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AbstratWe establish a relation between smooth 2-funtors de�ned on thepath 2-groupoid of a smooth manifold and di�erential forms on thismanifold. This way we set up a ditionary between fundamental no-tions from ategory theory and di�erential geometry. We show thatsmooth 2-funtors appear in several �elds, namely as onnetions on(non-abelian) gerbes, as derivatives of smooth funtors and as ritialpoints in BF theory. We demonstrate further that our ditionary pro-vides a powerful tool to disuss the transgression of geometri objetsto loop spaes.
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Lie group G. In this ase, the equivalene established in [SW07℄ boils downto a bijetion
Ω1(X, g) ∼=

{ Smooth funtors
P1(X) → BG

}between the set of g-valued 1-forms on X and the set of smooth funtorsbetween two groupoids P1(X) and BG. One the one hand, we have thepath groupoid P1(X) whih is assoiated to the manifold X: its objets arethe points of X, and the morphisms between two points are (thin homotopylasses of smooth) paths between these two points. On the other hand, wehave a groupoid BG whih is assoiated to the Lie group G: it has just oneobjet and every group element ats as an automorphisms of this objet. Thenotation BG is devoted to the fat that the geometri realization of its nerveis the lassifying spae BG of the group G.Now, the funtors F : P1(X) // BG we have on the right hand side of theabove bijetion assign group elements F (γ) to paths γ in X; this assignmentis smooth in a sense that an be expressed in terms of smooth maps betweensmooth manifolds. For the onveniene of the reader, we review this relationbetween smooth funtors and di�erential forms in Setion 1.In the present artile we generalize the above bijetion between smoothfuntors and 1-forms to smooth 2-funtors. The aim of this generalizationis multiple, but for a start we want to give the reader an impression howthe generalized bijetion looks like. The �rst step is the generalization ofthe ategories P1(X) and BG to appropriate 2-ategories. On the one hand,we introdue the path 2-groupoid P2(X) of a smooth manifold X by adding2-morphisms to the path groupoid P1(X). These 2-morphisms are (thinhomotopy lasses of) smooth homotopies between smooth paths in X. Onthe other hand, we infer that the group G whih was present before hasto be replaed by a (strit) 2-group: basially, this is a group objet inategories, i.e. a ategory with additional struture. The onept of 2-groupsan be re�ned to Lie 2-groups; suh a Lie 2-group G underlies the generalizedrelation we are after. We form a 2-ategory BG mimiking the same idea weused for the ategory BG: it has just one objet and the Hom-ategory ofthis objet is the ategory G.Equipped with these generalized 2-ategories, we onsider 2-funtors
F : P2(X) // BG,and it even makes perfetly sense to qualify some as smooth 2-funtors. Asbefore, the smoothness an be expressed in terms of smooth maps betweensmooth manifolds (De�nition 2.4). In order to explore whih kind of di�er-ential form orresponds to a smooth 2-funtor F : P2(X) // BG, we put theFuntors vs. Forms, v3 23.7.2008 3 8/28/2008 19:35



abstrat onept of a 2-group in a more familiar setting. Aording to Brownand Spener [BS76℄, a 2-group G is equivalent to a rossed module: a stru-ture introdued by Whitehead [Whi46℄ onsisting of two ordinary groups Gand H , a group homomorphism t : H // G and a ompatible ation of G on
H . Similarly, a Lie 2-group orresponds to Lie groups G and H and smoothadditional struture. We denote the Lie algebras of the two Lie groups G and
H by g and h, respetively. The �rst result of this artile (Proposition 2.7)is that the smooth 2-funtor F indues a g-valued 1-form A and an h-valued2-form B on X that are related by

dA + [A ∧ A] = t∗ ◦B.Here t∗ is the Lie algebra homomorphism indued by t. The two di�eren-tial forms A and B ontain in fat all information about the 2-funtor Fthey ame from: we desribe an expliit proedure how to integrate twoforms A and B whih satisfy the above ondition, to a smooth 2-funtor
F : P2(X) // BG. This integration involves iterated solutions of ordinarydi�erential equations. The main result of this artile (Theorem 2.20) is thatwe obtain a bijetion

{Smooth 2-funtors
F : P2(X) → BG

}

∼=

{

(A,B) ∈ Ω1(X, g) × Ω2(X, h)with dA+ [A ∧A] = t∗ ◦B

} .This is the announed generalization of the relation between smooth funtorsand di�erential forms from [SW07℄. Besides, we also explore the geometristruture that orresponds to morphisms (pseudonatural transformations)and 2-morphisms (modi�ations) between 2-funtors. The derivation of allthe relations that are imposed on this struture takes a large part of thisartile, and is olleted in Setion 2.In Setion 3 we try to onvine the reader that smooth 2-funtors areimpliitly present in various �elds, and we desribe how our new bijetionwith di�erential forms an be used. For this purpose, we give three exam-ples. The �rst example are onnetions on (possibly non-abelian) gerbes.As mentioned at the beginning of this introdution, ordinary smooth fun-tors orrespond to onnetions on trivial prinipal bundles. We laim herethat smooth 2-funtors orrespond in the same way to onnetions on trivialgerbes.For abelian gerbes, suh onnetions have been studied by Brylinski onsheaves of groupoids [Bry93℄, and by Murray on bundle gerbes [Mur96℄. Inboth ases, our laim shows to be true. Connetions on a ertain lass of(possibly non-abelian) gerbes have been introdued by Breen and MessingFuntors vs. Forms, v3 23.7.2008 4 8/28/2008 19:35



[BM05℄. Their onnetion � onsidered on a trivial gerbe � is a pair (A,B)of a 1-form and a 2-form, just like they arise here from a smooth 2-funtor.This is a further indiation for our laim that smooth 2-funtors are relatedto onnetions on trivial gerbes. Interestingly, the two forms of a Breen-Messing onnetion are not neessarily related to eah other in ontrast tothe two forms oming from a smooth 2-funtor. We argue that this di�ereneis related to an interesting reent question in the theory of onnetions ongerbes, namely the question if suh onnetions indue a notion of surfaeholonomy .Moreover, ertain higher gauge theories an be desribed by pairs (A,B)of di�erential forms with values in the Lie algebras belonging to the two Liegroups of a rossed module, and even the relation between A and B we foundhere is already present in this ontext [GP04℄. Sine higher gauge theoriesare naturally related to onnetions on gerbes, a further link between smooth2-funtors and onnetions on gerbes is present.A deeper disussion of onnetions on possibly non-trivial and non-abeliangerbes and their surfae holonomy is the ontent of the third part [SW08a℄of our series of artiles.The seond example of smooth 2-funtors we want to give are deriva-tive 2-funtors. For any Lie group G, a smooth funtor F : P1(X) // BGdetermines a smooth 2-funtor
dF : P2(X) // BEG,where EG is a Lie 2-group introdued by Segal as a model for the universal

G-bundle EG [Seg68℄. Using the ditionary between smooth funtors anddi�erential forms for both F and dF we see that the funtor F orresponds toa trivial prinipalG-bundle with onnetion ω over X, while the derivative 2-funtor dF indues a 2-form B ∈ Ω2(X, g). We prove that B is the urvatureof the onnetion ω, so that the relation between F and dF implies a relationbetween the holonomy of ω and its urvature. We show that this establishesa new proof of the so-alled non-abelian Stokes' Theorem (Theorem 3.4).The third example where smooth 2-funtors arise, is a ertain topologial�eld theory whih is alled BF-theory due to the presene of two �elds B and
F . These �elds are 2-forms with values in the Lie algebra g of a Lie group
G; atually F = dA + [A ∧ A] is the urvature of a 1-form A. We provethat the ritial points of the BF ation funtional are those pairs (A,B)whih orrespond to a smooth 2-funtors under the bijetion we have found.In other words, smooth 2-funtors arise as the lassial solutions of the �eldequations of BF-theory (Proposition 3.7).Funtors vs. Forms, v3 23.7.2008 5 8/28/2008 19:35



Setion 4 is devoted to a rather trivial observation: every element in theloop spae LX of a smooth manifold X an be understood as a partiularmorphism in the path groupoid P1(X), and also as a partiular 1-morphismin the path 2-groupoid P2(X). This way, funtors on the path groupoid, and2-funtors on the path 2-groupoid are intrinsially related to struture on theloop spae of X.First we observe that the struture on the loop spae whih is indued by asmooth funtor F : P1(X) // BG is a smooth funtion LX // G, and thatthis funtion is nothing but the holonomy of the (trivial) prinipal G-bundlewith onnetion assoiated to F . Then we prove that the struture whih isindued by a smooth 2-funtor F : P2(X) // BG is a smooth funtor
P1(LX) // ΛBG,where ΛBG is a ertain ategory onstruted from the 2-groupoid BG. Inorder to be able to speak about smooth funtors on the loop spae, we workwith the anonial di�eology on LX: this is a struture whih generalizes asmooth manifold struture and is more suitable for spaes of smooth maps.We extend the relation between funtors and 1-forms from [SW07℄ to dif-feologial spaes (Theorem 4.7), and prove that the above smooth funtoron the path groupoid of the loop spae orresponds to the following stru-ture: a smooth funtion LX // G, a 1-form AF ∈ Ω1(LX, g) and a 1-form

ϕF ∈ Ω1(LX, h). We derive a deep relation between the two 1-forms AF and
ϕF on the loop spae and the pair (A,B) of di�erential forms on X whihbelong to the smooth 2-funtor F we started with (Proposition 4.10). Itadmits an outlook on the question, what the transgression of a non-abeliangerbe over X to the loop spae LX is.Finally, we have inluded an Appendix in whih we review basi notionsfrom 2-ategory theory and important de�nitions and examples related toLie 2-groups and smooth rossed modules.1 Review: Smooth Funtors and 1-FormsIn this setion we review some relevant de�nitions and results from [SW07℄.1.1 The Path Groupoid of a Smooth ManifoldIn the topologial ategory, the basi idea of the path groupoid is very simple:for a topologial spae X, it is a ategory whose objets are the points of
X, and whose morphisms are homotopy lasses of ontinuous paths in X.Funtors vs. Forms, v3 23.7.2008 6 8/28/2008 19:35



For smooth manifolds, one onsiders smooth paths: these are smooth maps
γ : [0, 1] // X with sitting instants, i.e. a number 0 < ǫ < 1

2
with γ(t) = γ(0)for 0 ≤ t < ǫ and γ(t) = γ(1) for 1 − ǫ < t ≤ 1. The set of smooth paths in

X is denoted by PX. The sitting instants assure that two paths γ : x // yand γ′ : y // z an be omposed to a new path γ′ ◦ γ : x // z. However,the omposition of paths is not assoiative, so that a ategory an only bede�ned using ertain quotients of PX as its morphisms.There are essentially three ways to de�ne suh quotients. The �rst is totake reparameterization lasses P 0X := PX/ ∼0, where γ1 ∼0 γ2 if thereexists an orientation-preserving di�eomorphism ϕ : [0, 1] // [0, 1] suh that
γ2 = γ1 ◦ ϕ. The seond way is to take thin homotopy lasses, P 1X :=
PX/ ∼1:De�nition 1.1. Two paths γ1, γ2 : x // y are alled thin homotopy equiva-lent, denoted γ1 ∼1 γ2, if there exists a smooth map h : [0, 1]2 // M suhthat(1) it has sitting instants: there exists a number 0 < ǫ < 1

2
witha) h(s, t) = x for 0 ≤ t < ǫ and h(s, t) = y for 1 − ǫ < t ≤ 1.b) h(s, t) = γ1(t) for 0 ≤ s < ǫ and h(s, t) = γ2(t) for 1 − ǫ < s ≤ 1.(2) the di�erential of h has at most rank 1.The third way is to take homotopy lasses P 2X := PX/ ∼2 just like inDe�nition 1.1 but without ondition (2). Notie that there are projetions

PX // P 0X // P 1X // P 2X (1.1)and that the above-mentioned omposition of paths indues well-de�ned om-positions on all P iX. We denote by idx the onstant path at a point x. In
P 0X we have
γ ◦ idx ∼0 γ ∼0 idy ◦ γ and (γ3 ◦ γ2) ◦ γ1 ∼0 γ3 ◦ (γ2 ◦ γ1); (1.2)these are the axioms of a ategory with objets X and morphisms P 0X. Wefurther denote by γ−1 : y // x the path γ−1(t) := γ(1− t). In P 1X we have

γ−1 ◦ γ ∼1 idxfor any path γ : x // y, so that the orresponding ategory with morphisms
P 1X is even a groupoid. This groupoid is denoted by P1(X) and alledthe path groupoid of X. The groupoid whih has P 2X as its morphismsis well-known as the fundamental groupoid Π1(X) of the smooth manifoldFuntors vs. Forms, v3 23.7.2008 7 8/28/2008 19:35



X. All these ategories are ompatible with smooth maps between smoothmanifolds in the sense that any smooth map f : X // Y indues maps f∗ :
P iX // P iY , and that these maps furnish funtors between the respetiveategories.Remark 1.2. The groupoids P1(X) and Π1(X) are important for paralleltransport in a �bre bundle with onnetion over X in the sense that any suhbundle de�nes a funtor

tra : P1(X) // T ,where T is a ategory in whih the �bres of the bundle are objets. If the on-netion is �at, this funtor fators through the fundamental groupoid Π1(X).More on the relation between funtors and onnetions in �bre bundles anbe found in Setion 3.1 and in [SW07℄.1.2 Di�eologial SpaesA smooth ategory is a ategory S whose sets S0 of objets and S1 of mor-phisms are smooth manifolds, and all whose struture maps are smooth. ALie ategory is a smooth ategory with ertain additional onditions on thestruture maps. A funtor F : S // T between smooth ategories S and
T is alled smooth, if its assignments F0 : S0

// T0 and F1 : S1
// T1 aresmooth maps. The path groupoid P1(X) of a smooth manifold is, however,not a smooth ategory, sine its set of morphisms P 1X has not the strutureof a smooth manifold. In [SW07℄ we have proposed to equip P 1X with itsnatural di�eology, a struture that generalizes a smooth manifold struture[Che77, Sou81℄. This onept has also been used impliitly in [CP94℄ to ap-ture the smoothness of holonomy maps. For the onveniene of the readerlet us reall the basi de�nitions (see also Appendix A.2 of [SW07℄).De�nition 1.3. A di�eologial spae is a set X together with a olletion ofplots: maps

c : U // Xeah of them de�ned on an open subset U ⊂ R
k for some k ∈ N0, suh thatthree axioms are satis�ed:(D1) for any plot c : U // X and any smooth funtion f : V // U also c◦fis a plot.(D2) every onstant map c : U // X is a plot.(D3) if f : U // X is a map de�ned on U ⊂ R

k and {Ui}i∈I is an openover of U for whih all restritions f |Ui
are plots of X, then also f isa plot.Funtors vs. Forms, v3 23.7.2008 8 8/28/2008 19:35



A di�eologial map between di�eologial spaesX and Y is a map f : X // Ysuh that for every plot c : U // X of X the map f ◦ c : U // Y is a plotof Y . The set of all di�eologial maps is denoted by D∞(X, Y ).Any smooth manifold (without boundary) is a di�eologial spae, whoseplots are all smooth maps de�ned on all open subsets of all R
n. If M and Nare smooth manifolds, a map f : M // N is di�eologial if and only if it issmooth. In other words, di�eologial spaes and maps form a ategory D∞that ontains the ategory C∞ of smooth manifolds as a full subategory.Besides from smooth manifolds, we have three further examples of sets witha anonial di�eology:1. If X and Y are di�eologial spaes, the set D∞(X, Y ) of di�eologialmaps between X and Y is a di�eologial spae in the following way: amap

c : U // D∞(X, Y )is a plot if and only if for any plot c′ : V // X of X the omposite
U × V

c×c′ // D∞(X, Y ) ×X
ev // Yis a plot of Y . Here, ev denotes the evaluation map ev(f, x) := f(x).2. Subsets Y of a di�eologial spae X are di�eologial: its plots are thoseplots of X whose image is ontained in Y .3. If X is a di�eologial spae, Y is a set and p : X // Y is a map, Ybeomes a di�eologial spae whose plots are those maps c : U // Y forwhih there exists a over of U by open sets Uα and plots cα : Uα

// Xof X suh that c|Uα = p ◦ cα.Equipped with these examples, the sets P iX we have de�ned in Setion1.1 beome di�eologial spaes in the following way. Let us �rst remark thatdue to the sitting instants a map γ : [0, 1] // X is smooth if and only ifit is smooth when restrited to (0, 1). This way, the set PX is a subset ofthe di�eologial spae D∞((0, 1), X), and hene a di�eologial spae. Thenwe onsider one of the projetions pri : PX // P iX to reparameterizationlasses, thin homotopy lasses or homotopy lasses, see (1.1). Aordingto the third example, all the sets P iX beome di�eologial spaes. We alsohave examples of di�eologial maps: if f : X // Y is a smooth map betweensmooth manifolds, the indued maps f∗ : P iX // P iY are all smooth.However, the most important question for us will be, when a map
P iX // M from one of these di�eologial spaes to a smooth manifoldM �Funtors vs. Forms, v3 23.7.2008 9 8/28/2008 19:35



regarded as a di�eologial spae � is di�eologial. From the de�nitions aboveone an dedue the following result, and the reader is free to take it either asa result from the bakground of di�eologial spaes, or just as a de�nition.Lemma 1.4 ([SW07℄, Proposition A.7 i)). A map f : P iX // M is di�eo-logial, if and only if for every k ∈ N0, every open subset U ⊂ R
k and everymap c : U // PX for whih the omposite

U × [0, 1]
c×id // PX × [0, 1] ev // Xis smooth, also the map

U
c // PX

pri

// P iX
f // Mis smooth.Now we an study smooth funtors F : P1(X) // S to a smooth ategory

S: on objets, F : X // S0 has to be smooth, and on morphisms P 1X // S1has to satisfy the assumptions of Lemma 1.4. Similarly, if η : F // F ′ isa natural transformation between two smooth funtors, it is alled smoothnatural transformation, if its omponents η(x) ∈ S1 furnish a smooth map
X // S1. Smooth funtors F and smooth natural transformations η form aategory Funct∞(P1(X), S).Remark 1.5. Conerning De�nition 1.3 of a di�eologial spae, several dif-ferent onventions for plots are ommon. For example, in order to deal withmanifolds with boundary or orners, it is more onvenient to onsider plotsbeing de�ned on onvex subsets U ⊂ R

k rather than open ones [Bae07℄.However, these questions do not a�et the results of this artile: we on-sider either maps de�ned on manifolds without boundary or maps whih areonstant near the boundary, for example paths with sitting instants.1.3 Equivalene between Funtors and FormsIn [SW07℄ not only the bijetion we mentioned in the introdution has beenestablished, but even an equivalene between two ategories,
Funct∞(P1(X),BG) ∼= Z1

X(G)∞. (1.3)Both ategories depend on a smooth manifold X and a Lie group G. On theleft hand side we have the ategory of smooth funtors from the path groupoid
P1(X) ofX to the Lie groupoid BG. We reall from the introdution that theFuntors vs. Forms, v3 23.7.2008 10 8/28/2008 19:35



Lie groupoid BG has one objet, and its set of morphisms is the Lie group G.The omposition is de�ned by g2◦g1 := g2g1. On the right hand side we havea ategory Z1
X(G)∞ de�ned as follows: its objets are 1-forms A ∈ Ω1(X, g)with values in the Lie algebra g of G, and a morphism g : A // A′ is asmooth funtion g : X // G suh that

A′ = Adg(A) − g∗θ̄, (1.4)where θ̄ is the right invariant Maurer-Cartan form on G. The identity mor-phism is the onstant funtion g = 1 and the omposition is the multipliationof funtions, g2 ◦ g1 := g2g1. The equivalene (1.3) an be given expliitly inboth diretions: there are two funtors
Funct∞(P1(X),BG)

D

))
Z1

X(G)∞

P

iiwhose de�nition we now review. Several details and proofs will be skippedand an be found in [SW07℄.Given a smooth funtor F : P1(X) // BG, we de�ne the 1-form A ∈
Ω1(X, g) in the following three steps:1. For a point x ∈ X and a tangent vetor v ∈ TxX, we hoose a smoothurve Γ : R // X with Γ(0) = x and Γ̇(0) = v. Let γR(t0, t) be the(up to thin homotopy unique) path in R that goes from t0 to t.2. The omposite

FΓ := F ◦ Γ∗ ◦ γR : R
2 // G (1.5)is a smooth map with FΓ(t0, t0) = 1 for all t0 ∈ R. We de�ne

Ax(v) := −
∂

∂t

∣

∣

∣

∣

0

FΓ(0, t) ∈ g. (1.6)3. The value Ax(v) is independent of the hoie of Γ, and the assignment
A : TX // g is smooth and linear; this de�nes the 1-form D(F ) := A.The omponents of a smooth natural transformation ρ : F // F ′ form asmooth map D(ρ) := g : X // G. Let again Γ : R // X be a smooth urveand FΓ and F ′

Γ the funtions (1.5) assoiated to the funtors F and F ′, andlet gΓ := g ◦ Γ. The ommutative diagram for ρ implies the equation
gΓ(t) · FΓ(0, t) = F ′

Γ(0, t) · gΓ(0),Funtors vs. Forms, v3 23.7.2008 11 8/28/2008 19:35



whose derivative evaluated at t = 0 shows (1.4). Hene, D(ρ) is a morphismin Z1
X(G)∞; this de�nes the funtor D.Conversely, let A ∈ Ω1(X, g) be a 1-form, from whih we now de�ne asmooth funtor F : P1(X) // BG in the following way:1. Let γ be a path in X, whih we extend trivially to R by γ(t) := γ(0)for t < 0 and γ(t) := γ(1) for t > 1. We pose the initial value problem

∂

∂t
uγ(t) = −dru(t)|1

(

Aγ(t)

(

∂γ

∂t

)) and u(t0) = 1 (1.7)for a smooth funtion u : R // G and �xed t0 ∈ R. Here dru(t) is thedi�erential of the multipliation with u(t) from the right.2. The initial value problem (1.7) has a unique smooth solution fA,γ(t0, t),and we de�ne a map
F : PX // G : γ � // fA,γ(0, 1). (1.8)We remark that this map is also ommonly known as the path-orderedexponential

F (γ) = Pexp

(
∫

γ

A

) . (1.9)3. The map F is independent of the thin homotopy lass of γ and fatorsthrough a smooth map F : P 1X // G. It respets the omposition ofpaths so that we have de�ned a smooth funtor P(A) := F .For a smooth funtion g : X // G onsidered as a morphism g : A // A′between two 1-forms A,A′ ∈ Ω1(X, g) we need to de�ne an assoiatedsmooth natural transformation ρ = D(g) : F // F ′ between the assoi-ated funtors. We let g(x) be the omponent of ρ at x ∈ X. The fat that
g(y) · fA,γ(t0, t) · g(x)

−1 solves the initial value problem (1.7) for A′ and γdue to (1.4) together with the uniqueness of solutions of initial value prob-lems proves the ommutative diagram for the natural transformation ρ. Thisde�nes the funtor P.Theorem 1.6 (Proposition 4.7 in [SW07℄). Let X be a smooth manifold and
G a Lie group. The two funtors D and P satisfy

D ◦ P = idZ1
X(G)∞ and P ◦ D = idFunct∞(P1(X),BG),in partiular, they form an equivalene of ategories.Funtors vs. Forms, v3 23.7.2008 12 8/28/2008 19:35



We give a short sketh of the proof. If we start with a 1-formA ∈ Ω1(X, g)we test the 1-form D(P(A)) at a point x ∈ X and a tangent vetor v ∈ TxX.Let Γ : R // X be a urve in X with x = Γ(0) and v = Γ̇(0). If we furtherdenote γτ := Γ∗(γR(0, τ)) ∈ PX we have
−D(P(A))|x(v)

(1.6)
=

∂

∂τ

∣

∣

∣

∣

0

P(A)Γ(0, τ)

(1.5)
=

∂

∂τ

∣

∣

∣

∣

0

P(A)(γτ )
(1.8)
=

∂

∂τ

∣

∣

∣

∣

0

fA,γτ (0, 1)Here, fA,γτ is the unique solution of the initial value problem (1.7) for γτ . Auniqueness argument shows fA,γτ (t0, t) = fA,γ1(τt0, τ t), so that
∂

∂τ
fA,γτ (0, t)

∣

∣

∣

∣

τ=0,t=1

=
∂

∂t
fA,γ1(0, t)

∣

∣

∣

∣

t=0

= −Ap(v),this yields D(P(A)) = A.On the other hand, if F : P1(X) // BG is a smooth funtor, we test thefuntor P(D(F )) on a path γ in X. By (1.8),
P(D(F ))(γ) = fD(F ),γ(0, 1)where fD(F ),γ is the solution of the initial value problem (1.7) for the 1-form

D(F ) and the path γ. Due to the de�nition (1.6) of D(F ) by the funtion
Fγ : R

2 // G we have
(γ∗D(F ))t

(

∂

∂t

)

= −
∂

∂τ

∣

∣

∣

∣

τ=0

Fγ(t, t+ τ).Sine F is a funtor, Fγ(x, z) = Fγ(y, z)Fγ(x, y). Both together show that
Fγ also solves the initial value problem, so that, by uniqueness,

fD(F ),γ(0, 1) = Fγ(0, 1) = F (γ).This shows P(D(F )) = F .Remarkably, there is not muh struture that is preserved by the funtors
P andD (unless the Lie groupG is abelian). For example, sums and negativesof di�erential forms, or produts and inverses of smooth funtors are all notpreserved. We only know the following fat:Proposition 1.7. The funtors P and D are ompatible with pullbaks alonga smooth map X // Y between smooth manifolds X and Y , i.e.

P(f ∗A) = f ∗P(A) and D(f ∗F ) = f ∗D(F )for a 1-form A ∈ Ω1(Y, g) and a smooth funtor F : P1(Y ) // BG, andsimilarly for morphisms.Funtors vs. Forms, v3 23.7.2008 13 8/28/2008 19:35



Here we have used the notation f ∗F for the funtor F ◦ f∗, where f∗ isthe indued map on path groupoids.2 Smooth 2-Funtors and Di�erential FormsIn this setion we generalize Theorem 1.6 � the equivalene between 1-formsand smooth funtors � to 2-funtors. The basi 2-ategorial notions suhas 2-ategories, 2-funtors, pseudonatural transformations and modi�ationsare summarized in Appendix A.1; for the reader familiar with these notionsit is important to notie that all 2-ategories and 2-funtors in this artileare strit without further referene.The �rst step of the generalization onerns the path groupoid P1(X) thatwas present in Theorem 1.6: in Setion 2.1 we de�ne the path 2-groupoid
P2(X) assoiated to a smooth manifold X. Instead of the Lie group G thatwas present in Theorem 1.6 we use a Lie 2-group G. In the same way that aategory BG is assoiated to any Lie group G, a 2-ategory BG is assoiatedto any Lie 2-group G, and the 2-funtors we onsider are of the form

F : P2(X) // BG.A onvenient and onrete way to deal with Lie 2-groups is provided byrossed modules [Whi46, BS76℄. Their de�nition, their relation to Lie 2-groups, and the assoiated 2-ategories BG are desribed in Appendix A.2.The announed generalization of Theorem 1.6 is worked out in three steps:in Setion 2.2 we extrat di�erential forms from 2-funtors, pseudonaturaltransformations and modi�ations. We derive onditions on the extrateddi�erential forms that lead us straightforwardly to an appropriate general-ization Z2
X(G)∞ of the ategory Z1

X(G)∞ that was present in Theorem 1.6.The goal of Setion 2.2 is that extrating di�erential forms is 2-funtor
D : Funct∞(P2(X),BG) // Z2

X(G)∞.In Setion 2.3 we introdue a 2-funtor
P : Z2

X(G)∞ // Funct∞(P2(X),BG)in the opposite diretion, that reonstruts 2-funtors, pseudonatural trans-formations and modi�ations from given di�erential forms. Finally, we provein Setion 2.4 the main result of this artile, namely that the 2-funtors Dand P establish an equivalene of 2-ategories.Funtors vs. Forms, v3 23.7.2008 14 8/28/2008 19:35



2.1 The Path 2-Groupoid of a Smooth ManifoldAs mentioned in the introdution, the path 2-groupoid is obtained by adding2-morphisms to the path groupoid P1(X). These 2-morphisms are smoothhomotopies in the sense of De�nition 1.1 without the restrition (2) on theirrank, expliitly:De�nition 2.1. Let γ0, γ1 : x // y be paths in X. A bigon Σ : γ0
+3 γ1 isa smooth map Σ : [0, 1]2 // X suh that there exists a number 0 < ǫ < 1

2witha) Σ(s, t) = x for 0 ≤ t < ǫ and Σ(s, t) = y for 1 − ǫ < t ≤ 1.b) Σ(s, t) = γ0(t) for 0 ≤ s < ǫ and Σ(s, t) = γ1(t) for 1 − ǫ < s ≤ 1.We denote the set of bigons in X by BX. Bigons an be omposed intwo natural ways: If Σ : γ1
+3 γ2 and Σ′ : γ2

+3 γ3 are bigons, we have anew bigon Σ′ • Σ : γ1
+3 γ3 de�ned by

(Σ′ • Σ)(s, t) =

{

Σ(2s, t) for 0 ≤ s < 1
2

Σ′(2s− 1, t) for 1
2
≤ s ≤ 1; (2.1)and for two bigons Σ1 : γ1

+3 γ′1 and Σ2 : γ2
+3 γ′2 suh that γ1(1) = γ2(0),we have another new bigon Σ2 ◦ Σ1 : γ2 ◦ γ1

+3 γ′2 ◦ γ
′
1 de�ned by

(Σ2 ◦ Σ1)(s, t) :=

{

Σ1(s, 2t) for 0 ≤ t < 1
2

Σ2(s, 2t− 1) for 1
2
≤ t ≤ 1. (2.2)Due to the sitting instants, the new maps (2.1) and (2.2) are again smoothand have sitting instants.Like in the ase of paths, there are several equivalene relations on the set

BX of bigons in X, starting with reparameterization lasses, and ontinuedby a ladder of types of homotopy lasses, graded by an upper bound for therank of the homotopies. The orresponding quotient spaes are denoted by
BX // B0X // B1X // B2X // B3X.In this artile we are only interested in B2X = BX/∼2.De�nition 2.2. Two bigons Σ : γ0

+3 γ1 and Σ′ : γ′0 +3 γ′1 are alledthin homotopy equivalent, denoted Σ ∼2 Σ′, if there exists a smooth map
h : [0, 1]3 // X suh that(1) it has sitting instants: there exists a number 0 < ǫ < 1

2
withFuntors vs. Forms, v3 23.7.2008 15 8/28/2008 19:35



a) h(r, s, t) = x for 0 ≤ t < ǫ and h(r, s, t) = y for 1 − ǫ < t ≤ 1.b) h(r, s, t) = h(r, 0, t) for 0 ≤ s < ǫ and h(r, s, t) = h(r, 1, t) for
1 − ǫ < s ≤ 1.) h(r, s, t) = Σ(s, t) for all 0 ≤ r < ǫ and h(r, s, t) = Σ′(s, t) for all
1 − ǫ < r ≤ 1.(2) the di�erential of h satis�esa) rank(dh|(r,s,t)) ≤ 2 for all r, s, t ∈ [0, 1], andb) rank(dh|(r,i,t)) ≤ 1 for i = 0, 1 �xed.Condition (1) assures that thin homotopy is an equivalene relation on

BX. Condition (2b) asserts that two thin homotopy equivalent bigons Σ :
γ0

+3 γ1 and Σ′ : γ′0 +3 γ′1 start and end on thin homotopy equivalentpaths γ0 ∼1 γ
′
0 and γ1 ∼1 γ

′
1. The omposition ◦ of two bigons de�ned abovelearly indues a well-de�ned omposition on B2X. For the omposition •this is more involved: let Σ : γ1

+3 γ2 and Σ′ : γ′2 +3 γ3 be two bigons suhthat γ2 ∼1 γ
′
2. Let h : [0, 1] // X be any thin homotopy between γ2 and γ′2;this is a partiular bigon h : γ2

+3 γ′2. Now we de�ne the omposition ofthe orresponding lasses in B2X by
[Σ′]∼2 • [Σ]∼2 := [Σ′ • h • Σ]∼2 .The proof that this is independent of the hoie of h requires a tehnialomputation arried out in [MP07℄. Another important fat is that the twoompositions ◦ and • are ompatible with eah other in the sense that

(Σ′
1 • Σ′

2) ◦ (Σ1 • Σ2) ∼2 (Σ′
1 ◦ Σ1) • (Σ′

2 ◦ Σ2) (2.3)whenever all these ompositions are well-de�ned.De�nition 2.3. The path 2-groupoid P2(X) of a smooth manifold X is the 2-ategory, whose objets are the points of X, whose set of 1-morphisms is P 1X,and whose set of 2-morphisms is B2X. Horizontal and vertial ompositionare given by ◦ and •, and the identities are the identity path idx : x // xand the identity bigon idγ : γ +3 γ de�ned by idγ(s, t) := γ(t).The axioms of a 2-ategory (see De�nition A.1) are satis�ed: Axiom(C1) follows from the seond equation in (1.2), axiom (C2) follows from the�rst equation in (1.2) and from an elementary onstrution of homotopies
Σ • idγ1 ∼2 Σ ∼2 idγ2 • Σ. Axiom (C3) is (2.3). It is also lear the theategory P2(X) is indeed a groupoid.Funtors vs. Forms, v3 23.7.2008 16 8/28/2008 19:35



For parallel transport along surfaes, the path 2-groupoid plays the samerole as the path groupoid P1(X) plays for parallel transport along urves (seeSetion 1.1): the orresponding geometri objets are (weak) 2-funtors
tra : P2(X) // Tinto some 2-ategory T , as outlined in Setion 6 of [SW07℄. A detaileddisussion of these 2-funtors will follow [SW08a℄.In exatly the same way as we have di�eologial maps P iX // M wehave di�eologial maps from all the equivalene lasses BiX of bigons in Xto smooth manifolds M . Analogous to Lemma 1.4, a map f : BiX // Mis di�eologial if and only if for every k ∈ N0, every open subset U ⊂ R

kand every map c : U // BX suh that c(u)(s, t) ∈ X is smooth on all of
U × [0, 1]2, also the map

U
c // BX

pri

// BiX
f // Mis smooth. This admits to de�ne smooth 2-funtors de�ned on the path 2-groupoid of X with values in smooth 2-ategories S: 2-ategories for whihobjets S0, 1-morphisms S1 and 2-morphisms S2 are smooth manifolds andall struture maps are smooth.De�nition 2.4. A 2-funtor F : P2(X) // S from the path 2-groupoid of asmooth manifold X to a smooth 2-ategory S is alled smooth, if1. on objets, F : X // S0 is smooth.2. on 1-morphisms, F : P 1X // S1 is di�eologial in the sense of Lemma1.4.3. on 2-morphisms, F : B2X // S2 is di�eologial in the above sense.For the de�nitions of morphisms between 2-funtors, the pseudonatu-ral transformations, and morphisms between those, the modi�ations, werefer the reader again to Appendix A.1. A pseudonatural transformation

ρ : F // F ′ is alled smooth, if its omponents ρ(x) ∈ S1 at objets
x ∈ X furnish a smooth map X // S1, and its omponents ρ(γ) ∈ S2 at1-morphisms γ ∈ P 1X furnish a di�eologial map P 1X // S2. Similarly, amodi�ation A : ρ +3 ρ′ is alled smooth, if its omponents A(x) ∈ S2 froma smooth map X // S2. Summarizing, these strutures form a 2-ategory
Funct∞(P2(X), S).Funtors vs. Forms, v3 23.7.2008 17 8/28/2008 19:35



2.2 From Funtors to FormsAs we explain in Appendix A.2 the 2-ategory BG assoiated to a Lie 2-group G whih is represented by a smooth rossed module (G,H, t, α) hasone objet, the set of morphisms is G and the set of 2-morphisms is the semi-diret produt G⋉H , where G ats on H via a smooth map α : G×H // H .The guideline aording to that we extrat di�erential forms is the same asreviewed in Setion 1.3: we evaluate the Lie group-valued funtors on ertainpaths, obtain Lie group-valued maps, and take their derivative.2.2.1 Extrating Forms I: 2-FuntorsHere we start with a given smooth 2-funtor
F : P2(X) // BG.Clearly, F restrited to objets and 1-morphisms is just a smooth 1-funtor

F0,1 : P1(X) // BG. By Theorem 1.6 it orresponds to a g-valued 1-form
A on X. From the remaining map F2 : B2X // G ⋉ H we now de�ne an
h-valued 2-form B on X. Its de�nition is pointwise: let x ∈ X be a pointand v1, v2 ∈ TxX be tangent vetors. We hoose a smooth map Γ : R

2 // Xwith x = Γ(0) and
v1 =

d

ds

∣

∣

∣

∣

s=0

Γ(s, 0) and v2 =
d

dt

∣

∣

∣

∣

t=0

Γ(0, t). (2.4)Note that in R
2 there is only one thin homotopy lass of bigons between eahtwo �xed paths. In partiular, we have a anonial family ΣR : R

2 // B2
R

2,where
ΣR(s, t) :=

(0, 0) //

��

(0, t)

w� ww
ww

ww
ww

ww
ww

ww
ww

��
(s, 0) // (s, t)

. (2.5)We use this anonial family of bigons to produe a map
FΓ := pH ◦ F2 ◦ Γ∗ ◦ ΣR : R

2 // H (2.6)where pH : G⋉H // H is the projetion to the seond fator.Lemma 2.5. The map FΓ : R
2 // H is smooth. Furthermore, its seondmixed derivative evaluated at 0 ∈ R

2 is independent of the hoie of Γ, i.e.if Γ′ : R
2 // X is another smooth map with Γ(0) = x and (2.4),

∂2F ′
Γ

∂s∂t

∣

∣

∣

∣

(0,0)

=
∂2FΓ

∂s∂t

∣

∣

∣

∣

(0,0)
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Proof. The smoothness of FΓ follows from the smoothness of the 2-funtor
F as explained in Setion 1.2: the relevant evaluation map

R
2 × [0, 1]2

Γ∗◦ΣR×id // BX × [0, 1]2
ev // Xis smooth. Sine F is smooth on 2-morphisms, F ◦ Γ∗ ◦ ΣR is smooth.Now let Γ0 and Γ1 be two suh smooth maps. We assume �rst that thereexists ǫ > 0 suh that Γ0 and Γ1 restrited to (0, ǫ]2 do not interset. Then,there exists a smooth homotopy h : [0, 1] × R

2 // X between Γ0 and Γ1,suh that h restrited to [0, 1] × (0, ǫ]2 is injetive onto its image U . Suh anhomotopy an always be onstruted in a hart of a neighbourhood of x. Weonstrut a map
p : [0, 1] × R

2 // BXby p(i, σ, τ)(s, t) := h(i, σs, τt), hoose an inverse h̄ : U // [0, 1]×R
2 of h andobtain a map q := p ◦ h̄ : U // BX whih satis�es by onstrution p = q ◦ hon [0, 1] × (0, ǫ]2. In fat, the domain of q an be enlarged to U0 := U ∪ {x}by setting q(x) := ididx , so that p = q ◦h on all of [0, 1]× [0, ǫ]2. The purposeof these onstrutions is that the map

F ◦ p : [0, 1] × [0, ǫ]2 // Gon the one hand satis�es (F ◦ p)(i, s, t) = FΓi
(s, t) for i = 0, 1, and on theother hand fators through two smooth maps (F ◦ q) and h, so that we anapply the hain rule:

∂2FΓi

∂s∂t

∣

∣

∣

∣

(0,0)

=
∂2

∂s∂t
(F ◦ p)

∣

∣

∣

∣

(i,0,0)

= d(F ◦ q)|h(i,0,0)

(

∂h

∂s

∣

∣

∣

∣

(i,0,0)

,
∂h

∂t

∣

∣

∣

∣

(i,0,0)

)

= d(F ◦ q)|x(v1, v2)The right hand side is, in partiular, independent of the label i.If now Γ0 and Γ1 interset in more that one point in a neighbour-hood of 0 ∈ R
2, we either have dimX = 2, then FΓ0 = FΓ1 , or one anonstrut (again in a hart around x) a third funtion Γ : R

2 // X, sothat the pairs (Γ0,Γ) and (Γ,Γ1) satisfy the assumption of the above proof. �Sine F maps � as a 2-funtor � identity 2-morphisms to identity 2-morphisms, we have FΓ(0, 0) = 1. Hene, the derivative whih is by Lemma2.5 independent of the hoie of Γ, is an element in the Lie algebra h of H .Aordingly, we have de�ned a map
αF : TX ×X TX // h : (x, v1, v2)

� // −
∂2FΓ

∂s∂t

∣

∣

∣

∣

(0,0)
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that is anonially assoiated to the 2-funtor F .Lemma 2.6. The map αF has the following properties:(a) for �xed x ∈ X, it is antisymmetri and bilinear.(b) it is smooth.Proof. To prove (a), let Γ̄(s, t) := Γ(t, s), and let FΓ and FΓ̄ the orre-sponding smooth maps (2.6). Due to the permutation, the derivatives (2.7)yield the values for αF (x, v1, v2) and αF (x, v2, v1), respetively. Note that
Γ̄∗ ◦ΣR = Γ∗ ◦Σ−1

R
, where Σ−1

R
is the 2-morphism inverse to the 2-morphism(2.5) under vertial omposition. Sine the 2-funtor F sends inverse 2-morphisms to inverse group elements, we have FΓ̄ = F−1

Γ . Hene, by takingderivatives, we get αF (x, v2, v1) = −αF (x, v1, v2).It remains to show that αF (v1 + λv′1, v2) = αF (v1, v2) + λαF (v′1, v2). If
Γ and Γ′ are smooth funtions for the tangent vetors (v1, v2) and (v′1, v2),respetively, we use a hart φ : U // X of a neighbourhood of x with φ(0) =
x and onstrut a smooth funtion Γ̃ : (−ǫ, ǫ)2 // X by

Γ̃(s, t) := φ(φ−1(Γ(s, t)) + λφ−1Γ′(s, t))where ǫ has to hosen small enough. It is easy to see that Γ̃(0, 0) = p andthat
v1 + λv′1 =

d

ds

∣

∣

∣

∣

s=0

Γ̃(s, 0) and v2 =
d

dt

∣

∣

∣

∣

t=0

Γ̃(0, t). (2.9)On the other hand,
Γ̃∗(ΣR(s, t)) = φ∗(φ

−1
∗ (Γ∗(ΣR(s, t))) + λφ−1

∗ (Γ′

∗(ΣR(s, t)))),where we have used that bigons in R
2 an be added and multiplied withsalars. This shows that

∂2FΓ̃

∂s∂t

∣

∣

∣

∣

(0,0)

=
∂2FΓ

∂s∂t

∣

∣

∣

∣

(0,0)

+ λ
∂2FΓ′

∂s∂t

∣

∣

∣

∣

(0,0)

;together with (2.9) this proves that αF is bilinear.To prove (b), let φ : U // X be a hart ofX with an open subset U ⊂ R
n.The indued hart φTX : U×R

n // TX of the tangent bundle sends a point
(u, v) ∈ U × R

n to dφ|u(v) ∈ Tφ(u)X. We show that
U × R

n × R
n

φ
[2]
TX // TX ×X TX
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is a smooth map. For this purpose, let c : U × R
n × R

n × R
2 // BXbe de�ned by c(x, v1, v2, σ, τ)(s, t) := φ(u + β(sσ)v1 + β(tτ)v2), where βis an orientation-preserving di�eomorphism of [0, 1] with sitting instants.The map c depends obviously smoothly on all parameters, so that fc :=

p2 ◦ F ◦ c : U × R
n × R

n × R
2 // H is a smooth funtion. Notie that

Γu,v1,v2(s, t) := c(u, v1, v2, s, t)(1, 1) de�nes a smooth map with the properties
Γ(0, 0) = φ(u) , ∂Γ

∂s

∣

∣

∣

∣

(0,0)

= dφ|u(v1) and ∂Γ

∂t

∣

∣

∣

∣

(0,0)

= dφ|u(v2).It is furthermore still related to c by
(Γu,v1,v2)∗(ΣR(s, t)) = c(u, v1, v2, s, t).Now,

(αF ◦ φ
[2]
TX)(x, v1, v2) = αF (φ(u), dφ|u(v1), dφ|u(v2))

= −
∂2

∂s∂t

∣

∣

∣

∣

(0,0)

(p2 ◦ F ◦ (Γu,v1,v2)∗ ◦ ΣR)(s, t)

= −
∂2

∂s∂t

∣

∣

∣

∣

(0,0)

fc(x, v1, v2, s, t).The last expression is, in partiular, smooth in x, v1 and v2. �All together,
Bx(v1, v2) := αF (x, v1, v2)de�nes an h-valued 2-form B ∈ Ω2(X, h) on X, whih is anonially assoi-ated to the smooth 2-funtor F .Proposition 2.7. Let F : P2(X) // BG be a smooth 2-funtor, and A ∈

Ω1(X, g) and B ∈ Ω2(X, h) be the orresponding di�erential forms. Then,
dA + [A ∧ A] = t∗ ◦B, (2.10)where t∗ := dt|1 : h // g is the Lie algebra homomorphism indued from theLie group homomorphism t whih is part of the rossed module orrespondingto the Lie 2-group G.Proof. We onsider again the bigon ΣR(s, t) and the assoiated smoothmap FΓ : R

2 // H from (2.6). If we denote by γ1(s, t) the soure path andby γ2(s, t) the target path of ΣR(s, t), we obtain further smooth maps
fi := F ◦ Γ∗ ◦ γi : R

2 // G.Funtors vs. Forms, v3 23.7.2008 21 8/28/2008 19:35



Note that eah of these two paths an be deomposed into horizontal andvertial paths, γ1(s, t) = γv
1(s, t) ◦ γ

h
1 (t) and γ2(s, t) = γh

2 (s, t) ◦ γv
2(s), andthat this deomposition indues aordant deompositions of the funtions

fi, namely f1(s, t) = f v
1 (s, t) · fh

1 (t) and f2(s, t) = fh
2 (s, t) · f v

2 (s). We reallfrom (1.6) that the 1-form A ∈ Ω1(X, g) is related to these funtions by
Ax(v1) = −

∂f v
i

∂s

∣

∣

∣

∣

(0,0)

and Ax(v2) = −
∂fh

i

∂t

∣

∣

∣

∣

(0,0)for i = 1, 2. Now we employ the target-mathing-ondition (A.4) for the2-morphism F (Σ):
f2 = (t ◦ FΓ) · f1 (2.11)as funtions from R

2 to G. The seond partial derivatives of the funtions fiare, evaluated in a faithful matrix representation of G at (0, 0)

∂2f1

∂s∂t

∣

∣

∣

∣

(0,0)

=
∂2f v

1

∂s∂t
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∣

(0,0)

+ Ax(v1)Ax(v2)

∂2f2

∂s∂t

∣
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∣

∣

(0,0)

=
∂2fh

2

∂s∂t

∣

∣

∣

∣

(0,0)

+ Ax(v2)Ax(v1)while the �rst derivatives vanish,
∂FΓ

∂t

∣

∣

∣

∣

(0,0)

=
∂FΓ

∂s

∣

∣

∣

∣

(0,0)

= 0, (2.12)beause F is onstant on families of identity bigons. Summarizing, equation(2.11) beomes
∂2fh

2

∂s∂t

∣

∣

∣

∣

(0,0)

+ Ax(v2)Ax(v1) = −dt|1 ◦Bx(v1, v2) +
∂2f v

1

∂s∂t

∣

∣

∣

∣

(0,0)

+ Ax(v1)Ax(v2),this implies the laimed equality. �2.2.2 Extrating Forms II: Pseudonatural TransformationsNow we disuss a smooth pseudonatural transformation
ρ : F // F ′between two smooth 2-funtors F, F ′ : P2(X) // BG. The omponents of ρare a smooth map g : X // G and a di�eologial map ρ1 : P 1X // G⋉H .Funtors vs. Forms, v3 23.7.2008 22 8/28/2008 19:35



Notie that ρ1 is not funtorial, i.e. ρ1(γ2 ◦ γ1) is in general not the produtof ρ1(γ2) and ρ1(γ1). In order to remedy this problem, we onstrut anothermap ρ̃ : P 1X // G ⋉ H from ρ that will be funtorial. We denote theprojetion of ρ1 to H by ρH := pH ◦ ρ1 : P 1X // H . Then we de�ne
ρ̃(γ) := (F ′(γ), ρH(γ)−1). (2.13)Lemma 2.8. ρ̃ de�nes a smooth funtor ρ̃ : P1(X) // B(G⋉H).Proof. For our onvention onerning the semi-diret produt, we referthe reader the equation (A.2) in Appendix A.2. With this onvention, axiom(T1) of the pseudonatural transformation ρ infers for two omposable paths

γ1 and γ2 that
α(F ′(γ2), ρH(γ1))ρH(γ2) = ρH(γ2 ◦ γ1). (2.14)Then, the produt of ρ̃(γ2) with ρ̃(γ1) in the semi-diret produt G⋉H is

(F ′(γ2), ρH(γ2)
−1) · (F ′(γ1), ρH(γ1)

−1)(A.2)
= (F ′(γ2)F

′(γ1), ρH(γ2)
−1α(F ′(γ2), ρH(γ1)

−1))(2.14)
= (F ′(γ2 ◦ γ1), ρH(γ2 ◦ γ1)

−1),and thus equal to ρ̃(γ2 ◦ γ1). Sine F ′(idx) = 1, equation (2.14) also showsthat ρ̃(idx) = (1, 1). Thus, ρ̃ is a funtor. Its smoothness is lear from thede�nition. �By Theorem 1.6, the smooth funtor ρ̃ orresponds to a 1-form with valuesin g⋉h, whih in turn gives by projetion into the two summands an h-valued1-form ϕ ∈ Ω1(X, h) and a g-valued 1-form. The ladder identi�es (due tothe de�nition of ρ̃) with the 1-form A′ that orresponds to the funtor F ′.Summarizing, the smooth pseudonatural transformation ρ de�nes a smoothfuntion g : X // G and a 1-form ϕ ∈ Ω1(X, h).Proposition 2.9. Let F, F ′ : P2(X) // BG be smooth 2-funtors with as-soiated 1-forms A,A′ ∈ Ω1(X, g) and 2-forms B,B′ ∈ Ω2(X, h) respetively.The smooth funtion g : X // G and the 1-form ϕ ∈ Ω1(X, h) extrated froma smooth pseudonatural transformation ρ : F // F ′ satisfy the relations
A′ + t∗ ◦ ϕ = Adg(A) − g∗θ̄ (2.15)

B′ + α∗(A
′ ∧ ϕ) + dϕ+ [ϕ ∧ ϕ] = (αg)∗ ◦B. (2.16)In (2.15), θ̄ is the right invariant Maurer-Cartan form on G. In (2.16),

A′ ∧ ϕ is a 2-form with values in h ⊕ g, whih is sent by the linear map α∗to a 2-form with values in h.Funtors vs. Forms, v3 23.7.2008 23 8/28/2008 19:35



Proof. Like in the proof of Proposition 2.7 we employ the target-mathingondition (A.4) for the omponent
∗

F (γ) //

g(x)

��

∗

ρ(γ)
��

��
��

��

{� ��
����
��

g(y)

��
∗

F ′(γ)
// ∗of the pseudonatural transformation ρ at 1-morphism γ : x // y in P2(X).For this purpose we hoose a smooth urve Γ : R // X through a point

x := Γ(0) and onsider the assoiated tangent vetor v ∈ TxX. With thestandard path γR(t) in the real line from 0 to t we form from the 2-funtorsthe smooth maps
f := F ◦ Γ∗ ◦ γR : R // G and f ′ := F ′ ◦ Γ∗ ◦ γR : R // Gand from the pseudonatural transformation the smooth maps
g̃ := ρ ◦ Γ : R // G and h := ρH ◦ Γ∗ ◦ γR : R // H . (2.17)The ondition we want to employ then beomes

f ′(t) · g̃(0) = t(h(t)) · g̃(t) · f(t).If we take the de�nition of the funtion g : X // G and the 1-forms A, A′and ϕ into aount, namely g(x) = g̃(0) and
Ax(v) = −

∂f

∂t

∣

∣

∣

∣

t=0

, A′

x(v) = −
∂f ′

∂t

∣

∣

∣

∣

t=0

and ϕx(v) = −
∂

∂t

∣

∣

∣

∣

t=0

h−1,the derivative of this equation evaluated in a faithful matrix representationvon H at zero yields
−A′

x(v) · g(x) = dt|1(ϕx(v)) · g(x) + dgx(v) − g(x) · Ax(v),this is the �rst of the two equations we had to show.To prove the seond equation we use axiom (T2) of the pseudonatu-ral transformation ρ, namely the ompatibility with 2-morphisms. For a2-morphism Σ in P2(X), that we take of the form
x1

γh
1 //

γv
2

��

y1

Σ
}}

}}
}

}}
}}

}

z� }}
}}

}}
}}

γv
1

��
x2

γh
2

// y2Funtors vs. Forms, v3 23.7.2008 24 8/28/2008 19:35



this axiom requires
F (x1)

F (γh
1 )
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ρ(x1)

}}{{
{{{
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F (y1)
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1 )

iiiiiiii
iiiiiiii
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iiiiiii
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}}||
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2 )

��
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ρ(γv
1 )BBBB
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2 )
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ρ(y2)}}||
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||

F ′(x2)
F ′(γh

2 )
// F ′(y2)With a hoie of a smooth map Γ : R

2 // X we an pullbak these diagramsto R
2 and use the standard bigon ΣR(s, t). We use the smooth funtions FΓ,

f1 and f2 de�ned by the 2-funtor F as desribed in the proof of Proposition2.7, and the analogous funtions F ′
Γ, f ′

1 and f ′
2 for the 2-funtor F ′. Fromthe pseudonatural transformation ρ we further obtain a funtion g̃ := ρ ◦ Γ :

R
2 // X and funtions hh

i := ρH ◦ Γ∗ ◦ γ
h
i and hv

i := ρH ◦ Γ∗ ◦ γ
v
i . Now wehave

f(0, 0)
fh
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]eBBBB
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// f ′(s, t)
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fv
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fh
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fv
1 (s,t)
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f ′v
2 (s)

��
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hv
2(s)CCCC

]eCCCC

g̃(s,0)
{{

}}{{

fh
2 (s,t) // f(s, t)

hh
2 (s,t)

iiiiiii
iiiiiii

px iiiiii
iiiiii

g̃(s,t)~~||
||

||

f ′(s, 0)
f ′h
2 (s,t)

// f ′(s, t)Using the rules (A.5) and (A.6) for vertial and horizonal omposition in BG,the above diagram boils down to the equation
F ′

Γ(s, t) · α(f ′v
1 (s, t), hh

1(t)) · h
v
1(s, t)

= α(f ′h
2 (s, t), hv

2(s)) · h
h
2(s, t) · α(g̃(s, t), FΓ(s, t)).We now take � again in a faithful matrix representation � the seond mixedderivative and evaluate at (0, 0).For the evaluation we use the properties of the 2-funtor F that imply �on the level of 2-morphisms � f(0, 0) = 1 and � on the level of 1-morphismsFuntors vs. Forms, v3 23.7.2008 25 8/28/2008 19:35



� fh
1 (0) = f v

1 (0, 0) = f v
2 (0) = fh

2 (0, 0) = 1. The same rules hold for F ′.Similarly, the properties of the funtor ρ̃ give additionally hh
1(0) = hv

1(0, 0) =
1 and hv

2(0) = hh
2(0, 0) = 1. To ompute the derivative of the terms thatontain α, it is onvenient to use the rule

dα|(g,h)(X, Y ) = dαh|g(X) + dαg|h(Y ) (2.18)where αg : H // H and αh : G // H are obtained from α by �xing one ofthe two parameters, and the di�erentials on the right hand side are takenonly with respet to the remaining parameter. Finally, we use (2.12). Theresult of the omputation is
∂2F ′

Γ

∂s∂t
+ dα|(1,1)

(

∂f ′v
1

∂s
,
∂hh

1

∂t

)

+
∂hh

1

∂t
·
∂hv

1

∂s
+
∂2hv

1

∂s∂t

= dα|(1,1)

(

∂f ′h
2

∂t
,
∂hv

2

∂s

)

+
∂hv

2

∂s
·
∂hh

2

∂t
+
∂2hh

2

∂s∂t
+ dαg̃(0,0)|1

(

∂2FΓ

∂s∂t

)Expressed by di�erential forms, this gives
− B′

x(v1, v2) − α∗(A
′
x(v1), ϕx(v2)) + ϕx(v2)ϕx(v1) +

∂2hv
1

∂s∂t

= −α∗(A
′

x(v2), ϕx(v1)) + ϕx(v1)ϕx(v2) +
∂2hh

2

∂s∂t
− (αg)∗(B),whih yields the seond equality. �2.2.3 Extrating Forms III: Modi�ationsLet us now onsider a smooth modi�ation

A : ρ1
+3 ρ2between smooth pseudonatural transformations ρ1, ρ2 : F // F ′ between twosmooth 2-funtors F, F ′ : P2(X) // BG. Its omponents furnish a smoothmap X // G ⋉ H . We denote its projetion on the seond fator by a :

X // H .Proposition 2.10. Let F, F ′ : P2(X) // BG be smooth 2-funtors with as-soiated 1-forms A,A′ ∈ Ω1(X, g), let ρ1, ρ2 : F // F ′ be smooth pseudonat-ural transformations with assoiated smooth funtions g1, g2 : X // G and1-forms ϕ1, ϕ2 ∈ Ω1(X, h). Then, the smooth map a : X // H assoiated toa smooth modi�ation A : ρ1
+3 ρ2 satis�es

g2 = (t ◦ a) · g1 and ϕ2 + (r−1
a ◦ αa)∗(A

′) = Ada(ϕ1) − a∗θ̄, (2.19)where ra(x) : H // H is the multipliation with a(x) from the right.Funtors vs. Forms, v3 23.7.2008 26 8/28/2008 19:35



Proof. In the same way as before we hoose a smooth map Γ : R // Xwith Γ(0) =: x and Γ̇(0) =: v ∈ TxX and onsider the smooth funtions
fΓ, f

′
Γ : R // G from (2.6), the smooth funtions g̃1, g̃2 : R // G and h1, h2 :

R // H from (2.17), and de�ne an additional smooth funtion aΓ := a ◦ Γ :
R // H with aΓ(0) = a(x). The target-mathing ondition (A.4) for the2-morphism

fΓ(0)

g̃1(0)

##

g̃2(0)

;;
aΓ(0)

��

f ′
Γ(0)in BG obviously gives us the �rst equation. The axiom for the modi�ation

A implies
α(f ′

γ(t), aΓ(0)) · h1(t) = h2(t) · aΓ(t).The �rst derivative evaluated at 0 gives
(αaΓ(0))∗

(

∂f ′
γ

∂t

∣

∣

∣

∣

0

)

h1(0)+α(f ′γ(0), aΓ(0))·
∂h1

∂t

∣

∣

∣

∣

0

=
∂h2

∂t

∣

∣

∣

∣

0

·aΓ(0)+h2(0)·
∂aΓ

∂t

∣

∣

∣

∣

0With f ′γ(0) = h1(0) = h2(0) = 1 this yields
(αa(x))∗(−A

′) + a(x) · ϕ1|x(v) = ϕ2|x(v) · a(x) + da|x(v)whih is the seond equation we had to prove. �2.2.4 Summary of Setion 2.2In order to obtain a preise relation between smooth 2-funtors and di�eren-tial forms, we de�ne a 2-ategory whih is adapted to the relations we havefound in Propositions 2.7, 2.9 and 2.10.De�nition 2.11. Let G be a Lie 2-group, (G,H, t, α) the orrespondingsmooth rossed module, and X a smooth manifold. We de�ne the follow-ing 2-ategory Z2
X(G)∞:1. An objet is a pair (A,B) of a 1-form A ∈ Ω1(X, g) and a 2-form

B ∈ Ω2(X, h) whih satisfy the relation (2.10):
dA + [A ∧A] = t∗ ◦B.Funtors vs. Forms, v3 23.7.2008 27 8/28/2008 19:35



2. A 1-morphism (g, ϕ) : (A,B) // (A′, B′) is a smooth map g : X // Gand a 1-form ϕ ∈ Ω1(X, h) that satisfy the relations (2.15) and (2.16):
A′ + t∗ ◦ ϕ = Adg(A) − g∗θ̄

B′ + α∗(A
′ ∧ ϕ) + dϕ+ [ϕ ∧ ϕ] = (αg)∗ ◦B.The omposition of 1-morphisms

(A,B)
(g1,ϕ1) // (A′, B′)

g2,ϕ2 // (A′′, B′′)is given by the map g2g1 : X // G and the 1-form (αg2)∗ ◦ ϕ1 + ϕ2,where αg : H // H is the ation of G on H with �xed g. The identity1-morphism is given by g = 1 and ϕ = 0.3. A 2-morphism a : (g1, ϕ1) +3 (g2, ϕ2) is a smooth map a : X // Hthat satis�es (2.19):
g2 = (t ◦ a) · g1 and ϕ2 + (r−1

a ◦ αa)∗(A
′) = Ada(ϕ1) − a∗θ̄.The vertial omposition

(g, ϕ)
a1 +3 (g′, ϕ′)

a2 +3 (g′′, ϕ′′)is given by a2a1. The horizontal omposition is
(A,B)

(g1,ϕ1)

��

(g′1,ϕ′

1)

AA
a1

��

(A′, B′)

(g2,ϕ2)

��

(g′2,ϕ′

2)

@@
a2

��

(A′′, B′′) = (A,B)

(g2g1,(αg2 )∗◦ϕ1+ϕ2)

$$

(g′2g′1,(αg′2
)∗◦ϕ′

1+ϕ′

2)

::
a2α(g2,a1)

��

(A′′, B′′),and the identity 2-morphism is given by a = 1.It is straightforward to hek that this de�nition gives indeed a 2-ategory.In the Setions 2.2.1, 2.2.2 and 2.2.3 above we have olleted the strutureof a 2-funtor
D : Funct∞(P2(X),BG) // Z2

X(G)∞.Let us hek that the axioms of a 2-funtor are satis�ed. Horizontal andvertial ompositions of 2-morphisms are respeted beause these are justsmooth maps a : X // H whih beome multiplied in exatly the sameway in both 2-ategories. It remains to hek the ompatibility with theomposition of 1-morphisms, i.e. we have to show that
D(ρ2 ◦ ρ1) = D(ρ2) ◦ D(ρ1)Funtors vs. Forms, v3 23.7.2008 28 8/28/2008 19:35



for smooth pseudonatural transformations ρ1 : F // F ′ and ρ2 : F ′ // F ′′.Let (gi, ϕi) := D(ρi) for i = 1, 2. Aording to the de�nition (A.1) of theomposition of pseudonatural transformations, the omponent of ρ2 ◦ ρ1 atan objet x ∈ X is g2(x)g1(x) ∈ G, and its omponent at a 1-morphism
γ : x // y is ρ2(γ) ·α(g2(y), ρ1(γ)) ∈ H . If we onsider the smooth funtions
g̃1, g̃2 : R // G and h1, h2 : R // H assoiated to ρ1 and ρ2 like in (2.17),the 1-form assoiated to ρ2 ◦ ρ1 is, at x := Γ(0) and v := Γ̇(0) and using(2.18),

−
d

dt

∣

∣

∣

∣

0

α(g̃2(t), h1(t)
−1)h2(t)

−1

= −dαg̃2(0)|h1(0))

(

∂h−1
1

∂t

∣

∣

∣

∣

0

)

h2(0)−1 − α(g̃2(0), h1(0)−1)
∂h−1

2

∂t

∣

∣

∣

∣

0

= (αg2(x))∗(ϕ1|x(v)) + ϕ2|x(v),this is exatly the rule for horizontal omposition of 1-morphisms in Z2
X(G)∞.2.3 From Forms to FuntorsIn this setion we introdue a 2-funtor

P : Z2
X(G)∞ // Funct∞(P2(X),BG)that goes in the opposite diretion ompared to the 2-funtor D de�ned inSetion 2.2. The priniple here is to pose initial value problems governed bydi�erential forms. Their unique solutions de�ne smooth 2-funtors, smoothpseudonatural transformations and smooth modi�ations.2.3.1 Reonstrution I: 2-FuntorsHere we onsider a given 1-form A ∈ Ω1(X, g) and a given 2-form B ∈

Ω2(X, h) that satisfy the ondition from Proposition 2.7,
dA+ [A ∧ A] = t∗ ◦B. (2.20)By Theorem 1.6 the 1-form A de�nes a smooth funtor FA : P1(X) // BG.Our aim is now to de�ne a map kA,B : B2X // H suh that FA and kA,Btogether de�ne a smooth 2-funtor F : P2(X) // BG, whih is dediated tobe the image of the pair (A,B) under the 2-funtor P we want to de�ne. Forour onvention onerning the semi-diret produt, we refer the reader againto equation (A.2) in Appendix A.2.Funtors vs. Forms, v3 23.7.2008 29 8/28/2008 19:35



In order to �nd the orret de�nition of kA,B we look at the target-mathing ondition
FA(γ1) = t(kA,B(Σ)) · FA(γ0) (2.21)that has to be satis�ed for any bigon Σ : γ0

+3 γ1. For tehnial reasons weonsider Σ : [0, 1]2 // X to be extended trivially over all of R
2, i.e.

Σ(s, t) =



















γ0(0) = γ1(0) for t < 0

γ0(1) = γ1(1) for t > 1

γ0(t) for s < 0 and 0 ≤ t ≤ 1

γ1(t) for s > 1 and 0 ≤ t ≤ 1.Let τs0(s, t) be the losed path in R
2 that runs ounter-lokwise around theretangle spanned by (s0, 0) and (s0+s, t), and let the smooth funtion uA,s0 :

R
2 // G be de�ned by uA,s0(s, t) := FA(Σ∗(τs0(s, t))). For this funtion, wereallLemma 2.12 (Lemma B.1 in [SW07℄).(a) uA,0(1, 1) = FA(γ−1

0 ◦ γ1)(b) uA,s0(s, 1) = uA,s0(s
′, 1) · uA,s0+s′(s− s′, 1)() ∂

∂s

∂

∂t
uA,s0

∣

∣

∣

∣

(0,t)

= −Ad−1
FA(γs0,t)

(Σ∗K)(s0,t)

(

∂

∂s
,
∂

∂t

)with γs,t the path de�ned by γs,t(τ) := Σ(s, τt) and K the urvature 2-form
K := dA + [A ∧ A] ∈ Ω2(X, g).The funtion uA,s0 is interesting for us beause by (a) uA,0(1, 1) oinidesup to onjugation with the image of the group element kA,B(Σ) ∈ H we wantto determine under the homomorphism t. The multipliative property (b)shows that the smooth funtion f : R // G de�ned by f(σ) := uA,0(σ, 1)solves the initial value problem

∂

∂σ
f(σ) = dlf(σ)|1

(

∂

∂s

∣

∣

∣

∣

0

uA,σ(s, 1)

) and f(0) = 1. (2.22)This initial value problem is governed by the 1-form
∂

∂s

∣

∣

∣

∣

0

uA,σ(s, 1) =

∫ 1

0

dt

{

∂

∂s

∂

∂t
uA,σ

∣

∣

∣

∣

(0,t)

}

(c)
= −

∫ 1

0

dt Ad−1
FA(γσ,t)

(

(Σ∗K)(σ,t)

(

∂

∂s
,
∂

∂t

)) . (2.23)Funtors vs. Forms, v3 23.7.2008 30 8/28/2008 19:35



Here, Ad−1
FA(γ−,−) ◦ Σ∗K is a g-valued 2-form on [0, 1]2, and we have justperformed a �bre integration over the seond fator [0, 1]. The result is a

g-valued 1-form on [0, 1]. This form atually lies in the image of t∗,
t∗ ◦ (αFA(γ−,−)−1)∗ ◦ Σ∗B

(2.20)
= Ad−1

FA(γ−,−) ◦ Σ∗K. (2.24)We are thus fored to onsider the 1-form
AΣ := −

∫

[0,1]

(αFA(γ−,−)−1)∗ ◦ Σ∗B ∈ Ω1([0, 1], h). (2.25)Due to the sitting instants of Σ, we an equivalently speak of a 1-form on Rwhih vanishes outside of [0, 1]. Now we use again Theorem 1.6 and obtaina smooth funtor FAΣ
: P 1

R // H . Sine P 1
R an be identi�ed with R×R(ompare Lemma 4.1 in [SW07℄) this is just a smooth funtion fΣ : R

2 // H .The purpose of these de�nitions is, that by (2.23) and (2.24) the smoothfuntion
f : R // G : σ � // t(fΣ(0, σ))−1solves the initial value problem (2.22). Thus, by uniqueness t(fΣ(0, σ))−1 =

uA,0(σ, 1). If we now de�ne
kA,B : BX // H : Σ � // α(FA(γ0), fΣ(0, 1)−1) (2.26)for γ0 the soure path of the bigon Σ we have ahieved

t(kA,B(Σ)) = FA(γ0) · t(fΣ(0, 1))−1 · FA(γ0)
−1 (a)

= FA(γ1) · FA(γ0)
−1; (2.27)this is the required target-mathing ondition (2.21). Another indiationthat the map kA,B is we have found is the orret one is the followingProposition 2.13. The map kA,B : BX // H is di�eologial. For anysmooth map Γ : R

2 // X with x := Γ(0), v1 := ∂Γ
∂s

and v2 := ∂Γ
∂t
, we have

−
∂2

∂s∂t

∣

∣

∣

∣

(0,0)

kA,B(Γ∗ΣR(s, t)) = Bx(v1, v2).Proof. Assume that c : U // BX is a map from an open subset U ⊂ R
nto BX suh that the evaluation c(u)(s, t) ∈ X is smooth on all of U × [0, 1]2.Hene, the di�erential form Ac(u) from (2.25) depends smoothly on u ∈ U ,and so does the solution fc(u) : R

2 // H of the di�erential equation governedby Ac(u). This implies that kA,B ◦ pr ◦ c : U // H is smooth, so that kA,B isdi�eologial by Lemma 1.4.Funtors vs. Forms, v3 23.7.2008 31 8/28/2008 19:35



Now we onsider U = R
2 and c := Γ∗ ◦ ΣR the standard bigon (2.5), sothat kA,B ◦ c : R

2 // H is a smooth map. In order to ompute the derivative
∂

∂s

∣

∣

∣

∣

0

kA,B(c(s, t)) =
∂

∂s

∣

∣

∣

∣

0

α(FA(Γ∗γ0(s, t)), fc(s,t)(0, 1)−1)we observe that Ac(s,t)|σ = σAc(1,t)|σs. For the solutions of the orrespond-ing di�erential equations we obtain by a uniqueness argument fc(s,t)(0, σ) =
fc(1,t)(0, sσ). We ompute
∂

∂s

∣

∣

∣

∣

0

fc(s,t)(0, 1)−1 = −
∂

∂s

∣

∣

∣

∣

0

fc(1,t)(0, s)

= Ac(1,t)|0

(

∂

∂s

)

= −

∫ 1

0

dτ
(

αFA(Γ∗γ0,tτ )

)

∗
(c(1, t)∗B)(0,τ)

(

∂

∂s
,
∂

∂τ

)

= −

∫ t

0

dτ ′
(

αFA(Γ∗γ0,τ ′ )

)

∗

(Γ∗B)(0,τ ′)

(

∂

∂s
,
∂

∂τ ′

) (2.28)In the last step we have performed an integral transformation and used that
c(1, 1) = Γ. Finally

∂2

∂s∂t

∣

∣

∣

∣

0

kA,B(c(s, t)) =
∂

∂t

∣

∣

∣

∣

0

(αFA(Γ∗γ0(0,t)))∗

(

∂

∂s

∣

∣

∣

∣

0

fc(s,t)(0, 1)−1

)

=
∂2

∂s∂t

∣

∣

∣

∣

0

fc(s,t)(0, 1)−1

(2.28)
= −(Γ∗B)|0

(

∂

∂s
,
∂

∂t

)

= −Bx(v1, v2).In the �rst line we have used (2.18) and that fc(0,t)(0, 1) = 1 ∈ H , so thatthe di�erential of α1 : G // H is the zero map. �The next thing we would like to know about the map kA,B is its om-patibility with the horizontal and vertial omposition of bigons in X. Con-erning the vertial omposition, this will be straightforward, but for thehorizontal omposition we have to introdue �rstly an auxiliary horizontalomposition and to hek the ompatibility of kA,B with this one.To de�ne this auxiliary horizontal omposition, we onsider two bigons
Σ1 : γ1

+3 γ′1 and Σ2 : γ2
+3 γ′2, with γ1, γ

′
1 : x // y and γ2, γ

′
2 : y // z.The result will be a bigon

Σ2 ∗ Σ1 : γ2 ◦ γ1
+3 γ′2 ◦ γ

′

1.Funtors vs. Forms, v3 23.7.2008 32 8/28/2008 19:35



We de�ne a map p : [0, 1]2 // [0, 1]2 by
p(s, t) :=



















(0, t) for 0 ≤ t < 1
2
and 0 ≤ s < 1

2

(2s, t) for 1
2
≤ t ≤ 1 and 0 ≤ s < 1

2

(2s− 1, t) for 0 ≤ t < 1
2
and 1

2
≤ s ≤ 1

(1, t) for 1
2
≤ t ≤ 1 and 1

2
≤ s ≤ 1see Figure 1. This map p is not smooth, but its omposition with Σ2 ◦Σ1 is,

p : � //

Figure 1: A useful deformation of the unit square.due to the sitting instants of the bigons Σ1 and Σ2. We de�ne
Σ2 ∗ Σ1 := (Σ2 ◦ Σ1) ◦ pto be this smooth map, this de�nes the auxiliary horizontal omposition of

Σ1 and Σ2.Lemma 2.14. The map kA,B : BX // H respets the vertial ompositionof bigons in the sense that
kA,B(idγ) = 1 and kA,B(Σ2 • Σ1) = kA,B(Σ2) · kA,B(Σ1)for any path γ ∈ PX and any two vertially omposable bigons Σ1 and Σ2.It respets the auxiliary horizontal omposition ∗ in the sense that

kA,B(Σ2 ∗ Σ1) = kA,B(Σ2) · α(FA(γ2), kA,B(Σ1))for any two horizontally omposable bigons Σ1 : γ1
+3 γ′1 and Σ2 : γ2

+3 γ′2.Proof. Conerning the vertial omposition, the identity bigon idγ :
γ +3 γ has the 1-form Aidγ = 0, so that fΣ(0, σ) is onstant. Hene,
kA,B(idγ) = 1. Now let Σ1 : γ0

+3 γ1 and Σ2 : γ1
+3 γ2 be two bigons.For the 1-form (2.25) assoiated to the bigon Σ2 • Σ1 we �nd

1

2
AΣ2•Σ1 |σ =

{

AΣ1|2σ for 0 ≤ σ ≤ 1
2

AΣ2|2σ−1 for 1
2
≤ σ ≤ 1Funtors vs. Forms, v3 23.7.2008 33 8/28/2008 19:35



and aordingly
fΣ2•Σ1(0, 1) = fΣ2•Σ1

(

1

2
, 1

)

· fΣ2•Σ1

(

0,
1

2

)

= fΣ2(0, 1) · fΣ1(0, 1). (2.29)A short alulations then shows that
kA,B(Σ2 • Σ1)

(2.26)
= α(FA(γ0), fΣ2•Σ1(0, 1)−1)

(2.29)
= α(FA(γ0), fΣ1(0, 1)−1 · fΣ2(0, 1)−1)

(2.21)
= kA,B(Σ2) · kA,B(Σ1).In the last step we have also used the axioms of a rossed module.Conerning the auxiliary horizontal omposition, we obtain for the 1-form(2.25) assoiated to the bigon Σ2 ∗ Σ1

1

2
AΣ2∗Σ1 |σ =

{

Ad−1
FA(γ1) (AΣ2|2σ) for 0 ≤ σ ≤ 1

2

AΣ1 |2σ−1 for 1
2
≤ σ ≤ 1and aordingly

fΣ2∗Σ1(0, 1) = fΣ2∗Σ1

(

1

2
, 1

)

· fΣ2∗Σ1

(

0,
1

2

)

= fΣ1(0, 1) · α(FA(γ1)
−1, fΣ2(0, 1)). (2.30)Then we obtain

kA,B(Σ2 ∗ Σ1)
(2.26)

= α(FA(γ2 ◦ γ1), fΣ2∗Σ1(0, 1)−1)

(2.30)
= α(FA(γ2 ◦ γ1), α(FA(γ1)

−1, fΣ2(0, 1))−1 · fΣ1(0, 1)−1)

(2.26)
= kA,B(Σ2) · α(FA(γ2), kA,B(Σ1))this yields the required identity. �Before we ome to the original horizontal omposition of bigons it isonvenient to show �rst the followingLemma 2.15. For thin homotopy equivalent bigons Σ ∼2 Σ′ we have
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We have moved the proof of this Lemma to Appendix A.3. It then followsthat kA,B fators through B2X,
BX

pr2 // B2X // HSine pr2 is surjetive, the map B2X // H is uniquely determined, and byProposition 2.13, it is di�eologial. We denote this unique di�eologial mapalso by kA,B : B2X // H .Proposition 2.16. The assignment
F : x

γ

��

γ′

BBΣ

��

y � // ∗

FA(γ)

��

FA(γ′)

CCkA,B(Σ)

��

∗ (2.31)de�nes a smooth 2-funtor F : P2(X) // BG.Proof. Sine FA is a smooth funtor, we have nothing to show for 1-morphisms. On 2-morphisms, the assignment kA,B is smooth by Proposition2.13. By Lemma 2.14 it further respets the vertial omposition. Conerningthe horizontal omposition, notie that
h : [0, 1] × [0, 1]2 // X : (r, s, t) � // (Σ2 ◦ Σ2)(rp+ (1 − r)id[0,1]2)(s, t),de�nes a homotopy between Σ2 ∗Σ1 and Σ2 ◦Σ1, and sine its rank is limitedby dimensional reasons to 2, this homotopy is thin. Then, by Lemmata 2.14and 2.15 we have
kA,B(Σ2 ◦ Σ1) = kA,B(Σ2 ∗ Σ1) = kA,B(Σ2) · α(FA(γ2), kA,B(Σ1)). (2.32)Thus, the 2-funtor F respets the horizontal omposition. �2.3.2 Reonstrution II: Pseudonatural TransformationsHere we onsider a 1-morphism

(g, ϕ) : (A,B) // (A′, B′)in the 2-ategory Z2
X(G)∞, i.e. a smooth map g : X // G and a 1-form

ϕ ∈ Ω1(X, h) that satisfy the relations from Proposition 2.9,
A′ + t∗ ◦ ϕ = Adg(A) − g∗θ̄ (2.33)

B′ + α∗(A
′ ∧ ϕ) + dϕ+ [ϕ ∧ ϕ] = (αg)∗ ◦B. (2.34)Funtors vs. Forms, v3 23.7.2008 35 8/28/2008 19:35



The 1-forms A′ and ϕ de�ne a 1-form (A′, ϕ) ∈ Ω1(X, g ⋉ h), and thus byTheorem 1.6 a smooth funtor ρ̃ : P1(X) // B(G ⋉ H). We denote itsprojetion to H by h : P 1X // H . We want to de�ne a smooth pseudonat-ural transformation ρ : F // F ′ between the 2-funtors F := P(A,B) and
F ′ := P(A′, B′) by

ρ : x
γ // y 7−→

∗
F (γ) //

g(x)

��

∗

g(y)

��

h(γ)−1
��

��
��

��

{� ��
����
��

∗
F ′(γ)

// ∗

. (2.35)We have to showLemma 2.17. The target-mathing ondition
F ′(γ) · g(x) = t(h(γ)−1) · g(y) · F (γ) (2.36)for the 2-morphism h(γ)−1 is satis�ed.Proof. We reall that F (γ), F ′(γ) and h(γ) are values of solutions fγ , f

′
γ :

R // G and hγ : R // H of initial value problems. We show that
f ′

γ(0, t) = t(hγ(t)
−1) · g(γ(t)) · fγ(0, t) · g(γ(0))−1 =: β(t)whih gives for t = 1 equation (2.33). For this purpose, we show that β(t)satis�es the initial value problem for f ′

γ. The initial ondition β(0) = 1 issatis�ed. Notie that with p := γ(t) and v := γ̇(t)

∂hγ(t)

∂t
= −drhγ(t)|1(ϕp(v)) − (αhγ(t))∗(A

′

p(v)) (2.37)so that � in a faithful matrix representation of G � using Axiom 2a) of therossed module
∂

∂t
t(hγ(t)

−1) = dt|hγ(t)−1

(

∂hγ(t)
−1

∂t

)

=
(

Ad−1
t(hγ (t))

(

t∗(ϕp(v)) + A′

p(v)
)

− A′

p(v)
)

t(hγ(t)
−1).Then we ompute

∂β

∂t
=
(

Ad−1
t(hγ (t))

(

t∗(ϕp(v)) + A′

p(v) + g∗θ̄|p(v) − Adg(Ap(v))
)

− A′

p(v)
)

β(t).Funtors vs. Forms, v3 23.7.2008 36 8/28/2008 19:35



Using equation (2.33), the right hand side beomes −A′
p(v)β(t). Hene,

β(t) solves the same initial value problem as f ′
γ(0, t). By uniqueness, bothfuntions oinide. �It remains to hek that the axioms of a pseudonatural transformationare satis�ed. Axiom (T1) follows from the fat that ρ̃ is a funtor by thesame arguments as given in the proof of Lemma 2.8. For axiom (T2) we haveto proveLemma 2.18. The 2-morphism h(γ) satis�es

F ′(Σ) · h−1(γ0) = h−1(γ1) · α(g(y), F (Σ))for any bigon Σ : γ0
+3 γ1.Proof. We reall that F (Σ) = kA,B(Σ) = α(F (γ), fΣ(0, 1)−1), where

fΣ(0, s) is the solution of a initial value problem governed by a 1-form AΣ.For F (γ′) the same is true with primed quantities. We de�ne the notion
γs(t) := Σ(s, t) onsistent with γ0 and γ1. Then, the equation
f ′

Σ(0, s) = α(F ′(γ0)
−1, h(γ0)

−1 · α(g(y) · F (γ0), fΣ(0, s)) · h(γs)) := κ(s),evaluated for s = 1, is the equation we have to prove. Like in the proof ofLemma 2.17 we show that κ(s) solves the initial value problem for f ′
Σ(0, s).In a �rst step, the derivative ∂κ/∂s an be written as drκ(s)|1X(s) where

X(s) ∈ h is
X(s) = (αF ′(γ0)−1)∗

(

−Ad−1
h(γ0)(αg(y)F (γ0))∗AΣ|s

(

∂

∂s

)

+ Adh(γ0)−1α(g(y)F (γ0),fΣ(0,s))

(

∂h(γs)

∂s
h(γs)

−1

))

= −(αg(x))∗

(

AΣ|s

(

∂

∂s

))

+ (αF ′(γ−1
s ))∗h(γs)

−1∂h(γs)

∂s
.In the seond line we have used the target mathing onditions (2.21) and(2.36). With the de�nition (2.25) and again (2.36), the �rst summand be-omes

−(αg(x))∗AΣ|s

(

∂

∂s

)

=

∫ 1

0

dt (αF ′(γs,t)−1)∗Ad−1
h(γs,t)

W (s, t).where we have written
W (s, t) := Σ∗((αg)∗ ◦B)(s,t)

(

∂

∂s
,
∂

∂t

)
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To ompute the seond summand, we reall from Setion 2.3.1 the de�nitionof the path τs0(s, t) that runs ounter-lokwise around the retangle spannedby (s0, 0) and (s0+s, t). We onsider the smooth funtion us0 : R
2 // G⋉Hbe de�ned by us0(s, t) := ρ̃(Σ∗(τs0(s, t))), where ρ̃ is the smooth funtororresponding to the 1-form (A′, ϕ) ∈ Ω1(X, g ⋉ h) we started with. For thissmooth funtion, we reall Lemma 2.12 (a), here h(γ−1

0 ◦ γs) = pH(u0(s, 1)).Furthermore, we have
∂

∂s
u0(s, 1)

(b)
= u0(s, 1) ·

∂

∂σ

∣

∣

∣

∣

0

us(σ, 1)

= u0(s, 1) ·

∫ 1

0

dt
∂

∂σ

∂

∂t

∣

∣

∣

∣

(0,t)

us(σ, t)

(c)
= −u0(s, 1) ·

∫ 1

0

dt Ad−1
ρ̃(γs,t)

(Σ∗K)(s,t)

(

∂

∂s
,
∂

∂t

) . (2.38)In the last line, K = (KA′, Kϕ) is the urvature 2-form of the 1-form (A′, ϕ),onsisting of
KA′ = dA′ + [A′ ∧A′]

(2.20)
= t∗ ◦B

′ and Kϕ = α∗(A
′ ∧ϕ) + dϕ+ [ϕ∧ϕ].If we write Y (s, t) for Σ∗Kϕ evaluated at (s, t), and similarly Z(s, t) for Σ∗B′,the adjoint ation in (2.38) on the semidiret produt g ⋉ h is

Ad−1
(g,h)(t∗(Z), Y ) =

(

Ad−1
g (t∗(Z)), (αg−1)∗

(

Ad−1
h (Y + Z) − Z

)) .With Y + Z = W from (2.34), the projetion of (2.38) to h beomes
∂h(γ−1

0 ◦ γs)

∂s
= −h(γ−1

0 ◦ γs) · (αF ′(γ−1
0 ◦γs))∗

(
∫ 1

0

dt (αF ′(γs,t)−1)∗

(

Ad−1
h(γs,t)

(W (s, t)) − Z(s, t)
)

) (2.39)Then, with h(γ−1
0 ◦ γs) = h(γ−1

0 )α(F ′(γ0)
−1, h(γs)), we have summarizing

X(s) =

∫ 1

0

dt(αF ′(γs,t)−1)∗Z(s, t)
(2.25)

= −A′

Σ|s

(

∂

∂s

) .This shows κ(s) = f ′
Σ(0, s). �Funtors vs. Forms, v3 23.7.2008 38 8/28/2008 19:35



2.3.3 Reonstrution III: Modi�ationsWe onsider a 2-morphism
a : (g, ϕ) +3 (g′, ϕ′)in the 2-ategory Z2

X(G)∞, between two 1-morphisms (g, ϕ) and (g′, ϕ′) from
(A,B) to (A′, B′). This is a smooth map a : X // H that satis�es (2.19):

g2 = (t ◦ a) · g1 and ϕ2 + (r−1
a ◦ αa)∗(A

′) = Ada(ϕ1) − a∗θ̄. (2.40)We want to de�ne a smooth modi�ation A : ρ +3 ρ′ between the pseudo-natural transformations ρ := P(g, ϕ) and ρ′ := P(g′, ϕ′). We de�ne
A : x � // ∗

g(x)

��

g′(x)

CCa(x)

��

∗ .The target-mathing ondition for the 2-morphism f(x) is obviously satis�eddue to the �rst equation in (2.40). The axiom for the modi�ation A isLemma 2.19. The 2-morphism a(x) satis�es
α(F ′(γ), a(x)) · h(γ)−1 = h′(γ)−1 · a(y)for all paths γ ∈ PX.Proof. We rewrite the equation as

h′γ(t) = a(γ(t)) · hγ(t) · α(f ′

γ(0, t), a(x)
−1) := λ(t)whih we will prove by showing that λ(t) satis�es the same initial valueproblem as h′γ(t), namely (2.37):

∂h′γ(t)

∂t
= −drh′

γ(t)|1(ϕ
′

p(v)) − (αh′

γ(t))∗(A
′

p(v)) (2.41)for p := γ(t) and v := γ̇(t). A straightforward alulation shows that
∂λ

∂t
= −drλ(t)|1

(

−(a∗θ̄)p(v) + Ada(p)(ϕ1|p(v))

−(r−1
a(p) ◦ αa(p))∗(A

′

p(v))
)

− (αλ(t))∗(A
′

p(v)).For this alulation, one twie has to use the identity
(αh1h2)∗(X) = drh2|h1(αh1)∗(X) + dlh1 |h2(αh2)∗(X). (2.42)Using then the seond equation of (2.40), we have shown that λ(t) satis�esthe di�erential equation (2.41). Thus, λ(t) = h′γ(t). �Funtors vs. Forms, v3 23.7.2008 39 8/28/2008 19:35



2.3.4 Summary of Setion 2.2Above we have olleted the struture of a 2-funtor
P : Z2

X(G)∞ // Funct∞(P2(X),BG).Let us now hek that the axioms of a 2-funtor are satis�ed. Like in Setion2.2.4, horizontal and vertial omposition of 2-morphisms is respeted be-ause they are de�ned on both sides in the same way for the same H-valuedfuntions. It remains to hek the ompatibility with the omposition of1-morphisms,
P((g2, ϕ2) ◦ (g1, ϕ1)) := P(g2, g1, (αg2)∗ ◦ ϕ1 + ϕ2) = P(g2, ϕ2) ◦ P(g1, ϕ1)for 1-morphisms (gi, ϕi) : (Ai, Bi) // (Ai+1, Bi+1). For the omponents atobjets x ∈ X, this equality is lear. We reall the omponent of P(gi, ϕi)at a path γ ∈ PX is a 2-morphism in BG given aording to (2.35) bya group element h(γ)−1, where h(γ) = hi(1) for hi(t) the solution of theinitial value problem (2.37). Similar, the omponent of P(g2, g1, ϕ̃) at γ with

ϕ̃ := (αg2)∗ ◦ ϕ1 + ϕ2 is h̃(γ)−1, where h̃(γ) = h̃(1) for h̃(t) the solution ofthe initial value problem
∂h̃(t)

∂t
= −drh̃(t)|1(ϕ̃2|γ(t)(vt)) − (αh̃(t))∗(A3|γ(t)(vt)) (2.43)with vt := γ̇(t). Aording to the de�nition of the omposition of pseudonat-ural transformations, the equation we have to prove now follows from
h̃(t) = α(g2(γ(t)), h1(t)) · h2(t) =: ζ(t) (2.44)evaluated at t = 1, and we prove (2.44) by showing that ζ(t) solves (2.43).A straightforward alulation similar to the one performed in the proof ofLemma 2.19, using (2.42) and (2.33) for (g2, ϕ2), shows that this is indeedthe ase.2.4 Main TheoremWe have so far de�ned two 2-funtors D and P whih go from smooth 2-funtors to di�erential forms, and from di�erential forms bak to smooth2-funtors. Here we prove the main theorem of this artile:Theorem 2.20. The 2-funtors
D : Funct∞(P2(X),BG) // Z2
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from Setion 2.2 and
P : Z2

X(G)∞ // Funct∞(P2(X),BG)from Setion 2.3 satisfy
D ◦ P = idZ2

X(G)∞ and P ◦ D = idFunct∞(P2(X),BG) (2.45)and are hene isomorphisms of 2-ategories.Proof. We start with an objet (A,B) in Z2
X(G)∞, i.e. a 1-form A ∈

Ω1(X, g) and a 2-form B ∈ Ω2(X, h) suh that dA + [A ∧ A] = t∗ ◦ B.We let (A′, B′) := D(P(A,B)) be the di�erential forms extrated from thereonstruted 2-funtor F := P(A,B). By Theorem 1.6 we have A′ = A.Now we test the 2-form B′ at a point x ∈ X and at tangent vetors v1, v2 ∈
TxX. Let Γ : R

2 // X be a smooth map with x = Γ(0), v1 = ∂Γ
∂s

∣

∣

0
and

v2 = ∂Γ
∂t

∣

∣

0
. We only have to summarize

B′

x(v1, v2)
(2.8)
= −

∂2

∂s∂t

∣

∣

∣

∣

0

P(A,B)(Γ∗ΣR(s, t))

(2.31)
= −

∂2

∂s∂t

∣

∣

∣

∣

0

kA,B(Γ∗ΣR(s, t)) = Bx(v1, v2),where the last equality has been shown in Proposition 2.13.Conversely, let F : P2(X) // BG be a smooth 2-funtor, and let F ′ :=
P(D(F )). By Theorem 1.6 it is lear that F ′(x) = F (x) and F ′(γ) = F (γ)for every point x ∈ X and every path γ ∈ PX. For a bigon Σ ∈ B2X wereall that

F ′(Σ) = kD(F )(Σ) = α(F (γ0), f
′

Σ(0, 1)−1), (2.46)where f ′
Σ is the solution of the initial value problem

∂f ′
Σ(0, s)

∂s
= −drf ′

Σ(0,s) (X(s)) and f ′

Σ(0, 0) = 1. (2.47)This initial value problem is governed by X(s) ∈ h, whih is given by the1-form AΣ from (2.25), namely
X(s) := AΣ|s

(

∂

∂s

)

:= −

∫ 1

0

dt (αF (γs,t)−1)∗ ◦ (Σ∗B)(s,t)

(

∂

∂s
,
∂

∂t

) ,and B is the 2-form in (A,B) = D(F ).We de�ne a bigon Σs,t(σ, τ) by Σs,t(σ, τ)(s
′, t′) := Σ(s+β(σs′), t+β(τt′)),where β is some �xed orientation-preserving di�eomorphism of [0, 1] withFuntors vs. Forms, v3 23.7.2008 41 8/28/2008 19:35



sitting instants. We notie from (2.46) and (2.47) that F ′(Σ0,0(s, 1)) is theunique solution of the initial value problem
∂

∂s
F ′(Σ0,0(s, 1)) = F ′(Σ0,0(s, 1)) · dαF (γ0)(X(s)) and F ′(Σ0,0(0, 1)) = 1.In the following we prove that F (Σ0,0(s, 1)) also solves this initial value prob-lem, so that in partiular

F ′(Σ) = F ′(Σ0,0(1, 1)) = F (Σ0,0(1, 1)) = F (Σ)follows, and we have P(D(F )) = F . To show that F (Σ0,0(s, 1)) is a solutionwe ompute
∂

∂s
F (Σ0,0(s, 1)) = F (Σ0,0(s, 1))dαF (γ0)αF (γs)−1

(

∂

∂σ

∣

∣

∣

∣

0

F (Σs,0(σ, 1))

)and then
αF (γs)−1

(

∂

∂σ

∣

∣

∣

∣

0

F (Σs,0(σ, 1))

)

=

∫ 1

0

dt (αF (γs,t)−1)∗
∂2

∂σ∂τ

∣

∣

∣

∣

0

α(F (γs,t+τ)
−1, F (Σs,0(σ, t+ τ))).To ompute the derivative we deompose Σs,0(σ, t+τ) in two bigons Σs,0(σ, t)and Σs,t(σ, τ) and obtain

∂2

∂σ∂τ

∣

∣

∣

∣

0

α(F (γs,t+τ)
−1, F (Σs,0(σ, t+ τ))) = −(Σ∗B)s,t

(

∂

∂s
,
∂

∂t

) .Now, the three last equations show that F (Σ0,0(s, 1)) solves the above initialvalue problem.So far we have proved equations (2.45) on the level of objets. On thelevel of 1-morphisms, it is a onsequene of Theorem 1.6: for a pseudo-natural transformation ρ : F // F ′ with omponents g : X // G and
ρH : P 1X // H we have
P(D(ρ))

(2.13)
= P(g,D(F ′, ρ−1

H ))
(2.35)

= (g,P(D(F ′, ρ−1
H ))−1)

Th.1.6
= (g, ρH) = ρ,and onversely, for a 1-morphism (g, ϕ) : (A,B) // (A′, B′) in Z2

X(G)∞,
D(P(g, ϕ))

(2.35)
= D(g,P(A′, ϕ)−1)

(2.13)
=

(

g,D
(

(

P(A′, ϕ)−1
)−1
))

Th.1.6
= (g, ϕ).Finally, on the level of 2-morphisms, whih are on both sides just the same

H-valued funtions on X, there is nothing to show. �Funtors vs. Forms, v3 23.7.2008 42 8/28/2008 19:35



3 Examples of Smooth 2-FuntorsWe give three examples of situations where smooth 2-funtors are present.3.1 Connetions on (non-abelian) GerbesLet us �rst reall from [SW07℄ what onnetions on ordinary prinipal bun-dles have to do with ordinary funtors. For G a Lie group, we denote by
G-Tor the ategory whose objets are smooth manifolds with transitive, freeand smooth G-ation from the right, and whose morphisms are G-equivariantsmooth maps. The funtor whih regards G itself as a G-spae is denotedby iG : BG // G-Tor. If γ : x // y is a path in X, any prinipal G-bundle
P provides us with objets Px and Py of G-Tor, namely its �bres over theendpoints of γ. Furthermore, a onnetion ∇ on P de�nes a morphism

τγ : Px
// Pyin G-Tor, namely the parallel transport along γ. Well-known properties ofparallel transport assure that the assignments x � // Px and γ � // τγ de�nea funtor

traP,∇ : P1(X) // G-Tor.The main result of [SW07℄ is the haraterization of funtors obtained likethis among all funtors F : P1(X) // G-Tor. They are haraterized by thefollowing de�ning property of a transport funtor : there exists a surjetivesubmersion π : Y // M and a smooth funtor triv : P1(Y ) // BG suh thatthe funtors π∗F and iG ◦ triv are (with additional onditions we skip here)naturally equivalent. In other words, transport funtors are loally smoothfuntors. These transport funtors form a ategory Trans1
BG(X,G-Tor), andwe haveTheorem 3.1 ([SW07℄, Theorem 5.4). The assignment of a funtor traP to aprinipal G-bundle P with onnetion over X de�nes a surjetive equivaleneof ategories

Bun∇

G(X) ∼= Trans1
BG(X,G-Tor).Under this equivalene, trivial prinipalG-bundles with onnetion orre-spond to globally smooth funtors, i.e. funtors tra : P1(X) // G-Tor with

tra = iG ◦ triv for a smooth funtor triv : P1(X) // BG. Trivializable prin-ipal G-bundles with onnetion orrespond to funtors whih are naturallyequivalent to globally smooth funtors (again with additional assumptionson the natural equivalene).Funtors vs. Forms, v3 23.7.2008 43 8/28/2008 19:35



We think that the onept of transport funtors is adequate to be ate-gori�ed and to apture all aspets of onnetions on 2-bundles, in partiulargerbes. We antiipate the following results of [SW08a℄:1. Gerbes with onnetion over X have struture 2-groups G.2. A trivial G-gerbe with onnetion over X is a smooth 2-funtor
F : P2(X) // BG.Let us test these assertions in two examples.Example 3.2. We onsider the Lie 2-group G = BU(1) from Example A.8.The orresponding BU(1)-gerbes are also known as abelian gerbes, or U(1)-gerbes. Now, a trivial BU(1)-gerbe with onnetion over X is by the aboveassertion and Theorem 2.20 nothing but a 2-form B ∈ Ω2(X).Abelian bundle gerbes with onnetion an be realized onveniently bybundle gerbes [Mur96℄. In this ontext it is well-known that a onnetion ona trivial bundle gerbe is indeed just a 2-form, see, e.g., [Wal07℄.Example 3.3. Let H be a onneted Lie group. We denote by aut(H) theLie algebra of the Lie group Aut(H) of Lie group automorphisms of H . Weonsider the Lie 2-group G = AUT(H) from Example A.10. By the aboveassertion and Theorem 2.20, a trivial AUT(G)-gerbe with onnetion over Xis a pair (A,B) of a 1-form A ∈ Ω1(X, aut(H)) and a 2-form B ∈ Ω2(X, h)suh that

dA + [A ∧A] = ad ◦B, (3.1)where ad : h // aut(H) : X � // adX .
AUT(H)-gerbes are also known as H-gerbes1 in the sense of Breen andMessing [BM05℄. There, a onnetion on a trivial H-gerbe is a pair (A,B)just as in Example 3.3 but without the ondition (3.1). This di�erene liesat the heart of a question N. Hithin posed at the VBAC-meeting in BadHonnef in June 2007 after a talk by L. Breen, namely if it is possible to de�nea surfae holonomy from a onnetion on an H-gerbe. Let us presume that�a surfae holonomy� is at least a 2-funtorial assignment, i.e. is desribedby a 2-funtor on the path 2-groupoid. This assumption is supported by the1We have to remark that a U(1)-gerbe in the sense of Example 3.2 is not the sameas an H-gerbe for H = U(1) in the sense of Breen and Messing. The di�erene beomeslear if one uses the lassi�ation of gerbes by Lie 2 -groups we have proposed here: wehave BU(1)-gerbes on one side but AUT(U(1))-gerbes on the other. Indeed, BU(1) is onlya sub-2-group of AUT(U(1)).Funtors vs. Forms, v3 23.7.2008 44 8/28/2008 19:35



approah by �2-holonomies� desribed in [MP07℄, as well as by our transport2-funtors whih are to be de�ned in [SW08a℄. Similar onsiderations havealso been made for ordinary holonomy [CP94, SW07℄. Then, the followingthree statements on a Breen-Messing onnetion (A,B) on a trivial H-gerbeover X are equivalent:(a) it de�nes a surfae holonomy.(b) it satis�es ondition (3.1), dA+ [A ∧A] = ad ◦B.() there exists a smooth 2-funtor
F : P2(X) // BAUT(H)suh that (A,B) = D(F ).A detailed disussion of surfae holonomies that also overs non-trivial H-gerbes, is postponed to [SW08a℄.3.2 Derivatives of Smooth FuntorsIn Appendix A.2 we have reviewed the Lie 2-group EG assoiated to any Liegroup G. For any funtor F : P1(X) // BG there is an assoiated 2-funtor
dF : P2(X) // BEGthat we all the derivative 2-funtor of F . It sends a 1-morphism γ ∈ P 1Xto the image F (γ) ∈ G of γ under the funtor F . This determines dF om-pletely, sine the Lie 2-groupoid BEG has only one objet, and preisely onlyone 2-morphism between any two �xed 1-morphisms. It will be interesting todetermine the unique 2-morphism dF (Σ) assoiated to a bigon Σ : γ1

+3 γ2expliitly. For this purpose, we denote by ∂Σ the 1-morphism γ−1
1 ◦ γ2.Theorem 3.4 (The non-abelian Stokes' Theorem for funtors). Let G be aLie group and let F : P1(X) // BG be a funtor. Then,

dF (Σ) = F (∂Σ)for any bigon Σ ∈ B2X.In order to understand why we all this identity Stokes' Theorem, notiethat if the funtor F is smooth, also its derivative 2-funtor dF is smooth.Then, we have assoiated di�erential forms:Funtors vs. Forms, v3 23.7.2008 45 8/28/2008 19:35



Lemma 3.5. Let A ∈ Ω1(X, g) be the 1-form assoiated to the smooth funtor
F , and let B ∈ Ω2(X, g) be the 2-form assoiated to its derivative 2-funtor
dF by Theorem 2.20. Then,

B = [A ∧A] + dA.Proof. We reall that there is also the 1-form A′ ∈ Ω1(X, g) assoiatedto the 2-funtor dF , and that by Proposition 2.7 B = [A′ ∧ A′] + dA′, sine
t is the identity in the rossed module that de�nes EG. Furthermore, sine
dF (γ) = F (γ), we have A = A′. �We have reviewed in Setion 3.1 that a smooth funtor F : P1(X) // BGorresponds to trivial prinipal G-bundle P with onnetion ω in the sensethat traP,ω = iG ◦ F . By Lemma 3.5, the 2-form B determined by the 2-funtor dF is the urvature of this onnetion ω. Moreover, the holonomyof ω around any losed path γ (identi�ed with a group element) is given by
F (γ). If γ is of the form γ = ∂Σ for any bigon Σ, Theorem 3.4 implies

Hol∇(∂Σ) = F (∂Σ) = dF (Σ);this is a relation between the holonomy and the urvature of a onnetion ona (trivial) prinipal G-bundle. Further restrited to the ase that the bigon
Σ is of the form Σ : idx

+3 γ for a losed path γ : x // x, we haveCorollary 3.6. Let ω be a onnetion on a trivial prinipal G-bundle ofurvature K, and let γ be a ontratible loop at x ∈ X. Then,
Holω(γ) = Pexp

∫ 1

0

AΣ = P exp

∫ 1

0

ds

(
∫ 1

0

dt Ad−1
τ(γs,t)

K|Σ(s,t)

(

∂Σ

∂s
,
∂Σ

∂t

))where Σ : idx
+3 γ is any hoie of a smooth ontration of γ to its basepoint, the group element τ(γs,t) ∈ G is the parallel transport of the onnetion

ω along the path γs,t, and the path-ordered exponential Pexp indiates theunique solution of the respetive initial value problem, like in (1.9).Exatly the same formula an been found in [AFG99℄, derived by om-pletely di�erent methods. In the abelian ase of G = U(1) Corollary 3.6 boilsdown to the well-known identity
Holω(γ) = exp

(

i

∫

Σ

K

)for a surfae Σ with boundary γ = ∂Σ.Funtors vs. Forms, v3 23.7.2008 46 8/28/2008 19:35



3.3 Classial Solutions in BF-TheoryFour-dimensional BF theory is a topologial �eld theory on a four-dimensional, ompat, oriented smooth manifold X, see e.g. [Bae96℄. Usu-ally, it involves a symmetri, non-degenerate invariant bilinear form 〈−,−〉on the Lie algebra g of a Lie group G, and the �elds are pairs (A,B) of a1-form A ∈ Ω1(X, g) and a 2-form Ω2(X, g).We infer that a naturally generalized setup in whih BF theory shouldbe onsidered, is a Lie 2-group G, i.e. a smooth rossed module (G,H, t, α),together with the invariant form 〈−,−〉 on the Lie algebra of G. Othergeneralizations have been proposed in [GPP08℄. The �elds are now pairs
(A,B) of a 1-form A ∈ Ω1(X, g) and a 2-form B ∈ Ω2(X, h), and the ationis, with FA := dA+ [A ∧A] and βA,B := FA − t∗B,

S(A,B) :=
1

2

∫

X

〈βA,B ∧ βA,B〉 . (3.2)Expressed by A and B, this is
S(A,B) =

1

2

∫

X

〈FA ∧ FA〉 −

∫

X

〈t∗B ∧ FA〉 +
1

2

∫

X

〈t∗B ∧ t∗B〉 ; (3.3)these terms an be identi�ed as: a topologial Yang-Mills term, the �original�BF-term and a so-alled osmologial term. The variation of this ation gives
δS

δA
= 0 ⇔ t∗dB + A ∧ t∗B = 0

δS

δB
= 0 ⇔ βA,B = 0.We notie that the seond equation implies the �rst, so that the ritialpoint of S(A,B) are exatly those with βA,B = 0. It follows further thatthe topologial Yang-Mills term, whih is usually not present in BF theory,has no in�uene on the ritial points. Sine pairs (A,B) with βA,B = 0orrespond by Theorem 2.20 to smooth 2-funtors F : P2(X) // BG, wehaveProposition 3.7. The ritial points of the BF ation (3.2) are exatly thesmooth 2-funtors F : P2(X) // BG.4 Transgression to Loop SpaesIn this setion we use the rather trivial observation that 2-funtors de�nedon the path 2-groupoid P2(X) of a smooth manifold X indue struture onFuntors vs. Forms, v3 23.7.2008 47 8/28/2008 19:35



the loop spae LX := C∞(S1, X), sine loops are partiular 1-morphisms
P2(X). In order to understand this struture properly, we equip LX withits anonial di�eology, whih omes from the fat that LX = D∞(S1, X).Aording to the �rst example we gave in Setion 1.2, this is a di�eologialspae. In Setion 4.1 we generalize the relation between smooth funtorsand di�erential forms (Theorem 1.6) from smooth manifolds X to arbitrarydi�eologial spaes, in partiular to LX. In Setion 4.2 we ombine thisgeneralized statement on LX with Theorem 2.20 on X.4.1 Generalization to Di�eologial SpaesIn order to desribe a generalization of Theorem 1.6 from smooth manifoldsto di�eologial spaes, we �rst have to de�ne the path groupoid P1(X) of adi�eologial spae X. We will see that almost all de�nitions we gave for X asmooth manifold pass through; only the notion of thin homotopy has to beadapted.So, a path in X is a di�eologial map γ : [0, 1] // X with sitting instants.As desribed in Setion 1.2 the set PX of paths an be onsidered as a subsetof the di�eologial spae D∞((0, 1), X), and is hene itself a di�eologialspae. By axiom (D2) for di�eologial spaes, the onstant path idx at apoint x ∈ X is di�eologial. Let us further show exemplarilyLemma 4.1. The omposition γ2 ◦ γ1 of two paths γ1 : x // y and γ2 :
y // z is again a path.Proof. Notie that if γ : [0, 1] // X is a path and U ⊂ [0, 1] is open,then γ|U : U // X is a plot of X. To see that the omposition γ2 ◦ γ1(whih is de�ned in the same way as for smooth manifolds) is di�eologial,let U ⊂ [0, 1] be open, let ǫi be a sitting instant of γi, and let
U1 := U ∩ (0, 1

2
) , U2 := U ∩ (1

2
− ǫ1,

1
2

+ ǫ2) and U3 := U ∩ (1
2
, 1).These are open sets that over U , furthermore, (γ2 ◦γ1)|Ui

= γi|Ui
for i = 1, 3are plots of X and (γ2 ◦ γ1)|U2 is onstant and hene also a plot of X byaxiom (D2). Hene, (γ2 ◦ γ1)|U is a plot of X by axiom (D3). �We leave it to the reader to prove that the inverse γ−1 of a path γ is againa path. Next we have to de�ne thin homotopy for paths in a di�eologialspae. For this purpose, we �rst give a reformulation of a thin homotopy onsmooth manifolds, whih generalizes better to di�eologial spaes.Lemma 4.2. Let X and Y be smooth manifolds and f : X // Y be a smoothmap. The rank of the di�erential of f is bounded above by a number k ∈ N ifand only if the pullbak of every (k+1)-form ω ∈ Ωk+1(Y ) along f vanishes.Funtors vs. Forms, v3 23.7.2008 48 8/28/2008 19:35



Proof. Assume that the rank of the di�erential of f is at most keverywhere. Then, f ∗ω = 0 for all ω ∈ Ωk+1(Y ). Conversely, assume that
f ∗ω = 0 for all ω ∈ Ωk+1(Y ). Assume further that there exists a point p ∈ Xsuh that df |p has rank k′ > k. Then, there exist vetors v1, ..., vk′ ∈ TpXsuh that their images wi := df |p(vi) are linear independent. Using a hartof a neighbourhood of f(p) one an onstrut a k′-form ω ∈ Ωk′

(Y ) suhthat ωf(p)(w1, ..., wk′) is non-zero. Sine this is equal to (f ∗ω)p(v1, ..., vk′),we have a ontradition to the assumption that f ∗ω = 0. �We thus have reformulated restritions on the rank of the di�erential of asmooth funtion in terms of pullbaks of di�erential forms. Now we generalizeto di�eologial spaes.De�nition 4.3. Let X be a di�eologial spae. A di�erential k-form on Xis a family of k-forms ωc ∈ Ωk(U) for every plot c : U // X, suh that
ωc1 = f ∗ωc2for every smooth map f : U1
// U2 with c2 ◦ f = c1.Notie that the k-forms on a di�eologial spae X form a vetor spae

Ωk(X), and that the wedge produt and the exterior derivative generalizenaturally to di�erential forms on di�eologial spaes. Furthermore, it is learthat a di�erential form ω on a smooth manifoldX indues a di�erential formon X regarded as a di�eologial spae: for a hart φ : U // X of X one takes
ωφ := φ∗ω. We have also a very simple de�nition of pullbaks of di�erentialforms on di�eologial spaes along di�eologial maps f : X // Y betweendi�eologial spaes X and Y : the pullbak f ∗ω of a k-form ω = {ωc} on Yis the k-form on X de�ned by

(f ∗ω)c := ωf◦cfor every plot c of X. Here it is important that f ◦ c, sine f was supposedto be di�eologial, is a plot of Y . In partiular, if Y is a smooth manifold,
f ◦ c : U // Y is a smooth map and (f ∗ω)c = (f ◦ c)∗f .De�nition 4.4. Two paths γ0 : x // y and γ1 : x // y in a di�eologialspae X are alled thin homotopy equivalent, if there exists a di�eologialmap h : [0, 1]2 // X with sitting instants as desribed in (1) of De�nition1.1, suh that the pullbak h∗ω of every 2-form ω ∈ Ω2(X) vanishes.By Lemma 4.2 it is lear that for X a smooth manifold De�nition 4.4is equivalent to De�nition 1.1. By arguments similar to those given in theFuntors vs. Forms, v3 23.7.2008 49 8/28/2008 19:35



proof of Lemma 4.1 one an show that De�nition 4.4 de�nes an equivalenerelation ∼1 on the di�eologial spae PX of paths in X, so that the set ofequivalene lasses P 1X := PX/ ∼1 is again a di�eologial spae. This willbe the set of morphisms of the path groupoid P1(X) we are going to de�ne.In the following lemma we prove that the axioms of a groupoid are satis�ed.Lemma 4.5. Let X be a di�eologial spae. For a path γ : x // y we have
γ−1 ◦ γ ∼1 idx and idy ◦ γ ∼1 γ ∼1 γ ◦ idx.For three paths γ1 : x // y, γ2 : y // z and γ3 : z // w we have

γ1 ◦ (γ2 ◦ γ3) ∼1 (γ1 ◦ γ2) ◦ γ3.Proof. We prove γ−1 ◦γ ∼1 idx; the remaining equivalenes an be shownanalogously. We hoose the standard homotopy: this is, for some orientation-preserving di�eomorphism β : [0, 1] // [0, 1] with sitting instants, the map
h : [0, 1]2 // X : (s, t) � //

{

γ(2β(s)t) 0 ≤ t ≤ 1
2

γ(2β(s)(1 − t)) 1
2
< t ≤ 1.This map has sitting instants. To see that it is di�eologial, we use the sametrik as in the proof of Lemma 4.1, i.e. we over (0, 1)2 with

Vγ := (0, 1)× (0, 1
2
) , Vγ−1 := (0, 1)× (1

2
, 1) and Vǫ := (0, 1)× (1

2
−ǫ, 1

2
+ ǫ)for ǫ a sitting instant γ, and aordingly any open subset U ⊂ [0, 1]2 by

Vγ ∩ U , Vγ−1 ∩ U and Vǫ ∩ U . Now,
h|Vγ∩U = (γ ◦mβ)|Vγ∩U (4.1)with mβ(s, t) := 2β(s)t; it is thus the omposition of a plot with a smoothmap and hene by axiom (D1) a plot. Similarly h|V

γ−1∩U and hVǫ∩U are plots.This shows that h|U is overed by plots and thus itself a plot. This impliesthat h is di�eologial. It remains to show that the pullbak h∗ω of every
2-form ω ∈ Ω2(X) vanishes. This follows from the fat that h restritedto eah of the subsets Vγ, Vγ−1 and Vǫ is either onstant or fators as in(4.1) through the one-dimensional manifold [0, 1] via γ or γ−1, respetively. �This �nishes the de�nitions of the path groupoid P1(X) of a di�eologialspae X. It is lear that one now an onsider smooth funtors
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into any Lie ategory S like before: the maps F0 : X // S0 on objets and
F1 : P 1X // S1 on morphisms have to be di�eologial maps.Further towards a generalization of Theorem 1.6 we have to generalizethe ategory Z1

X(G)∞ introdued in De�nition 2.11 from a smooth manifold
X to a di�eologial spae. Notie that De�nition 4.3 extends naturally to
g-valued di�erential forms on di�eologial spaes. Now, for a di�eologialspae X an objet in Z1

X(G)∞ is a g-valued 1-form A = {Ac} on X. Amorphism g : A // A′ is a di�eologial map g : X // G suh that for anyplot c : U // X and the assoiated smooth map gc := g ◦ c : U // X

A′

c = Adgc(Ac) − g∗c θ̄. (4.2)The funtor D from Setion 1.3 generalizes straightforwardly to a funtor
D : Funct∞(P1(X),BG) // Z1

X(G)∞for any di�eologial spae X:
• Let F : P1(X) // BG be a smooth funtor. For any plot c : U // Xof X (whih is itself a di�eologial map), the pullbak c∗F is a smoothfuntor c∗F : P1(U) // BG de�ned on the path groupoid of the smoothmanifold U . Hene Ac := D(c∗F ) ∈ Ω1(U, g) is a 1-form. If c′ :
U ′ // X is another plot and f : U // U ′ is a smooth map with c =
c′ ◦ f , we have by Proposition 1.7 Ac = D(c∗F ) = f ∗D(c′∗F ) = f ∗Ac′ .

• Let ρ : F // F ′ be a smooth natural transformation. Its omponentsfurnish a di�eologial map g : X // G. For any plot c : U // X, wehave gc := ρ ◦ c = D(c∗ρ) : U // X, hene, sine D is a funtor, (4.2)is satis�ed.The extension of the inverse funtor P to di�eologial spaes is slightly moreinvolved. Let A = {Ac} ∈ Ω1(X, g) be a 1-form on the di�eologial spae
X. For every plot c : U // X we obtain a smooth funtor Fc := P(Ac).In partiular, sine every path γ : [0, 1] // X de�nes a plot γ|(0,1), we havefuntors Fγ de�ned on the path groupoid of the open interval (0, 1). Let ǫs,tbe the path in (0, 1) that goes from s+ ǫ to t− ǫ, where ǫ is a sitting instantof γ. Then, we de�ne a map

F : P 1X // G : γ � // Fγ(ǫ0,1).Lemma 4.6. This de�nes a smooth funtor F : P1(X) // BG.Funtors vs. Forms, v3 23.7.2008 51 8/28/2008 19:35



Proof. To see that F : P 1X // G is di�eologial, we have to show thatfor every plot c : U // P 1X the omposite F ◦ c : U // G is a smoothmap. Employing all rules for plots of P 1X we have olleted in Setion 1.2,this means that c = pr ◦ c′ for a plot c′ : U // PX and the projetion
pr : PX // P 1X, suh that the map c̃ : U × (0, 1) // X given by

U × (0, 1)
c′×id // PX × (0, 1)

ev // Xis a plot of X. Hene, we have a smooth funtor Fc̃ : P1(U × (0, 1)) // BG.With the map iu : (0, 1) // U × (0, 1) : t � // (u, t) we have a plot c̃ ◦ iu andaordingly Ac(u) = i∗uAc̃ for all u ∈ U . Then, by Proposition 1.7,
F (c(u)) = i∗uFc̃(ǫ0,1) = Fc̃((iu)∗ǫ0,1).Sine U // P 1(U × V ) : u � // (iu)∗ǫ1,2 is a di�eologial map, and Fc̃ isdi�eologial, we have shown that F ◦ c is smooth. The ompatibility of Fwith the omposition of paths follows by standard arguments,

Fγ′◦γ(ǫ0,1) = Fγ′◦γ(ǫ1/2,1) · Fγ′◦γ(ǫ0,1/2) = Fγ′(ǫ0,1) · Fγ(ǫ0,1)where we have used in the last step that the domain of the plot γ′ ◦ γis overed by those of the plots γ′ and γ, so that the assoiated funtorsoinide by Proposition 1.7. �Now the following theorem follows from Theorem 1.6 applied to funtorsand forms on the odomain U of eah plot c : U // X of X.Theorem 4.7. Let X be a di�eologial spae and G a Lie group. The fun-tors
D : Funct∞(P1(X),BG) // Z1

X(G)∞and
P : Z1

X(G)∞ // Funct∞(P1(X),BG)satisfy
D ◦ P = idZ1

X(G)∞ and P ◦ D = idFunct(P1(X),BG),and are hene isomorphisms of 2-ategories.4.2 Indued Struture on the Loop SpaeIn this setion we disuss the di�eologial spae LX = D∞(S1, X). In or-der to formalize the relation between funtors de�ned on the path groupoidFuntors vs. Forms, v3 23.7.2008 52 8/28/2008 19:35



P1(X) and struture on LX we are going to explore we introdue two on-strutions.Firstly, we denote for any ategory T by ΛT := T1 set of morphismsin T . Aordingly, for a funtor F : S // T , we all its indued map onmorphisms ΛF : ΛS // ΛT . Clearly, if F was a di�eologial funtor, ΛF isa di�eologial map. Seondly, we introdue a di�eologial map
ℓ : LX // ΛP1(X). (4.3)Its de�nition is not ompletely obvious sine loops have no sitting instants.We �x some orientation-preserving di�eomorphism β of the unit intervalwhih has sitting instants. We have a smooth map eβ : [0, 1] // S1 de�nedby eβ(t) := e2πiβ(t) and aordingly a di�eologial map

ℓβ : LX // PX : τ � // τ ◦ eβ.We de�ne ℓ := pr ◦ ℓβ , where pr : PX // P 1X is the projetion to thinhomotopy lasses. This map ℓ is di�eologial and indeed independent of thehoie of β: for another hoie β ′ and some τ ∈ LX we �nd a thin homotopy
ℓβ(τ) ∼1 ℓβ′(τ) for example by

h : [0, 1]2 // X : (s, t) � // τ
(

e2πi(β(s)β′(t)+(1−β(s))β(t))
) ; (4.4)this map is di�eologial, has sitting instants and is evidently thin, sine itfators through S1.Now, having the two de�nitions Λ and ℓ at hand, for F : P1(X) // T asmooth funtor,

ΛF ◦ ℓ : LX // ΛT (4.5)is a di�eologial map on the loop spae. A partiular situation arises if theategory T = BG for a Lie group G. In this ase ΛBG = G. We have nowobtained a map
H1 : // D∞(LX,G). (4.6)This map is of ourse well-known: as mentioned in Setion 3.1, a smoothfuntor F : P1(X) // BG orresponds to a (trivial) prinipal G-bundle Pwith onnetion ω over X, in suh a way that the parallel transport alonga path γ in X is given by multipliation with F (γ). For a loop τ ∈ LX,understood as a path ℓ(τ), this means

H1(F )(τ) = F (ℓ(τ)) = Holω(τ),so that H1(F ) is nothing but the holonomy of the onnetion ω around γ.Funtors vs. Forms, v3 23.7.2008 53 8/28/2008 19:35



In the following we explore whih struture on the loop spae LX isindued from a smooth 2-funtor F : P2(X) // BG. To start with, wegeneralize the two onstrutions Λ and ℓ we have desribed before, to 2-ategories.De�nition 4.8. Let T be a 2-ategory. We de�ne a ategory ΛT as follows:the objets are the 1-morphisms T1 of T , and the morphisms between twoobjets f : Xf
// Yf and g : Xg

// Yg are triples (x, y, ϕ) ∈ T1 × T1 × T2 of1-morphisms x : Xf
// Xg and y : Yf

// Yg and of a 2-morphism
Xf

f

��

x // Xg

g

��

ϕ}}
}}

}
}}

}}
}

z� }}
}}

}}
}}

Yf y
// Yg

.The omposition in ΛT is putting these squares next to eah other, and theidentity of an objet f : X // Y is the triple (idX , idY , idf).Clearly, if the sets T1 and T2 of the 2-ategory T are di�eologial spaes,the objets and morphisms of ΛT form also di�eologial spaes. For F :
S // T a 2-funtor, we have an assoiated funtor

ΛF : ΛS // ΛT ,whih just ats as F on 1-morphisms and 2-morphisms of S. If the 2-funtor
F is di�eologial, the funtor ΛF is also di�eologial. Next we generalize thedi�eologial map ℓ introdued above to a di�eologial funtor

ℓ : P1(LX) // ΛP2(X).On objets, it is just the map ℓ from (4.3), regarding a loop τ ∈ LX as apartiular path in X, i.e. as an objet in ΛP2(X). To de�ne ℓ on morphisms,let γ be a path in LX, i.e. a di�eologial map γ : [0, 1] // D∞(S1, X) withsitting instants. We have an assoiated smooth map mγ : R
2 // X de�nedby mγ(s, t) := γ(t)(e2πis), where we assume γ to be trivially extended to Rin the usual way. Using the standard bigon ΣR(s, t) ∈ B2

R
2 from (2.5), wehave a bigon

m(γ) := mγ
∗(ΣR(1, 1)) ∈ B2X (4.7)assoiated to the path γ, and thus a well-de�ned map m : PLX // B2X.Lemma 4.9. The map m : PLX // B2X is di�eologial.Funtors vs. Forms, v3 23.7.2008 54 8/28/2008 19:35



Proof. We have to show that for any plot c : U // PLX the omposite
m ◦ c is a plot of B2X. This means that, for a �xed representative Σ ∈ BXof ΣR(1, 1), and any open subset W ⊂ [0, 1]2, the assoiated map

U ×W
c×id // PLX ×W

m∗Σ×id // BX ×W
ev // X (4.8)has to be smooth. Let us de�ne the open intervals V := p2(Σ(W )) and V ′ :=

p1(Σ(W )) for pi : [0, 1]2 // [0, 1] the anonial projetions, and onsider thehart ϕ : V ′ // S1 : s � // e2πis of S1. Going through all involved de�nitionsshows that the map (4.8) oinides with the omposite
U ×W

id×Σ // U × V × V ′ c′ // X (4.9)where c′ is given by
U × V × V ′

c×id×id // D∞([0, 1], X) × V × V ′ ev×ϕ // LX × S1 ev // XNow, (4.9) is the omposition of two smooth maps, where c′ is smoothbeause c was supposed to be a plot of PLX ⊂ D∞([0, 1], X). �We show next that the bigon m(γ) ∈ B2X does not depend on the thinhomotopy lass of the path γ. For this purpose, let h : [0, 1] // LX bea thin homotopy between two paths γ, γ′ ∈ PLX, and let Σ ∈ BX bea representative for the bigon ΣR(1, 1). We have an assoiated map mh :
[0, 1]3 // X de�ned by mh(r, s, t) := h(r, t)(e2πis). Then, the map

H : [0, 1]3 // X : (r, s, t) � // mh(r,Σ(s, t))is a thin homotopy between mγ
∗Σ and mγ′

∗ (Σ). Hene, we have obtained adi�eologial map m : P 1LX // B2X. Going through the de�nitions, one�nds that this bigon m(γ) has (up to thin homotopy) the following targetand soure paths:
γ(0)(1)

ℓ(γ(0))

��

pr(b◦γ) // γ(1)(1)

ℓ(γ(1))

��

m(γ)
qqq

qq
q

qqq
qqq

t| qqqqq
qqqqq

γ(0)(1)
pr(b◦γ)

// γ(1)(1), (4.10)where b : LX // X is the base point evaluation. Hene, the triple
ℓ(γ) := (pr(b ◦ γ), pr(b ◦ γ), m(γ))Funtors vs. Forms, v3 23.7.2008 55 8/28/2008 19:35



is a morphism in ΛP2(X). The omposition of paths in LX is respeted inthe sense that ℓ(γ2 ◦ γ1) = ℓ(γ2) ◦ ℓ(γ1) where the latter is the ompositionin ΛP2(X). Thus, we have ompletely de�ned the di�eologial funtor
ℓ : P1(LX) // ΛP2(X).If now F : P2(X) // T is a smooth 2-funtor, we obtain an assoiatedsmooth funtor
ΛF ◦ ℓ : P1(LX) // ΛT ,generalizing the map (4.5). In the important ase that T = BG for G a Lie2-group, the groupoid ΛBG is � following a notion of [Ma87℄ � trivializable:a groupoid is alled trivializable, if it is equivalent to a groupoid of the form

GrS,N = S × BN for a set S regarded as a ategory with only identitymorphisms, and a group N ; these groupoids are alled trivial . Expliitly, theobjets of GrS,N are the elements of S, the Hom-set between two arbitraryobjets is N , and the omposition is multipliation in N . In our ase we �ndan suh an equivalene tr : ΛBG // GrG,G⋉H as follows: on objets, tr isjust the identity on G. A morphism
∗

g1

��

x // ∗

g2

��

h
��

��
�

��
��

�

{� ��
��

��
��

∗ y
// ∗

.in ΛBG is sent to the morphism (y, h−1) in GrG,G⋉H , the inverse being nees-sary in order to respet the omposition. The funtor tr : ΛBG // GrG,G⋉His an equivalene of ategories: the inverse funtor sends a morphism
(y, h) : g1

// g2 in GrG,G⋉H to the triple (g−1
2 t(h)yg1, y, h

−1). Now, we haveonstruted a smooth funtor
tr ◦ ΛF ◦ ℓ : P1(LX) // GrG,G⋉H .Aording to the diret produt struture of the target Lie groupoid, thisfuntor splits in1. a di�eologial funtion hF : LX // G and2. a smooth funtor P1(LX) // B(G⋉H), whih in turn orresponds byTheorem 4.7 and projetion to the fators to(a) a 1-form AF ∈ Ω1(LX, g) and(b) a 1-form ϕF ∈ Ω1(LX, h).Funtors vs. Forms, v3 23.7.2008 56 8/28/2008 19:35



Summarizing, we have, for any di�eologial spae X and any Lie 2-group G,a map
H2 :

{ Smooth 2-funtors
F : P2(X) → BG

}

// D∞(LX,G) × Ω1(LX, g) × Ω1(LX, h).This map generalizes the map H1 from (4.6) from smooth funtors to smooth2-funtors. Let us desribe the image H2(F ) = (hF , AF , ϕF ). The di�eolog-ial funtion hF : LX // G is learly hF = H1(F0,1) for the restrition F0,1of F to objets and 1-morphisms. The di�erential forms AF and ϕF an beharaterized as desribed in the following proposition, also see Figure 2.Proposition 4.10. Let F : P2(X) // BG be a smooth 2-funtor, A ∈
Ω1(X, g) and B ∈ Ω2(X, h) the orresponding di�erential forms on X, and
AF and BF the di�erential forms in H2(F ) on the loop spae. Then

AF = b∗A and ϕF =

∫

S1

(αF◦γ)∗ ◦ ev∗B,where b : LX // X is the projetion to the base point, ev : LX×S1 // X isthe evaluation map and γ : LX × S1 // P 1X assigns to a loop τ ∈ LX and
z ∈ S1 the path obtained by parsing the loop τ from z to 1 ounterlokwise.Proof. Let c : U // LX be a plot of LXand let Γ : R // U be a smoothurve. Using all involved de�nitions we obtain

(AF )c|Γ(0)

(

∂Γ

∂t

∣

∣

∣

∣

0

)

= −
d

dt

∣

∣

∣

∣

0

(pG ◦ c∗(tr ◦ ΛF ◦ ℓ) ◦ Γ∗ ◦ γR)(0, t)

(b∗A)c|Γ(0)

(

∂Γ

∂t

∣

∣

∣

∣

0

)

= −
d

dt

∣

∣

∣

∣

0

((b ◦ c)∗F ◦ Γ∗ ◦ γR)(0, t).Then one observes that
F ◦ b∗ = pG ◦ tr ◦ ΛF ◦ ℓas maps from P 1LX to G; this shows the �rst equality.In order to proof the seond equality we still use the plot c and thesmooth urve Γ, and onsider the path γt := c∗(Γ∗(γR(0, t))) ∈ P 1LX, where

γR(s, t) ∈ P 1
R is the standard path from s to t. We have

(ϕF )c|Γ(0)

(

∂Γ

∂t

∣

∣

∣

∣

0

)

= −
d

dt

∣

∣

∣

∣

0

(pH ◦ c∗(tr ◦ ΛF ◦ ℓ) ◦ Γ∗ ◦ γR)(0, t)

= −
d

dt

∣

∣

∣

∣

0

pH(F (m(γt)))
−1 =

d

dt

∣

∣

∣

∣

0

pH(F (mγt

∗ ΣR(1, 1))),Funtors vs. Forms, v3 23.7.2008 57 8/28/2008 19:35



where we have used the de�nitions of the funtor ℓ and the map m from(4.7). Let us remark that for the bigon ΣΓ(s, t) := mγ1
∗ ΣR(s, t) we have

ΣΓ(1, t) = mγt
∗ ΣR(1, 1), so that we may write

d

dt

∣

∣

∣

∣

0

pH(F (mγt

∗ ΣR(1, 1))) =

∫ 1

0

dθ
∂2

∂ρ∂t

∣

∣

∣

∣

0

pH(F (ΣΓ
1−θ−ρ(θ + ρ, t))). (4.11)A by now standard alulation shows that

pH(F (ΣΓ
1−θ−ρ(θ + ρ, t)))

= pH(F (ΣΓ
1−θ(θ, t))) · α(F (γ(c(Γ(t)), e−2πiθ)), F (ΣΓ

1−θ−ρ(ρ, t)))where we have used the map γ : LX × S1 // P 1X. Now the derivative in(4.11) beomes
∂2

∂ρ∂t

∣

∣

∣

∣

0

pH(F (ΣΓ
1−θ−ρ(θ+ρ, t))) = −(αF (γ(c(Γ(t)),e−2πiθ ))∗

(

∂2

∂ρ∂t

∣

∣

∣

∣

0

F (ΣΓ
1−θ(ρ, t))

) .Let us now indue from the plot c : U // LX of LX a plot of LX × S1,namely the map
c̃ : U × (0, 1) // LX × S1 : (u, θ) � // (c(u), e2πiθ).We have mγ1(1 − θ, 0) = (ev ◦ c̃)(Γ(0),−θ) ∈ X and the tangent vetors

d

dt

∣

∣

∣

∣

0

mγ1(1 − θ, t) = d(ev ◦ c̃)|(Γ(0),−θ)

(

∂Γ

∂t

∣

∣

∣

∣

0

)

d

dρ

∣

∣

∣

∣

1−θ

mγ1(ρ, 0) = d(ev ◦ c̃)|(Γ(0),−θ)

(

∂

∂θ

) .By Proposition 2.13 we hene have
∂2

∂ρ∂t

∣

∣

∣

∣

0

F (ΣΓ
1−θ(ρ, t)) = −(ev∗B)c̃|(Γ(0),−θ)

(

∂

∂θ
,
∂Γ

∂t

∣

∣

∣

∣

0

) .Putting all piees together and transforming θ � // − θ, we have shown
(ϕF )c|Γ(0)

(

∂Γ

∂t

∣

∣

∣

∣

0

)

=

∫ 0

−1

dθ (α(F◦γ)(c̃(Γ(0),θ)))∗(ev
∗B)c̃|(Γ(0),θ)

(

∂

∂θ
,
∂Γ

∂t

∣

∣

∣

∣

0

)this is the announed �bre integral written in the plot c̃ of LX × S1. �Funtors vs. Forms, v3 23.7.2008 58 8/28/2008 19:35



F_Theorem 2.20
��

� // tr ◦ ΛF ◦ ℓ_Theorem 4.7
��

(A,B) �

b∗×
R

S1(αF◦γ)∗◦ev∗

// (AF , ϕF )Figure 2: A diagram for manipulations on a smooth2-funtor F : P2(X) → BG, whose ommutativity isProposition 4.10. The �rst row onsists of funtors,and the seond row of di�erential forms. The �rstolumn ontains struture on X, and the seond onestruture on LX.To onlude, let us disuss the ase G = BU(1). A smooth 2-funtor
F : P2(X) // BBU(1) indues a smooth funtor

tr ◦ ΛF ◦ ℓ : P1(LX) // BU(1), (4.12)sine ΛBBU(1) = BU(1); the funtor tr : BU(1) // BU(1) just inverts groupelements. The image of F under H2 is hene just a 1-form ϕF ∈ Ω1(X), andthis 1-form is by Proposition 4.10 just the ordinary �bre integral
ϕF =

∫

S1

ev∗B. (4.13)Let us now interpret the 2-funtor F as a trivial abelian gerbe G with on-netion over X (see Example 3.2 in Setion 3.1), and the assoiated funtor(4.12) as a trivial prinipal U(1)-bundle L with onnetion ϕF over the loopspae LX, see Theorem 3.1 . Equation (4.13) shows that the line bundle L isthe line bundle over the loop spae obtained by transgression from the gerbe
G. Transgression of abelian gerbes as so far been realized in many ways, forexample in [Gaw88, Bry93, GT01, SW08b℄, and we have seen here that

F � // tr ◦ ΛF ◦ ℓis just another way to realize transgression. It has one important advantageompared to all the above previous realizations: it works also for non-abeliangerbes. A further disussion is postponed to the upoming artile [SW08a℄.Funtors vs. Forms, v3 23.7.2008 59 8/28/2008 19:35



AppendixA.1 Basi 2-Category TheoryIn this artile we only onsider strit 2-ategories, 2-funtors, inverse 1-morphisms et., in ontrast to the general ase. We only use the quali�er�strit� in this setion and omit it elsewhere.De�nition A.1. A (small) 2-ategory onsists of a set of objets, for eahpair (X, Y ) of objets a set of 1-morphisms denoted f : X // Y and foreah pair (f, g) of 1-morphisms f, g : X // Y a set of 2-morphisms denoted
ϕ : f +3 g, together with the following struture:1. For every pair (f, g) of 1-morphisms f : X // Y and g : Y // Z, a1-morphism g ◦ f : X // Y , alled the omposition of f and g.2. For every objet X, a 1-morphism idX : X // X, alled the identity1-morphism of X.3. For every pair (ϕ, ψ) of 2-morphisms ϕ : f +3 g and ψ : g +3 h, a2-morphism ψ •ϕ : f +3 h, alled the vertial omposition of ϕ and ψ.4. For every 1-morphism f , a 2-morphism idf : f +3 f , alled the iden-tity 2-morphism of f .5. For every triple (X, Y, Z) of objets, 1-morphisms f, f ′ : X // Y and

g, g′ : Y // Z, and every pair (ϕ, ψ) of 2-morphisms ϕ : f +3 f ′ and
ψ : g +3 g′, a 2-morphism ψ ◦ϕ : g ◦f +3 g′ ◦f ′, alled the horizontalomposition of ϕ and ψ.This struture has to satisfy the following list of axioms:(C1) The omposition of 1-morphisms and vertial and horizontal omposi-tion of 2-morphisms are assoiative.(C2) The identity 1-morphisms are units with respet to the omposition of 1-morphisms, and identity 2-morphisms are units with respet to vertialomposition, i.e.

ϕ • idf = idg • ϕfor every 2-morphism ϕ : f +3 g. Horizontal omposition preservesthe identity 2-morphisms in the sense that
idg ◦ idf = idg◦f .Funtors vs. Forms, v3 23.7.2008 60 8/28/2008 19:35



(C3) Horizontal and vertial ompositions are ompatible in the sense that
(ψ1 • ψ2) ◦ (ϕ1 • ϕ2) = (ψ1 ◦ ϕ1) • (ψ2 ◦ ϕ2)whenever these ompositions are well-de�ned.The axioms of a strit 2-ategory allow to use pasting diagrams for 2-morphisms: every pasting diagram orresponds to a unique 2-morphism. Ina 2-ategory, a 2-morphismΣ : γ1

+3 γ2 is alled invertible or 2-isomorphismif there exists another 2-morphism Σ−1 : γ2
+3 γ1 suh that Σ−1 • Σ = idγ1and Σ • Σ−1 = idγ2 . In this ase, Σ−1 is uniquely determined and alledthe inverse of Σ. A 1-morphism γ : x // y is alled stritly invertible orstrit 1-isomorphism, if there exists another 1-morphism γ̄ : y // x suhthat idx = γ̄ ◦ γ and γ ◦ γ̄ = idy. A 2-ategory in whih every 1-morphism isstritly invertible is alled a strit 2-groupoid .To relate two 2-ategories, we use the following de�nition of a 2-funtor,whih is analogous to a funtor between ategories.De�nition A.2. Let S and T be two strit 2-ategories. A strit 2-funtor

F : S // T is an assignment
F : X

f

��

g

AA
ϕ

��

Y 7−→ F (X)

F (f)

##

F (g)

;;
F (ϕ)

��

F (Y )suh that(F1) The vertial omposition is respeted in the sense that
F (ψ • ϕ) = F (ψ) • F (ϕ) and F (idf) = idF (f)for all omposable 2-morphisms ϕ and ψ, and any 1-morphism f .(F2) The omposition of 1-morphisms is respeted in the sense that

F (g) ◦ F (f) = F (g ◦ h)for all omposable 1-morphisms f and g, and the horizontal ompositionof 2-morphisms is respeted in the sense that
F (ψ) ◦ F (ϕ) = F (ψ ◦ ϕ)for all horizontally omposable 2-morphisms ϕ and ψ.Funtors vs. Forms, v3 23.7.2008 61 8/28/2008 19:35



To ompare 2-funtors, we use the notion of a pseudonatural transforma-tion, whih generalizes a natural transformation between funtors.De�nition A.3. Let F1 and F2 be two strit 2-funtors both from S to T .A pseudonatural transformation ρ : F1
// F2 is an assignment

ρ : X
f // Y 7−→

F1(X)
F1(f) //

ρ(X)

��

F1(Y )

ρ(Y )

��

ρ(f)
vv

vv
v

vv
vv

v

v~ vvv
vv

vv
vv

v

F2(X)
F2(f)

// F2(Y ),of a 2-isomorphism ρ(f) in T to eah 1-morphism f : X // Y in S suhthat two axioms are satis�ed:(T1) The omposition of 1-morphisms in S is respeted:
F1(X)

F1(f) //

ρ(X)

��

F1(Y )
F1(g) //

ρ(Y )

��

ρ(f)
vv

vv
v

vv
vv

v

w� vvvv
vvvv

F1(Z)

ρ(g)
ww

ww
w

ww
ww

w

w� wwww
wwww

ρ(Z)

��
F2(X)

F2(f)
// F2(Y )

F2(g)
// F2(Z)

=

F1(X)
F1(g◦f) //

ρ(X)

��

F1(Z)

ρ(Z)

��

ρ(g◦f)
vv

vv
v

vv
vv

v

v~ vvv
vv

vv
vv

v

F2(X)
F2(g◦f)

// F2(Z).(T2) It is ompatible with 2-morphisms:
F1(X)

F1(f) //

ρ(X)

��

F1(Y )

ρ(Y )

��

ρ(f)
vv

vv
v

vv
vv

v

w� vvvv
vvvv

F2(X)

F2(g)

FF

F2(f) // F2(Y )

F2(ϕ)

��

=
F1(x)

F1(f)

��

F1(g)
//

F1(ϕ)

��

ρ(X)

��

F1(Y )

ρ(Y )

��

ρ(g)
vv

vv
v

vv
vv

v

v~ vvv
vv

vv
vv

v

F2(X)
F2(g)

// F2(Y ).It follows that ρ(idX) = idρ(X) for every objet X in S. Pseudonaturaltransformations ρ1 : F1
// F2 and ρ2 : F2

// F3 an naturally be omposedFuntors vs. Forms, v3 23.7.2008 62 8/28/2008 19:35



to a pseudonatural transformation ρ2 ◦ ρ1 : F1
// F3:

ρ2 ◦ ρ1 : X
f // Y 7−→

F1(X)
F1(f) //

ρ1(X)

��

F1(Y )

ρ1(Y )

��

ρ1(f)
vv

vv
v

vv
vv

v

v~ vvv
vv

vv
vv

v

F2(X)

ρ2(X)

��

F2(f) // F2(Y )

ρ2(Y )

��

ρ2(f)
vv

vv
v

vv
vv

v

v~ vvv
vv

vv
vv

v

F3(X)
F3(f)

// F3(Y ). (A.1)
We need one more de�nition for situations where we have two pseudonaturaltransformations.De�nition A.4. Let F1, F2 : S // T be two strit 2-funtors and let ρ1, ρ2 :
F1

// F2 be pseudonatural transformations. A modi�ation A : ρ1
+3 ρ2 isan assignment

A : X 7−→ F1(X)

ρ1(X)

$$

ρ2(X)

::
A(X)

��

F2(Y )of a 2-morphism A(X) in T to any objet X in S whih satis�es
F1(X)

ρ2(X)

((

F1(f) //

ρ1(X)

��

ks A(X)

F1(Y )

ρ1(y)

��

ρ1(f)
vv

vv
v

vv
vv

v

w� vvvv
vvvv

F2(X)
F2(f)

// F2(Y )

=

F1(X)
F1(f) //

ρ2(X)

��

F1(Y )

ρ1(X)

vv

ρ2(y)

��

A(Y )ksρ2(f)
vv

vv
v

vv
vv

v

w� vvvv
vvvv

F2(X)
F2(f)

// F2(Y )Horizontal and vertial ompositions of 2-morphisms in T indue aor-dant ompositions on modi�ations.For two �xed strit 2-ategories S and T , we reognize the followingstrutures:1. For two strit 2-funtors F1, F2 : S // T , the pseudonatural transfor-mations ρ : F1
// F2 together with modi�ations and their vertialomposition, form a ategory Hom(F1, F2).2. Even more, strit 2-funtors from S to T , together with pseudonaturaltransformations and their modi�ations, and the assignments ◦ and •as de�ned above, form a strit 2-ategory Funct(S, T ).Funtors vs. Forms, v3 23.7.2008 63 8/28/2008 19:35



De�nition A.5. Let S and T be strit 2-ategories. Strit 2-funtors F :
S // T and G : T // S are alled isomorphisms of 2-ategories, if G ◦F =
idS and F ◦G = idT .A.2 Lie 2-Groups and Smooth Crossed ModulesAny strit monoidal ategory (G,⊠, 1) de�nes a 2-ategory BG: it has asingle objet, the 1-morphisms are the objets of G and the 2-morphismsare the morphisms of G. The horizontal omposition is given by the tensorfuntor ⊠, and the vertial omposition is the omposition in G. The identity1-morphism of the single objet is the tensor unit 1, and the identity 2-morphism of a 1-morphism X is just the identity morphism idX of the objet
X in G. The axioms for the 2-ategory BG follow from the properties of thetensor funtor ⊠.In the following, we enhane this onstrution by two features. First,we assume that G is a groupoid and that we have an additional funtor
i : G // G whih is an inverse to the tensor funtor ⊠ in the sense that

X ⊠ i(X) = 1 = i(X) ⊠X and f ⊠ i(f) = id1 = i(f) ⊠ ffor all objets X and all morphisms f in G. In this ase the 2-ategory BGis even a 2-groupoid. Seondly, we assume that G is a Lie ategory, and thatthe funtors ⊠ and i are smooth. Then, BG is a Lie 2-groupoid.De�nition A.6. A Lie 2-group is a strit monoidal Lie ategory (G,⊠, 1)together with a smooth funtor i : G // G suh that (A.2) is satis�ed.We denote the Lie 2-groupoid assoiated to a Lie 2-group G by BG. Animportant soure of Lie 2-groups are smooth rossed modules.De�nition A.7. A smooth rossed module is a olletion (G,H, t, α) of Liegroups G and H, and of a Lie group homomorphism t : H // G and asmooth map α : G×H // H, suh that1. α is a left ation of G on H by Lie group homomorphisms, i.e. thesmooth map αg : H // H de�ned by αg(h) := α(g, h)a) is a Lie group homomorphism for all g ∈ G.b) satis�es α1 = idH and αgg′ = αg ◦ αg′ for all g, g′ ∈ G.2. α and t are ompatible in the following two ways:a) t(α(g, h)) = gt(h)g−1 for all g ∈ G and h ∈ H.Funtors vs. Forms, v3 23.7.2008 64 8/28/2008 19:35



b) α(t(h), x) = hxh−1 for all h, x ∈ H.Any smooth rossed module (G,H, t, α) de�nes a Lie 2-group (G,⊠, 1, i)in the following way.The ategory G: We put Obj(G) := G and Mor(G) := G ⋉ H , the semi-diret produt of G and H de�ned by α, expliitly
(g2, h2) · (g1, h1) := (g2g1, h2α(g2, h1)). (A.2)An element (g, h) ∈ Mor(G) is onsidered as a morphism from g to

t(h)g. The omposition is given by
(h′, g′) ◦ (h, g) := (h′h, g), (A.3)where g′ = t(h)g. It is obviously assoiative, and the identity mor-phisms are idg = (1, g). All these de�nitions are smooth, so that G isa Lie ategory.The monoidal struture (⊠, 1): The funtor ⊠ : G × G // G is de�nedon objets by g2 ⊠ g1 := g2g1 and on morphisms by the produt (A.2).By axiom 2.a), the morphisms have the orret target. It respetsidentity morphisms,
(g2, 1) ⊠ (g1, 1) = (g2g1, 1)and by axiom 2.b) the omposition

((g′2, h
′
2) ⊠ (g′1, h

′
1)) ◦ ((g2, h2) ⊠ (g1, h1))

= ((g′2, h
′

2) ◦ (g2, h2)) ⊠ ((g′1, h
′

1) ◦ (g1, h1)).It is also stritly assoiative and the objet 1 := 1 ∈ G is a left andright unit.The funtor i: The funtor i : G // G is de�ned on objets by i(g) := g−1and on morphisms by the assignment (2.8). It respets soures andtargets by axiom 2.a), the identities and by axioms 1.a) and 2.b) theomposition. It is also smooth and satis�es the ondition (A.2).Now we have ompletely de�ned the Lie 2-group assoiated to a smoothrossed module. Indeed, it is a well-known fat [BS76℄, also see [BL04℄ for areview, that every Lie 2-group arises � up to a ertain notion of equivalene� from a smooth rossed module in this way.Funtors vs. Forms, v3 23.7.2008 65 8/28/2008 19:35



Let us also write down the Lie 2-groupoid BG assoiated the the Lie 2-group G oming from a smooth rossed module (G,H, t, α). A 2-morphismis a morphism (g, h) ∈ Mor(G), denoted as
∗

g

��

g′

CCh

��

∗with
g′ = t(h)g. (A.4)The ladder equation is also alled the target-mathing-ondition for the 2-morphism (g, h). The vertial omposition is aording to (A.3)

∗ g′ //

g

��

g′′

EE

h

��

h′

��

∗ = ∗

g

��

g′′

CCh′h

��

∗ (A.5)
with g′ = t(h)g and g′′ = t(h′)g′ = t(h′h)g, and the horizontal ompositionis aording to (A.2)

∗

g1

��

g′1

CCh1

��

∗

g2

��

g′2

CCh2

��

∗ = ∗

g2g1

��

g′2g′1

AAh2α(g2,h1)

��

∗ (A.6)The onstrution of Lie 2-groups from smooth rossed modules is onve-nient to disuss basi examples.Example A.8. Let A be an abelian Lie group. We de�ne a smooth rossedmodule by taking G = {1} the trivial group and H := A. This �xes themaps to t(a) := 1 and α(1, a) := a. All axioms are satis�ed in a trivialmanner exept axiom 2.b), whih is satis�ed only beause A is abelian. Theassoiated Lie 2-group G is denoted by BA, and the assoiated Lie 2-groupoidby BBA.Example A.9. Let G be any Lie group. We obtain a smooth rossed moduleby taking H := G, t = id and α(g, h) := ghg−1. The assoiated Lie 2-group,Funtors vs. Forms, v3 23.7.2008 66 8/28/2008 19:35



whih also underlies the onstrution of a geometri realization of EG [Seg68℄is here denoted by EG. It an be interpreted as the inner automorphism 2-group of G [RS07℄, and its Lie algebra plays an important role in [SSS08℄.Let us brie�y exhibit the details of the assoiated Lie 2-groupoid EBG. Ithas one objets, and the set of 1-morphisms is G with the usual omposition
g2 ◦ g1 := g2g1. Between every pair (g, g′) of 1-morphisms there is a unique2-morphism

∗

g

��

g′

CCh

��

∗determined by h := g′g−1.Example A.10. Let H be a onneted Lie group. The group of Lie groupautomorphisms of H is again a Lie group G := Aut(H) [OV91℄. Togetherwith t(h)(x) := hxh−1 and α(ϕ, h) := ϕ(h), we have de�ned a smooth rossedmodule whose assoiated Lie 2-group G is denoted by AUT(H).A.3 Proof of Lemma 2.15In this setion we show that the map
kA,B : BX // Hde�ned for the onstrution of a smooth 2-funtor from two di�erential forms

A ∈ Ω1(x, g) and B ∈ Ω2(X, h), only depends on the thin homotopy lass ofa bigon Σ ∈ BX.We �rst start with a general homotopy h : [0, 1] × [0, 1]2 // X betweentwo bigons Σ1 and Σ2, i.e h has the properties from De�nition 2.2 exeptondition 2a) whih onstrains the rank of its di�erential. We shall representthe unit ube [0, 1]3 on whih h is de�ned as a bigon in R
3. For this purpose,we de�ne two paths µ(r, s, t) and ν(r, s, t) in R

3 going from 0 ∈ R
3 to (r, s, t).With the notation introdued in Figure 3 these paths are

µ(r, s, t) := γru ◦ γhu ◦ γhl and ν(r, s, t) := γvr ◦ γov ◦ γlo.Between these paths we have two bigons Λ1(r, s, t) : µ(r, s, t) +3 ν(r, s, t)and Λ2(r, s, t) : ν(r, s, t) +3 µ(r, s, t) de�ned by
Λ1 := (idγrv ∗ Σo) • (Σr ∗ idγho) • (idγru ∗ Σh)Funtors vs. Forms, v3 23.7.2008 67 8/28/2008 19:35
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Figure 3: The unit ube viewed as two bigons: Λ1 :
µ => ν on the right hand side, and Λ2 : ν → µ on theleft hand side.and

Λ2 := (Σu ∗ idγhl) • (idγuv ∗ Σl) • (Σv ∗ idγlo)The vertial omposition Λ(r, s, t) := Λ2(r, s, t) • Λ1(r, s, t) is then a bigonwhose image is the ube. Notie that the two bigons Σ1 and Σ2 we startedwith an be found as Σ1 = h∗Σ
o and Σ2 = h∗(Σ

u)−1.We evaluate the map kA,B on the bigon h∗(Λ(r, s, t)), whih furnishes asmooth funtion u : [0, 1]3 // H . Sine kA,B is ompatible with the vertialomposition and the auxiliary horizontal omposition ∗ by Lemma 2.14 wehave
u(r, s, t) = kA,B(h∗Σ

u) · kA,B(h∗Σ
v) · α(FA(h∗γ

rv), kA,B(h∗Σ
o))

· kA,B(h∗Σ
r) · α(FA(h∗γ

ru), kA,B(h∗Σ
h)). (A.7)On the right hand side we have omitted the arguments (r, s, t) for simpliity.In the following we use the bigon Λr0(r, s, t) whih does not start at (0, 0, 0)as the one shown in Figure 3 but instead at the point (r, 0, 0). Aordingly,we have a smooth funtion ur0 : [0, 1]3 // H . In the same way, we have aFuntors vs. Forms, v3 23.7.2008 68 8/28/2008 19:35



smooth funtion ur0,s0,t0 : [0, 1]3 // H assoiated to the bigon Λr0,s0,t0 whihstarts at (r0, s0, t0).Lemma A.11. The smooth funtion ur0 : [0, 1]3 // H has the followingproperties:(a) u0(1, 1, 1) = kA,B(Σ2)
−1 · kA,B(Σ1).(b) ur0(r, 1, 1) = ur0+r′(r − r′, 1, 1) · ur0(r

′, 1, 1).() ur0(r, s+ σ, 1) = H1(r0, r, s) · ur0,s,0(r, σ, 1) ·H2(r0, r, s).(d) ∂2

∂r∂σ

∣

∣

∣

∣

0

∂

∂t
ur0,s,0(r, σ, t) = 3(h∗K)(r0,s,t)

(

∂

∂r
,
∂

∂s
,
∂

∂t

).In (), H1 and H2 are H-valued smooth funtions whih are independent of
σ. In (d), the 3-form K ∈ Ω3(X, h) is given by K := dB + α∗(A ∧B).Proof. We employ the properties of the homotopy h from ondition 1 ofDe�nition 2.2, and obtain from (A.7)

kA,B(h∗Λ(1, 1, 1)) = kA,B(Σ2)
−1 · kA,B(h∗Σ

v) · kA,B(Σ1) · kA,B(h∗Σ
h).Notie that by ondition 2b) the bigons h∗Σv : γ′1 +3 γ′2 and h∗Σh : γ1

+3 γ2are thin homotopies between paths, i.e. the rank of their di�erentials is lessor equal to 1. Aordingly, Ah∗Σv = Ah∗Σh = 0 and hene kA,B(h∗Σ
v) =

kA,B(h∗Σ
h) = 1. This shows (a). Using the same arguments, we have

ur0(r, 1, 1) = kA,B(h∗Σ
u
r0+r(1, 1)) · kA,B(h∗Σ

o
r0

(1, 1)).Then (b) follows immediately. A slightly more involved omputation shows
ur0,0,0(r, s+ σ, 1) = kA,Bh∗Σ

u
r0+r,0,0(s, 1) · ur0,s,0(r, σ, 1)

· kA,Bh∗Σ
v
r0,s,0(r, 1) · kA,Bh∗Σ

o
r0,0,0(s, 1),this is (). For (d), notie that ur0,s,0(r, σ, t + τ) is equal to the followingprodut:

kA,Bh∗Σ
u
r0+r,s,t(σ, τ) · α(kA,Bh∗γ

uv
r0+r,s0+σ,t(τ), kA,Bh∗Σ

u
r0+r,s,0(σ, t))

·α(kA,Bh∗γ
uv
r0+r,s+σ,t(τ), kA,Bh∗Σ

v
r0,s+σ,0(r, t)) · kA,Bh∗Σ

v
r0,s+σ,t(r, τ)

·α
(

kA,Bh∗γ
rv
r0,s+σ,t+τ (r), α(kA,Bh∗γ

or
r0,s+σ,t(τ), kA,Bh∗Σ

o
r0,s,0(σ, t))

·kA,Bh∗Σ
o
r0,s,t(σ, τ)

)

·kA,Bh∗Σ
l
r0,s,t+τ(r, σ) · α(kA,Bh∗γ

ru
r0+r,s,t+τ(σ), kA,Bh∗Σ

h
r0,s,t(r, τ)

·α(kA,Bh∗γ
hu
r0+r,s,t(τ), kA,Bh∗Σ

h
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The derivative of this expression by all three variables evaluated at zero is,using Proposition 2.13,
∂3

∂r∂σ∂τ

∣

∣

∣

∣

0

ur0,s,0(r, σ, t+ τ)

= 3dBh(r0,s,t)(vr, vs, vt) + α∗(Ar0,s,t(vr), Br0,s,t(vs, vt))

+α∗(Ar0,s,t(vs), Br0,s,t(vt, vr)) + α∗(Ar0,s,t(vt), Br0,s,t(vr, vs)).Using the antisymmetry of B, this shows (d). �Remark A.12. The 3-form K = dB + α∗(B ∧ A) that drops out in (d)has to be interpreted as the urvature of the onnetion (A,B) on a trivial,(non-abelian) gerbe, see Setion 3.1.Now, if the homotopy h is thin, i.e. satis�es ondition 2a) of De�nition2.2, we have by (d)
∂2

∂r∂σ

∣

∣

∣

∣

0

ur0,s,0(r, σ, 1) =

∫ 1

0

dt
∂2

∂r∂σ

∣

∣

∣

∣

0

∂

∂t
ur0,s,0(r, σ, t) = 0.Performing this trik one more, we obtain

∂

∂r

∣

∣

∣

∣

0

ur0(r, 1, 1) =

∫ 1

0

ds
∂

∂r

∣

∣

∣

∣

0

∂

∂s
ur0(r, s, 1)

(c)
=

∫ 1

0

dsH1(r0, r, s) ·

{

∂2

∂r∂σ

∣

∣

∣

∣

0

ur0,s,0(r, σ, 1)

}

·H2(r0, r, s)

= 0The multipliative property (b) transfers this result to all values of r,
∂

∂r

∣

∣

∣

∣

r0

u0(r, 1, 1) =
∂

∂r

∣

∣

∣

∣

0

ur0(r, 1, 1) · u0(r0, 1, 1) = 0.This means that the funtion u0(r, 1, 1) is onstant, and thus determined byits value at r = 0,
1 = u0(0, 1, 1) = u0(1, 1, 1)

(a)
= kA,B(Σ2)

−1 · kA,B(Σ1).This shows that kA,B takes the same values on thin homotopi bigons Σ1 and
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