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Abstract 
 
Fishers’ response to the enforcement of fisheries management rules is generally not known 
with certainty. There are many reasons for this. Different fishers have different risk attitudes 
and the composition of active fishers is usually not known beforehand. Fishers’ profit 
functions are usually imperfectly known and parameters such as prices are variable over time 
and, to some extent at least, stochastic from the perspective of the fisheries manager. 
 

It follows that the enforcement of fisheries rules is usefully perceived as a stochastic 
problem. This paper investigates some of the implications. Among other things, it attempts to 
derive and explain certain necessary modifications to rules of optimal enforcement. To 
illustrate these principles it produces numerical stochastic simulation results. Finally, the 
paper discusses the practical issue of incorporating this stochasticity in practical fisheries 
models.  
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0. Introduction 
 

This paper considers the problem of optimal enforcement of fisheries rules where the 
response of fishers to the enforcement activity is uncertain. In order to focus the attention on 
what I see as essential aspects of the situation, a couple of important simplifications are 
adopted. First, we consider the case where the only management control to be enforced is the 
harvest rate. This corresponds to an IQ or more generally TAC management regime. Second, 
we will for the most part ignore the dynamic aspects of the situation. Both of these 
simplifications are easily relaxed (and are therefore theoretically immaterial) but only at a 
substantial cost in presentational clarity.  
 
 The theory of fisheries enforcement is somewhat underdeveloped. There is a substantial 
volume of literature on enforcement developed in general economics. The key initiator was 
Becker (1968). Other early contributions were by Stiegler (1970), Becker and Stiegler (1974) 
and Polinski and Shavell (1979). The existing theory is summarized by Garoupa (1997) and 
Polinski and Shavell (2000). In fisheries economics, notable applications of this basic theory 
have inter alia been by Sutinen and Andersen (1985), Anderson and Lee (1986), Milliman 
(1986), Charles et al. (1999), Arnason (2003), Hatcher (2005) and Hansen et al. (2006). None 
of these applications deal explicitly with the stochastic aspects of enforcement.  
 
 Very few empirical studies of the problem of fisheries enforcement have been published 
and those that have are quite limited (OECD 2003, Schrank et al. 2003, Hatcher and Gordon 
2005). No comprehensive empirically based models of fisheries enforcement have to my 
knowledge been published, although a number of the above studies contain elements of such a 
model. The most accomplished model of this kind that I could locate was the one developed 
by MRAG et al (2004) for the European Union.  
 
 This paper is based on the fundamental economic enforcement theory first developed 
by Becker (1968). It begins by extending this theory to comprise the basic elements of a 
general fisheries enforcement theory. This theory is compatible with what has already been 
done in this field (see the references above) but is hopefully more systematic and more easily 
empirically applicable. A key element of this theory is the fishers’ response function ― a 
function which describes the fishers’ response to enforcement activity. Rarely will the 
fisheries managers know this function with certainty. Hence, from their perspective, it may be 
seen as being stochastic. The implications of this are explored in section 3 of the paper. A 
numerical example of enforcement under a stochastic response function is provided in section 
4. Finally, in section 5, the main results of the paper are summarized.  
 
 
1. The basic model 
 
Let the social benefits of fishing be defined by the function: 
 
(1) B(q,x)-λ⋅q. 
 
In this expression, the function B(q,x) represents the private benefits from fishing (profits, 
surplus salary etc.). The variable q represents extraction and x biomass. The variable λ 
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represents the shadow value of biomass, so λ⋅q is the social resource depletion charge.1 The 
function B(q,x) is assumed to be jointly concave in its arguments, monotonically increasing in 
x and at least ultimately declining in q. From the concavity of B(q,x) it follows that the social 
benefit function as a whole is concave in extraction, q, and biomass, x. It is convenient for 
representational purposes to assume B(q,x) to be differentiable.  
 
 The management tool is taken to be q. This obviously corresponds exactly to a TAC 
regime. All fisheries management systems except the biological ones (mesh sizes, marine 
protected areas etc.) attempt to control q directly or indirectly. For instance, effort restrictions 
attempt to do that by controlling effort—an important determinant of q. 
 
 Once a value for the management tool has been selected, i.e. a management measure 
imposed, it needs to be enforced provided of course it is binding. We consider two 
components of the enforcement activity: 
 
1. Enforcement effort, e.  
 This is basically what is often referred to as the monitoring, control and surveillance 

(MCS) activity. This can be effected by many means at-sea or on-land. It is generally 
quite demanding and, therefore, costly in terms of manpower and equipment.  

2. Sanctions, f. 
For fisheries violations it is reasonable to think of the sanctions as fines. However, in 
principle, sanctions may represent any type of penalty. In what follows, the sanctions will 
be taken as exogenous constants. To impose the sanctions generally requires certain 
administrative and legal proceedings. It is analytically convenient to think of these 
processes as a part of the enforcement effort. 

 
The enforcement effort generates a certain probability of a violation of a management 

measure being detected and the violator apprehended (cited). It also generates a certain 
probability of having to suffer a 
sanction if apprehended. Let us 
represent this composite probability 
of having to suffer a penalty if one 
violates a management measure by 
the following probability function, 
which may be referred to as the 
penalty probability function: 
 
(2) π(e), π(0)=0, lim ( ) 1

e
eπ

→∞
= .  

 
Most likely this function will look 
like the one depicted in Figure 1. 
This, obviously, is a concave smooth, 
monotonically increasing function. 
 

                                                 
1  This, of course, can reflect both fisheries and conservation values as well as other stock related concerns 

such as risk. There is a slight theoretical weakness in this formulation in that the appropriate λ is 
generally an endogenous variable depending among other things on the enforcement effort.  

Figure 1 
The penalty probablity function: Illustration 
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 Clearly, the main purpose of the enforcement activity is to increase the penalty 
probability function. For a given enforcement technology, this can only be done by increasing 
enforcement effort. 
 
 There will of course be costs associated with the enforcement activity. Let us describe 
these costs by the enforcement cost function: 
 
(3) C(e). 
 
This function may be taken to be increasing in the enforcement effort and at least weakly 
convex.  
 
 The last basic component of this simple enforcement model is the cost to private 
operators, the fishers, of violating a management measure. Given the inherent uncertainty of 
having to suffer a penalty, this must be an expected cost. We refer to this expected cost 
function as the private costs of violations and write it simply as:2 
 
 ψ(q;e,f,q*) = π(e)⋅f⋅(q-q*), if q≥q*. 
(4)  

ψ(q;e,f,q*) =         0         , if q<q*, 
 
where q* is some management measure. On course, as already indicated, the second case, 
where q<q* is of limited interest. The shape of private costs of violations function as a 
function of the 
extraction level is 
illustrated in Figure 2. 
Note the non-
smoothness of this 
function at q=q*. This 
is mathematically a bit 
awkward but 
theoretically trivial. 
Clearly, the slope of 
this function beyond 
q*, defined by π(e)⋅f, is 
a major determinant of 
the deterrence against 
violating fisheries rules. 
Note that this increases 
with the penalty level, f, 
and the enforcement 
effort.  
 

                                                 
2  Note that this formulation makes several implicit simplifying assumptions: (i) it assumes that the 

management measure can be expressed as an upper bound, (ii) it assumes that the penalty depends 
linearly on the amount of violations and (iii) it implies risk neutrality by the fishers. The first assumption 
is, I believe, trivial in the sense that it can obviously be easily relaxed. The second and third are somewhat 
more intricate. To relax them, however, would, I believe, not change the essence of the analysis, only 
render it more complicated and less transparent.  

Figure 2 
Private costs of violations function: Illustration 
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 Combining (1) and (3) we obtain the social benefits of fishing under costly 
enforcement: 
 
(5) B(q,x)-λ⋅q - C(e). 
 
It is important to realize that this is the appropriate function for the management authority to 
maximize. If enforcement is costly, i.e. C(e) not identically equal to zero, the traditional 
recommendation in the literature, namely to maximize the function in (1) (Gordon 1954, 
Clark 1976, Hannesson 1993) is inappropriate. It represents a fisheries management mistake 
which depending on the actual situation may be very costly. 
 
 Expressions (1) and (4) imply the private benefits from fishing under binding 
management. 
 
(6) B(q,x)-π(e)⋅f⋅(q-q*). 
 
If the management restriction is binding, this is the function private operators, i.e. the fishers, 
will try to maximize at each point of time. 
 
 
 
2. Analysis 
 
We are now in a position to examine the situation analytically and draw certain useful 
conclusions. 
 
Private behaviour 
 
Private behaviour (under restrictive management) is defined by the following: 
 
(7) arg max( ( , ) ( ) ( *))q B q x e f q qπ= − ⋅ ⋅ −  
 
Assuming sufficient smoothness this implies the solution: 
 
 Bq(q,x)- π(e)⋅f=0, 
 
which implicitly defines the behavioural equation: 
 
(8) q=Q(e,f,x). 
 
This equation is in many respects central to the analysis of fisheries enforcement. It may be 
called the enforcement response function. Given our previous specifications it is easy to show 
the following: 
 

 0,  0,  0,q q q
e f x
∂ ∂ ∂

< < >
∂ ∂ ∂

 provided Bqx>0, i.e. biomass helps harvesting. 
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The likely shape of the enforcement response function is illustrated in Figure 3. Two 

curves are drawn, one for a 
relatively high penalty and 
one for a lower penalty. 
When there is no 
enforcement, harvest is 
essentially unregulated and 
the situation becomes one 
that is often characterized as 
free access. This point is 
independent of the penalty 
level as illustrated in the 
diagram. For positive levels 
of enforcement harvest 
declines, until at sufficiently 
high level of enforcement 
effort, there are no 
violations; actual harvest is 
equal to the allowed harvest, 
q*.  
 

As illustrated in Figure 3, the enforcement response functions are non-smooth. They 
have corners at points where actual catch is equal to q*. These corner points correspond to a 
regime shift; a binding harvest constraint becomes non-binding. At the corresponding level of 
enforcement effort and beyond it is optimal for the fishers not to violate at all. These points 
are formally defined by the condition Bq(q*,x)-π(e)⋅f=0. At these q*s there is a discontinuity 
in the marginal enforcement response function — eQ q e≡ ∂ ∂  jumps from a negative value to 
zero. This discontinuity, although a mathematical feature, has fairly important practical 
implications. From this point of discontinuity onwards, there is no response by fishers to 
increases in management effort. In a fundamental sense additional management effort is 
wasted. This is a practical problem because under full compliance, i.e. at q* it is difficult for 
the enforcement authorities to figure out whether they are using excessive enforcement effort 
or not. Hence, to err on the save side there would be a tendency for excessive enforcement 
effort. For this reason it is advisable from a practical perspective never to generate full 
compliance and by that enjoy the convenience of a continuous marginal enforcement response 
function. The reader should realize that since q* can be arbitrarily set by the enforcer, less 
than perfect compliance can still correspond exactly to the socially optimal harvest level!  

 
 Note finally that the greater (numerically) the slope of the enforcement response 
function, the more effective the enforcement effort. It is easy to see (by differentiating the 
private behavioural rule) that this slope is (numerically) increasing in the penalty, f. This 
immediately implies the important practical result that by the simple expedient of increasing 
the penalty, the enforcement effort can be made mode effective. How much the penalty needs 
to be increased to have the desired impact is, however, an empirical question.  
 
Social Optimality 
 
The social problem is to maximize the social benefit function subject to the enforcement 
response function and other relevant constraints. More formally the social problem in the 

Figure 3 
Likely shape of the enforcement response function 
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current context is: 
 
 

e
Max  B(q,x)-λ⋅q - C(e). 

 
  Subject to: q= Q(e,f,x) 
    e≥0 
    f fixed 
    x, λ predetermined.  
 
Assuming sufficient smoothness and an interior solution, the solution to this problem may be 
written as: 
 
(9) ( ( , ) ) ( , , ) ( )q e eB q x Q e f x C eλ− ⋅ = . 
 

Equation (9) defines the socially optimal enforcement effort level, eopt, say. By 
implication it also provides a measure of the socially optimal compliance level as 
 

(10) *
( , , )opt

opt

q
Q e f x

Ω = . 

 
Obviously, the socially optimal compliance level would only rarely be unity. 

 
Now, ignoring management costs (and assuming 100% compliance) implies the social 

optimality condition: 
 

(11) ( , )qB q x λ= . 
 
We immediately draw the following important conclusions: 
 
I Under costly enforcement, socially optimal harvesting levels will be greater than 

otherwise. 

To see this, it is sufficient to note that (9) implies /q e eB C Qλ= +  and the last term is, 
according to our assumptions, negative. Therefore, qB λ<  and since Bqq<0  q must 
now be higher.  

 
II. Only when 100% compliance is achieved costlessly, will socially optimal harvesting 

levels be defined by (13). 

This obviously happens in two cases: (i) the cost of enforcement is actually zero, (ii) 
the effectiveness of enforcement is infinite (vertical cost of violations function see 
Figure 2 or equivalently vertical enforcement response function see Figure 3) so 
infinitely small enforcement effort is sufficient to ensure 100% compliance.  

 
 
3. Optimal enforcement under uncertainty 
 
Now, let us assume that the fishers’ behavioural function is known only with uncertainty and 
that this uncertainty may be represented in the following simple way: 
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(12) ( , , ) ( )q Q e x f g u= ⋅ ,  
 
where u is a random variable and g(u) is some function of this random variable. The strong 
assumption contained in (12) is that the stochastic term is multiplicatively separable from the 
fishers’ behavioural equation. One convenient specification is that 2( ) ,  (0, )u

ug u e u N σ= , 
so that g(u) has the log normal distribution. In this case the most likely (although not the 
expected) harvest is given by the non-stochastic response function, ( , , )q Q e x f= . 
 
 Proceeding in general terms, the problem is to 
 

 ( ( ( , , ) ( ), ) ( ))
e

Max E B Q e x f g u x q C eλ⋅ − ⋅ − , 

 
where E(.) is the usual stochastic expectations operator (Hogg and Craig 1970).  
 

A necessary condition for solving this problem is: 
 
(13) ( ( ( , , ) ( ), ) ) ( , , ), ) ( ) ) 0q e eE B Q e x f g u x Q e x f x g u Cλ⋅ − ⋅ ⋅ − = . 
 
This should be compared to the non-stochastic necessary condition, equation (9) above. 
 

Expression (13) is a complicated function of the stochastic term, g(u), while in (9) this 
term is arbitrarily set equal to unity. It should be obvious that only under very exceptional 
circumstances would these two conditions, (13) and (9) yield the same enforcement level.  
 
 Let e* be the solution to the properly defined stochastic problem (5) and e° the 
solution to the non-stochastic problem, i.e. (6). To find the difference between the two is in 
general an extremely complicated exercise. To get some idea we may proceed as follows: 
 
 Consider the expression ( ) ( ( ))q eE B Q E g uλ− ⋅ ⋅ , which is basically the marginal 
social benefit of enforcement effort with the two stochastic functions, 

( ( , , ) ( ), , )qB Q e x f g u x f⋅  and ( )g u  being replaced by their expectations. Subtract this 
expression from both sides of (13) and rearrange to obtain: 
 
(14) (( ) ( ( ) ( ( )))) ( ) ( ( ))q e e q eE B Q g u E g u C E B Q E g uλ λ− ⋅ ⋅ − = − − ⋅ ⋅ . 
 
The left hand side of (14) is simply the covariance between the marginal social benefits of 
enforcement effort, ( )q eB Qλ− ⋅ , and the stochastic term, g(u). So, more concisely, (14) may 
be written as: 
 
(15) (( ) , ( )) ( ) ( ( ))q e e q eCov B Q g u C E B Q E g uλ λ− ⋅ = − − ⋅ ⋅ . 
 
The right hand side of (14) (and (15)) is the (negative) of the net marginal benefits of 
enforcement with stochastic functions replaced by their expectations. Thus, we immediately 
deduce the following result: 
 
Result 1 (for the simple enforcement model)  
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If and only if (( ) , ( )) 0q eCov B Q g uλ− ⋅ =  will optimal enforcement be characterized by the 
condition ( ) ( ( )) 0q e eE B Q E g u Cλ− ⋅ ⋅ − = . 
 
 Now, of course, the (( ) , ( ))q eCov B Q g uλ− ⋅ involves g(u) in both terms. Hence, it is 
extremely unlikely that this covariance is ever zero. On reasonable assumptions, it appears 
very likely that (( ) , ( )) 0q eCov B Q g uλ− ⋅ > . When g(u) is relatively high ( , , ) ( )q Q e x f g u= ⋅  
is also high. Therefore, by the concavity of the benefit function, Bq would be smaller, the 
difference ( )qB λ−  a higher negative number and, therefore, ( )q eB Qλ−  also higher. For 
unusually low g(u), the opposite happens. By the (assumed) concavity of the social benefit 
function, the right hand side of (8) is increasing in enforcement, e. We thus deduce: 
 
Result 2 (for the simple enforcement model) 
 
If (( ) , ( )) 0q eCov B Q g uλ− ⋅ >  then e*>e° and vice versa. 
 

It is important to correctly interpret this result. Its message is that under the conditions 
given (i.e. (( ) , ( )) 0q eCov B Q g uλ− ⋅ > ) the enforcement level that maximizes expected social 
benefits from fishing will be greater than the one that maximizes social benefits where the 
two stochastic terms, ( ( ( , , ) ( ), ) )qB Q e x f g u x λ⋅ −  and ( )g u have been replaced by their 
expectations. Note, however, that since 

( ) ( ( )) ( ( ( ), ) ) ( ( ))q e e q eE B Q E g u C B Q g E u x Q g E uλ λ− ⋅ ⋅ − ≠ ⋅ − ⋅ ⋅ , Result 2 does not directly 
inform us of the error made by replacing the random variable in the first order maximality 
condition by its expectation. 

 
The economic rationale for Result 2 is not difficult to understand. According to the 

specification in equation (4), a high g(u) implies that the marginal productivity of 
enforcement effort, ( )eQ g u⋅  has become higher. Thus, ceteris paribus, it is economically 
appropriate to use more enforcement effort. The basic relationship is illustrated in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 
The effect of a high random term (u2>u1) 
 

e
e1*

$

e2*

Ce

2( ) ( )q eB Q g uλ− ⋅ ⋅

1( ) ( )q eB Q g uλ− ⋅ ⋅

e
e1*

$

e2*

Ce

2( ) ( )q eB Q g uλ− ⋅ ⋅

1( ) ( )q eB Q g uλ− ⋅ ⋅ 1( ) ( )q eB Q g uλ− ⋅ ⋅

 



 10

 
 
4. Optimal enforcement under uncertainty: A numerical example 
 
Let us now illustrate the foregoing theory with a numerical example. Consider the following 
fisheries enforcement model which functional forms are in accordance with the basic theory 
of section 1. 
 
Private fisheries profit function:  

2

( )qp q c f e q
x

π⋅ − ⋅ − ⋅ ⋅ , 

 
where p is price, q harvest, x biomass, c a cost parameter , f the value of the penalty and ( )eπ  
the probability of having to suffer the penalty. 
 
Fisheries social benefit function: 
 

2
2( ) qp q c a e

x
λ− ⋅ − ⋅ − ⋅ , 

 
where λ represents the shadow value of biomass and 2a e⋅  represents the cost of enforcement.  
 
Probability of paying the penalty: 
 

 ( ) ee
b e

π =
+

, 

 
where b is a parameter. 
 
 Under these model specifications, it is easy to verify that the fishers’ response function 
is: 
 

 ( ( ))( , , )
2

p f e xQ e x f
c
π− ⋅ ⋅

=
⋅

. 

 
Now, we want to make this function (as seen by the enforcers) stochastic. There are 

many reasons why that might be the case. There are normally a substantial number of fishers 
with presumably somewhat different risk attitudes. The application of the enforcement effort 
depends on the enforcement personnel and quite possibly various stochastic environmental 
conditions. The prices which enter the functions vary stochastically and so on. Let the 
stochastic version of the behavioural function be: 
 

 ( ( ))( , , ) ( )
2

p f e xQ e x f exp u
c
π− ⋅ ⋅

= ⋅
⋅

, 2(0, )uu N σ . 

 
So, the stochastic term is taken to be log-normally distributed.  
 
 The numerical assumptions are listed in Table 1: 
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Table 1 
Numerical assumptions 
Parameters Values 

p 1 
c 1 
f 1 
λ 0.4 
a 0.05 
b 2 
x 100 

uσ  0.2 
 
 

The distribution of harvests for the values of the parameters given in Table 1 and an 
arbitrary enforcement effort level of e=1 is described in Figure 5. As indicated in the diagram 
the distribution (a log-normal one) is 
slightly skewed to the left (stretched 
to the right) The average in the 
sample is 34.2 units of harvest with a 
standard deviation of 6.9 units. This 
should be compared to the non-
stochastic catch level of 33.3. units 
for the same level of enforcement 
and the non-stochastic harvest level 
under no enforcement of 50 units.  

 
The expected social benefit 

function and the one obtained by 
setting the random variable u at its 
expected level of zero are illustrated 
in Figure 6. As shown in the 
diagram, there is a clear difference between the two curves, especially at low level of 
enforcement effort. At high levels of enforcement effort the catches are relatively small so the 
deviations cannot be great 
(remember the stochastic term is 
multiplied by the catch level). 
 
 As is readily seen from 
Figure 6, the enforcement effort 
levels which maximize the non-
stochastic and the stochastic 
expected benefit curves 
respectively are not identical. The 
two enforcement levels, the one 
that maximizes expected social 
benefits, e*, and the one that 
maximizes the non-stochastic 
benefits, e°, and their respective 
expected outcomes are 

Figure 5 
Distribution of catches 
(1000 replications. Enforcement level e=1.0) 
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summarized in Table 2. 
 
Table 2 
Optimal and suboptimal enforcement effort 
(1000 replications)  
 
Enforcement 

effort 
 

Level 
Expected 
harvest 

Expected 
social benefits 

Variance of 
social benefits 

e* 1.46 29.6 8.53 3.6% 
e° 1.26 31.5 8.49 6.3% 

 
The numerical results in Table 2 verify the theoretical results. Under uncertainty, the 

benefit maximizing enforcement level is higher than under no uncertainty. Similarly the 
expected harvest is lower and expected social benefits are higher. In this particular numerical 
example, the gain in social benefits from adopting the optimal stochastic policy is not very 
great, however. There is a significant difference between the enforcement effort and the 
resulting expected harvest, but the difference in expected social benefits is relatively tiny. 
Interestingly, however, the variance in the expected social benefits under the suboptimal non-
stochastic policy, e° is much higher than under the optimal enforcement policy. One possible 
explanation is that with less harvest the relative variability in harvest is smaller. The 
following depicts the distribution of social benefits under the two policies 

 

 
The two histograms illustrate the wider distribution of benefits under the sub-optimal 

policy. Note that since maximum benefits are non-stochastic (only the actual harvests are 
stochastic), both distributions have an absolute upper limit.  

 

Figure 7 
Histograms of benefits under the stochastic policy, e*, and the nonstochastic 
policy e° 
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5. Conclusions 
 
Ignoring uncertainty about actual catches, i.e. the fishers’ response function to enforcement, 
will generally lead to (a) inappropriate levels of enforcement effort, (b) errors in selecting the 
(real) harvest target and (c) inefficient use of enforcement effort and (d) a loss in economic 
benefits from the fishery. The amount of social loss stemming from the omission depends on 
the particulars of the situation but could easily be high.  
 
 For reasonable specification of the actual catch uncertainty (skewed to the right, e.g. 
log-normal), it is likely that the optimal stochastic enforcement level will be higher than 
would otherwise be the case and therefore actual harvests lower and the cost of enforcement 
higher. As a result, the uncertainty about actual catches will reduce the maximum benefits 
attainable benefits from the fishery compared to the non-stochastic case. This is as expected. 
Uncertainty is generally economically costly.  
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