generalisation of
Euler’s theorem that a finite connected multigraph has an Euler tour if and only
if every vertex has even degree.

Theorem 1.1 ([13]). Let G be a connected locally finite multigraph. Then, G

admits a topological Euler tour if and only if every finite cut of G is even.

The concept of a topological Euler tour and Theorem 1.1 are part of a
far-reaching research project initiated by Diestel that uses topological concepts
to generalise some classical parts of finite graph theory to infinite graphs; see
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[10] or [11, Chapter 8.5] for an introduction. In this context, a circle in |G|
is a homeomorphic image of S1. The (topological) cycle space C(G) of G is
a vector space over Z2 built from edge sets of circles in |G|; see Section 2.
This concept has allowed the generalisation to infinite graphs of most of the
well-known theorems about the cycle space of a finite graph, most of which
fail for infinite graphs if the usual finitary notion of the cycle space is applied
[2, 3, 4, 5, 13, 20].

A result in this context, which is used in the proof of Theorem 1.1, is the
following.

Theorem 1.2 ([13]). Let G be a connected locally finite multigraph. Then,
E(G) ∈ C(G) if and only if G admits a topological Euler tour.

If H ⊆ G are finite connected multigraphs and E(H) ∈ C(G) then it follows
easily from (the finite version of) Theorem 1.2 that H admits an Euler tour.
Subgraphs of infinite multigraphs however are harder to handle, and one reason
why this is the case is that, in general, they have a different end-topology com-
pared to the original graph. It is thus not surprising that although Theorem 1.2
was one of the first results in this research project, it still remained open to
prove

Theorem 1.3. Let H ⊆ G be locally finite multigraphs such that the closure
H of H in |G| is topologically connected. Then E(H) ∈ C(G) if and only if H

admits a topological Euler tour in |G|.

Here a topological Euler tour of H in |G| is a continuous map from S1 to |G|
traversing each edge of H precisely once and meeting no other edge at an inner
point. Theorem 1.3 was conjectured by Diestel [9], and it is the main result of
this paper. We prove it in Section 4.

Our next result is a lemma whose main idea has already appeared implicitely
several times (e.g. in [20] and in [18, Theorem 4]) and which could have fur-
ther applications. Given a locally finite graph G and two vertices x, y in G,
this lemma facilitates the construction of a topological x-y path contained in
a fixed subspace of |G|. Unlike finite paths, such a topological path cannot be
constructed step by step attaching one edge at a time, because the structure
of a topological path can be arbitrarily complicated: in general, a topological
path consists of double rays whose ordering in the path can be of any countable
ordinal type (see for example the circle in Figure 1, in which the double rays
are arranged like the rational numbers). The main idea behind our lemma is to
construct such a topological path as a limit of x-y paths in (finite) subgraphs
of G. It states that any infinite sequence of topological paths between two
fixed vertices x, y in |G| has a subsequence whose limit contains a topological
x-y path. More precisely, given a sequence E1, E2, . . . of sets, let us write

lim inf(En) :=
⋃

i∈N

⋂

j>i

Ej

for the set of elements eventually in En. For a subspace X of |G| we write E(X)
for the set of edges contained in X . Similarly, for a topological path τ we write
E(τ) for the set of edges contained in the image of τ .
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Lemma 1.4. Let G be a locally finite graph, let x, y ∈ V (G) and let (τi)i∈N

be a sequence of topological x–y paths in |G|. Then, there is an infinite subse-
quence (τai

)i∈N of (τi) and a topological x–y path σ in |G| such that E(σ) ⊆
lim inf(E(τai

)). Moreover, if no τi traverses any edge more than once then
E(G) \ E(σ) ⊆ lim inf(E(G) \ E(τai

)), no edge is traversed by σ more than
once, and for every finite subset F of E(σ) there is an n ∈ N such that the
linear ordering of F induced by σ coincides with that induced by τai

for every
ai > n.

In Section 5 we will use Lemma 1.4 in order to obtain an elementary proof
of the following result, which is one of the most important tools in this research
project:

Theorem 1.5 ([14]). For any locally finite graph G, every element of C(G) is
a disjoint union of edge-sets of circles.

One of the applications of Theorem 1.5 is in the proof of Theorem 1.2.
Theorem 1.5 has a long history; its first proof, in [14], applied to non-locally-
finite graphs as well and was quite technical. A simpler proof for locally finite
graphs inspired by [25] appears in [11, Theorem 8.5.8], but this proof still uses
a non-trivial fact from topology and another result of Diestel and Kühn [15],
that if G is locally finite and X ⊆ |G| is closed and connected then X is path-
connected. Our proof is elementary and based only on Lemma 1.4.

Having seen Theorem 1.1 and Theorem 1.3 it is natural to ask for a generali-
sation to infinite multigraphs of the following result of Jaeger. For a multigraph
G and H ⊆ E(G), we say that H extends to an element of C(G) if there is
H ′ ∈ C(G) with H ⊆ H ′.

Theorem 1.6 ([22]). If G is a finite multigraph and H ⊆ E(G) then H extends
to an element of C(G) if and only if H contains no cut of G of odd cardinality.

In Section 6 we prove this assertion for locally finite G and discuss a possible
application to hamiltonicity problems.

2 Definitions

Unless otherwise stated, we will be using the terminology of [11] for graph
theoretical concepts and that of [1] for topological ones. Let G = (V, E) be
a locally finite multigraph — i.e. every vertex has a finite degree — fixed
throughout this section.

A 1-way infinite path is called a ray, a 2-way infinite path is a double ray. A
tail of the ray R is a final subpath of R. Two rays R, L in G are equivalent if
no finite set of vertices separates them. The corresponding equivalence classes
of rays are the ends of G. We denote the set of ends of G by Ω = Ω(G).

Let G bear the topology of a 1-complex1. To extend this topology to Ω,
let us define for each end ω ∈ Ω a basis of open neighbourhoods. Given any
finite set S ⊂ V , let C = CG(S, ω), or just C(S, ω) if G is fixed, denote the

1Every edge is homeomorphic to the real interval [0, 1], the basic open sets around an inner
point being just the open intervals on the edge. The basic open neighbourhoods of a vertex x

are the unions of half-open intervals [x, z), one from every edge [x, y] at x.
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component of G − S that contains some (and hence a tail of every) ray in ω,
and let Ω(S, ω) denote the set of all ends of G with a ray in C. As our basis of
open neighbourhoods of ω we now take all sets of the form

C(S, ω) ∪ Ω(S, ω) ∪ E′(S, ω) (1)

where S ranges over the finite subsets of V and E′(S, ω) is any union of half-
edges (z, y], one for every S–C edge e = xy of G, with z an inner point of e. Let
|G| denote the topological space of G∪Ω endowed with the topology generated
by the open sets of the form (1) together with those of the 1-complex G.

It can be proved (see [12]) that in fact |G| is the Freudenthal compactification
[17] of the 1-complex G.

A circle in |G| is the image of a homeomorphism from S1, the unit circle in
R

2, to |G|. An arc in |G| is a homeomorphic image of the real interval [0, 1] in
|G|.

A subset D of E is a circuit if there is a circle C in |G| such that D = {e ∈
E|e ⊆ C}. Call a family (Di)i∈I of subsets of E thin, if no edge lies in Di for
infinitely many i. Let the sum Σi∈IDi of this family be the set of all edges that
lie in Di for an odd number of indices i, and let the cycle space C(G) of G be
the set of all sums of (thin families of) circuits.

A topological Euler tour of G is a continuous map σ : S1 → |G| such that
every inner point of an edge of G is the image of exactly one point of S1 (thus,
every edge is traversed exactly once, and in a “straight” manner).

A trail in a multigraph G is a walk in G that traverses no edge more than
once.

If H is a finite submultigraph of the locally finite multigraph G, then let H∗

denote the multigraph obtained from G by contracting each component C of
G − H into a single vertex uC , deleting loops but keeping multiple edges. If X

is a topological path in |G| then let X ↾ H be the walk induced in H∗ by X

(induced by replacing each maximal subpath of X in a component C of G − H

by uC). If X ↾ H traverses some edge more than once then pick a trail with
edges in E(X ↾ H) between the endvertices of X ↾ H and denote it by X |H ; if
X ↾ H is a trail then let X |H = X ↾ H .

3 Basic facts

The following basic fact can be found in [21, p. 208].

Lemma 3.1. The image of a topological path with endpoints x, y in a Hausdorff
space X contains an arc in X between x and y.

The well known orthogonality relation between elements of the cycle space
and cuts has aslo been extended to locally finite graphs and provides a very
useful tool [11, Theorem 8.5.8]:

Lemma 3.2. Let F ⊆ E(G). Then F ∈ C(G) if and only if F meets every
finite cut in an even number of edges.

The following lemma, proved e.g. in [11, Theorem 8.5.5], says that an arc is
not allowed to jump a finite cut:
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Lemma 3.3. If F = E(X, Y ) is a finite cut of G (where {X, Y } is a bipartition
of V (G)) then any arc in |G| with one endpoint in X and one in Y contains an
edge from F .

4 Euler tours

In this section we prove Theorem 1.3, but before we do so let us consider an
example indicating why, contrary to the case when G is finite, this is harder
to prove than Theorem 1.2. Let me first sketch the proof of Theorem 1.2 [13].
The harder implication is to show that if E(G) ∈ C(G) then G has a topological
Euler tour. To prove this, Diestel & Kühn [13] first applied Theorem 1.5 to
obtain a decomposition of E(G) into a set B of pairwise edge-disjoint circuits.
Then, they picked one of those circuits B0 and a homeomorphism σ0 from S1 to
the defining circle of B0. They proceeded inductively in infinitely many steps,
in each step n considering an elements B of B such that B is incident with a
vertex v visited by σn−1 but the edges of B are not traversed by σn−1. Then,
they modified σn−1 locally in order to obtain a new continuous map σn that
traverses B as well as all elements of B traversed by σn−1. This process yielded a
limit map σ whose image contained every edge exactly once, and the remaining
task was to show that this map was continuous.

Now consider the graph F of Figure 1, a well known object from [13, 10].
Formally, it is defined as follows. Let V be the set of finite 01 sequences,
including the empty sequence ∅. Define a tree on V by joining every ℓ ∈ V

to its two one-digit extensions, the sequences ℓ0 and ℓ1. For every ℓ ∈ V , add
another edge eℓ between the vertices ℓ01 and ℓ10, and let Dℓ denote the double
ray consisting of eℓ and the two rays starting at eℓ whose vertices have the form
ℓ1000 . . . and ℓ0111 . . .. Finally, let L be the double ray whose vertices are ∅
and the all-zero and the all-one sequences, and let D := {L} ∪ {Dℓ | ℓ ∈ V } be
the set of all those double-rays (drawn thick in Figure 1). It has been shown in
[13] that all the elements of D and all the (continuum many) ends of F together
form a circle C in |F | (the double rays Dl are traversed by C in the order they
appear in Figure 1 when moving from left to right; one can think of C as being
the boundary of the outer face of F ).

The example we are going to use in order to see how the proof of Theorem 1.2
fails to prove Theorem 1.3 is the graph G obtained by taking two disjoint copies
F1, F2 of F and joining every vertex of F1 to its copy in F2 by an edge. The
subgraph H of |G| we choose consists of the copies of D in both F1, F2. Its
closure H contains all ends of G. Note that if R is a ray in F1 and R′ its copy
in F2, then R and R′ belong to the same end of G. This implies that G and F

have the same ends and Ω(G) and Ω(F ) have the same topology; formally, the
function π : Ω(F ) → Ω(G) that maps every end of F to the end of G containing
it as a subset is a homeomorphism. This means that the two copies C1, C2 of
C in F1, F2 respectively are also circles in |G|, thus H , which is the union of C1

and C2, is path-connected since C1 and C2 intersect: C1 ∩ C2 = Ω(G).
Thus H satisfies the conditions of Theorem 1.3: we have E(H) = E(C1) ∪

E(C2) ∈ C(G), and H is connected since it is path-connected. Now let us try to
prove that H has a topological Euler tour in |G| using the proof of Theorem 1.2
sketched above. Firstly, we have to apply Theorem 1.5. If we are lucky this
will decompose E(H) into E(C1) and E(C2), and we will be able to imitate
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Figure 1: The graph F . The thick double-rays together with the ends of the graph
form a circle.

that proof (although we will have to attach the two circles at an end rather
than at a vertex). However, we can be unlucky: Theorem 1.5 could return a
quite different decomposition into circuits. Note that for every D ∈ D the two
copies of D in G together with their two incident ends form a circle CD in |G|,
comprising two double rays and two ends (recall that the two copies of a ray
of F in G belong to the same end of G). Now E(H) can be decomposed into
the set of all edge-sets of such circles CD for all D ∈ D. But if the application
of Theorem 1.5 returns this decomposition then we cannot continue with the
proof: if D, D′ are any two distinct elements of D then D∩D′ = ∅, so we cannot
start with some circuit and then stepwise attach the others, since there are no
common points where we could attach.

Thus we are going to need a different approach in order to prove our result:

Proof of Theorem 1.3. Let us start with the easier of the two implications: if H

has a topological Euler tour in |G| then, since arcs cannot jump finite cuts by
Lemma 3.3, every finite cut of G has an even number of edges in H . Lemma 3.2
now implies that E(H) ∈ C(G).

We now assume conversely that E(H) ∈ C(G) and construct a topological
Euler tour σ of H in |G|.

Let v1, v2, . . . be an enumeration of the vertices of V (G) and let Gn be the
submultigraph G[v1, v2, . . . , vn] of G induced by the first n vertices in this enu-
meration. Moreover, let Hn := (V (G∗

n), E(H) ∩ E(G∗
n)) be the submultigraph

of G∗
n formed by the edges in E(H) ∩ E(G∗

n) and their incident vertices (the
notation G∗

n is defined is Section 2).
Note that every cut of G∗

n is also a finite cut of G. Thus, if Hn intersects some
cut of G∗

n in an odd number of edges, then so does H for the corresponding cut of
G, which cannot be the case by Lemma 3.2. This means that for any bipartition
{X, Y } of V (G∗

n), Hn contains an even number of X–Y edges. Moreover, Hn

is connected, since otherwise there is a finite cut of G∗
n, and G, that separates

Hn but contains no edge of H , and this cut easily contradicts the topological
connectedness of H. Thus by Euler’s theorem [11] Hn has an Euler tour.

Note that every Euler tour W of Hn+1 induces an Euler tour W |n of Hn;
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indeed, let W |n be the walk obtained from W by contracting all edges not in
E(Hn). By construction W |n contains all edges of Hn and traverses each of
them only once.

We want to apply König’s Infinity Lemma [23] (or [11]) to obtain a sequence
(Wn)n∈N such that Wn is an Euler tour of Hn and Wn+1|n = Wn for every
n. So let Vn be the set of all Euler tours of Hn, and join any W ∈ Vn+1 to
W |n ∈ Vn. The Infinity Lemma now yields a sequence (Wn)n∈N with Wn ∈ Vn

as required (W0 being the trivial walk).
We are now going to construct a topological Euler tour σ of H in |G| as the

limit of a sequence σn of topological Euler tours of the Hn corresponding to
Wn.

Let σ0 be the constant map from S1 to the vertex uC of G∗
0 that corresponds

to the component C of G that meets H . Assume inductively that for some n

we have defined σn : S1 → |Gn| so that σn runs through the edges and vertices
of Wn in order, traversing every edge in a straight manner and pausing for a
non-trivial interval at every vertex it visits (and each time it visits that vertex);
more formally, the inverse image under σn of a vertex is always a disjoint union
of non-trivial subarcs of S1, one for each visit of Wn to that vertex.

We are now going to use σn in order to define σn+1. It is easy to see that Wn

can be obtained from Wn+1 by contracting every maximal subwalk that does
not contain edges in Wn to a “contracted vertex”

u ∈ V (G∗
n)\V (Gn). (2)

For every such subwalk D, there is one subarc ID of S1 mapped to u by σn

that corresponds to D: there is an occurence of u in Wn that is split into two
occurences of u in Wn+1 between which D (and nothing else) is traversed, and
ID is the subarc that corresponds to that occurence.

Now modify σn so that it maps ID continuously to D traversing every edge
e of D precisely once, in a straight manner, and in the same direction as Wn+1

traverses e, and pausing for a non-trivial interval at every vertex it visits. Let
σn+1 be the map obtained from σn by performing all these modifications for all
contracted walks D (note that if D, D′ are distinct maximal contracted walks
then ID∩ID′ = ∅, thus all these modifications can be performed simultanously).

We now define the limit map σ : S1 → |G| as follows. Let x ∈ S1 be given.
If there is a point y so that σn(x) = y for all but finitely many n, then put
σ(x) = y. (In this case y must be a vertex of G or an inner point of an edge,
and the maps σn will agree on x for all n so large that this vertex or edge is in
Gn.) If not, then σn(x) is a “contracted vertex” uCn

for every n by (2), and
the corresponding components Cn are nested. Let Cn denote the topological
closure of Cn in |G|. As |G| is compact, U :=

⋂
n Cn is non-empty, and as,

clearly,
⋂

n Cn = ∅, we have U ⊆ Ω(G). However, for any two distinct ends
ω, ω′ in Ω(G) there is a finite vertex set S separating their rays. This means
that if S ⊆ V (Gn) then Cn cannot contain both ω and ω′, thus U consists of
one end ω only. Let σ(x) = ω. Note that

σ(x) ∈ Cn for every n. (3)

This completes the definition of σ and now we have to show that it is con-
tinuous. This is trivial at points of S1 that are mapped to some vertex or inner
point of an edge, so let x be a point mapped to an end ω. We have to specify for
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every open neighbourhood O of ω an open subset of S1 containing x mapped to
O by σ. However, for every basic open set O′ = O(S, ω) of ω, there is an n ∈ N

such that C ⊆ O′ for some component C of G−Gn; just choose n large enough
that S ⊆ {v1, . . . , vn}. This component C corresponds to a vertex uC ∈ V (G∗

n),
and the inverse image of uC under σn is, by the construction of σn, a disjoint
union I of non-trivial subarcs of S1. We claim that σ(I) ⊆ C. Indeed, if x ∈ I

is mapped to a vertex or inner point of an edge by σ, then clearly σ(x) lies in
C. If x is mapped to an end, then σ(x) ∈ C holds by (3). This proves that σ is
continuous. By construction σ traverses each edge in E(H) precisely once and
traverses no other edge, thus it is a topological Euler tour of H in |G|.

5 An elementary proof of Theorem 1.5

In this section we prove Lemma 1.4 and apply it to obtain a proof of Theorem 1.5
which is shorter than previous proofs ([14, 11]).

Proof of Lemma 1.4. Let v1, v2, . . . be an enumeration of the vertices of V (G)−
{x, y} and let Gn be the submultigraph G[x, y, v1, v2, . . . , vn] of G induced by
x,y and the first n vertices in this enumeration. Given any topological path τ

in |G| let τ |n := τ |Gn. We begin by selecting the sequence (τai
), in ω steps,

choosing one member in each step. We will choose (τai
) so that all members

with index i or greater will agree on G∗
i :

τai
|i = τaj

|i for all i, j ∈ N with i < j. (4)

For the first step, we pick an x–y trail W1 in G∗
1 such that the set X1 of

indices j such that τj |1 = W1 is infinite; such a trail exists because G∗
1 is finite

and {τi} infinite. Then, pick any element j of X1 and let τa1
:= τj .

Having performed the first n − 1 steps we pick, in step n, an x–y trail Wn

in G∗
n such that the set Xn of indices j ∈ Xn−1 such that τj |n = Wn is infinite;

such a trail exists because G∗
n is finite and Xn−1 infinite. Then, pick any element

j of Xn and let τan
:= τj .

Thus we have defined the sequence (τai
)i∈N, which by construction satisfies

(4). We will now construct a topological path σ from x to y in |G| with E(σ) ⊆
lim inf(E(τai

)) in ω steps. For the first step, let σ0 be a continuous map from
the real interval [0, 1] to G∗

1 that runs through each edge of W1 precisely once
and in order, runs through no other edge, and maps a non-trivial interval Ij

v to
each vertex v of G∗

1 obtained by contracting a component of G − G1 each time
it visits v.

Then, at step n, modify σn−1 on these intervals Ij
v to extend it to a continu-

ous map σn from [0, 1] to G∗
n that runs through each edge of Wn precisely once

and in order, also mapping non-trivial intervals Ij
v to each contracted vertex v

it visits; it is possible to extend σn−1 in this way by (4).
We can now define the required topological path σ : [0, 1] → |G| as a “limit”

of the σn: for every x ∈ [0, 1], if there is an n0 ∈ N such that σm(x) = σn0
(x)

for every m ≥ n0, then we let σ(x) = σn0
(x); otherwise, σn(x) is a contracted

vertex for every n, and as in the proof of Theorem 1.3 it is easy to prove that
the components contracted to the σn(x) converge to a unique end ω of G, and
we let σ(x) = ω.
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Similarly with the proof of Theorem 1.3, it is straightforward to check that
σ is continuous, thus it is a topological x–y path. By construction σ has the
required properties.

Note that Lemma 1.4 remains true if one or both of x, y is an end. To see
this, modify the proof of Lemma 1.4 so that Wn is an x̂-ŷ trail in G∗

n, where x̂

is the contracted vertex of G∗
n corresponding to the component containing rays

in x if x is an end, and x̂ = x if x is a vertex; define ŷ similarly.

Proof of Theorem 1.5. It suffices to prove that every non-empty element of C(G)
contains at least one circuit; indeed, assume this is true, and for any C ∈ C(G)
let Z be a maximal set of edge-disjoint circuits in C. Then, C′ = C+

∑
D∈Z D =

C \
⋃

D∈Z D is an element of C(G), and if it is non-empty then it contains a
circuit by our assumption, which contradicts the maximality of Z. Thus C′ = ∅
and C is the sum of the family Z.

To show that any non-empty C ∈ C(G) contains a circuit, we will pick an
arbitrary edge f = xy ∈ C and find a circuit in C containing f . By definition,
C is the sum of a thin family {E(Ci)}i∈N of circuits of circles Ci. Let F :=⋃

i∈N
E(Ci), let e1, e2, . . . be an enumeration of the edges of G, and let En :=

{f} ∪ {ei | i < n, ei ∈ F \ C}.

Lemma 5.1. For every n ∈ N there is an x–y arc Xn in |G| with E(X) ⊆
F \ En.

Proof. Since {Ci} is a thin family, the subset Kn of its elements that contain
edges in En is finite. For every Ci ∈ Kn replace every maximal subarc R of Ci

that does not contain any edge in En by an edge eR, called a representing edge,
to obtain a finite cycle C′

i. Taking the union of all these new cycles we obtain
a finite auxiliary graph

Gn := (
⋃

Ci∈Kn

V (C′
i),

⋃

Ci∈Kn

E(C′
i))

and we can apply the finite version of Theorem 1.5 (see [11]) to the element∑
Ci∈Kn

C′
i of C(Gn). This yields a disjoint union of finite circuits, and one of

them, say D, has to contain f since f must appear in an odd number of elements
of {Ci} and thus of Kn. Moreover, D does not contain any edge in En − f ,
as those edges appear in an even number of elements of {Ci} and thus of Kn.
Now replacing every representing edge eR in D by the arc R it represents and
removing f yields a topological x–y path which, by Lemma 3.1, contains the
required x–y arc.

Applying Lemma 1.4 on the sequence (τn)n∈N where τn is a topological
path whose image is the arc Xn obtained from Lemma 5.1 yields a topological
x–y path all of whose edges lie in C, and applying Lemma 3.1 we obtain an
x–y arc X . The union of X with f is the required circuit.
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6 Cyclability

In this section we generalise Theorem 1.6 to the topological cycle space of a
locally finite graph:

Theorem 6.1. If G is a locally finite multigraph and H ⊆ E(G) then H extends
to an element of C(G) if and only if H contains no cut of G of odd cardinality.

In order to prove the backward implication of Theorem 6.1 we will first show
that it is true for finite H , and then use this fact and compactness to prove it
for any H .

For H, G as in Theorem 6.1 let G[H ] denote the submultigraph of G formed
by the edges in H and their incident vertices.

Lemma 6.2. For every locally finite multigraph G and every finite H ⊆ E(G),
if H contains no cut of G of odd cardinality then it extends to an element of
C(G).

Proof. We may assume without loss of generality that G is connected, since
otherwise we can apply the result to each component of G that meets H .

We are going to find a finite submultigraph G′ of G containing H such that
H extends to an element of C(G′). For this, consider every (possibly empty)
F ⊆ E(H), and if F separates G[H ] but not G (in particular, if F = ∅ and G[H ]
is not connected), then pick a set PF of paths in G so that (G[H ] − F ) ∪

⋃
PF

is connected. Let G′ be the (finite) union of G[H ] with all paths that lie in
some PF . By the construction of G′, if H contains a cut B of G′ then B is
also a cut of G. Thus H contains no cut of G′ of odd cardinality, and we can
apply Theorem 1.6 to H, G′ to prove that H extends to an element of C(G′).
Since any cycle in G′ is also a cycle in G, this means that H also extends to an
element of C(G).

We can now prove Theorem 6.1 applying Lemma 6.2 to the finite subsets
of H and using compactness. One way to do this is using the methods of the
previous sections and König’s Infinity Lemma as the reader can check, however
the most convenient way is to use the compactness theorem for propositional
logic (see [6]):

Theorem 6.3. Let K be an infinite set of propositional formulas every finite
subset of which is satisfiable. Then K is satisfiable.

Proof of Theorem 6.1. If H contains a cut of G of odd cardinality then by
Lemma 3.2 it does not extend to an element of C(G).

For the reverse implication, let e1, e2, . . . be an enumeration of the elements
of H , and for every i ∈ N let Hi = H ∩ {e1, . . . , ei}. By Lemma 6.2 there is for
each i a Ci ∈ C(G) with Hi ⊆ Ci. In order to apply Theorem 6.3, we introduce
for each edge e of G a boolean variable ve; intuitively, the two possible values
T, F that ve can assume encode the presence or not of e. For every edge e in
H let Pe denote the propositional formula ve = T (encoding the event that e is
present). Moreover, for every finite cut B of G let PB be a propositional formula
(in the variables ve) that evaluates to T if and only if the set {e ∈ B | ve = T }
has even cardinality (PB expresses the event that an even number of edges in
B are present). Let K := {Pe | e ∈ H} ∪ {PB | B is a finite cut of G} be the
set of all these propositional formulas.
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We claim that every finite subset K ′ of K is satisfiable. Indeed, pick n ∈ N

large enough that Hn contains all edges e such that Pe ∈ K ′. Now Cn yields
an assignment of values to the variables ve that satisfies all formulas in K ′: for
every e ∈ E(G) let ve = T if e ∈ Cn and ve = F otherwise. It is obvious that
this assignment satisfies all formulas in K ′ of the form Pe. It also satisfies all
formulas of the form PB as, by Lemma 3.2, Ci meets every finite cut in an even
number of edges.

We can thus apply Theorem 6.3 to obtain an assignment of values to the ve

that satisfies all formulas in K. The corresponding edge set C := {e ∈ E(G) |
ve = T } contains, then, all edges in H , and it lies in C(G) by Lemma 3.2.

Theorem 1.6 is proved by an elegant algebraic argument ([22]), and in fact
this argument can be adapted to give an alternative proof to Theorem 6.1. Let
G be a finite multigraph. For a subset F of E(G), denote by P (F ) the subspace
of the edge space E of G generated by the edges in F , and let F̄ := E(G) \ F .
For X ⊆ E denote by X⊥ the set of elements of E that meet each element of X

in an even number of edges. Moreover, let K be the subspace of E consisting of
the cuts of G, and let C be the cycle space of G. In this notation, Theorem 1.6
can be formulated as follows:

If G is a finite multigraph and H ⊆ E(G) then H ∈ C + P (H̄)
if and only if H ∈ [K ∩ P (H)]⊥.

(5)

Now to prove (5) note that [C + P (H̄)]⊥ = C⊥ ∩ P (H̄)⊥ = K ∩ P (H)⊥,
thus (5) follows from the fact that X⊥⊥ = X (it is well-known that C⊥ = K;
see [11]). In order to apply the same argument in the case that G is an infinite
locally finite multigraph, we need three facts (if X is a subspace of the edge
space E of G then X⊥ consists of those elements of E that have a (finite and)
even intersection with each element of X). Firstly, we may assume without loss
of generality that G is 2-edge-connected, and thus Lemma 3.2 implies that C⊥

is the space of finite cuts of G. Second, that C(G) is generated by a thin set (see
again [11, Theorem 8.5.8]), and finally, that if X ⊆ E is generated by a thin set
then X⊥⊥ = X , which follows from Theorem 4.3 of [7].

Let me now argue that Theorem 6.1 could find applications in the study of
hamiltonicity in infinite graphs. If G is a locally finite graph then we define a
Hamilton circle of G to be a circle in |G| containing all vertices (and hence also
all ends, as it is closed). This concept allowed the generalisation of Fleischner’s
theorem to locally finite graphs [18]. See [19] for more results and open problems
about Hamilton circles.

Thomassen [24] conjectured that every finite 4-connected line graph is hamil-
tonian. An easy special case of this conjecture is to prove that the line graph
of a 4-edge-connected finite graph G is hamiltonian. To prove this, note that
since G is 4-edge-connected it has two edge-disjoint spanning trees T, S ([11,
Theorem 2.4.1]). By Theorem 1.6, E(T ) extends to an element C of C(G): it
contains no cut of G since its complement contains the spanning tree S. So let
W be an Euler tour of G[C], which exists by Theorem 1.2. Since W meets all
vertices of G it is easy to convert W into a Hamilton cycle of the line graph
L(G) of G: we just translate edges of W into vertices of L(G), and each time
we visit a new vertex v of G while running along W we make a detour to pick
up any edges incident with v that are not in W and have not been picked up
yet; see [8] for a more precise exposition.
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Having generalised Theorem 1.6 to Theorem 6.1 we could try to extend this
proof to locally-finite graphs G. However the first step is still missing: we need
a spanning subgraph of G that has the same end-topology as G and whose
edge-set extends to an element of C(G) to play the role of T in the above sketch.
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