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Abstract

Let P = {P1, . . . , Pt} be a set of internally disjoint paths contained in a graph G and let S
be the subgraph defined by

⋃t
i=1 Pi. A bridge of S is either an edge of G − E(S) with both

endpoints in V (S) or a component C of G − V (S) along with all the edges from V (C) to V (S).
The attachments of a bridge B are the vertices of V (B) ∩ V (S). A bridge B is k-stable if there
does not exist a subset of at most k− 1 paths in P containing every attachment of B. A theorem
of Tutte states that if G is a 3-connected graph, there exist internally disjoint paths P ′

1, . . . , P
′
t

such that Pi and P ′
i have the same endpoints for 1 ≤ i ≤ t and every bridge is 2-stable. We

prove that if the graph is sufficiently connected, the paths P ′
1, . . . , P

′
t may be chosen so that every

bridge containing at least two edges is in fact k-stable. We also give several simple applications
of this theorem to a conjecture of Lovász on deleting paths maintaining high connectivity.

Key Words : graph connectivity, graph bridges, non-separating cycles

1 Introduction

Let S be a subgraph of a graph G. An S-bridge in G is a connected subgraph B of G such that
E(B) ∩ E(S) = ∅ and either E(B) is an edge with both endpoints contained in V (S) or for some
component C of G − V (S) the set E(B) consists of all edges of G with at least one endpoint in C.
The vertices of V (B) ∩ V (S) are the attachments of B. A bridge is trivial if it consists of a single
edge and non-trivial otherwise. The set of branch vertices of S is any subset X ⊆ V (S) such that X
contains every vertex of S of degS at least three. A segment of S is a non-trivial path P contained
in S with both endpoints equal to a branch vertex and no branch vertex contained as an internal
vertex of P . Observe by definition that the segments are internally disjoint subpaths of S. For a
given subgraph S and fixed set X of branch vertices, we will typically refer to the segments of S to
mean the collection of all segments of S with branch set X.

Let S be a subgraph of a graph G with branch vertices X. For any integer k ≥ 1, an S-bridge B
is k-stable if there do not exist a subset of at most k− 1 segments of S containing every attachment
of B. The following theorem is due to Tutte [13]:
∗This work partially supported by a fellowship from the Alexander von Humboldt Foundation
†Email address: paul.wollan@gmail.com
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Theorem 1.1 (Tutte) Let S be a subgraph of a 3-connected graph G and let P1, . . . , Pt be the
segments of S. Then there exists a subgraph S′ with segments P ′1, . . . , P

′
t such that Pi and P ′i have

the same endpoints for 1 ≤ i ≤ t. Moreover, every S′-bridge B is 2-stable.

Theorem 1.1 essentially says that given any three connected graph G and a collection of internally
disjoint paths P1, . . . , Pt, it is possible to reroute the paths P1, . . . , Pt to get internally disjoint paths
P ′1, . . . , P

′
t such that P ′1, . . . , P

′
t preserve the endpoints and moreover, every bridge attaches to at

least two distinct paths of P ′1, . . . , P
′
t . The main theorem of this article is the following extension of

Tutte’s theorem to force bridges having arbitrarily large stability. Given a subgraph of a graph G
with segments P1, P2, . . . , Pt, a subset of the segments {Pi : i ∈ I} for some set I ⊆ {1, 2, . . . , t} is
independent if for every index j ∈ I, V (Pj) *

⋃
i∈I,i 6=j V (Pi).

Theorem 1.2 Let k ≥ 1 be given and let G be a 243k-connected graph. Let S be a subgraph of
G with branch vertices X and segments P1, . . . , Pt such that there exists an independent set of k
segments. Furthermore, assume for any non-trivial segment Pi with endpoints x and y, the graph
G−E(S) does not contain the edge xy. Then there exists a subgraph S′ with branch vertices X and
segments P ′1, . . . , P

′
t such that P ′i has the same endpoints as Pi for 1 ≤ i ≤ t such that every trivial

S′-bridge has endpoints on two distinct segments, and every non-trivial S′-bridge is k-stable. Also,
if there exists a non-trivial bridge of S, then there exists a non-trivial bridge of S′.

The statement of Theorem 1.2 is made more complex by the fact that we allow the segments of S
to consist of both single edges as well as paths of length two or more. When the segments are all
assumed to be induced paths of length at least two, the statement is simpler.

Corollary 1.3 Let k ≥ 1 be given and let G be a 243k-connected graph. Let S be a subgraph of G with
branch vertices X and segments P1, . . . , Pt where t ≥ k and Pi is an induced path of length at least
two for all 1 ≤ i ≤ t. Then there exists a subgraph S′ with branch vertices X and segments P ′1, . . . , P

′
t

such that P ′i is an induced path with the same endpoints as Pi for 1 ≤ i ≤ t and furthermore, every
non-trivial S′-bridge is k-stable.

We will make use of the following notation. Where not otherwise stated, we follow the notation
of [2]. A separation (A,B) of a graph G is a pair of subsets of V (G) such that A ∪ B = V (G)
and every edge xy is either contained in the subgraph of G induced by A or the subgraph induced
by B. A separation (A,B) is trivial if A ⊆ B or B ⊆ A. Given a path P in a graph G and
two specified vertices x and y in P , we refer to the subpath of P with endpoints x and y by
xPy. The proof of Theorem 1.2 as well as the applications of Theorem 1.2 will make use of the
theory of graph linkages. A linkage problem of size k in a graph G is a multiset of k subsets of
V (G) of size two L = {{si, ti} : si, ti ∈ V (G), 1 ≤ i ≤ k}. A solution to a given linkage problem
L = {{si, ti} : si, ti ∈ V (G), 1 ≤ i ≤ k} is a set of k internally disjoint paths P1, P2, . . . , Pk where the
endpoints of Pi are si and ti for all 1 ≤ i ≤ k. A graph G is k-linked if it has at least 2k vertices
and if there exists a solution to every linkage problem of size k with pairwise disjoint subsets of size
two. By assuming a sufficient amount of connectivity, we can assume a given graph is k-linked.

Theorem 1.4 ([11]) Every 10k-connected graph is k-linked.

A graph G is strongly k-linked if every linkage problem of size k has a solution. It has been indepen-
dently shown by Mader [10] as well as by Liu, West, and Yu [7] that every k-linked graph on at least
2k vertices is also strongly k-linked. This immediately implies following corollary to Theorem 1.4.
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Corollary 1.5 Every 10k-connected graph is strongly k-linked.

Corollary 1.5 can also be directly proven from Theorem 1.4 by a simple construction duplicating
vertices contained in multiple pairs of a given linkage problem.

Before giving the proof of Theorem 1.2, we first examine several implications of the theorem
to problems arising from a collection of questions we will generally refer to as removable paths
conjectures. The following conjecture is due to Lovász:

Conjecture 1.6 There exists a function f(k) such that for every f(k)-connected graph G and every
pair of vertices s and t of G, there exists an s-t path P such that G− V (P ) is k-connected.

Even the existence of such a function f(k) remains open, leading to the study of a variety of weaker
versions of the conjecture. In Section 2, we present two applications of Theorem 1.2 to questions
related to Conjecture 1.6. In the following sections, we give the proof of Theorem 1.2. We conclude
with a brief discussion on the possibility of improving the amount of connectivity necessary in
Theorem 1.2 as well as a lower bound for the best possible value of the constant.

2 Applications to removable path questions

Conjecture 1.6 has been shown to be true for small values of k. The case when k = 1 is an immediate
consequence of Theorem 1.1. To see this, let G be a 3-connected graph and let u and v be any
pair of vertices of G. By Theorem 1.1 there exist two non-trivial paths linking u and v such that
every non-trivial bridge is 2-stable. Then either of the paths can be deleted and leave the remaining
graph connected. A path P in a graph G where G − V (P ) is connected is called a non-separating
path. The k = 1 case of Conjecture 1.6 can be rephrased to state that there exists a non-separating
path connecting any pair of vertices, assuming the graph satisfies some connectivity bound. Chen,
Gould, and Yu [1] show in fact that a highly connected graph contains many internally disjoint
non-separating paths linking any pair of vertices.

Theorem 2.1 ([1]) Let k be a positive integer and let G be a (22k + 2)-connected graph. Then for
any pair of vertices u and v of G there exist k internally disjoint non-separating paths P1, P2, . . . , Pk
such that the endpoints of Pi are u and v for every 1 ≤ i ≤ k.

A set of internally disjoint paths {P1, P2, . . . , Pk} contained in a graph G is batch non-separating if
for any subset I ⊆ {1, 2, . . . , k} the graph G−

(⋃
i∈I V (Pi)

)
is connected. A consequence of Theorem

1.2 is that a highly connected graph in terms of k contains a batch non-separating set of internally
disjoint paths connecting any pair of vertices.

Theorem 2.2 Let H be a multigraph without loops and with no isolated vertices. Let l = |E(H)|.
Let G be a 243(l+ 1)-connected graph. Then for any injective function ρ : V (H)→ V (G) there exist
internally disjoint paths {Pxy : xy ∈ E(H)} such that the endpoints of Pxy are ρ(x) and ρ(y) for all
edges xy ∈ E(H) and furthermore, the set of paths {Pxy : xy ∈ E(H)} is batch non-separating.

When H is assumed to be the multigraph consisting of k parallel edges connecting two vertices,
Theorem 2.2 strengthens Theorem 2.1 to find a set of batch non-separating paths linking any pair of
vertices, albeit with a worse constant. We note that the property ensuring the existence of internally
disjoint paths {Pxy : xy ∈ E(H)} for every function ρ : V (H)→ V (G) is known as H-linked and has
recently been studied. See [3][4] for more details.
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Proof. [Theorem 2.2] Let G and H be given with l = |E(H)|. Assume that G is 243(l + 1)-
connected and let ρ : V (H) → V (G) be a fixed injective map. Let s and t be distinct vertices of G
disjoint from {ρ(v) : v ∈ V (H)}. Set X to be the set of vertices {ρ(v) : v ∈ V (H)}∪ {s, t}. Consider
the linkage problem consisting of the multiset L = {{ρ(x), ρ(y)} : xy ∈ E(H)}∪{s, t}. There are two
technicalities here to deal with. First, when we apply Theorem 1.2, we will need the set of paths to
be an independent set of paths of size l+ 1, and, second, we want to ensure there exists at least one
non-trivial bridge. Thus, we set EX = {xy ∈ E(G) : {x, y} ∈ L} and fix a vertex v in V (G)−X. Now
we find a solution P1, P2, . . . , Pl, Pl+1 to the linkage problem L in the graph (G−EX)−{v}. Such a
solution exists because the connectivity of (G−EX)− {v} is at least 243(l + 1)− l − 1 ≥ 10(l + 1).

Let S be the subgraph of G consisting of
(⋃l+1

i=1 Pi

)
∪EX . Then with branch set X the segments

of S are the edges of EX and the paths P1, P2, . . . , Pl+1. The set of paths P1, P2, . . . , Pl+1 is an
independent set of size l+ 1, so by Theorem 1.2, there exists a subgraph S′ with branch set X such
that every non-trivial bridge is (l + 1)-stable. Moreover, since S does not contain the vertex v by
construction, there exists at least one non-trivial bridge of S′. Observe that such a non-trivial bridge
must have an internal vertex of every segment of S′ of length at least two as an attachment. For
every edge xy of H, we let P ′xy either be the edge ρ(x)ρ(y) if ρ(x) and ρ(y) are adjacent in G and
otherwise, we let P ′xy be the segment of S′ with ends ρ(x) and ρ(y). We claim {P ′xy : xy ∈ E(H)}
is a batch non-separating set of paths satisfying the statement of the theorem. To see this, let P
be the segment of S′ linking s and t. Every non-trivial bridge has an attachment in P . Also, every
segment of S′ of length at least two has an internal vertex attaching to a (l+ 1)-stable bridge. Thus,
upon deleting any subset of the segments {P ′xy : xy ∈ E(H)}, any remaining vertex has a path to P ,
implying that the remaining graph is connected. This completes the proof of the theorem.

The case of Conjecture 1.6 when k = 2 has been shown to be true independently by Kriesell [6]
and Chen et al [1] where they show that every 5-connected graph contains a path linking any two
vertices such that deleting the path leaves the remaining graph 2-connected. The first open case is
when k = 3. The following theorem is due to Kawarabayashi, Reed, and Thomassen [5].

Theorem 2.3 ([5]) There exists a constant c such that for every c-connected graph G and every
pair of vertices s and t of G, there exists an s-t path P and a 3-connected subgraph H such that such
that G− V (P ) is isomorphic to a subdivision of H.

Kawarabayashi et al prove Theorem 2.3 from first principles. We give the following short proof using
Theorem 1.2.
Proof. (Theorem 2.3) Let c = 729, and let G be a c-connected graph. Fix the vertices s and t
in G. Let H be a 3-connected graph and P an s-t path in G such that G − P contains a subgraph
isomorphic to a subdivision of H. Such a graph H exists, since by Corollary 1.5, G is strongly
7-linked and we can find a subdivision of K4 disjoint from a path linking s and t. Assume such a
subgraph H and path P are chosen to maximize |V (H)|+ |E(H)|. Let SH be the subgraph of G−P
isomorphic to a subdivision of H, and let X := {v ∈ V (SH) : degSH

(v) ≥ 3} ∪ {s, t} be the set of
vertices of SH of degree at least three and the vertices s and t. Moreover, we may assume that every
segment of SH is an induced path. Since X contains at least four branch vertices from SH disjoint
from the path P , we see that SH ∪ P with branch set X contains a set of 3 independent segments.
Thus, by our choice of connectivity of G, we may assume that every non-trivial bridge of SH ∪ P
is 3-stable and maintain the property that every segment is induced. Let Q be a segment of SH of
length at least two. Every bridge attaching to an internal vertex of Q can only have attachments
on Q ∪ P . Otherwise, there exists a graph H ′ obtained from H either by subdividing one or two
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edges of H and adding an edge, such that a subdivision of H ′ is contained as a subgraph of G− P .
This contradicts our choice of H. Given that every non-trivial bridge is 3-stable, it follows that the
only bridges attaching to internal vertices of Q are single edges with one end in Q and one end in
P . Finally, we see that there is no non-trivial bridge of SH ∪P . If such a bridge exists, it must have
as attachment either two vertices of X ∩ V (SH) that are not connected by a segment, or the bridge
must attach to three vertices of X ∩ V (SH). In the first case, there exists a graph H ′ obtained from
H by adding an edge such that G− P contains a subdivision of H ′. In the second case, there exists
a graph H ′ obtained from H by adding a new vertex with three neighbors in V (H) such that G−P
contains a subdivision of H ′. In either case, we contradict our choice of H. Thus we see that G− P
is exactly the graph SH , proving the theorem.

3 Finding a Comb

We recall that a linkage is a graph where every component is a path. Given two sets X and Y in
a graph G, a linkage Q contained in G is a linkage from X to Y if every component of Q has one
endpoint in X and one endpoint in Y and is otherwise disjoint from X ∪ Y . In a slight abuse of
notation, we will often use P ∈ P to refer to a component P in a linkage P.

Definition Let G be a graph and S a subgraph of G with branch vertices X and segments P1, . . . , Pt.
Let k be an integer. Let H be a subgraph of G and let Q be a linkage from V (H) to V (S)
with k components Q1, Q2, . . . , Qk. Let P be a segment of S with endpoints x and x′. A vertex
v ∈ V (P )∩V (Q) is extremal if v is the unique vertex of V (Q) in the subpath xPv or in the subpath
vPx′. A vertex v ∈ V (P ) is Q-sheltered by the extremal vertices y and y′ in V (P ) if v is contained
in the subpath yPy′. The linkage Q forms a H-comb if the following hold:

1. For each Q ∈ Q, one endpoint is contained in V (H) and the other endpoint is a Q-extremal
vertex.

2. Every Q-extremal vertex is the terminus of some component of Q.

3. If some vertex of V (H)∩ V (P ) for some segment P of S is not a terminus of any path Q ∈ Q,
and it is not Q- sheltered, then every path of Q has length zero and P includes the terminus
of at most one path in Q.

The main result of this section will be to provide a necessary and sufficient condition for the
existence of a H-comb in a given graph G. Towards that end, we will prove the following lemma.
We first define the following. Let G be a graph and let S and H be two subgraphs. Let X be the
branch set of S. A linkage P with components P1, P2, . . . , Pt from V (H) to V (S) is extremal if for
every index i, the endpoint of the component Pi of P in V (H) is a P-extremal vertex. A truncation
of P is a linkage with t components where every component is of the form xiPiz where xi ∈ V (H)
and z ∈ V (S).

Lemma 3.1 Let G be a graph and S a subgraph with branch set X. Let H be a subgraph and let Q
be a linkage from V (H) to V (S). If Q is extremal, then there exists a truncation Q′ of Q such that
Q′ is both extremal and every Q′-extremal vertex is the endpoint of a component of Q′.

Proof. Let G, S, H, and the linkage Q with components Q1, Q2, . . . , Qk be given. Let the endpoint
of Qi in V (H) be labeled xi for all 1 ≤ i ≤ k. Let Q′ be an extremal truncation of Q containing
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a minimal number of vertices. Observe that Q itself is trivially an extremal truncation of Q. We
claim Q′ is as desired in the statement of the lemma. Let the components of Q′ be Q′1, Q

′
2, . . . , Q

′
k

with the path Q′i = xiQiwi for some vertex wi ∈ V (S). Assume to reach a contradiction, that there
exists a vertex z ∈ Q′j for some index 1 ≤ j ≤ k such that z is Q′-extremal but that z is not the
endpoint of any component of Q′. Consider the truncation Q of Q′ obtained by deleting the path
Qj and adding the path xjQjz, i.e. Q = (Q′ −Q′j) ∪ xjQjz. Every vertex of Q′ that is Q′-extremal
is also Q-extremal. It follows that Q is an extremal truncation violating our choice of Q′ to contain
a minimal number of vertices.

The following lemma is a strengthening of Lemma 3.1 of [12].

Lemma 3.2 Let G be a graph and let S be a subgraph of G with branch set X. Let k ≥ 1 be given
and let H be a subgraph of G. Let P1, . . . , Pt be the segments of S. Either there exists a separation
(A,B) of order at most k − 1 (possibly a trivial separation) with X ⊆ A and V (H) ⊆ B, or there
exists an H-comb with k components.

Proof. Let G, S, H, X, k, and P1, . . . , Pt be given. Assume there does not exist a separation as
stated in the lemma. Then there exists a linkage Q from V (H) to X with k-components. Choose
such a linkage Q such that E(Q)− E(S) is minimal.

Let Q1, . . . , Qk be the components of Q. For each i = 1, . . . , k, let qi be the endpoint of Qi in
H. Let Q′ be an extremal truncation of Q with components Q′1, Q

′
2, . . . , Q

′
k where for all 1 ≤ i ≤ k,

the component Q′i = qiQiwi for some vertex wi ∈ V (S). Such an extremal truncation exists by
Lemma 3.1. Assume as well that we pick Q′ to contain a minimum number of vertices. It follows
immediately that the linkage Q′ satisfies both properties 1. and 2. in the definition of a H-comb.

To see that Q′ satisfies Condition 3. in the definition of H-comb, assume there exists x ∈ V (H)∩
V (Pi) for some index i such that x is not Q′-sheltered. Let xi be an endpoint of Pi such that xiPix
does not contain any vertex of V (Q′) other than x. We may also assume that x is the only vertex
of V (H) contained in xiPix. Since x ∈ V (H) − V (Q′) and no internal vertex of a component of
Q belongs to H, we deduce that x /∈ V (Q). We claim, as well, that xiPix is disjoint from V (Q).
Assume otherwise, and let y be a vertex of Q in xiPix closest to x. Let j be the index such that
y ∈ V (Qj). By the fact that Qj does not contain the vertex x and by our choice of x such that xiPix
does not contain any other vertex of H, it follows that yQjqj must contain an edge not in E(S). By
considering the linkage (Q−Qj)∪ (xPiy∪ yQjw) where w is the end of Qj in X, we obtain a linkage
contradicting our choice of Q to minimize E(Q)− E(S)

We conclude that xiPix is disjoint from Q. The path xiPix could have been chosen for the linkage
Q. Again by our choice of Q to minimize E(Q)−E(S), it follows that Q is a subgraph of S. Given
that we chose Q′ to contain a minimal number of vertices, it follows that each Q′j is a trivial path of
length zero. Since xiPix is disjoint from V (Q), we conclude that Pi contains the endpoint of at most
one path of Q′. Thus Condition 3. in the definition of H-comb holds and the lemma is proven.

4 Proof of Theorem 1.2 and a lower bound

The proof of Theorem 1.2 will require the following classic theorem of Mader.

Theorem 4.1 ([9]) Every graph with minimum degree at least 4k contains a k-connected subgraph.

We now proceed with the proof of Theorem 1.2.
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Proof. [Theorem 1.2] Let k be a positive integer and let S be a subgraph of G with branch vertices
X and segments P1, . . . , Pt with t ≥ k as in the statement of the theorem. We will modify our set
of branch vertices several times in the proof. To avoid confusion, for the remainder of the proof we
will refer to the segments, bridges, and combs as defined for a given ordered pair (H,Y ) for some
subgraph H and branch set Y of vertices in V (H). Two subgraphs H and H ′ both with branch set
X are segment equivalent if for every segment P of H, there exists a segment Q of H ′ such that P
and Q have the same endpoints and vice versa. Let S′ be a subgraph of G with branch set X such
that (S′, X) and (S,X) are segment equivalent. Let the segments of (S′, X) be P ′i for 1 ≤ i ≤ t
where the segments Pi and P ′i have the same endpoints. Furthermore, assume we pick S′ such that

(i) The number of vertices contained in k-stable bridges is maximized, and

(ii) subject to (i), the number of vertices in |V (S)| is minimized.

Property (ii) has two immediate implications. First, we see that every trivial (S′, X)-bridge does
not have both endpoints contained in a single segment of (S′, X). Assume otherwise and let xy be
an edge of E(G) \ E(S′) such that both x and y are contained in P ′j for a fixed index j. Then if
the endpoints of P ′j are u1 and u2, we can replace P ′j in S′ with the segment u1P

′
jxyP

′
ju2 to find

a segment equivalent subgraph with fewer vertices than S′. Moreover, by the assumption that no
edge u1u2 exists in E(G)−E(S), it follows that at least one of x and y is not in {u1, u2}. Thus any
k-stable bridge that has an attachment as an internal vertex of xP ′jy still has an internal vertex of
u1P

′
jxyP

′
ju2 as an attachment, and, consequently, is still k-stable upon rerouting the segment P ′j .

Second, property (ii) implies that if a vertex v ∈ V (G) \ V (S′) is not contained in a k-stable
(S′, X)-bridge, then v has at most 3(k − 1) neighbors in S′. Otherwise, v would have at least four
neighbors in a given segment and it would be possible to shorten the segment by routing through the
vertex v while at the same time not decreasing the number of vertices contained in k-stable bridges.

Assume, to reach a contradiction, that there exists some non-trivial (S′, X)-bridge that is not
k-stable. We will define a new set of branch vertices for S′. Let

Y1 = {v ∈ V (S′) : v is an attachment of a k-stable (S′, X)-bridge}

and
Y2 = {y ∈ V (S′) : ∃ an edge yx contained in S′ with x ∈ X ∪ Y1}.

We define
X = X ∪ Y1 ∪ Y2.

Let s be a positive integer and let P1, P2, . . . , Ps be the segments of (S′, X). Observe that by
our choice of X, for every vertex x of X, there exists at most one segment P i containing x with
|V (P i)| ≥ 3. We let l = max{6k, |X|}.

Let G′ be the subgraph of G induced by V (S′) as well as the vertices of any (S′, X)-bridge that
is not k-stable. Let B be a non-trivial (S′, X)-bridge of G′. Since B is also a (S′, X)-bridge in G, we
see that for any vertex v of V (B) \V (S′), v has at most 3(k− 1) neighbors in V (S′). It follows from
Theorem 4.1 that G[V (B)\V (S)] contains a 60k-connected subgraph H. If we consider the graph G′,
there cannot be a small separation of order strictly less than l separating X from V (H); otherwise
such a small separation would extend to a non-trivial separation of G of order l, a contradiction. By
Lemma 3.2, in the graph G′ there exists an H-comb Q = Q1∪Q2∪· · ·∪Ql of order l to the segments
of (S′, X). Let qi be the end of Qi in H and xi the end of Qi in S′ for 1 ≤ i ≤ l. For all indices
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i where xi is contained in a segment of length at least two, let π(i) be the index such that P π(i)

contains the endpoint xi of Qi and |V (P π(i))| ≥ 3. As we have already observed, there is at most one
such segment and so the function π is well defined. We fix a non-negative integer l′ and number the
components of Q such that the endpoints x2i−1 and x2i of Q2i−1 and Q2i respectively are contained
in the same segment P π(2i−1) = P π(2i) for 1 ≤ i ≤ l′, and that for i such that 2l′ + 1 ≤ i ≤ l, either
every segment containing xi consists of a single edge, or the endpoint xi of Qi is the unique extremal
vertex of Q contained in Pπ(i).

Using the fact that H is highly connected and the comb linking S′ into H, we will reroute the
segments of length at least two of (S′, X) to increase the number of vertices contained in k-stable
bridges, contradicting our choice of S′. Let v and u1, u2, . . . , ul′ be l′ + 1 distinct vertices of H
such that {v, u1, . . . , ul′} ∩ {qi : 1 ≤ i ≤ l} = ∅. This is possible, given the minimum degree of
H is at least 60k. We find a solution to the linkage problem {{q2i−1, ui}, {q2i, ui} : 1 ≤ i ≤ l′} ∪
{{v, qi} : 2l′ + 1 ≤ i ≤ l}. Such a solution exists by Corollary 1.5 and the fact that H is 60k-
connected. For 1 ≤ i ≤ l′, let the path linking q2i−1 to q2i going through the vertex ui be labeled
Ri. Consider the subgraph T obtained from S′ by deleting the interior vertices of Pπ(2i−1) for each
1 ≤ i ≤ l′ and replacing it with the path Pπ(2i−1)x2i−1Q2i−1q2i−1Riq2iQ2ix2iPπ(2i). The subgraph
T contains the vertex set X and consequently, the set X is also contained in V (T ). Moreover, by
construction, the set X contains every vertex of T of degT at least 3. If we consider T as a subgraph
of G, it follows that (S,X) and (T,X) are segment equivalent. Moreover, because the construction
of T fixed the set Y1 as branch vertices, every k-stable non-trivial bridge of (S′, X) in G is also a
k-stable bridge of (T,X) in the graph G. Thus to prove the claim, it suffices to show that (T,X) has
at least one k-stable bridge in G′ and contradict our choice of S′ to maximize the number of vertices
contained in k-stable bridges.

We focus on the bridge B of (T,X) in G containing the vertex v. The bridge B has as attachments
the vertices {ui : 1 ≤ i ≤ l′} ∪ {qi : 2l′ + 1 ≤ i ≤ l}. Observe that the vertices ui are contained
as internal vertices of segments of (T,X). It follows that l = 6k. Otherwise, our comb has a path
terminating at every vertex of X, implying that the bridge B attaches to every vertex of X as well
as having an attachment contained as an internal vertex of every segment of (T,X). Given that S
contains an independent set of segments of size k, it follows that B is k-stable. If l′ ≥ k, it follows that
the bridge containing v has as attachments an internal vertex of k distinct segments of (T,X ∪ Y1),
since every segment of (T,X ∪Y1) consists of at most three segments of (T,X) only one of which can
be a path of length two or more. If B is a k-stable bridge of (T,X), then T contradicts our choice of
S′ to maximize the number of vertices contained in good bridges. We may then assume that there
exists some segment L of (T,X) such that L contains two distinct segments L1 and L2 of (T,X ∪Y1)
and both L1 and L2 contain as an internal vertex an attachment of B. Let the endpoints of L be x
and y and let the internal attachments of B in Li be zi for i = 1, 2. The bridge B contains a path L
from z1 to z2 and otherwise disjoint from T . Consider the subgraph T = T−(L−{x, y})∪xLz1Lz2Ly
obtained from T by rerouting the segment L along the path L. The fact that L1 and L2 are distinct
segments of (T,X ∪ Y1) implies that there exists a vertex w of Y1 contained in L between L1 and
L2. Specifically, w is contained as an internal vertex of the subpath z1Lz2. It follows that (T ,X)
has strictly more vertices contained in k-stable bridges than (S′, X) since the vertex w that is an
attachment of a k-stable bridge of (S′, X) is contained in some k-stable bridge of (T ,X) in G minus
its attachments. This contradiction to our choice of S′ implies that l′ < k.

We have reduced to the case when the bridge B of (T,X) has at least 6k− 2l′ ≥ 4k attachments
in X ∪ Y1 ∪ Y2. Since we may assume B is not a k-stable bridge, there must exist some segment
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L of (T,X) containing 5 attachments of B that are also contained in X ∪ Y1 ∪ Y2. It follows that
there exist vertices z1, z2, and w contained in L such that zi is an attachment of B for i = 1, 2,
w ∈ Y1 − X and w is an internal vertex of z1Lz2. As in the previous paragraph, by rerouting the
segment L through B to avoid the vertex w, we violate our choice of S′ by adding the vertex w to
the non-attachment vertices of some k-stable bridge.

We conclude that every non-trivial bridge of (S′, X) is k-stable. If (S′, X) has no non-trivial
bridge, then V (S′) = V (G). Since in this case it also follows that |V (S′)| ≤ |V (S)|, we conclude
that (S,X) has no non-trivial bridge. Conversely, if (S,X) has at least one non-trivial bridge, then
(S′, X) has at least one k-stable bridge. This completes the proof of the theorem.

It would be interesting to know the best possible connectivity function in Theorem 1.2. The large
connectivity function obtained in the proof Theorem 1.2 is a consequence of two factors: first, the
linkage property used to analyze the highly connected subgraph H, and second, the large number of
paths contained in the comb. Possibly by a more careful choice of vertices for X and a more detailed
analysis of how many comb paths can terminate in the same segment of (S,X) could improve the
overall connectivity function in the statement of Theorem 1.2. However, this approach would still
likely fail to approach the best known lower bound for the connectivity function of Theorem 1.2.

Consider two large complete graphs G1 and G2. Pick two subsets of 2k − 2 vertices in each and
identify them to create a graph G. Let our system of paths in G consist of k − 1 disjoint edges in
the intersection of the two cliques as well as an additional l disjoint edges from G1 disjoint from the
vertices of G2. It is impossible to reroute the paths so that every non-trivial bridge is k-stable, as
the bridge containing the vertices unique to G2 will only have attachments in the k− 1 paths of the
intersection. This example shows that the best possible connectivity function that could be hoped
for in Theorem 1.2 would be 2k − 1. Interestingly, this is the value obtained in the k = 2 case in
Theorem 1.1 of Tutte.
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