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2 EXECUTIVE SUMMARY 
 
The SESAME1 (Simulation-Estimation Stock Assessment Model Evaluation) project 
was undertaken to provide insight about model formulation for pelagic fisheries 
assessment, and to consider the policy implications for Regional Fisheries 
Management Organizations (RFMOs) with respect to scientific advice provided from 
these models.  Sophisticated stock assessment models currently attempt to integrate 
many different types of data into a single coherent framework that describes the 
population dynamics and estimates the impacts of fishing.  These inferences are 
usually used to make recommendations to managers to assist in the attainment of 
management objectives.  Pelagic fisheries data typically includes total catch in mass 
or numbers, frequency distributions of catch-at-length, -mass or -age, fishing effort, 
and, in some case, tag releases and recaptures.  The relatively complicated integrative 
models that are used for these assessments have a number of potentially attractive 
features, but there are a number of issues related to the statistical properties of these 
models, and technical issues related to the implementation, that need further 
consideration.  We identified several problems that were potentially important for the 
stock assessment of large pelagic fisheries, and simulated the assessment modelling 
process in an attempt to understand the relative importance of the different issues.  
Different modelling approaches were compared, and we make a range of 
recommendations based on the results.    
 
The southern bluefin tuna (SBT) fishery provided the main emphasis for this study, in 
part because of the range of stock assessment models that have been applied to this 
species in recent years, and the absence of objective methods for synthesizing 
inferences across models.  However, the SBT life history, fishery and data 
characteristics share many features with other regional Australian fisheries, 
particularly the tropical pelagic tunas and billfishes.  A second major component of 
SESAME involved participation in the Standing Committee on Tuna and Billfish 
Methods Working Group (SCTB-MWG).  This latter project involved collaboration 
with a number of international scientists with interests in the assessment of Pacific 
Ocean tuna fisheries other than SBT.  The SCTB-MWG project was complementary 
to the work undertaken with our simulated SBT system, because it emphasized a 
different set of priorities, including the spatial dynamics of the fish population.  The 
MWG project focused on a fishery simulator developed at the Secretariat of the 
Pacific Community Oceanic Fisheries Programme (SPC-OFP), and parameterized to 
represent plausible yellowfin tuna (YFT) dynamics in the Western and Central Pacific 
Ocean (WCPO).  We include some preliminary results from the MWG project here, 
but the MWG is planning a more comprehensive analysis. 
 
Both the SESAME SBT and SCTB-MWG YFT studies involved simulation-
estimation methods for evaluating assessment models.  In principle, this is a simple 

                                                 
1 This project was developed under a proposal initially titled "Evaluation of complex population 
models used for the assessment and management of migratory fish stocks" and was re-christened 
Simulation-Estimation Stock Assessment Model Evaluation (SESAME) to avoid confusion with the 
mathematical definition of “complexity” that relates to systems that exhibit emergent behaviour, and is 
not directly relevant to this project. 
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concept in which operating models are defined to simulate the dynamics of fisheries 
systems including data collection.  These operating models tend to be considerably 
more detailed than any stock assessment model and may include plausible processes 
that have not been, or cannot be, reliably quantified in the real world.  Population 
models of the sort used in actual stock assessments are applied to the simulated data, 
and the quality of inferences are evaluated by comparing the assessment model 
estimates with the known values from the operating model.  By repeating this process 
numerous times and with different assumptions, the statistical properties of the 
models (including estimator bias, variance and robustness to assumption violations) 
can be described and compared.  In practice, there are a number of reasons why this 
methodology is not straightforward.  There are purely technical issues related to the 
vast amount of data to be handled, computational time constraints and the difficulty in 
reliably automating complicated non-linear function minimization.  And there are 
conceptual difficulties relating to the specification of operating models and 
assessment models, and the flow of information between the two (i.e. inevitably, 
subjective assumptions must be made in assessment models, and models with better 
assumptions should generally perform better, but how do we simulate the probability 
of analysts making good subjective assumptions?). We approached this study from the 
perspective of applied stock assessment practitioners, trying to understand what sort 
of limitations that we currently have, and the types of errors that we can expect to 
have made in the recent past.  However, we did not attempt to simulate the whole 
assessment process.  We evaluated various models under various conditions, but did 
not attempt to simulate the types of decisions that are normally undertaken when 
conflicting model results are observed in a real assessment.     
 
We examined a range of assessment models, though not all were applied to every 
operating model scenario.  The simplest models included Fox and Schaefer age-
aggregated production models and Age-Structured Production Models (ASPMs).  For 
the SESAME SBT scenarios, the more complicated models included the Statistical 
Catch-at-Age/Length Integrated Analysis (SCALIA) models originally developed for 
SBT assessment, and our application of MULTIFAN-CL.  The SCTB-MWG YFT 
study involved application of several models (MULTIFAN-CL, A-SCALA and 
ADAPT-VPA) by individuals from numerous fisheries institutions, in addition to 
those applied as part of SESAME. 
 
In undertaking this study, we had to strike a balance between examining many 
scenarios for general trends and identification of potentially troublesome situations, or 
looking at relatively few scenarios in detail, attempting to understand exactly why 
assessment models perform the way they do.  The initial stages of the study suggested 
that the complicated assessment models often have unanticipated interactions between 
components that are not easy to explain, and different analysts have somewhat 
different views on what the important features are for evaluation.  As a result, we 
opted for a more superficial overview of the types of problems that we might expect 
and present an archive of results from which further inferences might be gained.  Our 
synthesis includes a number of observations relating to both general and fairly 
specific issues.  Many of our conclusions are not entirely new, but there are few 
studies that have attempted to demonstrate and quantify assessment model 
performance as comprehensively as SESAME.  In the report, we provide specific 
insights relevant to the assessment of SBT (and note that these issues are also 
applicable to the conditioning of operating models used for the evaluation of 
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Management Procedures).  Conclusions and recommendations of more general 
relevance include the following: 
 

1. The complicated integrative stock assessment models seem to provide 
reasonable inferences (and better than simpler models) when the model 
structural assumptions and data are good.   

  
2. We found the assessment modelling estimation errors to often be larger than 

expected, particularly when operating models were parameterized with 
“difficult” (less than ideal, but not implausible) characteristics. The “best” 
point estimates were frequently very biased, and often highly variable, when 
assessment models were repeatedly applied to stochastic realizations from a 
given operating model.  Some system characteristics (e.g. stock recruitment 
curve, natural mortality, temporal variability in catchability of the primary 
relative abundance index) usually could not be reliably estimated from the 
fisheries data that are generally available.  Some inferences (e.g. current 
biomass relative to biomass at some historical point in time, recruitment trends 
prior to the last few years) were generally more reliable.   

 
3. Inferences from complicated assessment models often tend to be sensitive to 

arbitrary assumptions.  The model behavior can be misleading in ways that we 
would probably not anticipate without simulation testing.  Simpler models 
often seem to provide more robust estimates than the complicated models 
when certain types of assumption violation are present. 

 
4. Our attempts to estimate statistical uncertainty using the multivariate-normal 

approximation (from the inverse Hessian matrix at the mode of the likelihood-
based objective function) were not very successful (i.e. the estimated 
confidence intervals were usually too narrow and did not encompass the 
known operating model values with the expected frequency).   

 
5. We believe that there is scope for improving the statistical properties of these 

models, including the statistical uncertainty estimation conditional on the 
assessment model being “reasonably correct”.  Improvements might include: 
restructuring the likelihood function (e.g. using robust likelihood terms and 
random effects models) or applying bias correction methods.  Uncertainty 
estimation would presumably be improved by using Bayesian posteriors 
and/or boot-strapping methods (the latter having the attractive feature that they 
are less sensitive to errors in likelihood functions).  However, we fear that 
statistical improvements will probably never entirely resolve the fundamental 
problem that these models generally require too many arbitrary assumptions.  
For the time being, we recommend that scientific advice should place greater 
emphasis on the expression of model uncertainty rather than statistical 
uncertainty conditional on the model being correct.  Research into methods for 
expressing uncertainty across models also should be continued.  Similarly, 
diagnostic methods for comparing models should be evaluated in a simulation 
context, to illustrate the limitations that might be expected.            

 
6. The age-aggregated production models, Fox in particular, performed better 

than expected under a range of circumstances.  In the SESAME SBT 
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simulations, the Fox model generally performed as well as or better than the 
SCALIA models that estimated natural mortality, and seemed to be robust to 
some of the problems that produced bad behavior in the SCALIA models.  The 
preliminary results from the SCTB MWG YFT study suggested that the Fox 
model performed as well as or better than the SCALIA and MULTIFAN-CL 
models for most or all of the operating model scenarios (in terms of relative 
biomass estimates).  We found the YFT results particularly surprising, and 
question whether the operating model specifications provided adequate 
diversity to challenge the assessment models.  

 
7. We were not left with a good impression of (at least our implementation of) 

age-structured production models.  In both simulated SESAME SBT and 
SCTB-MWG YFT applications, they were prone to numerical problems, and 
generally required unrealistically good prior knowledge to yield performance 
comparable with the more complicated models.  

 
8. Relative abundance indices (standardized CPUE) are likely the most important 

input for fitting most pelagic fisheries stock assessment models.  The simple 
age-aggregated models seemed to describe the simulated YFT dynamics as 
well as the complicated models, while ignoring several auxiliary types of data 
(but this was less evident in the SBT simulations), presumably in part because 
the effort-fishing mortality relationship was very good.  Temporal trends in 
catchability for the relative abundance indices produced serious problems for 
all assessment models in the SBT simulations, and attempts to estimate 
catchability variability were not very successful (despite reasonably good 
auxiliary data).  This strongly suggests that effort standardization (or 
development of fishery-independent surveys), and quantification of 
uncertainty in abundance indices, needs to be one of the highest priorities for 
any stock assessment. 

 
9. We would encourage a greater diversity of simulation testing to cover a 

broader range of problems that regularly challenge stock assessment analysts, 
including alternative exploitation histories, spatial dynamics, biological 
characteristics, and data characteristics.  These studies would probably benefit 
from explicit consideration of several problems that we encountered here, 
related to the definition of plausible operating models, the handling of prior 
information that may be available to analysts, and the actual criteria selected 
for evaluating model performance.  

 
Additional conclusions and research recommendations pertaining to the interface of 
science and management are described below. 
 
Overall, this study leaves us with a deeper appreciation of the limitations of 
assessment modelling.  This position of healthy skepticism seems to be growing in 
popularity among fisheries scientists in recent years, as exemplified in the words of 
Schnute and Richards (2001): “Recent failures of important fish stocks give 
mathematical models a poor reputation as tools for fisheries management ... We 
recommend that modelers remain skeptical, expand their knowledge base, apply 
common sense, and implement robust strategies for fisheries management.”  This 
theme underpins our advice for managers and policy makers with respect to pelagic 
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fisheries stock assessment modelling (a non-technical summary of issues relevant to 
managers is appended to the report): 

 
1. Considerable uncertainty is inevitable with current methods of stock 

assessment.  It is important that managers and assessment scientists continue 
to decrease their focus on “best” point estimates, and embrace the stock 
assessment uncertainty.  We recommend that model structural uncertainty 
should be explored with primary importance, while statistical uncertainty 
conditional on the model being “correct” should be secondary (unless the 
inferences are robust to the major plausible structural uncertainties).  The 
complicated integrative models are useful for expressing the uncertainty about 
the stock status and implications of management actions, while simple models 
do not have sufficient structural flexibility for achieving this (although, in 
many cases, the simple models may yield point estimates of comparable 
quality to the complicated models).   

 
2. Assessment scientists and managers should work together to identify methods 

for managing the fishery that are robust to the major underlying and 
foreseeable uncertainties.  Formal Management Procedure (MP) development 
(or Management Strategy Evaluation) is growing in popularity and seems to 
represent a promising method for achieving this objective.  MPs have a 
distinct advantage in that they quantify the risk of the combined assessment 
and management, within a feedback control system (classical assessments 
generally assume a pre-determined pattern of future catch or effort in fishery 
projections, which is not an adequate representation of how effective fisheries 
management generally works).  MPs are also evaluated using performance 
measures that should be readily defined from management objectives (whereas 
assessment model evaluation such as we have undertaken in SESAME, might 
include many estimators that are largely irrelevant, depending on the type of 
management decisions that are required).  In an MP context, the complicated 
assessment models would play an important role in conditioning the operating 
model used to simulate the uncertainty in future fishery dynamics, and should 
play a role in monitoring the performance of the MP at periodic intervals.  In 
this manner, there would be no need for a comprehensive application of the 
complicated integrative models every time that a management decision is 
required.  Simple models, or even data-based stock status indicators often 
seem to provide an excellent basis for making short-medium term decisions 
once they are “tuned” to be robust to the major uncertainties identified in the 
operating models.  However, it still remains to be seen whether operating 
models can be reliably specified to adequately represent most fisheries 
systems. 

 
3. Management decisions should focus on reference points that can be reliably 

estimated to the extent possible.  e.g. MSY has a convenient theoretical 
interpretation, but if we cannot estimate it, it might not be of much practical 
use.  In contrast, we seem to have more success estimating relative biomass, 
which suggests that the 1980 biomass rebuilding target in the CCSBT might 
provide a reasonably quantifiable target. 
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4. As the emphasis on stock assessment shifts from the traditional provision of 
advice, toward the development of management strategies that are robust to 
uncertainty, there needs to be an increase in the amount of interaction between 
scientists, managers and industry.  Without effective communication of 
industry priorities and management objectives, scientists are likely to impose 
their own value judgments into the process and potentially constrain the range 
of options under consideration inappropriately.  Similarly, managers will need 
to become conversant with the concepts of uncertainty quantification and risk, 
to participate in the exploration of alternative management decisions (e.g. it 
will be important to be able to trade-off objectives of optimizing expected 
performance as opposed to providing a reasonable degree of robustness to 
unlikely events).  The complicated models provide useful tools for these 
discussions, but they will never eliminate the difficult decisions that have to be 
taken to resolve conflicting management objectives. 

 
5. A greater reliance on complicated models will probably require an increase in 

technically competent staff and resources for fisheries assessment.  However, 
in the case of MPs, despite an initial increase in resources, an MP should be 
relatively easy to implement in subsequent years.  Intensive reviews of 
operating models should only be required at periodic intervals, as management 
objectives change, unanticipated events occur, or substantially new data 
becomes available with which to evaluate the MP performance.  

 
6. While there is an increasing recognition that more effort needs to be spent on 

quantifying fisheries model uncertainty, the methods for doing this are 
currently rather ad hoc, and would benefit from many avenues of research. 
Simulation-estimation studies evaluate the performance limits and data                                      
requirements of models in a known setting.  Retrospective analyses evaluate 
the consistency of a given assessment model as data accumulates over time.  
Meta-analyses combine experience across fisheries systems.  Goodness-of-fit 
diagnostics help decide when a model structure is incompatible with the data.  
While we are optimistic of the benefits of the shift toward uncertainty 
quantification, we also recognize that there is potentially a risk of over-
emphasizing uncertainty, such that in the context of pre-cautionary 
management, this could lead to unreasonable loss of economic opportunity.  
Identifying the appropriate balance in uncertainty quantification remains a 
major challenge.  

 
7. The quality of assessment model performance and uncertainty quantification 

increases as data improves.  No amount of statistical wizardry or 
computational power can overcome the fundamental limitations of poor data.  
Data collection programs should strive for continual improvement (e.g. for the 
SBT fishery, direct ageing information should be collected and efforts should 
continue to find reliable fishery-independent abundance indices).  However, 
not all data are equally informative, and given finite resources, there should be 
prioritization of data collection programs.  Simulation studies are an important 
tool for providing guidance to this prioritization.  In the quest for better data, it 
is often not recognized that a measure of the actual error associated with the 
data is also desirable (e.g. statistical models usually require assumptions about 
the relative reliability of catch length sampling, but formal analyses rarely 
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underpin these assumptions).  If advice is expected with regard to 
fundamentally new objectives (e.g. ecosystem management), then there will 
probably be requirements for fundamentally new data (e.g. through fishery-
independent observational studies). 
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3 INTRODUCTION 
 
Fisheries stock assessment models continue to become increasingly complicated in an 
attempt to provide an ever more realistic representation of population dynamics and 
data collection processes, but it is not known whether the inferences obtained are 
actually improving our understanding of fish stocks and the quality of advice provided 
for fisheries management.  This project was initiated to help understand the 
relationship between the type and amount of data available for the (single species) 
assessment of pelagic fisheries, and the quality of inferences that result when assessed 
with a range of models.  The emphasis in this project is on Southern Bluefin Tuna 
(SBT) and to a lesser extent Yellowfin Tuna (YFT), two highly migratory pelagic 
species of economic importance to Australia that are shared with other regional 
fishing nations.  Using a range of fishery simulations, we attempt to identify situations 
where modern assessment methods are likely to go wrong and where simpler methods 
perform well.  We also make recommendations for regional fisheries managers and 
policy developers to consider in the application, interpretation and allocation of 
resources with respect to these models.     
 

3.1 RATIONALE 

 
With cheap computing power and efficient software, it is possible to model a diverse 
range of system characteristics that are expected to be important for understanding the 
abundance and distribution of exploited fish.  The MULTIFAN-CL (e.g. Fournier et 
al. 1998, Hampton and Fournier 2001) development team has been at the forefront in 
attempting to describe tuna populations using data in the actual units of observation to 
the extent possible, including a flexible spatial resolution.  This is theoretically 
attractive in that it allows the integration of several types of data into a single analysis, 
with a minimum of intermediate processing steps (e.g. catch-length frequency 
distributions can be used directly in the model objective function, where traditional 
VPA approaches would have required age estimates; dynamics of tagged fish are 
directly incorporated in the model, whereas independent analysis of tagging data 
might have been applied previously).  This has the further advantage of allowing the 
integration of all the statistical uncertainty into a single coherent framework.  
MULTIFAN-CL is becoming the main assessment software for the tropical tunas of 
the Western and Central Pacific Ocean (WCPO), and similar models are being 
implemented by other Regional Fisheries Management Organizations (RFMOs) (e.g. 
A-SCALA in the Inter-American Tropical Tuna Commission IATTC (Maunder and 
Watters 2003); SCALIA and others in the Commission for the Conservation of 
Southern Bluefin Tuna CCSBT (e.g. Kolody and Polacheck 2001)).   
 
Despite all of the attractive features of these sophisticated models, there are a number 
of scientific and technical concerns that need to be considered before embracing these 
models in all circumstances.  These models usually estimate dynamics (i.e. hindcast 
estimates of system attributes) that correspond very well with observations.  However, 
this is achieved in part because the models contain hundreds or even thousands of 
“free” parameters, and this leads to concerns that over-parameterization leads to over-
fitting.  There are usually a number of arbitrary and untestable assumptions required 
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in stock assessment models to produce results that are consistent with prior 
perceptions about stock dynamics.  When complicated models take many hours to fit, 
this can impede the exploration of alternative, but equally plausible assumptions that 
lead to different interpretations of stock dynamics, and this is especially a concern if 
assessments are conducted only during relatively short meetings when participants are 
assembled.  The technical expertise required to develop and understand these models 
is considerable, and might have serious implications for how fisheries stock 
assessments are approached in the future.     
 
Computer simulations provide the best means of evaluating and comparing the 
inferential performance of different stock assessment models.  There is a recognized 
trade-off between model complexity and the reliability of parameter estimates (e.g. 
Walters 1986).  In general, a complicated model potentially provides a more realistic 
structure for describing relevant features of the system, and should in turn provide less 
biased estimates than a simple model.  However, more complicated models tend to 
have greater estimation variance, so the optimal model structure for a given 
estimation problem will generally be at some intermediate level of complication 
where the bias and variance trade-off favourably.  Unfortunately, for fisheries 
systems, there is usually no way of knowing exactly where the trade-off is, because 
one never knows the true value of the feature of interest.  Probably the best method 
for evaluating assessment models involves repeatedly simulating fisheries systems in 
which the data characteristics are “known”, and fitting different assessment models to 
the simulated data.  This simulation-estimation approach is frequently used for stock 
assessment model evaluation (e.g. NRC 1998, ICES 1993) and is the basis of this 
work.   

 
These concerns are relevant for Southern Bluefin Tuna (SBT) and provided much of 
the impetus for the SESAME project.  The CCSBT Stock Assessment Group (SAG) 
failed to reach concensus on the status of the stock (particularly future productivity) in 
the late 1990s (e.g. Polacheck 2002), despite agreement on a general modelling 
approach.  An independent assessment was tabled in the late 1990s, using one of the 
newer and highly parameterized assessment models (originally tabled as Hilborn and 
Butterworth 1996; this eventually evolved into Butterworth et al. 2003).  In 2001, the 
stock status advice was based on an informal synthesis of results from a range of 
assessments, including the traditional ADAPT VPA (Hiramatsu and Tsuji 2001, 
Polacheck et al. 2001), age-aggregated and age-structured production models 
(Butterworth and Plaganyi 2001), an independent, extended implementation of 
Butterworth et al. (2003) (Polacheck and Preece 2001), a hybrid approach merging 
features of Butterworth et al. (2003) and MULTIFAN-CL (Kolody and Polacheck 
2001), and a length-based VPA (Kurota et al. 2001).  The SAG recognized serious 
model sensitivities in the traditional ADAPT VPA, and recognized that other models 
seemed to have better behavior (CCSBT 2001).  While the model results were 
generally similar in their gross features, there were also conflicting inferences about 
the sustainability of current catches.  The fact that catch levels could have been on 
either side of a critical limit magnified the perception of differences among models 
because 20 year projections at current catch levels yielded widely divergent stock size 
estimates.  At the time, it was recognized that there is no general method for 
objectively synthesizing the results across models or ranking the performance of the 
models.  It was hoped that by simulating the effects of key issues, the SESAME 
project would help to identify key sensitivities and guide model formulation issues in 
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the future.  Most of these SBT assessment issues are also directly relevant for the 
conditioning of the SBT operating model (Haist et al. 2002) that is being used for the 
evaluation of candidate Management Procedures (MPs).  Many results have broader 
relevance for the tropical pelagic fisheries of interest to Australia, and stock 
assessment in general.  

 

3.2 OBJECTIVES 

 
The following list of objectives is paraphrased from the original SESAME proposal, 
and expanded to include relevant concerns that arose during the course of the project.  
Background for a number of the specific topics is provided in the following sections. 
 
1) Evaluate the performance of Statistical Catch-at-Age/Length Integrated Analysis  
(SCALIA) models in relation to the advice and stock status parameters needed for the 
formulation of management policies, with particular emphasis on the SBT fishery. 
 
2) Evaluate assessment models with respect to:  
 

I. Stock and recruitment relationship estimation 
 

II. Catch under-reporting biases 
 

III. Age estimation from cohort-slicing, vs: catch-at-length 
 

IV. Unrecognized changes in SBT length-at-age 
 

V. Fishery selectivity assumptions  
 

VI. Fishery catchability assumptions (reliability of CPUE as a relative 
abundance index)  

 
VII. Spatial structure of the fish population and fishing fleet  

 
VIII. Uncertainty Quantification 

A. Estimator Performance  
B. Statistical Uncertainty Estimation (conditional on a model) 
C. Model Uncertainty 
D. Assessment Uncertainty and Fisheries Management 

 
3) Compare the performance of SCALIA models with simpler age-aggregated and 
age-structured production models, and MULTIFAN-CL. 
 
4) Participate in the Standing Committee on Tuna and Billfish Methods Working 
Group project designed to evaluate assessment models using a Western and Central 
Pacific Ocean yellowfin tuna fishery simulator developed by the Secretariat of the 
Pacific Community Oceanic Fisheries Programme. 
 
5) Provide advice on the appropriateness and implications of these models for the 
provision of stock status advice in an RFMO context on SBT specifically, and tuna in 



 11

general. 
 
6) Provide a non-technical description of the key scientific issues and critical 
assumptions in SCALIA assessments that managers will have to deal with in 
negotiations and formulation of policy in the CCSBT and other tuna RFMOs. 
 

3.3 BACKGROUND TO SPECIFIC STOCK ASSESSMENT ISSUES FOR SBT AND 

OTHER REGIONAL TUNA STOCKS 
 
The topic areas introduced below were primarily motivated by actual SBT assessment 
issues, including the conditioning of operating models for the testing of candidate 
Management Procedures.  
 

3.3.1 Objective I - Stock Recruitment Relationship Estimation  

It is notoriously difficult to reliably quantify the relationship between fish stock size 
and recruitment for most fisheries for a number of reasons, including: 
 

1) There are several functional forms for the relationship, that can be justified 
from population dynamics theory (e.g. Beverton-Holt, Ricker; with or without 
depensation at low stock sizes, etc.), but there are usually not sufficient data to 
distinguish which of them is more appropriate. 

 
2) High variability in recruitment makes it difficult to identify the function with a 

limited number of observations.  
 

3) There is often poor observational contrast – if the spawning stock biomass has 
not changed substantially over time, estimation usually requires a substantial 
extrapolation into unobserved regions of the relationship, regardless of how 
many observations exist. 

 
4) The estimation procedure should account for uncertainty in both stock size and 

recruitment (i.e. some form of the Errors in Variables estimation paradigm 
should be invoked, as opposed to regression with one dependent variable). 

 
5) Time series structure – the factors that drive recruitment variability (e.g. 

effective fecundity, spatial distribution effects on larval survival etc) are often 
driven by highly auto-correlated processes that reduce the effective number of 
observations, and potentially obscure the functional form of the SR (e.g. truly 
auto-correlated errors can be indistinguishable from systematic lack-of-fit), 

 
6) Non-stationarity - past behaviour might not provide a useful indicator of future 

behaviour if the recruitment regime has undergone some fundamental change 
(e.g. an oceanographic effect or fishery affecting an ecologically-related 
species can change the trophodynamics of the target species).  

 
Despite these problems, for the SBT stock (and most others), there is a precedence of 
attempting to estimate stock recruitment relationships.  Without some method of 
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estimating future recruitment, it is impossible to quantify future fishing impacts on the 
population (except for short term projections of long-lived species in which new 
recruits might form a minor part of the impacted population).  Future projections, 
including those in operating models used for Management Procedure development, 
and many reference point calculations, (e.g. MSY) require some recruitment 
assumption.  The SBT situation is perhaps atypical among tuna species, in that there is 
a strong indication that recruitment and spawning stock biomass have both strongly 
declined, and it is reasonable to assume that the two are in part related by a causal 
mechanism.  However, it is also possible that effects independent of spawning 
biomass might be at least partially responsible (e.g. environmental regime shifts). 
 
In many cases, assessment results include quantities that are dependent on stock 
recruitment relationships, even though the data are not sufficient to estimate them.  
Recent assessments for all the major tuna species of the WCPO include a stock 
recruitment relationship (e.g. Hampton and Kleiber 2003, Hampton et al. 2003, 
Langley et al. 2003), and any MSY calculations are dependent on some recruitment 
assumption.  However, recognizing the difficulty in estimating the relationship, these 
analyses generally assume a Beverton Holt functional form and assign prior 
probability assumptions about the degree of compensation (steepness) in the 
relationship.   
 
As part of the SESAME project, we explicitly attempted to examine how well the 
stock recruitment curves could be estimated for situations roughly resembling SBT.  
Preliminary results were presented to the CCSBT as Kolody and Jumpannen (2003).  
Specific questions that we attempted to address included: 
 

1) If we are correct in our assumption of a Beverton-Holt functional relationship, 
how well can we actually estimate the steepness of the curve, and other 
quantities of interest for stock assessment? 

 
2) What are the assessment implications of mis-specifying auto-correlation and 

the assumed variability of the recruitment deviations ?   
 
Exploration of actual SBT assessment model fittings (in the context of operating 
model conditioning for CCSBT Management Procedure development) suggested that 
the relatively well-defined portion of the stock recruitment curve is linear, but not 
necessarily incompatible with high productivity (Polacheck et al. 2003c).  If a 
Beverton-Holt curve is imposed, the linearity is only compatible with a very 
unproductive stock.  This raises the question: 

 
3) If recruitment is actually directly proportional to SSB up to a maximum level 

beyond which recruitment remains constant (a double-linear “hockey stick” 
function), then how well would this situation be approximated by a Beverton-
Holt relationship, and what impact would this mis-specification have on the 
other assessment inferences?  

 
The SCTB-MWG YFT simulation study did not appear to be designed to explicitly 
test the reliability of stock recruitment curve estimation, because (as we currently 
understand it) the underlying functional relationship was the same in all operating 
model scenarios.  However, we do make some observations about the consistency of 
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SCALIA in estimating steepness in the YFT applications, and a comparison of how 
well SCALIA and the production models estimate MSY.   
 
 

3.3.2 Objective II - Catch Under-Reporting Biases 

 
Determination of total fishery removals was identified as one of the main priorities of 
the CCSBT Scientific Research Program (CCSBT 2000).  There may be many 
problems estimating fishery-related mortality, e.g. due to extrapolation from 
incomplete sampling coverage, or unrecorded mortality due to discards or illegal 
fishing.  In the case of SBT, there has always been concern about the quality of the 
catch statistics from non-CCSBT fishing fleets, and non-retention and mis-reporting 
by member nations.  If changes in relative abundance cannot be properly linked to the 
total fishery removals, it is usually assumed that the reliability of a quantitative stock 
assessment will be severely degraded.  In this study we attempted to address the 
following questions: 
 

1) If there is a 10% or 20% under-reporting bias in one of the fisheries, how will 
this affect the assessment results? 

 
2) How does the effect of the reporting bias differ if it is present in the juvenile 

purse seine, longline feeding grounds or longline spawning grounds fishery? 
 

3) Can we minimize the impact of a substantial observation error in the catch 
component of the assessment model by allowing statistical catch uncertainty, 
or estimating natural mortality?  Is there a negative implication of allowing 
total catch observation error when the catch actually is well described?  

 

3.3.3 Objective III - Age Estimation from Cohort-Slicing vs: Catch-at-Length  

 
Most stock assessment models for long-lived species represent the age-structure of the 
population and are ideally suited to integrate age composition data from catch 
samples.  However, it is often technically difficult and expensive to estimate the ages 
of catch, and in many cases, the lengths (or mass) of fish are extensively sampled 
instead.  In the case of SBT, length and mass samples are available for the majority of 
the Japanese and Australian fisheries historically, but only the Indonesian spawning 
ground fishery has substantial numbers of directly aged fish (via otolith annulli 
counts), and these have only been available since the 1990s.  SBT assessment models 
have dealt with the absence of age data in different ways.  Age-aggregated production 
models ignore the age composition data.  The most common approach has been to use 
cohort-slicing to estimate the age-structure of the catch from the length frequency 
distribution.  This is reasonably reliable for younger ages, but becomes less reliable 
with older fish because the length-at-age overlaps to a large extent.  SBT ages 13+ are 
generally aggregated because of this effect.  The third approach involves working 
with catch length frequency distributions directly.  The assessment model attempts to 
get a good agreement between predicted and observed CL, thus eliminating the need 
for the intermediate processing step and not biasing the age composition due to the 
systematic errors in cohort slicing (although the related errors in converting from 
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mass to length have been ignored to date).  We were interested in examining the 
following questions related to these issues: 
 

1. How do the models that use catch length and age frequency distributions 
compare with the age-aggregated models? 

 
2. How do age-structured models that use cohort-slicing compare with those that 

use catch-at-length prediction? 
 
In addition to these specific questions, we also make comparisons regarding 
assessment performance given different age and length sample sizes, and different 
assumptions about effective sample sizes (i.e. it is common to artificially downweight 
the actual number of samples in an assessment, to reflect the non-random nature of 
the sampling and/or to compensate for structural assumption violations known to be in 
the assessment model).  
 

3.3.4 Objective IV - Unrecognized Changes in SBT Length-at-Age 

 
The catch length frequency distributions on the SBT spawning grounds appears to 
have changed between the 1950s and the 1990s.  Polacheck et al. (2003a) suggest that 
this could be due to a number of factors, including 1) differences in selectivity 
between the early and subsequent fisheries, 2) a sustained change in recruitment or 
mortality that resulted in a disproportionately small number of older fish on the 
spawning grounds in the early fishery, 3)  sampling or measurement biases in the 
early fishery, or 4) a change in the length-at-age characteristics of the SBT 
population.  The latter hypothesis is consistent with a density dependent effect 
resulting from intra-specific foraging competition.  It is known that length-at-age of 
juveniles changed substantially between the 1960s and 1980s, so it is conceivable that 
similar changes have occurred in the adult population, but there are no data with 
which this can be directly examined.   
 
An unrecognized change in the length-at-age distribution might have important 
implications for the assessment.  Cohort-slicing requires a length-at-age distribution 
and will be misleading if this distribution is wrong.  In principle, catch-at-length 
prediction could be used to estimate the length-at-age distribution (via estimation of 
multiple growth curves), but this has never been attempted in SBT assessment.  And it 
is probably not worth attempting for SBT because the early spawning grounds fishery 
only includes the older fish with limited “modal progressions” that can be used to 
distinguish cohorts and quantify growth in younger fish.  Thus catch-at-length models 
will also be adversely affected if a growth change is not recognized.  To test this 
effect, we specified an operating model with a shift in the mean length at age in the 
earliest part of the fishery, and illustrate the likely assessment implications of 
assuming that growth has not changed. 

3.3.5 Objective V - Fishery Selectivity Assumptions 

 
Stock assessment models treat fishery selectivity in different ways.  Selectivity refers 
to the combined processes which determine the manner in which the fishery catch 
age/size composition differs from the relevant fish population.  Different gear types 
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(or methods of deployment of the same gear) fishing in the same times/areas generally 
catch fish of different ages/sizes.  Deployment of the same gear in different 
times/areas can also produce different catch composition because the fish are 
heterogeneously distributed; equivalently, consistent gear deployment in the same 
times/area will result in a selectivity change if the fish distribution changes.  Fishers 
often intentionally change their targeting practices in response to changing market 
conditions or management interventions.  In stock assessment models, there is usually 
a trade-off in the assumed relationship between the variability in selectivity over time, 
and the observation errors in the catch-at-age/size.  At one extreme, the ADAPT-VPA 
interprets the catch-at-age to be known exactly, and estimates changing selectivity 
every time-step.  At the other extreme, a purely separable VPA assumes that 
selectivity is constant over time, and interprets lack of agreement between predicted 
and observed catch age/size distributions as entirely observation error.  Butterworth et 
al. (2003) were the first to illustrate intermediate interpretations that recognize both 
process and observation errors for the SBT fishery.  In addition to dis-aggregating 
catch data into relatively homogeneous fishing fleets, they estimated temporal 
variability in selectivity using a random walk time series model.  This is the approach 
adopted in SCALIA.  The specific selectivity issues that we attempted to address in 
the SBT simulations included: 
 

1. Fisheries can rapidly change their targeting characteristics due to economic 
conditions and/or management actions.  In the case of SBT, this has been 
evident in the Australian fishery, as farming became established, and was 
evident in the Japanese longline fishery when restrictive quotas were 
introduced.  We illustrate the assessment implications of assuming constant 
selectivity when it actually does change, and examine whether or not 
selectivity changes can be estimated reliably.  We also examine the 
implications of attempting to estimate a change when selectivity actually is 
constant. 

 
2. Fishery selectivity might change gradually in a systematic way, such as in 

relation to a changing age composition.  Some fisheries dis-proportionately 
follow a strong cohort because it results in higher CPUE.  Alternatively, in the 
case of the Australian purse seine fishery, there seems to be a preferential 
targeting of particular ages that are optimal for the aquaculture industry.  This 
would tend to produce a constant catch-at-age/size composition over time, and 
limit the amount of information available about relative cohort strength. We 
simulated the former issue in an adult (longline feeding grounds) fishery, and 
the latter in a juvenile (purse seine) fishery.   

 
3. Fishery selectivity is often thought to be a predominantly size-based process 

(e.g. net mesh sizes can allow smaller fish to pass through; hook lures appeal 
to fish with particular mouth size characteristics).  Size selective mortality can 
have short and long term consequences.  In the short term, the length-at-age 
distribution of fish can change, depending on the magnitude of the size 
selectivity effect and the magnitude of the fishing mortality relative to natural 
mortality.  In the longer term, this could lead to a long lasting effect on the 
population genetics.  For the SESAME SBT simulations, we were interested in 
the possible short term effects on the length-at-age distribution.  Since the 
assessment models that are generally used tend to assume purely age-based 
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selectivity, we are curious what effect size selective mortality would have for 
SBT stock assessment. 

 
A major source of variability in selectivity potentially arises due to heterogeneity in 
the spatio-temporal distributions of fishing fleets and the fish population.  Different 
fishing fleets usually have different selectivity characteristics, such that changes in the 
relative effort among fleets changes the global selectivity of the aggregated fishery.  
Models that dis-aggregate fishing fleets into units with relatively homogeneous 
selectivity should be able to provide a reasonable approximation to the global 
selectivity changes in this case, even if the selectivity of each individual fleet is 
assumed constant.  Temporal variability in the distribution of the fish population will 
also affect the global selectivity of a fishery, even if selectivity is effectively constant 
within each sub-region of the fishery and for every individual fleet.  MULTIFAN-CL 
can use spatial dis-aggregation with age-specific migration rates to potentially explain 
some of the heterogeneity in the fish distribution.  If the model can adequately 
describe changes in the spatio-temporal distribution of the fish, and partition fleets 
into homogeneous sub-units, then the major sources of variability in global selectivity 
might be adequately described.  However, there are also systems in which fishery 
selectivity changes in a manner that cannot be easily described by any practical dis-
aggregation of fleets and sub-populations.  The SBT longline fishery seems to be such 
a case, in which it seems that fishers can target substantially different age 
compositions without changing their fishing behaviour in a manner that is easily 
recognized in the spatial distribution of the data.  In the SESAME SBT simulations, 
we did not explicitly simulate spatial selectivity effects, but we did simulate scenarios 
where selectivity changed for other reasons.  In contrast, the SPC-OFP YFT 
simulations involved spatial structure and regional data dis-aggregation, so that global 
selectivity effects might also be recognized in an assessment model through spatial 
representation.  This issue is discussed further under spatial representation below. 
 

3.3.6 Objective VI - Catchability Assumptions for  Relative Abundance Indices 

 
One of the key inputs for most dynamic stock assessment models is some sort of 
relative abundance index, and for large highly migratory pelagic fisheries this is 
usually derived from commercial CPUE.  There is a vast literature describing the 
problems of using commercial CPUE in this manner, however, there is often no 
alternative.  Usually measures are taken to standardize effort data with the intent of 
making CPUE proportional to abundance (e.g. to account for spatio-temporal 
heterogeneity in local abundance/catchability or the relative effectiveness of different 
fishing gear).  There are different methods for doing this, potentially yielding 
substantially different results, and there is usually no real indication of when 
standardization has succeeded.  The implications of several approaches on the 
assessment of YFT are illustrated in Hampton and Kleiber (2003).  It is possible to 
evaluate performance of different standardization methods relative to each other 
conditional on a given assessment model structure and the other data.  In this manner, 
if the assumptions are correct, one might be able to correctly conclude that a given 
standardization method is preferable.  But if the model is sensitive to assumptions, or 
if all standardization methods are subject to similar errors (e.g. unquantifiable 
efficiency improvements), the relative quality of fit might not be helpful for 
evaluating the absolute performance of standardization.   
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An alternative, or complementary, approach for dealing with potentially incomplete 
effort standardization involves allowing an integrative assessment model to estimate 
changing catchability over time.  This can be done with various assumed functional 
relationships (e.g. catchability related to abundance or effort) or assuming a random 
walk time series model, which admits that catchability can increase or decrease 
randomly over time, under the influence of the other data.  This latter approach is 
commonly used for many fisheries in a MULTIFAN-CL WCPO tuna assessment (but 
note that in this case, the widespread and fairly homogeneous Japanese longline fleet 
is generally not allowed temporal catchability variability).  It is also a feature in the 
SCALIA assessment framework, but we have no real appreciation of whether or not 
time series changes in catchability can be estimated reliably, or the data requirements 
that would allow this to be accomplished.  As part of the SESAME project, we tried to 
address the following objectives:    
 

1) Illustrate the impact of changing catchability on stock assessment model 
inferences when it is assumed constant. 

 
2) Investigate the ability of assessment models to estimate changing catchability 

using a random walk time series model, given a range of data quality (i.e. total 
catch, catch-at-age, catch-at-length and tag releases/recaptures). 

 
3) Investigate the implications of allowing a stock assessment model to estimate 

changing catchability using a random walk time series model, when 
catchability is actually constant.   

 
We defined operating models with different assumptions about the relationship 
between fishing mortality and effort to test these effects.  As with the selectivity issue 
above, we note that the calculation and interpretation of catchability potentially could 
have a strong temporal component that might be attributed to spatial effects, and this 
is discussed under spatial structure below.   

3.3.7 Objective VII - SCTB-MWG Assessment Model Evaluation Project and 
Assumptions about Fishery Spatial Structure  

 
Around the time that SESAME began, the Standing Committee on Tuna and Billfish 
Methods Working Group (SCTB-MWG) encouraged participation in an independent 
project to evaluate the performance of MULTIFAN-CL and other assessment models 
using data generated by the Secretariat of the Pacific Community – Oceanic Fisheries 
Programme (SPC-OFP) yellowfin tuna (YFT) simulator (Labelle 2002, 2003).  Other 
analysts were encouraged to provide assessments, and in addition to SCALIA and the 
production models applied as part of the SESAME project, A-SCALA (e.g. Maunder 
and Watters 2003) and an ADAPT-VPA (Bigelow 2002) were tested.  Many of the 
ideas and methods of the MWG were adopted in SESAME to maintain compatibility.  
The YFT simulator provided a complementary extension to the SESAME SBT 
simulations.  The independent operating model had a considerably different emphasis 
(as outlined in the Methods), and should give us a greater insight into our ability to 
make generalizations about assessment model performance.  The final synthesis of 
SCTB-MWG YFT simulation results have not been completed at the time of writing, 
but we were able to present preliminary results from the application of production 
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models, SCALIA, and a reproduction of some MULTIFAN-CL results of Labelle 
(2003).  For the purposes of SESAME, we apply and discuss our assessment model 
applications primarily in the context of considering the implications of spatial 
structure as described below.  
 
Fish populations and fishing fleets are never homogeneously distributed in space and 
this can have important implications for assessment and management.  The 
heterogeneous distributions usually mean that different portions of the fish population 
are exposed to fishing gear at different times, and this affects the resultant global 
CPUE and/or global selectivity.  If one assumes that selectivity and the relationship 
between effort and fishing mortality are constant over time, these spatial effects can 
lead to serious biases in assessment inferences, even though the assumptions might be 
reasonable for a given sub-population.  From a management perspective, even if the 
global population is adequately described by an assessment model, there might be 
important spatial issues related to catch allocation or spatial regulations that still need 
to be addressed (e.g. if population mixing rates are relatively low, there is effectively 
a sub-population structure that could result in localized overfishing problems even 
though the global exploitation rate is low).  Recognition of these problems encourages 
the inclusion of spatial structure in assessment models, with MULTIFAN-CL at the 
forefront for the representation of tuna populations.  Spatial effects can also manifest 
themselves in other ways, e.g. via stock and recruitment relationships, natural 
mortality, and/or growth rates, but we do not consider these effects in this study.  
 
It is fairly common for assessment models to use data dis-aggregated into fisheries 
with fairly homogeneous characteristics (e.g. operation in the same general area 
and/or with the same gear), but the global fish population is often assumed to be 
homogeneous and potentially vulnerable to any fishing fleet.  This is the approach 
used in SCALIA, Butterworth et al. (2003) and A-SCALA, among others.  This 
assumption is obviously incorrect in that no matter how much effort is applied, a 
localized fishing fleet cannot catch fish that are in a different area.  But this might not 
be a substantial issue if the fishing pressure is low relative to mixing rates (or natural 
mortality rates).  The structure of some assessment models (e.g. SCALIA) is designed 
so that both catchability and selectivity can potentially vary over time.  In this 
manner, the model has sufficient freedom to potentially describe the global dynamics 
very well.  However, in practice, it is not clear that temporal variability in global 
catchability and selectivity can be reliably estimated. 
 
MULTIFAN-CL has taken the most ambitious approach to the spatial problem in that 
fishing fleets are dis-aggregated by gear-type and spatial area, and the fish population 
is  spat ial ly  dis-aggregated with migration rates between areas explicitly modelled.  
In theory, this allows a more realistic representation of the population and potentially 
admits the sub-stock structure in a manner that might be useful for managers.  
However, it remains unclear whether the spatial representation can be appropriately 
defined.  Statistical areas might have little relation to homogeneous population units, 
or interannual migration variability might overwhelm continuous mixing assumptions.  
And even if the model spatial structure and migration assumptions are essentially 
correct, we do not know what the data requirements would be for reliable parameter 
estimation.  
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Our Virtual Stock Model (VSM) operating model was designed with the capacity to 
simulate spatial dynamics, but we did not use this feature for the SESAME SBT 
simulation testing.  We would argue that the spatial structure is less of an issue for 
SBT than the tropical tunas, and instead focused on spatial issues in the context of the 
SPC-OFP YFT simulator, which was explicitly designed and parameterized to operate 
on a fine spatial scale.  We consider the spatial question a lower priority for SBT, 
because of the general perception that many of the stock characteristics are actually 
fairly homogeneous, despite the large geographic range of the population.  Most SBT 
seem to have many common characteristics in their migration routes, and it seems 
plausible that a large fraction of the relevant age component of the global population 
are vulnerable when the major fishing fleets are active.  Caton (1991) provides an 
overview of perceived SBT migration dynamics and fishery characteristics.  Young of 
the year migrate along the west coast of Australia southward from the tropical 
spawning areas.  Juveniles from about ages 1-5 feed in the Great Australia Bight 
(GAB) in the southern hemisphere summer where they are currently caught by the 
aquaculture purse seine industry (not all fish return to the GAB every year, but there 
is not much evidence to indicate what proportion return or whether the individuals 
differ).  There is an annual migration of adults to the single spawning grounds in the 
tropical Indian Ocean near Indonesia where they are vulnerable to the spawning 
grounds longline fisheries.  There are also substantial concentrations of SBT at 
reasonably consistent feeding grounds locations and migratory corridors that are 
targeted by the longline fishery.  It is not clear what proportion of the global 
population is vulnerable in these areas, but given the broad coverage of the longline 
fishery, there does not seem to be much evidence that major portions of the stock have 
had a significant spatial refuge (at least since ~1970).  This is an over-simplification 
of SBT dynamics, but the assumption of homogeneity of the population with respect 
to the fisheries is probably more reasonable for SBT than the tropical tunas.  The 
tropical tunas seem to migrate and mix to a relatively limited degree given the broad 
range of the species (e.g. Sibert and Hampton 2003).   
 
Furthermore, there is also the perception that SBT longline and purse seine fisheries 
have the capacity to substantially change their targeting practices without making 
large changes to the spatial region of operation, in which case dis-aggregating the data 
at a coarse spatial resolution would not result in units with homogeneous 
selectivity/catchability anyway.  As a result of these factors, spatial questions in the 
SBT simulations were only explored implicitly at a global level, such that spatial 
heterogeneity in the fish or fleet distributions could arise as temporal variability in 
global catchability and selectivity.  We attempted to examine spatial questions more 
explicitly in the YFT simulations, in addressing the questions: 
 

1. How does the performance (in terms of global population inferences) of 
the spatially dis-aggregated MULTIFAN-CL compare with the fishery dis-
aggregated SCALIA and the very simple age-aggregated and fishery-
aggregated production models (Fox and Schaefer) ? 

 
2. Can we account for the spatial issues by estimating temporal variability in 

catchability and/or selectivity in the SCALIA model? 
 
We expect that more detailed results regarding the SPC-OFP YFT simulations will 
arise from further analyses by the SCTB-MWG. 
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3.3.8 Objective VIII - Uncertainty Quantification 

 
Inevitably there are limits to the reliability with which attributes of fisheries systems 
can be estimated, and it is generally good practice to provide some description of this 
estimation uncertainty in addition to the “best” estimate.  The impetus for fisheries 
scientists and managers to consider uncertainty about the status of fish stocks is 
entrenched in international agreements (FAO code of conduct for responsible 
fisheries, FAO 1996; UN agreement on the conservation and management of 
straddling stocks, UN 1994).  The precautionary approach for fisheries management 
prescribes that management decisions need to be more cautious when uncertainty is 
higher (i.e. operate with a lower probability of causing permanent or long term 
changes to the system, which often means catching fewer fish).  There are many 
methods for expressing uncertainty in fisheries assessment models (see review in 
Patterson et al. 2001), but they are generally poorly tested, and historically fisheries 
scientists have probably been guilty of under-estimating uncertainty about fish 
dynamics.  However, it has also been suggested that the shifting emphasis on 
uncertainty quantification can be exploited to prevent management actions from 
disrupting the status quo (Schweder 2001).  There needs to be an appropriate balance 
between the two types of management errors: taking disruptive action when there is 
no problem, vs: failing to act when there is a problem (e.g. Quinn 2003).  The 
effective quantification of uncertainty and appropriate expression of uncertainty in a 
context for management decisions is an important modelling issue that remains 
unresolved.  In the SESAME project, we attempted to examine assessment model 
uncertainty quantification in relation to four sub-topics: 

 

A. Estimator Performance  
B. Statistical Uncertainty Estimation (conditional on a model) 
C. Model Uncertainty  
D. Assessment Uncertainty and Fisheries Management 

 
These are not mutually exclusive topics, but this partitioning forms a useful 
distinction for discussing the types of results presented in this report.  We define the 
terms for our purposes in the following sub-sections. 
 
3.3.8.A Estimator Performance 
 
In this report, we refer to “estimator performance” as the degree of agreement 
between the “best” point estimates from an assessment model and the actual values.  
We generally refer to the parameter and state values at the Maximum Posterior 
Density (MPD) as the best point estimates.  We use the term MPD rather loosely to 
mean the parameter estimates with the best global fit to the objective function, 
whether it comes from a strict Bayesian model with formal priors and posteriors, or a 
frequentist model, in which likelihood penalties might be invoked to express prior 
beliefs in a manner analogous to Bayesian priors.  For any given assessment model 
and data set we would like to know: 
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1. How reliable are the MPD estimates (of historical stock dynamics, current 
stock status, management reference points, etc.) likely to be, in terms of the 
bias and precision that we can expect if the fishery system conforms closely 
with our assumptions, and how robust are the model inferences likely to be if 
the system exhibits plausible characteristics that are not consistent with our 
assumptions? 

 
We address the question by repeatedly applying models to data sets simulated with 
stochastic variability.  Thus, this is a form of uncertainty that usually cannot be 
quantified and expressed in a routine stock assessment using a single data realization.    
This topic is the primary underlying objective for most of the SESAME project, and is 
repeatedly examined in relation to the questions outlined in objectives I-VII (sections 
3.3.1-3.3.7) above.  We re-iterate the topic as a component of uncertainty 
quantification to emphasize that these results constitute one component of the 
uncertainty that should be admitted in the provision of advice emanating from a stock 
assessment model.   
    
3.3.8.B Statistical Uncertainty estimation 
 
The second topic that we consider under uncertainty quantification relates to the 
narrower issue of statistical uncertainty estimation, conditional on a single data set 
and a single model structure.  This element of uncertainty often receives the greatest 
amount of attention in stock assessment, because it is usually perceived to be the most 
tractable problem, with a large body of supporting statistical theory.  Different 
inference paradigms (e.g. Bayesian or frequentist; see Hilborn and Mangel 1997, 
Maunder 2003) lead to theoretically different measures of uncertainty, but they are 
generally interpreted in fundamentally the same way when it comes to making 
decisions.  For complicated assessment models such as MULTIFAN-CL, confidence 
intervals for quantities of interest are most often estimated using the multi-variate 
normal approximation calculated from the inverse Hessian matrix at the MPD 
(combined with the delta method for quantities derived from the estimated 
parameters).  There is a general recognition that these confidence intervals are 
probably not very good in many cases, but they are used as a rough approximation 
primarily for the pragmatic reason that they are computationally easy to calculate.  
Sampling Importance Resampling (SIR) (e.g. McAllister and Ianelli 1997) and 
especially Markov Chain Monte Carlo (MCMC) (e.g. Patterson 1999) methods for 
approximating the Bayesian posterior distributions are gaining popularity for 
relatively complicated models, but are not yet computationally practical for routine 
use on the most highly parameterized models.  In the SESAME project, we only 
examined one aspect of statistical uncertainty estimation, in attempting to address the 
question: 
 

2. Is the multi-variate normal approximation (as usually applied in models like 
MULTIFAN-CL and SCALIA) likely to provide a reasonable representation 
of confidence intervals for estimated quantities of interest? 
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3.3.8.C Model Uncertainty 
 
We refer to “model uncertainty” as the general problem of model 
specification/selection, and the implications of making arbitrary assumptions in 
fisheries models.  There is simply not enough information to estimate some system 
features reliably, and different subjective specifications often result in substantially 
different inferences (Schnute and Richards 2001).  We define model uncertainty to 
encompass all of the assessment model assumptions that are imposed by the analyst 
using subjective judgment.  This includes everything from the fundamental dynamic 
equations governing population dynamics, to the specification of observation error 
probability distributions.  There are obvious cases where the issue of model 
uncertainty is easy to appreciate – e.g. how should one compare the inferences from a 
classical mass action model of population dynamics with an Individual-Based Model 
(IBM), when the two are structured completely differently and parameter estimates 
are based on different types of data?  In this report, we are often interested in more 
subtle instances of model uncertainty, e.g. two models might be identical except for 
the assumed variances in process and/or observation errors.   
 
As with Estimator Performance above, this issue is also an underlying theme 
throughout most of the report, within objectives I-VII, outlined in sections 3.3.1-3.3.7.  
The inferences that we make on this subject are derived from exactly the same results 
(i.e. examination of MPD bias, precision and robustness), except they are framed 
against a broader question:   
 

3. Can we make some useful generalizations regarding model 
specification/selection for pelagic fisheries stock assessment?  

 
We only examine this question from the point of view of MPD estimation 
performance, and do not consider the usefulness of model diagnostics for assessing 
the quality of fit between model predictions and observations for individual data 
realizations.  Diagnostics are commonly used (in combination with prior beliefs) 
within an actual stock assessment during the process of model selection (to identify 
the “best” model) or model weighting (to average inferences across models).  But, it 
was beyond the scope of SESAME to produce an automated expert system to simulate 
the model evaluation processes that generally occur during real stock assessment. 
 
3.3.8.D Assessment Uncertainty and Fisheries Mangement 
 
This project does suggest that there are often likely to be non-trivial limitations to the 
quality of inferences that we can expect from any stock assessment model.  This view 
is getting broader recognition in the fisheries literature, and methods for dealing with 
the problem are emerging.  The best methods for dealing with assessment uncertainty 
might be realized through changes in the traditional interface between science and 
management (particularly using formal Management Procedures), and this will likely 
impact on the manner in which stock assessments are conducted in the future.  This 
heading was defined as a logical place with which we might attempt a broad synthesis 
of all the results from the project, discuss the results in the context of the recent 
literature and speculate on the implications for future stock assessment and fisheries 
management.   
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4 METHODS 
 

4.1 SIMULATION-ESTIMATION METHODOLOGY 

The simulation-estimation approach for evaluating statistical models is intuitively 
simple (Fig. 1).  In the real world, we never know the actual state of a fish population, 
so we can never know exactly how well our stock assessment model has described the 
fishery.  Instead, we use an operating model (e.g. Linhart and Zuchini 1986, Hilborn 
and Walters 1992) to simulate fish and fishery dynamics, and data characteristics that 
are known exactly.  This is the general approach that has been used in many 
assessment model evaluation studies (e.g. NRC 1998, ICES 1993).  The performance 
of stock assessment models for making inferences can then be evaluated by applying 
each model to the simulated data, as would be done in a real assessment, and 
comparing estimated values of interest (e.g. fishing mortality, stock biomass, etc) to 
the known values.  Repeated application of the process gives some indication of the 
statistical reliability of the estimators.  We should never believe that our operating 
model is a very accurate representation of the real world, but it should be sufficient 
for illustrating the relative importance of the different system characteristics of 
interest.  At the simplest level, operating models can be designed to correspond 
perfectly to assessment model assumptions, and the resulting estimates should give an 
excellent indication of the estimator bias and variance that can be expected 
conditional on the assessment model being “correct”.  But the more meaningful 
applications involve operating models that are considerably more complicated than 
the assessment models, and typically include plausible features that could not be 
quantified in the real world.  In this way, it is openly recognized that the assessment 
model is “wrong”, and the simulations provide a measure of how reliable the model is 
likely to be when applied under more “realistic” conditions, including when 
untestable assumptions are violated. 
  
While the overall approach is simple, many problems arise related to the specification 
of the operating model, the handling of prior knowledge about the underlying stock 
dynamics, the choice of performance indicators, and the difficulty in trying to 
automate the process of model selection/evaluation without a thorough examination of 
diagnostic output that would normally occur during a real stock assessment.  We 
attempt to justify our decisions in the operating model descriptions, but serious 
unresolved problems remain and are detailed in the discussion of Methodological 
Limitations (5.12).  The operating model specification, assessment models selected 
and performance indicators for evaluation are all described in the following sections.  
 
SESAME required a complicated organizational framework for handling a large 
amount of simulated data and results.  Several independent pieces of software were 
involved, and standardized file formats were required to integrate everything together.  
Results from ~25 different operating model scenarios are included in this report. For 
most SBT scenarios, there were 10 stochastic state and data realizations generated (40 
for the 2003 SCTB-MWG YFT study).  The number of assessment models applied 
varied, depending on the operating model scenario (usually ~10).  Thus, the results 
presented consist of several thousand assessment model fittings run over the course of 
this project.  
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Fig. 1. Outline of simulation-estimation methodology for stock assessment 
model evaluation. 

 
Given the time constraints, we had to strike a balance between the number of 
operating model scenarios to explore, the number of state and data realizations to 
generate, the number of assessment models to apply, and how thoroughly to 
investigate the specification effects of different assessment models.  We chose to 
examine a larger number of operating and assessment models to get a broad overview 
of issues that are likely to be problematic in real assessments.  The downside of this 
decision was that we used fewer stochastic realizations than we would have liked 
(limiting the statistical power of the study), and we probably have less confidence that 
we know how to resolve the problems that were identified because each scenario was 
not explored in detail. 
 
We note that the simulation-estimation approach is related to, but distinct from, the 
Management Procedure (MP or Management Strategy Evaluation, MSE) approach 
that can be used to evaluate and compare assessment models within the context of an 
overall management plan (e.g. Punt 1996, CCSBT 2002).  The MP approach also 
involves hidden operating models that are used to simulate fish and fishery dynamics 
and data collection.  But the MP approach involves a feedback-control cycle in which 
management decisions (e.g. TAC setting), population dynamics and fishery events are 
simulated iteratively within each fishery realization.  In the SESAME project, each 
stock assessment model is fit only once to a given data realization, and not updated 
with additional information. In some ways, the MP approach is more attractive for 
evaluating assessment models, because the performance indicators should be more 
readily defined from management objectives, and the iterative application to a 
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changing stock gives a better idea of performance under systematically changing 
conditions that are likely to be encountered as a fishery evolves.  However, the 
iterative nature of MP applications means that any decision rule based on an 
assessment model requires refitting the assessment model each time a decision is 
required (i.e. 30 fittings for one 30 year projection), in combination with many 
stochastic realizations to represent uncertainty in future dynamics.  In the case of 
CCSBT MP development, this involves tens of thousands of model fittings, and this is 
computationally prohibitive for complicated models.  Fortunately, it seems to often be 
the case that very simple assessment models, or even data-based decision rules, work 
as well or better than sophisticated assessment models within an MP framework.  
However, it is also usually the case that the MP framework is predicated upon a 
sophisticated assessment used to specify the operating model(s), and quantify the 
uncertainty about the current stock status and future dynamics.  Thus the effectiveness 
of the MP evaluation procedure is potentially limited by the quality of the operating 
model, and the results of studies like SESAME are directly relevant to this operating 
model conditioning.   
 

4.2 OPERATING MODELS 

4.2.1 VSM: a generic fishery simulation model 

 
The Virtual Stock Model (VSM) software package was designed as part of SESAME 
to potentially simulate a broad range of fish populations and fishery dynamics, and 
was parameterized to represent several alternative representations of the SBT fishery 
system.  VSM consists of two distinct parts: the system dynamics simulator, which 
describes the fishery and population dynamics, and the observation simulator, which 
simulates the data collection process.  The underlying dynamics are based on fairly 
standard fisheries modelling assumptions and implemented using difference equations 
iterated on an arbitrary time step.  VSM dynamics represent processes that are 
commonly found in sophisticated stock assessment models, including age structure, 
stock-recruitment relationship and multiple fisheries with distinct effort patterns and 
selectivity.  Fisheries observations potentially consist of fishery-specific total catch, 
catch-at-length, catch-at-age, effort, tag release events including lengths at release, 
and tag recoveries (including release event and length-at-release).  Research surveys 
can be implemented as special cases of fisheries if required.  VSM also includes many 
plausible features that are not likely to be found in an assessment model, including 
arbitrary spatial structure with migration dynamics, and temporal variability in 
catchability, selectivity and size-at-age.  The software was designed with future 
development in mind, and thus includes a number of additional features that have not 
been thoroughly tested to date, including multi-species predator-prey dynamics 
(fishing is actually an implementation of predation).  Implementation details are 
described in Appendix 1 (VSM technical description). 
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4.2.2 VSM Parameterization of the fishery operating model to resemble the 
SBT system 

 
The VSM simulator, was defined to qualitatively resemble the SBT fishery (from 
around 1950-2000).  However, there was no explicit conditioning to actual data.  The 
exploitation history of the fishery was intended to be similar in the different operating 
models, but the variable production dynamics in the different scenarios limited the 
extent to which this could be achieved.  The specific details are described in 
Appendix 2 (VSM parameterization for a fishery resembling SBT).  Two baseline 
operating model scenarios (E_base and D_base) were defined, and all other models 
were derived from these two.  E_base is the easy scenario, in which the underlying 
dynamics and observation characteristics are all probably better than we could ever 
hope for in the real world (although the exploitation and data collection history are 
less than ideal, and the fine temporal scale of iteration ensures that no assessment 
model examined conforms perfectly to this structure).  D_base is the difficult 
scenario.  We would hope that the real world is not as difficult as D_base, but 
arguably each individual feature is probably not unreasonably perverse.  The 
biological parameters generally conform closely with the assumptions used in SBT 
stock assessment (e.g. Preece et al. 2001).  Qualitatively, the main features of E_base 
included: 

 
• spatially-aggregated  
• dynamics are iterated in monthly time-steps (fishing, growth, and mortality) 
• data aggregated in annual units 
• spawning (and age 0 recruitment) occurs instantaneously every 12 months, 

beginning on month 1  
• 4 fisheries with selectivity and catch/effort characteristics roughly 

corresponding to: early (Japanese) longline on spawning grounds, (Japanese) 
longline on feeding grounds, late (Indonesian) longline on spawning grounds 
and (Australian) juvenile fishery; since the model is spatially-aggregated, the 
actual location of each fishery is irrelevant, but spatial effects are implicitly 
present in the selectivity (e.g. immature fish are not available to the spawning 
grounds longline fishery, but are harvested by the feeding grounds longline 
fishery).   

• 50 year exploitation history resembling SBT, with largest catches on the 
spawning grounds in the first 15 years, followed by increasing catch in the 
feeding grounds and juvenile fishery, drastic cuts to these fisheries after about 
40 years, and an increasing spawning ground fishery in the last 10 years 

• Fishery selectivity is purely an age-dependent process and is constant over 
time for all fisheries. 

• natural mortality vectors are unchanging over time and decreases with age 
(except for senescence in the oldest ages) 

• knife-edged maturity at age 10 (0% of ages 0-9 spawn, 100% of ages 10+) 
• spawning potential is directly proportional to mass-at-age   
• mean length-at-age is constant over time and follows a von Bertalanffy 

growth curve 
• length-at-age is normally distributed with variance slightly smaller than 

estimated in Polacheck et al. (2003a)  
• mass-at-length (and age) is constant over time 
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• recruitment follows a Beverton-Holt stock recruitment relationship with a CV 
~ 0.4 for recruitment deviations.   

• initial population was unfished, and in a random state determined by the 
stock-recruitment relationship 

• The relationship between effort and fishing mortality was only reliable for the 
longline feeding grounds fishery (annual CV ~ 0.1, no temporal trends in 
catchability).  Effort was intentionally misleading for all other fisheries, and 
all assessment models explicitly recognized this. 

• catch-at-length data available for all fisheries (random sample of 1000 from 
the whole year) 

• catch-at-age data only available for the late spawning ground fishery (random 
sample of 1000 from the whole year) 

• 6000-12000 juvenile tag releases in years 41-45.  Tagged fish were released 
mid-year and instantaneously assumed the characteristics of the untagged 
population   

• tag recovery reporting rates were 100%. 
 
D_base characteristics differed from E_base in the following ways: 
 

• feeding grounds longline fishery selectivity varies over time, with preferential 
targeting of relatively abundant sizes (and a minimum target age).  This is 
intended to produce systematically varying selectivity that is broadly 
consistent with economic objectives of targeting valuable ages and 
maximizing CPUE.  

• the juvenile fishery selectivity varies over time in such a way that there is a 
tendency to catch a constant age composition irrespective of the relative 
abundance of age classes.  This is intended to mimic the Australian farming 
practice of selecting an ideal size class for farming.  This reduces the ability 
to estimate recruitment strength for assessment models that assume constant 
selectivity. 

• all fisheries also have a stochastic element to selectivity imposed on the 
underlying relationship. 

• spawning occurs continuously over a 4 month period every year 
• variance on length-at-age is broader than in E_base 
• recruitment follows a Beverton-Holt stock recruitment relationship with a CV 

~ 0.6 for recruitment deviations.   
• The relationship between effort and fishing mortality was much less reliable 

for the longline feeding grounds fishery (annual CV ~ 0.4, annual auto-
correlation ~0.5) 

• catch-at-length sampling is greatly reduced from E_base (sample size 50) 
• catch-at-age sampling is greatly reduced from E_base (sample size 50, still 

only from the late spawning grounds fishery)  
• tag release numbers greatly reduced (300-600 juvenile releases in years 41-

45) 
 
The small sample sizes (and tag release numbers for D_base) were intended to reflect 
the fact that sampling is probably never truly random, but this does not capture 
sampling biases that probably occur in real life.   
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The other SBT operating models are defined qualitatively in Table 1.  Implementation 
details are included in Appendix 2.  Each operating model was primarily intended to 
address the indicated objective, but some are relevant to multiple objectives. 
 

Table 1. Qualitative comparison of different SBT operating model scenarios 
used in the SESAME study.  Characteristics describe differences 
relative to E_base (designated E_x) or D_base (designated D_x).  
Specific details are supplied in Appendix 2.   

Relates Primarily 
to Objective 

 

Operating Model 
Scenario 

Distinguishing feature(s) 

I  Stock and 
Recruitment 

E_h3 
D_h3 

Beverton Holt Stock Recruitment curve steepness = 0.3 

 E_h9 
D_h9 

Beverton Holt Stock Recruitment curve steepness = 0.9 

“steepness” 
indicates the 

degree of 

E_h4_r8 
D_h4_r8 

Beverton Holt Stock Recruitment curve steepness = 0.4 
recruitment deviation auto-correlation = 0.8 

recruitment 
compensation as 
SSB decreases 

E_h8_r8 
D_h8_r8 

Beverton Holt Stock Recruitment curve steepness = 0.8 
recruitment deviation auto-correlation = 0.8 

 E_HSSR 
 

Stock Recruitment curve functional form is a double linear 
“hockey stick” (i.e. recruitment increases linearly with SSB 
up to a maximum and then remains constant as SSB 
increases further)   
steepness = 0.6 

II  Catch under-
reporting 
 

E_CU20ju 
E_CU20llf 
E_CU20lls 

20% juvenile fishery total catch numbers underreported  
20% longline feeding grounds fishery underreported 
20% longline spawning grounds fishery underreported  

 (Catch-at-
Age/Length 
Sampling) 
 

E_CA60 catch-at-age and -length sample sizes = 60 
Tag releases between 600-1200 per year  

IV  Changes in 
growth 
 

E_DDLinf fish growth curve changes over time, roughly consistent 
with a density dependent effect of intra-specific foraging 
competition  

V  Selectivity 
 

E_H45  
D_H45 

longline feeding grounds selectivity shifts to younger ages 
at year 45 (out of 50) 

 E_HL fishery selectivity is purely length-based (size selectivity 
effects are maintained in the fish population) 

 E_HTS fishery selectivity characteristics are defined as in D_base, 
but other characteristics are from E_base 

VI  Catchability 
 

E_qInc 
D_qInc 

longline feeding grounds catchability increasing 
exponentially at 1% per year (42% increase in efficiency 
over 35 years) 

 E_qI 
D_qI 

longline feeding grounds catchability related to effort; 
(qualitatively consistent with fleet interference) 

 E_qC 
D_qC 

longline feeding grounds catchability related to effort; 
(qualitatively consistent with fleet co-operation) 

 E_DRq Stock Recruitment deviation CV = 0.6 
feeding grounds longline catchability annual CV = 0.5, 
annual auto-correlation = 0.5 
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4.2.3 The SPC-OFP YFT simulator and the SCTB-MWG assessment model 
evaluation project 

 
The YFT simulations were devised with a somewhat different emphasis from 
SESAME SBT, and provided an independent and complementary opportunity with 
which to test assessment models.  The simulated fisheries in the two systems 
contained many similar features, including: 

 
• Most simulation scenarios involved multiple distinct fishing fleets with 

distinct exploitation histories and data dis-aggregated by fleet 
 
• the simulators ran at finer temporal scales (monthly) than the aggregated 

data that was available for analysis (YFT quarterly; SBT annual) 
 
• total catch was available for all fleets (in mass or numbers) 

 
• effort series were available for all fleets (for SBT it was intentionally 

uninformative for all fleets except the longline feeding grounds) 
 

• catch composition mostly consisted of length frequency data, with 
characteristics that did not exactly meet any assessment model 
assumptions (SBT and YFT simulators both had time-step mismatch 
effects relative to the data aggregation units; YFT also had contaminated 
length samples) 

 
• in some scenarios, catchability trends were present, complicating the 

relationship between effort and fishing mortality (or CPUE and 
abundance) 

 
• tag releases by area, and recapture data by fleet were included 

 
Notable differences between the SBT and MWG YFT simulations included: 
 

• the SPC-OFP simulator included relatively fine-scale (5 X 5 degree) spatial 
dynamics with migration behaviour and recruitment linked to dynamic SST 
fields (with inter and intra-annual variability).  The SESAME SBT simulator 
was only run in a spatially-aggregated mode. 

 
• SBT simulations all included 3 Longline (LL) and 1 Purse Seine (PS) fishery.  

The YFT simulations explored 5 scenarios with different fishing fleets and 
data spatial aggregation units: 

1) 1F X 1R = 1 LL Fishery; 1 Region  
2) 2F X 1R = 2 Fisheries (1LL, 1 PS); 1 Region 
3) 4F X 2R = 4 Fisheries (2LL, 2PS); 2 Regions  
4) 7F X 7R = 7 Fisheries (7LL); 7 Regions 
5) 16F X 7R = 16 Fisheries (7LL, 6PS, 3 artisanal); 7 Regions 
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• very little prior information on natural mortality was provided with the YFT 

simulations, and the mortality-at-age vectors differed between scenarios.  
Some SBT assessment models used the known values of M, while others 
attempted to estimate M. 

  
• YFT fisheries generally experienced lower overall depletion compared to 

SBT (i.e. the stock size was not reduced as much, so there was less stock size 
contrast).  The SBT biomass trajectories were generally close to a one way 
trip, with some recovery near the end.  YFT biomass trajectories had 
substantial decreases and increases. 

 
• YFT seemingly did not attempt to test different stock recruitment 

relationships, while SBT scenarios explicitly tested a range of recruitment 
dynamics, including different levels of productivity, auto-correlation in the 
random errors that determine cohort strength, and alternative stock-
recruitment functional relationships. 

 
• One fishery (late longline spawning) in the SBT simulations included some 

direct ageing data which covered a few years near the end of the time series.  
All other fisheries in the YFT and SBT simulations only had Catch-at-Length 
data. 

 
• In YFT scenario 4 (7F X 7R) tag reporting rates ranged between 17-56%.  

(We assumed 100% reporting in SCALIA applications) 
 
• In YFT scenario 5 (16F X 7R) the simulated population had sex-specific 

growth and mortality characteristics.  (We assumed sexes were identical in 
the SCALIA and production model applications)  

 
We present some results from the 2003 YFT project in this report, but it is expected 
that intersessional work under the auspices of the SCTB-MWG will lead to a more 
comprehensive synthesis of the 2003 results for discussion at SCTB-17 in 2004.   
 

4.3 ASSESSMENT MODELS 
 
Table 2 compares the different assessment model specifications that we have included 
for the SBT objectives and briefly describes the intention behind each.  General 
descriptions of the various models follows, and technical implementation details are 
included in the appendices.  
 
A qualitative description of models applied to the SPC-OFP YFT simulated data for 
the 2003 SCTB MWG are listed in Table 3.  Specific details are supplied under the 
individual assessment model sections and in the appendices.  We do not describe 
much of the 2002 YFT study in this report (see SCTB-MWG 2002, Labelle 2002, 
Kolody 2002, Ricard and Kolody 2002), because the 2003 study was conducted more 
thoroughly and was more comprehensive in scope. 
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Table 2. Qualitative description of assessment model specifications applied to 
the simulated SBT data sets.  SCALIA models are defined relative to 
the reference model SC_base. 

 

Assessment 
Model 

Specific 
Implementation 

Defining features 

Age-Aggregated 
Production 
Models (AAPMs) 

f_calc Fox surplus production model 

 s_calc Schaefer surplus production model 

Age-Structured 
Production 
Models (ASPMs) 

ASPM_d2g Age-Structured Production Model using selectivity from 
E_base operating model; deterministic recruitment from an 
estimated Beverton-Holt SR 

 ASPM_d6g Age-Structured Production Model with selectivity calculated 
using simple approximation from Catch-Length distribution 
and equilibrium age structure assumptions; deterministic 
recruitment from an estimated Beverton-Holt SR 

 ASPM_sto Age-Structured Production Model using selectivity from 
E_base operating model; annual stochastic recruitment 
deviations estimated from Beverton-Holt SR 

SCALIA SC_base SCALIA reference model 

 SC_Mest natural mortality estimated 

 SC_noHTS selectivity constant over time 

 SC_qTS1 longline catchability temporal variability estimated (random 
walk CV ~ 0.01) 

 SC_qTS5 longline catchability temporal variability estimated (random 
walk CV ~ 0.05) 

 SC_EL natural mortality estimated; catchability temporal variability 
estimated; length-at-age mean and variance estimated 

 SC_noTags tagging data not used  

 SC_1ideal specifications closely resemble E_base operating model 

 SC_2ideal specifications closely resemble D_base operating model 

 SC_CA60 uses cohort-sliced age data (in addition to direct aged data for 
late spawning grounds) 

 SC_189 small CA/CL effective sample sizes  

Integrated 
Analysis using 
cohort-sliced CA 
data 

BIH_2 Polacheck and Preece (2001) model (resembling Butterworth 
et al. (2003)) and parameterized to superficially resemble 
SCALIA version SC_BIH 

MULTIFAN-CL mf_yft MULTIFAN-CL implementation as taken from the website 
example application for simulated YFT; adapted for SBT   

 mf_scan MULTIFAN-CL implementation modified to resemble 
SC_base  

 mf_qTS as mf_scan, except feeding grounds longline catchability 
temporal variation estimated 
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Table 3.  Assessment models applied to the  SPC-OFP YFT simulated data sets.    

 

 Assessment 
Model 

Defining features 

Age-Aggregated 
Production 
Models 

Fox Fox surplus production model using CPUE from one of the 
largest longline fisheries 

 Fox_agg Fox surplus production model using the nominal CPUE 
(total catch of all longline fisheries / total effort of all 
longline fisheries) 

 Schaefer Schaefer surplus production model using CPUE from one of 
the largest longline  fisheries 

 Schaefer_agg Schaefer surplus production model using the nominal CPUE 
(total catch of all longline fisheries / total effort of all 
longline fisheries) 

Age-Structured 
Production 
Models 

ASPM_d6g Age-Structured Production Model with selectivity 
calculated using simple approximation from the Catch-at-
Length distributions and equilibrium age structure 
assumptions 

(Results from the 
ASPMs were 
withdrawn from 
the SCTB study 
because of 
numerical 
problems)  

ASPM_sto Age-Structured Production Model with selectivity 
calculated using simple approximation from the Catch-at-
Length distributions and equilibrium age structure 
assumptions; stochastic quarterly recruitment deviations 
estimated from a Beverton-Holt SR 

SCALIA SCALIA 
 

11 different specifications for the 2003 study are detailed 
under the SCALIA section.  There was not a systematic 
comparison of models; differences between specifications 
related to: 
effort deviation CVs (0.1 – 0.4) 
effective sample sizes of CL data downweight by (0.1-0.01) 
max(effective sample sizes of CL data)   (200 - 1000) 
effective tag release co-efficients (0.01 - 1.0) 
recruitment deviation CV (0.2 – 0.8) 
length-at-age (mean and variance fixed or estimated) 
different methods of ageing tags 
constraints on mortality estimation 
selectivity and catchability (constant or temporally variable) 

other MULTIFAN-CL 
A-SCALA 
ADAPT 

these models were applied by other analysts in the SCTB 
MWG and are not detailed as part of this report; however 
we do reproduce some of the MULTIFAN-CL results for 
comparison. 
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4.3.1 Age-aggregated and age-structured Production Models 

 
Production models are very simple to implement and interpret, and have a long 
history in fisheries stock assessment.  For SBT, they are currently being considered 
within the context of Management Procedure development (e.g. Butterworth and Mori 
2003, Polacheck et al. 2003b), but have also been interpreted as alternative 
assessments in parallel with more sophisticated models (Butterworth and Plaganyi 
2001).  In attempting to determine whether the complicated integrative models are 
actually adding anything new to our understanding of fishery systems and quality of 
advice to managers, these simple models provide a benchmark that we can compare 
with.  The models that we included are briefly described in Appendix 3. 
 
The age-aggregated models (Fox and Schaefer) that we examined are particularly 
simple to implement, requiring only a time series of total catch, and a relative 
abundance index (e.g. CPUE).  They require estimation of only 2 free parameters 
(carrying capacity and intrinsic growth rate), while other parameters (e.g. CPUE 
catchability) are calculated analytically.  It would have been worth considering a more 
generalized production model (e.g. Pella-Tomlinson), except that this would probably 
require additional constraining assumptions on the “shape” parameter, and we were 
interested in the simplest options possible for testing in an automated context. 
 
Age-structured production models (ASPMs) are more sophisticated, in that they 
represent the age structure of a population and potentially the associated time lags 
observed in the dynamics of relatively long-lived populations.  It can be argued that 
these models are very simple, in that only stock recruitment relationship parameters 
need to be estimated with an objective function minimizer, and the only data 
requirements are total catch by fishery and a relative abundance index.  However, in 
this form, these models also require fixed input of natural mortality and selectivity by 
fishery, which must be derived by separate and not necessarily simple analyses.  We 
tested two forms of ASPM, one with recruitment as a deterministic function of the 
estimated stock recruitment relationship, the other with annual recruitment deviations 
estimated around the mean stock recruitment relationship.  For the stochastic case, 
this required estimation of 50 extra parameters for the SBT simulations and 148 for 
the YFT simulations.  In the stochastic case, the ASPMs do not really represent a 
simple function minimization problem.  In the SBT simulations, we also compared 
performance between ASPMs with the correct selectivity taken as fixed input, and an 
ASPM with the selectivity derived from a simple empirical calculation based on the 
catch-at-length distributions and equilibrium age structure assumptions.   
 
The Fox, Schaefer and ASPMs were also applied to the SPC-OFP YFT simulated 
data.  However, in the YFT case, the ASPM analyses were withdrawn because of 
numerical problems (discussed in 5.1.2). 
 

4.3.2 SCALIA: a generic fisheries stock assessment model 

 
SCALIA (Statistical Catch-at-Age/Length Integrated Analysis) is a flexible stock 
assessment framework that was initially developed for Southern Bluefin Tuna stock 
assessment (Kolody and Polacheck 2001).  The majority of SCALIA features have 
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been implemented in other stock assessment models in the past and the acronym is 
thus probably most meaningful as an indicator of the group involved with 
development, rather than any specific features.  SCALIA arose out of the recognition 
that a number of features in MULTIFAN-CL might address some of the outstanding 
issues in the existing methods for SBT assessment, building on the approach of 
Butterworth et al. (2003) and Polacheck and Preece (2001).  As a result of the 
SESAME and SCTB-MWG model evaluation projects, SCALIA evolved many 
additional features and currently allows the analyst substantial control over what is 
fixed input and what is estimated and how over-parameterization is constrained.    
 
Technical details of most SCALIA features are included in Appendix 5.  Key points 
include: 
 

• spatially-aggregated, age-structured population 
• dis-aggregation of fisheries into an arbitrary number of distinct fleets 
• data include some or all of the following for each fishery:  effort time series, 

total catch in numbers or mass, catch-at-age or catch-at-length, tag recoveries 
(including age or length at release) 

• estimated parameters potentially include: effective effort deviations (errors in 
the relationship between effort and fishing mortality), fishery selectivity 
(including temporal variability), catchability (including temporal variability), 
natural mortality by age, estimation of length-at-age relationship, stock 
recruitment relationship (including deviations from the mean relationship), 
and tag reporting rates (assumed constant over time but different for each 
fishery). 

• fixed input requirements include (in addition to the parameters above if they 
are not estimated): the functional form of the stock-recruitment relationship 
and all variance-related parameters (including standard deviations or penalty 
weightings for error distributions, effective sample sizes for catch-at-length 
and catch-at-age data, and effective release/recapture weighting factor for tag 
data).    

 
For each SBT simulation, the number of estimated parameters was typically ~450, 
most of which were related to effort deviations and selectivity.  However, the flexible 
nested structure means that SCALIA can also represent rather simple models such as 
an Age-Structured Production Model (although it would not be the most efficient 
implementation).  Similarly, in the manner illustrated in Butterworth et al. (2003), 
SCALIA can approximate the main features of an ADAPT-VPA, by specifying 
annual changes in selectivity and large effective sample sizes for the catch-at-
age/length frequency distributions.  
 
SCALIA is implemented with the AD Model Builder software (Otter Research, 
Victoria, Canada, http://otter-rsch.com/), which provides computationally efficient 
function minimization, and different methods for statistical uncertainty estimation.  
We did not generally include uncertainty in most of the SESAME simulation testing, 
except in relation to Objective VIII, where the Inverse Hessian matrix – delta method 
was used to calculate confidence intervals.   
 
To address the SESAME SBT objectives, we defined a variety of SCALIA models 
with different assumptions.  The reference case specification (SC_base) is defined in 
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Table 4, and a range of alternatives are defined relative to the reference case in Table 
5.  The assumptions ranged from highly constrained models specified with reliable 
prior knowledge (depending on the OM scenarios) to rather unconstrained models 
with large variances and considerable structural freedom.   
 
SCALIA specifications for the SPC-OFP YFT simulations were primarily intended to 
examine the treatment of alternative methods for admitting spatial structure (i.e. by 
allowing varying degrees of variability in selectivity and catchability, including 
temporal trends).  A baseline specification is defined in Table 6 and deviations from 
the baseline are defined in Table 7. 
 

Table 4. The specification for SCALIA model SC_base, a compromise of 
features resembling applications to real SBT data, and from which a 
number of others are derived in Table 5.  Terms are defined in 
Appendix 5.  

 

 Description Value 

 total catch observation error app. CV 0.01 

 stock-recruitment relationship log-scale CV (t < -5;  -4 <= t <= 50 ) 0.01; 0.6 

 stock-recruitment auto-correlation  0 

 catch-at-length effective sample size (proportion of observed)  1 

 catch-at-length maximum effective sample size  200 

 effective tag release co-efficient 1 

 tag mixing time (timesteps) 1 

 tag reporting rates (all fisheries) 1.0 

 tag age estimation Cohort-slicing 

 maximum effective effort deviation app. CV  0.2 

 effort deviation prior scaling exponent 0 

 temporal change in selectivity app.CV 0.05 

 temporal change in selectivity – number of timesteps between 
changes for longline feeding grounds and juvenile fishery 

5 

 selectivity curvature penalty (pseudo-length-based parameterization 
used) 

2.0 

 length-at-age mean Correct values 
used as fixed 
input  

 length-at-age variance Estimated 

 number of length-based selectivity parameters 8 

 mortality-at-age  Correct values 
used as fixed 
input 

 mortality-at-age curvature penalty and CV on deviations from mean n.a. 

 Beverton-Holt Stock Recruitment relationship steepness Estimated 

 catchability temporal variability app. CV 0 

 temporal change in catchability – number of timesteps between 
changes for longline feeding grounds and juvenile fishery 

n.a. 
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Table 5. Assessment model specifications for the SBT simulations.  SCALIA 
models are defined relative to the reference model SC_base. 

Assessment 
Model 

Defining features 

SC_base SCALIA reference model 

SC_Mest natural mortality estimated 
mortality-at-age deviation from mean and second difference curvature penalty 
weighting = 0.2 

SC_noHTS selectivity constant over time 

SC_qTS1 longline catchability temporal variability estimated (5 y blocks);  random walk CV ~ 
0.01 

SC_qTS5 longline catchability temporal variability estimated (5 y blocks);  random walk CV ~ 
0.05 

SC_EL natural mortality estimated 
mortality-at-age deviation from mean and second difference curvature 
 penalty weighting = 0.2 
catchability temporal variability estimated (5 y blocks);  
 random walk CV=0.01 
length-at-age mean and variance estimated 
tag ageing with fractional fish, and weighted by N(a) 

SC_noTags tagging data not used  

SC_1ideal specifications closely resemble E_base: 
• growth specifications match E_base scenario 
• effort deviation CV = 0.1 
• recruitment deviation CV ~ 0.4 
• CA/CL effective sample sizes = 1000  
• selectivity constant 

SC_2ideal specifications closely resemble D_base: 
• growth specifications match D_base scenario 
• effort deviation CV = 0.4 
• CA/CL effective sample sizes = 60  
• catchability variable (10 y blocks) 

SC_BIH cohort-sliced age data used (in addition to direct aged data for late spawning grounds) 
CA effective sample sizes = 60  
 

SC_CA60 CA and CL effective sample sizes = 60 
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Table 6. The specification for SCALIA model  SM_1921 is presented as a 
reference case, with other models defined relative to this case in 
Table 7.  Terms are defined in Appendix 5.  

 

 Description Value 

 total catch observation error app. CV 0.01 

 stock-recruitment relationship log-scale CV (t < -5;  -4 <= t <= 148 ) 0.01; 0.6 

 stock-recruitment auto-correlation  0 

 catch-at-length effective sample size (proportion of observed)  0.1 

 catch-at-length maximum effective sample size  200 

 effective tag release co-efficient 0.1 

 tag mixing time (quarters) 1 

 tag reporting rates (all fisheries) 1.0 

 tag age estimation fractional ages 
weighted by 
N(t,a) 

 maximum effective effort deviation app. CV  0.2 

 effort deviation prior scaling exponent 1 

 temporal change in catchability app. CV  na 

 selectivity curvature penalty (pseudo-length-based parameterization 
used) 

2.0 

 length-at-age mean fixed input 
estimated from 
auxiliary data  

 length-at-age variance estimated 

 number of length-based selectivity parameters 12 

 mortality-at-age curvature penalty and CV on deviations from mean 0.2 

   

 Beverton-Holt Stock Recruitment relationship steepness estimated 

 catchability temporal variability none 

 selectivity temporal variability none 
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Table 7. SCALIA specifications for the SPC-OFP YFT simulations.  
Definitions indicate deviations from SM_1921 specifications given in 
Table 6.  The YFT scenario (number of Fisheries X number of 
Regions) is listed under the assessment model name. 

 

Assessment 
Model 

Defining features 

SM_1921*  
(1F X 1R) 

reference specification 

SM_2914 
(2F X 1R) 

max effort dev CVs by fishery = 0.4, 0.4 
catch-at-length effective sample size = min(0.1 of observed, 1000) 
effective tag release co-efficient = 1.0 
stock recruitment relationship log-scale CV = 0.8 
 

SM_2918* 
(2F X 1R) 

max effort dev CVs by fishery = 0.2, 0.2 
stock recruitment relationship log-scale CV = 0.8 
mean length-at-age estimated 
 

SM_2930 
(2F X 1R) 

stock recruitment relationship steepness fixed input = 0.999 
Natural mortality estimated, but the same for all ages  
effective tag release co-efficient = 0.01 

SM_3915* 
(4F X 2R) 

max effort dev CVs by fishery = 0.2, 0.2, 0.2, 0.2 
catch-at-length effective sample size = min(0.01 of observed, 1000) 
stock recruitment relationship log-scale CV = 0.8 
 

SM_3931** 
(4F X 2R) 

max effort dev CVs by fishery = 0.1, 0.1, 0.1, 0.1 
 
temporal variability in catchability and selectivity estimated in 4 blocks of 37 
timesteps 
 

SM_4918* 
(7F X 7R) 

max effort dev CVs by fishery = 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2 
effective tag release co-efficient = 1.0 
stock recruitment relationship log-scale CV = 0.2 
length-at-age not estimated 
tags aged by cohort-slicing 

SM_4950 
(7F X 7R) 

max effort dev CVs by fishery = 0.3, 0.3, 0.2, 0.1, 0.2, 0.3, 0.3 
effective tag release co-efficient = 0.5 
stock recruitment relationship log-scale CV = 0.8 
length-at-age not estimated 
tags aged by cohort-slicing 

SM_4930 
(7F X 7R) 

max effort dev CVs by fishery = 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2 
stock recruitment relationship steepness fixed input = 0.999 
M estimated, but constant over ages 
effective tag release co-efficient = 0.01 
length-at-age not estimated 
tags aged by cohort-slicing 

SM_5915 
(16F X 7R) 

max effort dev CVs by fishery = 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 
0.4, 0.4, 0.4, 0.4  
catch-at-length effective sample size = min(0.01 of observed, 1000) 
effective tag release co-efficient = 1.0 
stock recruitment relationship log-scale CV = 0.8 
length-at-age not estimated 
tags aged by cohort-slicing 



 39

Assessment 
Model 

Defining features 

SM_5950 
(16F X 7R) 

considers large longline effort series to be highly informative  
max effort dev CVs by fishery = 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.2, 0.2, 
0.2, 0.2, 0.1, 0.2, 0.2 
effective tag release co-efficient = 0.5 
stock recruitment relationship log-scale CV = 0.6 
mortality-at-age curvature penalty and CV on deviations from mean = 0.1 
effort deviation prior exponent = 0.5 
length-at-age not estimated 
tags aged by cohort-slicing  

* results submitted to SCTB-16 MWG 

** indicates specification that failed badly and was aborted before all runs completed 

 
 
 

4.3.3 BIH_2: an independent implementation of a SCALIA-like model  

 
BIH_2 is an independently coded and extended implementation of Butterworth et al. 
(2003), described in Polacheck and Preece (2001).  This assessment model provided 
another independent performance test, but was only applied to a restricted subset of 
operating models.  BIH_2 and SC_BIH were both intended to examine the effects of 
cohort-slicing and were parameterized to be similar.  However, the models have a 
number of different features.  When performance differences are evident between the 
two, we expect that BIH_2 is a better indicator of the performance to be expected 
when cohort-slicing is used.  BIH_2 was devised explicitly for use in this manner and 
performance was extensively reviewed as part of actual SBT assessment; SCALIA 
was not explicitly intended for use with cohort-slicing data, and plus-group 
assumptions were not critically examined. 

4.3.4 MULTIFAN-CL 

 
MULTIFAN-CL is a flexible modelling framework that was developed initially for 
the assessment of tuna fisheries in the WCPO (e.g. Hampton and Fournier 2001).  It 
combines a formal treatment of growth curve estimation via the modal decomposition 
of catch length frequency distributions (Fournier et al. 1990), and the statistical 
modelling of population dynamics (Fournier and Archibald 1982).  Many of the 
features have been adopted in other modelling approaches (e.g. SCALIA, A-SCALA); 
and the software continues to evolve.  The main feature that MULTIFAN-CL includes 
that is lacking from most single species age-structured stock assessment models is the 
ability to dis-aggregate into arbitrary spatial units.  Since the compiled software has 
recently become publicly available (http://www.multifan-cl.org), we decided to 
compare it alongside the other models in the SESAME SBT simulations, as an 
additional independent implementation of a complicated stock assessment model.  
This was a last minute addition to the SESAME project, and we recognize that an 
experienced MULTIFAN-CL user might have opted for different specifications.  The 
three specifications (Table 1) that we applied to the simulated SBT data are defined in 
detail in Appendix 6.  Fixed inputs (e.g. maturity-at-age, length-at-age, mortality-at-
age) and initial parameter values were the same as the SCALIA models.   
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Labelle (2002, 2003) describe the application of MULTIFAN-CL to the SPC-OFP 
YFT simulated data.  We had no part in the specification in the YFT case, but we 
reproduce some of the results from the 2003 study for comparison with SCALIA and 
the production models in this report.   
 

4.4 CRITERIA FOR EVALUATING ASSESSMENT MODEL PERFORMANCE 

 
Stock assessment models typically make a lot of inferences about population 
dynamics and inevitably some are better than others.  Given that the goal of stock 
assessment is generally recognized to be the provision of advice to fisheries 
managers, the relative value of the different performance indicators should be related 
to management objectives.  Unfortunately, management objectives are often poorly 
defined, and different analysts have somewhat different views about what the most 
important performance indicators are.  We report on a range of indicators, and they 
vary depending on what we are trying to illustrate in the different sections.  Table 8 
indicates a range of quantities that we calculated as potential assessment model 
performance indicators.  Some were adopted to maintain compatability with the 
results requested by the SCTB-MWG.  They can be roughly broken into various 
(overlapping) categories related to: 
 

• Biomass – describes the amount of some component of the fish population 
(e.g. spawning biomass or exploitable biomass).  In stock assessment, this is 
often more useful (and more reliably estimated) if expressed relative to some 
reference point (e.g. unfished equilibrium, biomass at MSY, biomass 5 years 
ago, etc); this is discussed under management reference points below.  
Biomass relative to the biomass that would have been observed in the absence 
of fishing can be a useful measure for quantifying the impact of fishing when 
some element of the system is non-stationary (e.g. the stock recruitment 
relationship). 

 
• Exploitation rates – (Catch/Biomass) an aggregated measure of fishing 

mortality that does not need to be interpreted relative to age structure and 
selectivity.  

 
• Recruitment – useful for examining short-medium term population 

projections, and exploring stock recruitment relationships  
 

• Management reference points – attempt to quantify stock characteristics that  
measure the state of the stock or fishing mortality relative to management 
objectives (e.g. B_MSY-related, F(0.1), F(rep), etc).  Providing advice to 
managers about the status of the population and impact of the fishery are 
usually the main goals for stock assessment, and this is often expressed in two 
dimensions:1) current stock biomass relative to management objectives (i.e. is 
the stock over-exploited?), and 2) current harvest rates relative to management 
objectives (i.e. will the current fishing pressure cause the stock biomass to 
change in a direction that is compatible with management objectives ?).   
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• Management Procedures – propose a TAC according to the stock assessment 
model inferences and a decision rule (e.g. F(MSY)*B(current)).   
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Table 8. Candidate Performance Indicators used to evaluate stock 
assessment model inferential performance. t indicates an arbitrary 
time-step (in years for SBT simulations); T indicates the final time-
step for which data are available (current time).  

Indicator Description 

 
Biomass Indicators 
 

B(t) Time series of total exploitable (age 1+)  biomass 

SSB(t) Time series of Spawning Stock Biomass  

B(T-4:T)/B(T-9:T-5)  
(or B_trend) 

Recent Biomass trend 

B(t) / B(t = 1) Time series of Biomass at time t relative to initial Biomass 

B(t) / B_NF(t) Time series of Biomass relative to the biomass that would have occurred 
in the absence of fishing  

*B(t = 1)  
*B(t=0.2T)  
*B(t=0.4T)  
*B(t=0.8T)  
*B(t=0.8T)  
*B(t=T) 
*B(0.2T)/B(t=1) 
*B(0.4T)/B(t=1) 
*B(0.6T)/B(t=1) 
*B(0.8T)/B(t=1) 
*B(T)/B(t=1) 
*B_NF(T) 
*B/B_NF(T) 

Absolute and relative biomass indicators at specific points in time 
 

 
Fishing Mortality Indicators 
 

F(t) Time series of exploitation rate = C(t)/B(t)   

*F(0.2T)  
*F(0.4T)  
*F(0.6T) 
*F(0.8T) 
*F(T) 
*F(T-2:T) 
*F(T-5) 
*F(T-10) 

Exploitation rate indicators at different points in time 
 
 
 
 
average exploitation rate over the last 3 time-steps 

 
Recruitment Indicators 
 

R(t) Time series of age 0 recruitment  

*R(T-9:T)/R(1:10) Ratio of recent recruitment over initial recruitment 

 
Management-related indicators 
 

*MSY Maximum Sustainable Yield 

*B_MSY exploitable biomass at MSY 

*F_MSY exploitation rate at MSY 

*B(T)/B_MSY indicator describing whether the stock is currently overfished relative to 
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Indicator Description 

B_MSY reference point 

*F(T)/F_MSY) indicator describing whether the current exploitation rate will lead to an 
over-fished state relative to B_MSY  

*(F_MSY) X (B(T)) A Management Procedure for TAC setting that should move stock size 
toward B_MSY regardless of current stock size    

* included in the aggregate performance indicator (see text). 
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Not all of these indicators could be calculated for all models.  The AAPMs do not 
distinguish between B and SSB.  Estimation errors in the two are often highly 
correlated, so we only report B (SSB(t) is included for some models in Appendix 6).  
The AAPMs also confound mortality, growth and recruitment, so recruitment is not 
reported for these models.   
 
Additional performance indicators are used in examining stock recruitment related 
issues.  “Steepness” defines the amount of compensation in the stock recruitment 
relationship (specifically, it refers to the ratio of expected recruitment when SSB is 
20% of unfished levels, over expected recruitment when SSB is at unfished 
equilibrium).  We use recruitment Root Mean Squared Error (RMSE) to describe the 
“empirical variability” about the stock recruitment relationship.  This is calculated 
from the MPD estimates of recruitment.  Similarly, empirical SR_rho is the lag(1) 
auto-correlation of MPD recruitment deviations about the stock recruitment 
relationship.  Both of these latter values might be substantially different from the 
assumptions used in model fitting, and may provide evidence of systematic lack of fit 
to the assumed functional form of the stock recruitment relationship. 
 
There were some ambiguities in the working definitions that we used to calculate 
some of these performance indicators (e.g. biomass at the beginning of the time-step 
vs: the average or middle), and this presumably contributes to a small component of 
the performance biases.  There are also different definitions for MSY-related 
calculations.  The most common assumption is that global selectivity remains constant 
at current levels (i.e. using the standard catch equations, the effort and fishing 
mortality of all fleets is scaled proportionately).  In the case of fisheries with 
proportional catch allocations (e.g. SBT), it makes more sense to do the MSY 
calculations assuming that the relative catch proportions remain constant  (in this case 
the global selectivity changes in the equilibrium yield calculations, because with 
different age structures, the different fleets must exert different relative fishing 
pressure to obtain the same catch ratios).  The SBT operating models assumed 
constant catch ratios among fleets, while the YFT operating models assumed constant 
exploitation rate ratios among fleets.  VSM and the production models used constant 
catch ratios.  SCALIA calculated MSY in both ways, and for SBT the results were 
generally very similar.  MULTIFAN-CL, and BIH_2 used constant fishing mortality 
ratios.  The two approaches yield the same result for the production models.  
 
In most cases the assessment model performance is summarized graphically for a 
range of performance indicators, using the ratio of the estimated value (from the 
assessment) over the “true” value from the operating model (e.g. B(t, AM) / B(t, 
OM)).  These ratios are presented as frequency distributions (boxplots or time series 
of quantiles), in a manner consistent with the SCTB-MWG YFT analysis.  These 
allow one to make general statements like “on average the terminal depletion was 
over-estimated by 20%”, or “the absolute biomass estimates had an over-estimation 
bias that increased in magnitude over time”.  In some cases (e.g. stock recruitment 
curve steepness), it can be more informative to actually show the operating model and 
assessment model values, rather than the ratios.  We found the time series plots of 
several indicators (B(t), F(t), etc) to be more informative than a restricted number of 
point estimates, because temporal trends in the estimation bias were often the most 
interesting feature.  We note that the use of ratios as performance indicators are 
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potentially deceptive in some ways.  When biases are large, over-estimation appears 
more extreme than under-estimation. If the AM and OM values differ by a factor of 2, 
this appears as an over-estimation of 100%, but an under-estimation of only 50%.  A 
more subtle deception occurs with respect to the scale of comparison.  If one is 
examining relative biomass (the ratio of B(t)/B(0)), a performance indicator ratio of 
(estimated = 0.2) / (true = 0.1) appears to be a very large error (+100%) relative to 
(estimated = 0.5) / (true = 0.4) an error of +20%.  However, if the same quantities are 
examined in terms of depletion instead (i.e. where depletion = 1- B(t)/B(0)), the 
magnitude of the relative error between the two is reversed to –11% and –16% 
respectively.   

 

We had hoped that there would be well-defined relationships among the performance 
indicators, such that a very restricted subset could be used to describe the essence of 
the assessment model performance.  There were a number of reasonably strong 
relationships as might be expected (e.g. generally B(t) is highly correlated with 
SSB(t);  B(t) and B(t-x) are correlated to a decreasing degree as x increases,  errors in 
B(t) and F(t) are inversely related, as are B(MSY) and F(MSY)).  Unfortunately, in 
the majority of cases, we could not interpret the performance of one indicator as very 
representative of the others.  The relationships among some of the indicators that we 
chose to focus on are illustrated in Fig. 2.   
 
We deliberately avoided the use of multivariate statistics for the synthesis, because we 
did not want to transform the results in a manner that obscures the nature of the 
estimation problems.  But we did reluctantly include a simple aggregate performance 
indicator, because there is an irresistible desire to have complicated results reduced to 
a single dimension.  Even the aggregate index has two dimensions of interest (bias 
and variance).  The variance of the aggregate tended to be the focus of discussion, but 
even this is not always straightforward since robustness to outliers (e.g. range) might 
be more important than the actual variance.  The aggregate is simply an arithmetic 
mean of an arbitrary mix of 28 performance indicators (indicated in Table 8), selected 
on the basis that all of the assessment models were generating estimates for these 
quantities.  The aggregate index for each assessment model can also be calculated 
across multiple operating models.  This latter comparison potentially allows one to 
rapidly compare the robustness of assessment models to a range of conditions, to 
identify gross performance differences.  However, we did find the aggregate 
potentially deceptive in some cases, and examination of the individual performance 
indicators usually provided a more satisfactory comparison of assessment model 
performance.     
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Fig. 2. Scatterplots (with LOWESS smoothing lines) and Pearson 
correlation coefficients illustrating typical relationships between 
assessment model performance indicators.  Each point represents a 
ratio of (AM estimate)/(OM actual).  The 60 points in each 
comparison are taken from 6 different assessment models (f_calc, 
ASPM_d2g, SC_base, SC_Mest, MF_YFT and MF_scan) each 
applied to 10 stochastic realizations from the E_base (highly 
informative) operating model scenario.  
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4.5 DATABASE OVERVIEW 
 
We found a relational database to be an extremely powerful tool for organizing the 
operating model state realization summary statistics and assessment model estimates.  
Every assessment model fitting to each data realization produced a uniquely 
identifiable file of results that were uploaded to an ODBC-compliant database.  In 
addition to stock assessment model estimates, these files potentially contained flags 
that were useful for diagnosing function minimization problems (e.g. final gradients 
of the objective function with respect to parameters).  In this manner we were able to 
query the database to look for suspicious results that otherwise might not be identified 
due to the highly automated manner that the assessment models had to be applied.  
The linked structure of the database facilitated an easy comparison of assessment 
model results with operating model “true” values across all data realizations for the 
operating models of interest.  Data extractions were made through a simple command 
line argument to R software functions, such that it was easy to compare a range of 
assessment models for a given operating model, or a range of operating models for a 
given assessment model.  For brevity we do not include further details about database 
implementation, but we recommend that any similar study should use a similar 
approach.   

4.6 QUALITY CONTROL 
 
We endeavoured to test that operating and assessment models were implemented and 
documented correctly, but inevitably, coding errors occur in complicated software.  
The complexity of the simulations also led to mis-specifications and interpretation 
errors among participants, that sometimes were not recognized until well into the 
project when the technical documentation was being completed.  When the errors 
were large, all affected results were re-run; relatively minor errors are documented 
and perhaps apparent only as peculiar model specifications.  While we cannot be sure 
that all the errors were identified, the multitude of comparisons among independently 
coded population dynamics models gives us a reasonable degree of confidence that 
the gross features of most models behaved roughly as intended in the majority of 
cases.    
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5 RESULTS AND DISCUSSION  
 
The SESAME SBT and SPC-OFP YFT simulation-estimation testing has given us 
insight into many facets of assessment model performance.  The use of two 
independently implemented operating models provide a good illustration of how the 
results are potentially very specific to the simulation conditions.  In general, we are 
left with the impression that most of the assessment models provided reasonable 
inferences about many aspects of stock dynamics when the data were good and key 
assumptions adequately satisfied.  But there were important limitations to what could 
be estimated reliably even with excellent data and good assumptions.  As the 
magnitude of assumption violations increases within the realm of what we would 
consider plausible, the potential for misleading inferences increases to an extent that 
we had not fully appreciated.  The estimation errors were not always what we would 
have expected, presumably due to the complicated non-linear interactions within the 
model.  
 
It proved exceedingly difficult to comprehensively discuss the diverse array of results 
in a coherent fashion verbally.  We draw attention to the most obvious and interesting 
results in the discussions below, and provide some speculation on the relevant 
mechanisms and likely implications.  We also include a substantial archive of the 
assessment model results in Appendix 6.  These can be used to examine additional 
details that were not specifically addressed in the text because there were simply too 
many operating and assessment model combinations to examine individually. 
 
The Results and Discussion is organized in several distinct sections, but many of them 
are interdependent.  The first section relates to assessment model implementation 
issues, including automation and minimization problems, but does not comment on 
any specific results.  Sections 5.2-5.9 present fairly detailed results in attempting to 
address Objectives I-VII as defined in the Introduction.  Section 5.10 is organized 
under the heading of Objective VIII - Uncertainty Quantification, and is an ambitious 
attempt to provide general commentary on the limitations that we are likely to 
encounter in our assessment modelling endeavors, and speculates on promising 
methods for improving the provision of scientific advice for fisheries managers.  In 
section 5.11, we attempt to make comments about the general performance of 
different implementations and specifications of assessment models.  In section 5.12, 
we outline a number of methodological problems inherent in this type of study and 
our attempts to resolve the issues.  Finally, the conclusions and recommendations 
attempt to summarize the key findings in relation to the original objectives defined in 
the introduction. 
 
 

5.1 GENERAL COMMENTS ON ASSESSMENT MODEL IMPLEMENTATION 
 
This section describes our general impressions of the different assessment models 
from the perspective of the reliability of implementation, particularly in the automated 
setting required for simulation-estimation testing.  Comments on the actual estimation 
performance of the models is addressed in subsequent sections.   
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We note that in all cases, we cannot be sure that global minima were always identified 
during model fitting.  There was usually an inspection of the distribution of gradients 
at the function minimum (included in Appendix 6), and some superficial examination 
of results to check if estimates of dynamics from a given assessment model were 
generally similar for all realizations from an individual operating model scenario.  As 
a rule of thumb, we were generally concerned when the maximum gradient of the 
objective function with respect to the estimated parameters exceeded 0.1 at the 
function minimum (but recognize that this is an arbitrary decision that is dependent on 
the model parameterization).  In the production models, some attempts were made to 
repeat model fittings to remove obviously bizarre behaviour.  The more complicated 
integrated models generally seemed to be more robust in their minimization 
behaviour, but failures were evident in some of the less constrained SCALIA models, 
particularly under the difficult assessment scenarios.  A detailed examination of every 
realization result was not possible.  We expect that some of the outlier behaviour 
evident in the results can be attributed to minimization problems, but this did not 
seem to be a big problem.   
 

5.1.1 Age-Aggregated Production Models 

 
Parameter estimation in the Fox and Schaefer models often required more user 
interaction than the complicated models.  Minimization failures characteristically 
resulted in parameter bounds being hit and failure to attain convergence criteria.  The 
failed estimates were sometimes associated with chaotic behaviour, in which the 
population dynamics experience large amplitude, high frequency oscillations (e.g. as 
in Adkison 1992).  In the majority of cases with obvious problems, credible behaviour 
was obtained by changing starting values and/or transforming the parameters used by 
the minimizing function.  As indicated in the maximum gradient boxplots from 
Appendix 6, a few results from the Fox model failed to converge in the SESAME 
SBT results, but these should be identifiable as outliers in three of the D_x scenarios.  
For future automated applications, we would recommend implementing a systematic 
search of the parameter space to find reasonable starting values.  However, we also 
note that in applications to real SBT assessments, the inferences from these models 
have demonstrated a surprising sensitivity to the reliability of the function minimizer 
(e.g. Ricard et al. (2002) demonstrate considerably different inferences as parameter 
estimates differ in the 4th-5th  significant figure).  
 

5.1.2 Age-Structured Production Models 

 
Of all the models, we had the least success implementing the ASPMs, in part due to 
the particular implementations that we were testing.  As with the Fox and Schaefer 
models, minimizations were sensitive to the initial parameter values.  An automated 
systematic search of the parameter space prior to the objective function minimization 
seemed to eliminate this as a major problem.  However we note that several of the 
ASPM results include realizations with convergence failures (Appendix 6) for the 
majority of the D_x scenarios and a couple of the E_x scenarios.   
 
We had problems getting the function minimizer to converge reliably in the majority 
of the stochastic recruitment ASPM applications.  Given the automated nature of the 
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application, this unfortunately was not recognized until late in the SESAME project, 
and we do not present any of the stochastic ASPM results for serious consideration.  
The problem might have been overcome reasonably easily by adding more constraints 
to the minimization (e.g. reducing the recruitment deviation CV).  However, these 
models were intended to be simple alternatives to the fully integrated models.  In 
practice they do not represent a trivial parameter estimation problem, and are more of 
a transitional step between production models and the fully integrated models.    
 
The ASPMs with deterministic recruitment converged much more reliably, but were 
prone to a numerical problem in some OM scenarios.  As implemented, these models 
can attempt to remove too much catch in some circumstances, potentially resulting in 
negative fish for some age classes.  The error is more likely to occur with higher 
fishing mortality and greater selectivity errors.  Our attempts to temporarily guide the 
function minimizer away from the problem using objective function penalties were 
not very satisfactory.  The function minimizer often converged to the point that was 
arbitrarily close to a result of 0 fish for one of the age classes, such that this was the 
dominant term in the objective function at the minimum.  We withdrew all of the 
ASPM results from the SCTB-MWG YFT simulations, because 4 out of 5 OM 
scenarios were adversely affected.  The problem was more sporadic in the SBT 
simulations, and the number of afflicted results are flagged in the figures with the 
label “Penalty Activation Count” (e.g. in Fig. 3a - "Penalty Activation Count: 
E_base(0)" means that 0 of the aspm_x realizations were affected by the problem, and 
the flag is irrelevant for all other models).  The problem could be resolved in different 
ways, but by the time it was identified, we were not interested in investing more time 
in the ASPMs.  
 

5.1.3 SCALIA 

 
In general, we were pleased with the SCALIA implementation and minimization 
reliability.  In both the SBT and YFT studies, once a reliable minimization procedure 
was established, it seemed to generally be robust across the different operating models 
and realizations.  We do note however that the convergence of the least constrained 
SCALIA models (e.g. SC_EL) was often marginal (as indicated by the maximum 
gradient distributions in Appendix 6), and the convergence was not completely 
reliable for any of the SCALIA models in the D_x operating model scenarios (despite 
a reasonable maximum gradient, the inverse Hessian matrix could not always be 
calculated for estimating confidence limits).   
 
The speed of the SCALIA implementation could undoubtedly be improved.  In the 
SBT studies, we found the similarly parameterized MULTIFAN-CL to minimize in 
about half the time (efficiency in terms of the number of function calls and the 
function evaluation time was not explicitly compared).  We observed a similar factor 
of 2 difference in the most complicated YFT scenario (16 F X 7 R), despite the fact 
that MULTIFAN-CL was also simulating migration dynamics.  This latter procedure 
took about 24 hours, including inverse Hessian calculation, on a 2.6 GHz Pentium 4 
PC (RAM was not the limiting factor in either case). 
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5.1.4 MULTIFAN-CL 

 
MULTIFAN-CL converged reliably in all the SESAME SBT simulations to which it 
was applied (although this was a small subset relative to SCALIA and the production 
models).  MULTIFAN-CL has more options and different specification protocol than 
SCALIA, and none of our analysts had any prior experience working directly with the 
software.  We seemed to get it working and producing plausible results (qualitatively 
good agreement between predictions and observations) without much problem, but we 
could have overlooked something important.   
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5.2 BASELINE ASSESSMENT MODEL PERFORMANCE 
 
The results from application of a range of assessment models to the baseline operating 
model scenario (E_base) are illustrated in Fig. 3.  A number of points are evident 
from looking at these figures: 
 

• Bias and variance in the MPD estimates for most performance indicators is 
substantial for many of the assessment models.  The time series plots often 
have disturbing temporal trends in the biases, and these differ substantially 
among models.   

 
• For any individual performance indicator, the differences among assessment 

models are usually substantial, i.e. different models have different biases (but 
there are similarities in that, in general the SC_x models are more similar to 
each other than the MF_x models). 

 
• The Aggregate PI does not generally appear to be very biased.  Presumably 

this reflects the fact that it is a compilation across indices with biases in 
opposing directions.  

 
• The models that were specified with the closest agreement to E_base 

(SC_1Ideal, SC_noHTS) seemed to provide the best assessment inferences in 
terms of the time series of biomass and recruitment; but other models (notably 
aspm_d2g, f_calc and SC_2Ideal) often performed better on the management-
related estimates.   

 
• The variance of recruitment estimates was high for the ASPM_x, MF_x and 

BIH_2 models relative to SC_x.  Since aspm_x relies on deterministic 
recruitment, these estimates will always be a poor approximation to a 
stochastic time series.  In the case of BIH_2, this presumably reflects the 
limitation of cohort-slicing.  MF_x recruitment estimates were more variable 
than BIH_2; presumably this is because MF_x did not use any of the 
spawning ground direct ageing data. 

   
• The large recruitment estimation errors in BIH_2 and MF_x did not have 

corresponding effects on the relative biomass estimates for these models.  
Presumably there is a short term negative auto-correlation in recruitment 
errors that averages out over several cohorts in the biomass calculations. 

 
• A number of the SCALIA models had substantial and similar (trends in) 

recruitment estimate biases over the last ~15 years (SC_base, SC_noHTS, 
SC_qTS, SC_2Ideal), but this was not really evident in the other SC_x 
models or BIH_2.  The MF_x models also seemed to have some minor trends 
in recruitment biases over the last ~10 years.  

 



 53

• The models that estimated natural mortality (SC_Mest, SC_EL, MF_YFT) 
generally had worse absolute and relative biomass biases than the most 
similar models that used the true M from the operating model. 

 
• Stock recruitment curve steepness was estimated rather poorly by the majority 

of models.  The SCALIA models tended toward under-estimation, while 
MULTIFAN-CL and BIH_2 tended toward over-estimation.  Corresponding 
biases were evident in most of the other management-related indicators as 
well.  Although MSY was generally reasonably well estimated.  ASPM_d2g 
seemed to have the best performance on several of the management-related 
indicators (and steepness), but performed rather poorly on the biomass time 
series estimates.  
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Fig. 3a. Boxplots of MPD performance indicators resulting from the 
application of a range of assessment models to 10 data realizations 
simulated from the E_base SBT operating model.  Individual values 
represent the ratios of  (AM estimated)/(OM actual) in all cases 
except BH_SR_Steepness which shows the actual values (the 
Aggregate PI is an arithmetic mean of 28 ratios).   OMs are defined 
in Table 1, AMs in Table 2 and PIs in Table 8. 
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Fig. 3b. Time series of performance indicators (AM estimated)/(OM actual) 
resulting from the application of AMs to 10 data realizations from 
the E_base OM scenario.  Lines indicate rankings 1, 3, (5+6)/2, 8 and 
10.  OMs are defined in Table 1, AMs in Table 2 and PIs in Table 8. 



 56

0 10 20 30 40 50

0.
0

1
.0

2.
0

3.
0

t

ra
ti

o
 B(t) Error  Ratios  (AM/VSM)

   AM = SC_EL

E_base

Penalty  Act iv at ion Count:  E_base(0) 

0 10 20 30 40 50

0.
0

1
.0

2.
0

3.
0

t

ra
ti

o

 B(t) Error  Ratios  (AM/VSM)
   AM = SC_noTag

E_base

Penalty  Act iv at ion Count:  E_base(0) 

0 10 20 30 40 50

0
.0

1.
0

2.
0

3.
0

t

ra
tio

 B(t) Error  Ratios  (AM/VSM)
   AM = SC_1Ideal

E_base

Penalty  Act iv at ion Count:  E_base(0) 

0 10 20 30 40 50
0

.0
1.

0
2.

0
3.

0
t

ra
tio

 B(t) Error  Ratios  (AM/VSM)
   AM = SC_2Ideal

E_base

Penalty  Act iv at ion Count:  E_base(0) 

0 10 20 30 40 50

0.
0

1
.0

2.
0

3
.0

t

ra
tio

 B(t) Error  Ratios  (AM/VSM)
   AM = MF_YFT

E_base

Penalty  Act iv at ion Count:  E_base(0) 

0 10 20 30 40 50

0.
0

1
.0

2.
0

3
.0

t

ra
tio

 B(t) Error  Ratios  (AM/VSM)
   AM = MF_Scan

E_base

Penalty  Act iv at ion Count:  E_base(0) 

0 10 20 30 40 50

0.
0

1.
0

2
.0

3.
0

t

ra
ti

o

 B(t) Error  Ratios  (AM/VSM)
   AM = MF_qTS

E_base

Penalty  Act iv at ion Count:  E_base(0) 

0 10 20 30 40 50

0.
0

1.
0

2
.0

3.
0

t

ra
ti

o

 B(t) Error  Ratios  (AM/VSM)
   AM = BIH_2

E_base

Penalty  Act iv at ion Count:  E_base(0) 
 

Fig. 3b (cont.) 
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The E_base operating model probably approaches the upper limits of assessment 
performance that we could expect in the real world for a fishery with a data history 
like SBT.  The D_base scenarios probably represent a more reasonable indication of 
the performance that we might expect.  All assessment models had substantial 
difficulties making reliable inferences for the D_base scenario (Fig. 4).  We would not 
consider that any individual component of the D_x scenarios was greatly outside of 
the range that could be considered plausible for the SBT fishery.  We note the 
following points from (Fig. 4): 
 

• All of the performance indicators demonstrated substantial bias and/or high 
variance in comparison with the inferences from E_base. 

 
• Strong temporal trends in biases were evident in most of the time series 

estimates, although median performance on the relative biomass estimators 
was not bad in some cases.   

 
• The aggregate performance indicator suggests that SC_2ideal (specified to 

most closely resemble the D_base OM characteristics) has the best overall 
performance, but this is not obvious from inspecting the individual 
performance indicators that are all highly variable.   

 
• On the basis of the aggregate PI, it seems as though the SCALIA models with 

estimated variability in catchability (SC_qTS1, SC2Ideal, but not SC_EL) 
performed slightly better than the other SCALIA models.  The same is true of 
MF_qTS relative to the other MF_x models.  The production models and 
BIH_2 generally performed more poorly than the others.   
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Fig. 4a. Boxplots of MPD performance indicators resulting from the 
application of a range of assessment models to 10 data realizations 
simulated from the D_base SBT operating model.  Individual values 
represent the ratios of  (AM estimated)/(OM actual) in all cases 
except BH_SR_Steepness which shows the actual values (the 
Aggregate PI is an arithmetic mean of 28 ratios).   OMs are defined 
in Table 1, AMs in Table 2 and PIs in Table 8.   
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Fig. 4b. Time series of performance indicators (AM estimated)/(OM actual) 
resulting from the application of AMs to 10 data realizations from 
the D_base OM scenario.  Lines indicate rankings 1, 3, (5+6)/2, 8 
and 10.  OMs are defined in Table 1, AMs in Table 2 and PIs in 
Table 8. 
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Fig. 4b (cont.) 
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Fig. 4b (cont.) 
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Fig. 4b (cont.) 
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Fig. 4b (cont.) 
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Fig. 4b (cont.) 
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Fig. 4b (cont.) 
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Fig. 4b (cont.) 
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Four additional operating model scenarios were specified to test if the degradation in 
assessment performance between E_base and D_base could be disproportionately 
attributed to a particular specification change.  Fig. 5 compares the performance of a 
restricted set of AMs using only the aggregate PI.  These plots suggest that: 
 

• performance of the different assessment models is affected differently by the 
different intermediate OM scenarios.   

 
• The reduction in the CL and CA sample sizes (E_CL60) had a negligible 

effect on the AMs examined.  This possibly reflects the fact that operating 
model length-at-age characteristics are never entirely consistent with AM 
assumptions (e.g. due to within year growth, natural mortality and variability 
in monthly catch rates), such that beyond a certain sample size, nothing more 
is really gained.   

 
• Stochastic selectivity variation (E_stoH) had a negligible effect on the AMs 

examined.   
 

• Systematic selectivity variation in the OM (E_HTS) had a negligible effect on 
the SC_x AMs examined.  However, the production models appear to be 
adversely affected for reasons that are unclear; perhaps due to the effect of 
changing selectivity on the interpretation of CPUE.  

 
• Inflated variability in effort deviations and recruitment variability (E_DRq) 

had a large impact on SC_base and the production models.  We would expect 
that the auto-correlated catchability errors would be the the largest single 
factor contributing to the performance degradation between E_base and 
D_base, but presumably the interaction with the other complicating factors is 
not additive.    

 
• there was surprisingly little difference in performance when AM SC_EL was 

applied to the various OMs.  This probably reflects the fact that SC_EL is 
highly over-parameterized, prone to minimization failures and provides rather 
poor performance under a large range of conditions. 

 
The general impressions provided by the aggregate performance indicators are further 
supported by examining SC_base time series estimation performance.  The relative 
biomass estimates shown in Fig. 6 indicate a negligible effect for E_HTS, minor 
effects for E_CL60 and E_stoH and a major effect for E_DRq (though not as large as 
D_base).  E_DRq is the operating model with substantial and auto-correlated errors in 
the relationship between fishing mortality and effort, and the estimation errors 
observed for this scenario emphasizes the key role of the relative abundance index in 
most stock assessment models.  The corresponding series of recruitment estimates 
suggest some slightly different bias characteristics.  E_CL60 actually results in better 
recruitment estimates than E_base, because results for E_base have strong bias trends 
in the last ~15 years (as do results for E_stoH and E_HTS).  There is presumably 
some structural incompatability between E_base and SC_base that causes a 
recruitment bias when SCALIA gives too much weight to the CL data.  The small CL 
sample size presumably results in a noisy signal that SC_base cannot track too 
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closely, because the modal progression signal is weak among consecutive years.  
However, we note that this speculation is not consistent with the fact that SC_1ideal 
(with a large CL effective sample size) did not have a recruitment bias problem for 
E_base (Fig. 3b), so it seems likely that some other interaction is at work.  
Recruitment estimates also show high variability in the early part of E_stoH.  This 
presumably reflects the fact that the stochastic selectivity in E_stoH is dependent on 
the amount of effort, and all fisheries have low effort in the early years except for the 
spawning ground fleet which is not informative for recruitment.     
 
We hope that the magnitude of the baseline operating model error characteristics that 
we have defined in E_base and D_base envelop the real SBT situation (ignoring the 
other major assumptions that we treat separately).  In the following sections, we 
would tend to interpret E_x scenarios as the upper limits of how well we could expect 
to do in a real assessment.  If the simulated assessments are failing in the E_x 
scenarios, we have serious concerns about performance in a real assessment.  In 
contrast, we believe that many of the characteristics in D_x might be more 
challenging than the real world data.  Consistently reliable inferences from the D_x 
series would give us reasonable confidence that the estimates would probably be okay 
in many real world applications. 
 
The use of only 10 realizations for each assessment model/operating model 
combination is rather minimal.  Certainly we expect the estimation behaviour in the 
tails to be poorly described, but the 10 replicates appear sufficient to illustrate the 
large qualitative differences in estimation bias and variance characteristics among 
assessment models.  We note that the 2003 MWG used 40 simulated data sets for each 
OM scenario, but the general character of the results was not obviously improved.   
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Fig. 5. Aggregate performance of assessment models when fit to a range of 
OMs including the relatively easy E_base, difficult D_base and 4 
intermediate scenarios. OMs are defined in Table 1, AMs in Table 2 
and PIs in Table 8.    
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Fig. 6.   Time series of performance indicators (AM estimated)/(OM actual) 
resulting from the application of AM SC_base to 10 data realizations 
from a range of OMs including E_base, D_base and 4 intermediate 
scenarios.  Lines indicate rankings 1, 3, (5+6)/2, 8 and 10.  OMs are 
defined in Table 1, AMs in Table 2 and PIs in Table 8. 
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Fig. 6 (cont). 

 
 
 



 78

 

5.3 OBJECTIVE I - STOCK RECRUITMENT RELATIONSHIP ESTIMATION  
 
Estimation of stock recruitment relationships is important for quantifying how the 
productivity of the stock is likely to change as spawning biomass changes, and has 
important implications for estimating sustainable catches.  In the case of the SBT 
fishery, the spawning stock is near the lowest ever levels, and the stock recruitment 
assumptions are key factors driving the future productivity scenarios explored in the 
operating models used to evaluate candidate MPs (see Operating Model exploration in 
CCSBT 2003).  Three factors related to future recruitment potentially have a large 
influence on the management actions that are likely to be taken for SBT in the near 
future: the degree of compensation in the stock recruitment relationship (steepness), 
the magnitude of the year to year variability in recruitment, and the auto-correlation in 
recruitment variability (the degree to which recruitment can deviate from the long 
term expected value for a sustained time period).  In this section our discussions 
emphasize these points over the other stock assessment inference issues.   
 
Fig. 7-Fig. 11 illustrate our exploration into the estimability of stock recruitment 
relationships using a range of assessment models.  These figures include the actual 
steepness estimates, empirical auto-correlation among recruitment deviations and the 
emperically calculated variability (RMSE) of the estimated recruitment deviations 
(but note that not all values were available or even relevant for some assessment 
models).  The aggregate PIs and management status indicators are included to provide 
a general indication of overall model performance.  Refer to Appendix 6 for more 
detailed description of model performance for specific indicators (including time 
series estimates of recruitment).   
 
We note the following points regarding the estimation of stock recruitment 
relationships and model performance under different production scenarios given 
excellent data and prior knowledge about the functional form of the Beverton-Holt 
stock recruitment relationship (Fig. 7):  
 

• SCALIA and ASPM models had reasonable capacity to distinguish between 
high (E_h6) and low (E_h3) productivity curves (Fig. 7a-c), but there were 
considerable estimation errors evident.  Performance in the E_h3 scenario is 
difficult to compare because all the SCALIA models included a lower 
steepness bound of 0.3 for calculating MSY-related quantities (and hence 
convergence to the lower bound results in a perfect steepness estimate for 
purposes of MSY calculations). 

 
• The majority of assessment models seemed to have a steepness under-

estimation bias (MPD estimates often converged to the lower bound which 
corresponds to an absence of surplus production).  aspm_d2g and SC_2Ideal 
were better than most, and SC_BIH was clearly the worst.  But we note that 
the MF_x models tended to over-estimate steepness in the baseline scenarios 
(these models were not run against most OM scenarios and MF_x applications 
to E_base are not repeated here). 
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• aspm_d2g generally provided the best estimates of management-related 
quantities (at least among those examined here).  However, this model had 
greater variability and biases in biomass estimates than many of the SCALIA 
models (evident in the terminal relative biomass estimates, aggregate 
performance indicators and Appendix 6). 

 
• The SCALIA models produced empirical estimates of recruitment variability 

(Rec RMSE) that were very similar to the true values, despite the different 
input specifications (CV = 0.4 or 0.6).   

 
• The empirical auto-correlation was fairly consistent among SCALIA models 

and usually 0 < (Rec lag(1) rho) < 0.4 (compared with the actual OM value of 
0);  SC_2Ideal and SC_BIH were substantially higher.  In the case of SC_BIH, 
we would expect this to be due to age estimation via cohort-slicing.  
Presumably the auto-correlation > 0 in most cases is related to the systematic 
lack of fit that arises in part  because of the errors in steepness. 

 
The effect of adding recruitment auto-correlation (rho = 0.8) to two operating models 
with high (E_h8_r8) and low (E_h4_r8) productivity is illustrated in Fig. 8, from 
which we note: 
 

• the variance in the steepness estimates increased relative to the OM scenarios 
with no auto-correlation, and the under-estimation bias remained.  

 
• The SCALIA recruitment deviation RMSE was generally substantially lower 

than the real CV (irrespective of the different input values of 0.4 or 0.6).  This 
illustrates the manner in which strong auto-correlation makes it more difficult 
to distinguish between different stock recruitment curves, particularly with a 
relatively small time series (e.g. data might be equally consistent with a low 
steepness curve and small independent deviations, or a high steepness curve 
with large correlated deviations (positive at high SSB and/or negative at low 
SSB).  It also indicates that estimation of the variance around the stock 
recruitment relationship might be difficult if there truly is auto-correlation (or 
a systematic lack of fit to the SR function). 

 
• The empirical auto-correlation from all the AMs examined was fairly 

consistent with the actual OM values.   
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Fig. 7a.   Boxplots of MPD performance indicators resulting from the 
application of a range of assessment models to operating models 
with excellent data characteristics and a range of stock recruitment 
relationships and no recruitment deviation auto-correlation. 
Individual values represent the ratio of  (AM estimated)/(OM 
actual) in all cases except BH_SR_Steepness, Rec RMSE and Rec 
lag(1) rho which show the actual values.  OMs are defined in Table 
1, AMs in Table 2 and PIs in Table 8 
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Fig. 7b. 
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Fig. 7c. 
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Fig. 8a.  Boxplots of MPD performance indicators resulting from the 
application of a range of assessment models to operating models 
with excellent data characteristics, a range of stock recruitment 
relationships and high recruitment deviation auto-correlation. 
Individual values represent the ratio of  (AM estimated)/(OM 
actual) in all cases except BH_SR_Steepness, Rec RMSE and Rec 
lag(1) rho which show the actual values.  OMs are defined in Table 
1, AMs in Table 2 and PIs in Table 8 
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Fig. 8b. 

 



 85

 
Given the difficult D_x OM scenarios, and again prior knowledge of the functional 
form of the stock recruitment relationship, we make the following comments about 
the assessment model performance (from Fig. 9): 
 

• bias and variance in the SR steepness estimates increased relative to the E_x 
scenarios, but most AMs did seem to have some capacity to distinguish high 
from low steepness on average.  The consistently better performers included 
aspm_d2g, SC_base, SC_noHTS, SC_qTS1 and SC_2ideal.  But all AMs got 
the steepness badly wrong in at least some realizations.    

 
• Recruitment deviation RMSE remained fairly consistent among assessment 

model specifications.  There was a slight under-estimation bias when auto-
correlation was low, but there was no obvious dis-agreement when auto-
correlation was high (unlike the E_x scenarios). 

 
• Relative to the E_x scenarios without auto-correlation, the empirical 

recruitment auto-correlation output from the SCALIA models was much 
higher and more variable (median values often >0.5).  When high auto-
correlation was present in the D_x OMs, the empirical AM estimates of auto-
correlation were much more variable in comparison with the E_x scenarios, 
and were generally lower than the true values.   

 
• All AMs examined had much worse overall performance for the D_x OM 

scenarios than the E_x scenarios.  We would generally conclude that the age-
aggregated production models were worse than the rest.  It is difficult to 
generalize among the SCALIA and aspm_x models, but on the basis of the 
aggregate performance indicators, we would probably conclude that 
SC_2Ideal performed the best against the D_h3, D_base and D_h9 OMs. 

 
When auto-correlation was added to the operating models (D_h4_r4, D_h8_r8), the 
capacity to estimate steepness was further decreased (Fig. 10), with most models 
having a substantial probability of getting the steepness estimate badly wrong.  It also 
becomes increasingly difficult to make meaningful comments about relative 
performance of AMs when all models are performing this poorly, but we can probably 
conclude in the basis of the aggregate PI that the AAPMs performed worse than the 
others.  
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Fig. 9a.   Boxplots of MPD performance indicators resulting from the 
application of a range of assessment models to operating models 
with difficult data characteristics, a range of stock recruitment 
relationships and no recruitment deviation auto-correlation. 
Individual values represent the ratio of  (AM estimated)/(OM 
actual) in all cases except BH_SR_Steepness, Rec RMSE and Rec 
lag(1) rho which show the actual values.  OMs are defined in Table 
1, AMs in Table 2 and PIs in Table 8. 
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Fig. 9c. 
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Fig. 10a.  Boxplots of MPD performance indicators resulting from the 
application of a range of assessment models to operating models 
with difficult data characteristics, a range of stock recruitment 
relationships and no recruitment deviation auto-correlation. 
Individual values represent the ratio of  (AM estimated)/(OM 
actual) in all cases except BH_SR_Steepness, Rec RMSE and Rec 
lag(1) rho which show the actual values.  OMs are defined in Table 
1, AMs in Table 2 and PIs in Table 8. 
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Fig. 10b. 



 91

The preceding results suggest that, on average, most of the assessment models have 
some capacity to distinguish between high and low steepness, and this does provide 
justification for attempting to estimate it.  However, all of the preceding trials were 
conditional on the correct, and rather strong, assumption that the functional form of 
the stock recruitment relationship is a Beverton-Holt function.  We also considered 
one case (E_HSSR) in which the functional form of the SR violated this assumption.  
In E_HSSR, the steepness was nominally the same as E_base (0.6). From this 
scenario, we could not conclude that the assumption violation had a particularly 
strong effect on assessment performance (Fig. 11):    
 

• Steepness estimates for E_HSSR were generally not biased low, as observed 
for E_base, but this is not really an informative comparison, unless we are 
specifically interested in recruitment precisely at SSB = 0.2*SSB(unfished) 

  
• The recruitment deviation RMSE and auto-correlation were very consistent 

across AMs and similar to the E_Base results (e.g. slightly low for RMSE and 
somewhat high for the auto-correlation).  We would have expected the auto-
correlation to be higher than E_base, reflecting the systematic lack of fit 
caused by assuming the wrong functional form for the SR relationship.  
Perhaps the difference in functional form was not large enough to be an issue, 
in this case, as the systematic recruitment errors are no worse than for models 
that get the steepness estimate wrong for E_base. 

 
• The incorrect SR had very little effect on the time series estimates of relative 

biomass or recruitment.  Qualitatively, these estimates appear to be as good as 
in applications to E_base.  

 
We do not provide any illustration of the MSY-related estimates for E_HSSR 
(including the Aggregate PIs), because the operating model encountered numerical 
problems in this scenario.  
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Fig. 11a.   Boxplots of MPD performance indicators resulting from the 
application of a range of assessment models to an operating model 
with excellent data characteristics, but a stock recruitment 
relationship functional form that does not conform to the assessment 
assumptions (E_HSSR). Individual values represent the ratio of  
(AM estimated)/(OM actual) in all cases except BH_SR_Steepness, 
Rec RMSE and Rec lag(1) rho which show the actual values.  OMs 
are defined in Table 1, AMs in Table 2 and PIs in Table 8. 
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Fig. 11b.   Time series of performance indicators (AM estimated)/(OM actual) 
resulting from the application of several AMs to 10 data realizations 
from the SBT operating model E_HSSR.  Lines indicate rankings 1, 
3, (5+6)/2, 8 and 10.  OMs are defined in Table 1, AMs in Table 2 
and PIs in Table 8. 
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Fig. 11b(cont.) 
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Overall, these SR-related simulations do broadly support the decisions that have been 
taken by the CCSBT-SC with respect to the formulation of operating models for MP 
development.  Specifically: 
 

• it was recognized that steepness is difficult to estimate reliably, and a range of 
alternatives were considered as plausible. 

• a lower bound was placed on the recruitment variability to avoid under-
estimating the true value 

• auto-correlation in the recruitment deviations was imposed in forward 
projections, to minimize the probability of predicting sudden changes in 
recruitment that are not consistent with recent trends (this provides some 
short-term mitigation for using a poor stock recruitment curve). 

 
We had expected that the imposition of an incorrect stock recruitment functional form 
would cause elevated recruitment auto-correlation, and perhaps it did, but it was not 
obvious relative to the cases with the correct curves, because the relationship is 
usually estimated rather erroneously anyway.  Similarly, the time series of recruitment 
did not seem to be adversely affected by assuming the wrong SR.  But this could be a 
co-incidental result.  The worst recruitment estimates would be expected in the most 
recent years if the SR form was wrong (possibly also the initial age structure), 
because the data are poorest for discriminating these cohorts.  However, as long as the 
spawning biomass in the most recent years corresponds to two points in which the 
actual and predicted recruitment values are similar (e.g. SSB ~ 0.2*SSB(unfished) in 
this case), we would expect good recruitment prediction.  We expect that 
incorporating recruitment auto-correlation into the CCSBT MP operating model can 
largely compensate for the effects of an incorrect stock recruitment curve over the 
critical short-term period in which drastic management actions might be required for 
SBT.   
  
It is currently unclear what we have learned about stock recruitment curve estimation 
from the SCTB-MWG.  The 2002 study was uninformative in that all analysts were 
given prior knowledge that there was no relationship between recruitment and stock 
size in the YFT simulations.  In the 2003 study, analysts were provided with 
information that there was some sort of a relationship active on a relatively fine 
spatio-temporal scale (and linked to dynamic SST fields).  At this time, we do not 
know how this stock-recruitment relationship would have scaled up to the global 
population, so we are not sure if the steepness estimates even provide a meaningful 
basis for evaluation.  Most of the assessment models applied in 2003 assumed a 
Beverton-Holt curve.  The Multifan-CL and A-SCALA analysts used priors to 
constrain the steepness estimate (with a fairly high mode).  There were no constraints 
on the SCALIA steepness.  The SCALIA estimates were highly variable among 
operating model scenarios and assessment model specifications (Fig. 12).  Presumably 
the operating model productivity did not actually vary much between OM scenarios, 
so this variability is an indication of the sensitivity to the SCALIA specifications (and 
interactions with the exploitation history and/or data aggregation units).  Hopefully 
more insight from the 2003 study will become available as the SCTB-MWG analysis 
progresses. 
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Fig. 12.   Boxplots of the steepness estimates from different SCALIA 
applications to the SCTB MWG YFT simulations.  The first digit in 
the model number identifies the operating model scenario to which it 
was applied (e.g. M.1914 corresponds to 1F X 1R, M.2914 
corresponds to 2F X 1R, etc).  AMs defined in Table 6 -Table 7. 
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5.4 OBJECTIVE II - ASSESSMENT IMPLICATIONS OF CATCH UNDER-
REPORTING BIASES 

 
Total catch by fishery (in mass or numbers) is a key input to most stock assessment 
models, but it is usually very difficult to estimate catches taken outside of formal 
monitoring programs (e.g. IUU fishing).  We tried to get some appreciation of the 
likely effects of these errors on stock assessment inferences by simulating under-
reporting biases in the major fisheries.  Fig. 13 shows representative results for the 
SCALIA model SC_base comparing the ideal operating model scenario E_base, with 
three other scenarios in which one of the fishing fleets under-reported total catch by 
~20% (E_C20j = juvenile fishery, E_C20f = longline feeding grounds and E_C20s = 
both early and late spawning grounds).  For all assessment models tested, the 
estimation performance seemed to be largely unaffected by the reporting biases.  The 
reporting bias in the juvenile fishery had the smallest effect.  The feeding grounds and 
spawning grounds under-reporting generally produced biases in the management-
related quantities that were in opposite directions (or perhaps it is more correct to say 
that they affected the pre-existing biases in opposite directions).  The time series plots 
indicate that the biomass, exploitation rate and recruitment time series were all very 
similar in all cases.  Presumably, the magnitude of the estimation biases resulting 
from each scenario depend on the selectivity of the fishery and the magnitude of the 
catch over time for the biased fishery (both in absolute terms and relative to the other, 
unbiased fisheries).  However, given that the effects were generally smaller than 
expected, we did not try to further explain the mechanisms by which the estimation 
biases are introduced.  
 
We expected a larger effect from the under-reporting because some of our exploratory 
trials (not shown) seemed to show a surprising sensitivity to an (unintended) ~5% 
global catch over-estimation bias; but we did not pursue the over-estimation scenarios 
further, because they seemed less plausible than the under-reporting scenarios.  The 
inclusion of catch under-reporting scenarios in actual SBT assessments seemed to 
have a more dramatic effect than we observed here (Polacheck and Preece 2001).  We 
also note that the WCPO bigeye tuna assessment (Hampton et al. 2003) seemed to 
have peculiar recruitment trend estimates roughly co-inciding with increases in the 
large, but poorly quantified, fisheries in Indonesia and the Phillipines.  This was 
identified as a potentially misleading issue for the assessment (at SCTB-16).  
Presumably the simulation scenarios would have been more challenging (and realistic 
in most cases) if there was a temporal trend in the reporting bias, but this was not 
explicitly explored.      
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Fig. 13a.   MPD performance indicators resulting from the application of 
SCALIA assessment model SC_base to the baseline SBT operating 
model (E_base) and three scenarios with 20% catch under-reporting 
biases in one of the fisheries (E_C20j = juvenile fishery, E_C20f = 
longline feeding grounds and E_C20s = both early and late spawning 
grounds).  Each assessment model was applied to 10 data 
realizations from each OM.  Individual values represent the ratio of  
(AMestimated)/(OM actual) in all cases except BH_SR_Steepness 
which shows the actual values.   OMs are defined in Table 1, AMs in 
Table 2 and PIs in Table 8. 
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Fig. 13b.   Time series of performance indicators (AM estimated)/(OM actual) 
resulting from the application of AM SC_base to 10 data realizations 
from the baseline SBT operating model (E_base) and three scenarios 
with 20% catch under-reporting biases in one of the fisheries 
(E_C20j = juvenile fishery, E_C20f = longline feeding grounds and 
E_C20s = both early and late spawning grounds).  Lines indicate 
rankings 1, 3, (5+6)/2, 8 and 10.  OMs are defined in Table 1, AMs in 
Table 2 and PIs in Table 8. 
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Fig. 13b (cont.) 
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5.5 OBJECTIVE III AGE ESTIMATION FROM COHORT-SLICING VS: CATCH-
AT-LENGTH 

 
Age-structured stock assessment models are ideally suited to use age composition 
data and it is only relatively recently that methods for directly using length 
composition data have become popular.  There is a long history in SBT assessment of 
estimating the age composition of the catch by cohort-slicing the catch length 
frequency distributions.  This is known to be an unreliable method for ageing older 
fish, but it is not clear what the implications are in the context of an integrated 
assessment.   
 
Our simulation results suggest that the use of cohort-sliced age data in an assessment 
does result in some characteristic estimation errors, but the overall assessment 
performance might not be any worse than models that use catch-at-length, depending 
on the inferences that one is interested in.  The performance of two different cohort-
sliced, catch-at-age models (SC_BIH and BIH_2) are presented alongside two similar 
catch-at-age/length models SC_base and SC_1ideal) in Fig. 14 for the baseline 
operating model (E_base).  Aside from the data used, the main differences between 
SC_BIH/BIH_2 and SC_base/SC_1ideal are the catch-at-age and catch-at-length 
effective sample size assumptions (and constant selectivity in the case of SC_1ideal).  
From Fig. 14  we observe: 
 

• The aggregate performance indicator suggests that the catch-at-length models 
and BIH_2 perform similarly, while SC_BIH has clearly worse performance.  
We did not explicitly examine why this is the case, but we recognize that 
SCALIA was never thoroughly tested to use the cohort-sliced data, and hence 
would expect BIH_2 to provide a better representation of what can be 
achieved with cohort-slicing.  

 
• SC_BIH and BIH_2 tend to have larger biomass biases than the CL models, 

and there are some similarities in the temporal pattern of the biases.  However, 
BIH_2 exhibits excellent biomass estimation towards the end of the time 
series.  Presumably cohort-slicing tends to produce particular estimation errors 
for the initial population, while cohorts that are observed repeatedly in a series 
of fisheries over time are probably estimated much better.   

 
• SC_BIH and BIH_2 both have stronger temporal trends in exploitation rate 

biases than the CL models.  It is curious that BIH_2 actually has the worst 
terminal exploitation rate bias (part of an alarming downward trend), given 
that it had excellent terminal biomass estimates.  This probably indicates an 
error (definition inconsistency) in either the biomass or exploitation rate 
calculations.   

 
• Relative to the CL models, SC_BIH and BIH_2 had recruitment estimates that 

were much more variable, and highly auto-correlated (0.6-0.7 for SC_BIH; 
presumably similar for BIH_2).  These are the differences that one would 
expect because cohort-slicing consistently mis-allocates a certain proportion of 
a particular age class into adjacent age-classes.  The mis-allocation causes an 
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estimation error for any given cohort, and inflates the auto-correlation because 
recruitment anomalies are spread among consecutive cohorts (e.g. a single 
very large recruitment event of age a is interpreted as a large recruitment event 
at age a and above average for ages a - 1 and a + 1).  SC_base and SC_BIH 
also had disturbing trends in the recruitment bias at the end of the time series 
as in section 5.5.  These were not evident for SC_1ideal (not shown) or 
BIH_2.   
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Fig. 14.   Comparison of assessment models that use cohort-slicing (SC_BIH, 
BIH_2) with models that use catch-at-length (SC_base, SC_1ideal), 
when applied to 10 simulated data realizations for a fishery 
resembling SBT (E_base).  Each PI is a ratio of  (AM 
estimated)/(OM actual), except stock-recruitment related quantities 
which show actual values.  Boxplots describe the distribution of 
individual PIs; time series are represented by line plots of quantiles 
(median, 20th and 80th percentiles and range).  OMs are defined in 
Table 1, AMs in Table 2 and PIs in Table 8. 
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Fig. 14. (cont.) 
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These comparisons were repeated with the challenging D_base scenario (Fig. 15).  All 
AMs performed substantially worse in this case, and the relative performance among 
models differs from the E_base case.  We note the following:  
 

• BIH_2 had the worst performance with respect to the aggregate performance 
indicator; the management-related indicators were highly variable among 
models and difficult to generalize.   

 
• The cohort-sliced models seemed to have worse absolute biomass estimates 

than the CL models, but they are all highly variable.  It is not clear which 
models performed better in terms of relative biomass estimates (SC_base is 
arguably slightly better).   

 
• SC_1ideal seemed to have the best exploitation rate estimates.   

 
• All models had substantial variability in recruitment estimates; SC_1ideal is 

slightly better than the others, but it is not obvious whether SC_base is any 
better than the cohort-sliced CA models.  
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Fig. 15.  Comparison of assessment models that use cohort-slicing (SC_BIH, 
BIH_2) with models that use catch-at-length (SC_base, SC_1ideal), 
when applied to 10 “difficult” simulated data realizations for a 
fishery resembling SBT (D_base).  Each PI is a ratio of  (AM 
estimated)/(OM actual), except stock-recruitment related quantities 
which show actual values.  Boxplots describe the distribution of 
individual PIs; time series are represented by line plots of quantiles 
(median, 20th and 80th percentiles and range).  OMs are defined in 
Table 1, AMs in Table 2 and PIs in Table 8. 
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5.6 OBJECTIVE IV - ASSESSMENT IMPLICATIONS OF UNRECOGNIZED 

CHANGES IN SBT LENGTH-AT-AGE 
 
Regardless of whether one uses cohort-slicing or catch-at-length prediction, there 
remains a potential problem in the interpretation of the SBT catch length frequency 
distribution on the spawning grounds.  Very large SBT are observed in the modern 
Indonesian SBT fishery, but not the historical Japanese fishery in the 1950s-1960s.  
This can be interpreted in a number of ways, but there are not sufficient data to 
directly distinguish which theory is correct.  To date, nobody has examined how 
assessment model inferences would change if the length-at-age distribution was 
assumed to have changed over time (e.g. potentially due to density dependent intra-
specific competition).  We simulate this effect here with the operating model 
E_DDLinf, and compare it with the baseline model (E_base) that uses constant 
length-at-age. 
 
The simulations suggest that if the SBT length-at-age decreased around the 1950s-
1960s, this might have substantial implications for stock assessment inferences, 
depending on which models are applied.  Representative results are illustrated in Fig. 
16, from which we note the following points: 
 

• f_calc performance was largely the same irrespective of the change in growth.  
This is not surprising given that the catch-at-length and length-at-age 
information is not directly used.  s_calc (not shown) was similarly unaffected. 

 
• ASPM_d6g was adversely affected by the growth change, while ASPM_d2g 

was much less affected (not shown).  This difference is presumably related to 
the fact that aspm_d6g used an analytical selectivity calculation based on the 
CL data, while ASPM_d2g uses the correct selectivity and is only indirectly 
affected by the CL data via total catch and age-length-mass relationships. 

 
• SC_base typifies the problems demonstrated by several SCALIA models 

(including SC_qTS and SC_2ideal which are not shown).  The management 
performance indicators diverged greatly between E_base and E_DDLinf 
(except MSY was estimated well in both cases presumably because opposing 
biases in B_MSY and F_MSY cancelled out).  The absolute and relative 
biomass estimates have a serious time series trend in bias, with under-
estimation in the intermediate years, increasing to serious over-estimation in 
the last 10 years.  Exploitation rate biases are opposite to the biomass 
estimates.  Recruitment has a mild under-estimation bias in the early years, 
and substantial over-estimation for many of the last 10 years (but in this case 
recruitment is not particualrly well estimated in E_base either).  Presumably 
these models make a bad estimate of the initial age structure, and the bad 
biases in the most recent years are caused by resultant errors in the estimated 
stock recruitment curve.   

 
• Other SCALIA models had rather different performance patterns.  SC_noHTS 

(selectivity constant over time) had large biases in biomass, exploitation rate 
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and recruitment over most of the time series.  SC_noTag and SC_1ideal were 
qualitatively similar (not shown). 

 
• The assessment models that estimated natural mortality were not as adversely 

affected by the shift in growth as the other SCALIA models.  SC_Mest 
performance on management-related estimates is mixed between E_base and 
DD_Linf; biomass and exploitation rate estimates are similar or better, and 
recruitment estimates are strongly biased in both cases (but in opposite 
directions).  SC_EL performance was similar (not shown).  Neither SC_Mest 
or SC_EL attempts to estimate a change in length-at-age, so we would assume 
that the difference in performance between E_base and DD_Linf reflects a 
change in the trade-off of the estimation biases and results in an improvement 
in some cases for largely spurious reasons.     
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Fig. 16.   Stock assessment modelling implications of an unrecognized shift in 
the length-at-age distribution for a simulated fishery system 
resembling SBT.  Each AM was applied to 10 simulated data 
realizations from OM E_base (growth curve constant) and OM 
E_DDLinf (growth curve changes).  Each PI is a ratio of  (AM 
estimated)/(OM actual).  Boxplots describe the distribution of 
individual PIs; time series are represented by line plots of quantiles 
(median, 20th and 80th percentiles and range).  OMs are defined in 
Table 1, AMs in Table 2 and PIs in Table 8. 
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Fig. 16. (cont.) 
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Fig. 16. (cont.) 
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5.7 OBJECTIVE V - ASSESSMENT IMPLICATIONS OF FISHERY SELECTIVITY 

ASSUMPTIONS 
 
Fishery selectivity describes the relative rates of fishing mortality among different age 
classes in a population, such that if selectivity remains constant over time, then the 
relative abundance of age-classes in the catch provide good information about relative 
abundance of age-classes in the population.  Most age-structured stock assessment 
models attempt to exploit this idea to some extent.  However, if selectivity changes 
over time, the information content from the constant selectivity assumption is 
reduced, and can potentially be very misleading in some cases.  In this section, we 
look at some of the effects of selectivity variability on the performance of different 
assessment models. 
 

5.7.1 TEMPORAL VARIABILITY IN SELECTIVITY 

 
The results of AM applications to the E_base, D_base and E_HTS scenarios described 
in 5.2 suggested that gradual systematic changes in selectivity linked to the age 
structure of the population did not have a major effect on stock assessment results.  
This is consistent with CCSBT Management Procedure robustness test results 
(Polacheck et al. 2003b, Hiramatsu et al. 2003), which examined the effects of 
temporal variability in selectivity on the performance of candidate MP performance.  
However, we would expect sudden sustained shifts in selectivity to have a substantial 
effect, particularly on recruitment estimates, when strong separable assumptions are 
applied in the assessment models.  Fig. 17 shows the performance of several 
assessment models (indicated in the figure header) when a shift in the main longline 
fishery occurred 5 years before the end of the time series (E_H45), compared with the 
baseline OM (E_base).  From these representative results, we note the following: 
  

• Performance of the AAPMs was largely unaffected by the selectivity shift.  
This is not very surprising, given that these models do not attempt to represent 
age structure.  

 
• the ASPM performance was highly dependent on the input selectivity vector.  

aspm_d2g (selectivity constant and correct up to the point of the change) was 
minimally affected; whereas aspm_d6g (selectivity constant and calculated 
using a simple estimate derived from length frequencies and equilibrium age 
structure assumptions) performance was substantially worse.   

 
• SCALIA performance was variable in a manner that is consistent with our 

understanding of the interaction between CL sample sizes and variable 
selectivity.  SC_base (moderate CL effective sample size and temporally 
variable selectivity) was only modestly affected by the selectivity shift, 
presumably indicating that the shift was reasonably well estimated.  In 
contrast, the constant selectivity models SC_1ideal and SC_noHTS (the latter 
not shown), interpreted the strong change in CL signal as a shift in 
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recruitment, with corresponding implications for the biomass and 
management-related estimates.   

 
• despite the constant selectivity assumption, the aspm_d2g model was not 

sensitive to the selectivity shift as was SC_1ideal.  The absence of CL data in 
the likelihood limit the extent to which numbers-at-age could deviate to 
explain the change in CL signal.  Furthermore, the deterministic recruitment 
would not allow the model to estimate large recruitment anomalies in the most 
recent years even if the CL data was used.   

 
• Estimation implications of a shift in selectivity 10 years before the final year 

(not shown) were qualitatively very similar to the shift at T-5.  
 
The effect of the selectivity shift is similar in the difficult scenario (D_H45), except 
that the problems are superimposed on top of the other estimation errors characteristic 
of the D_x scenarios (Fig. 18).  There is a modest change in performance between 
D_base and D_H45 for f_calc, aspm_d2g and SC_base, but it is minor compared with 
the effect on SC_1ideal.  Clearly there is potential to reliably estimate selectivity 
changes, and this is something that should be attempted if there are suspicious 
changes in recruitment, particularly if there is auxilliary information about changes in 
fishing industry practices.  But we note that if multiple fisheries were to change their 
targeting practices simultaneously (e.g. in response to a global management action), 
we do not know if the effect could be estimated.  
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Fig. 17.   Performance indicators resulting from the application of a range of 
AMs to 10 simulated data realizations from OMs E_base, and 
E_H45 (shift in longline fishery selectivity 5 years before the end of 
the time series).  Each PI is a ratio of  (AM estimated)/(OM actual).  
Boxplots describe the distribution of individual PIs; time series are 
represented by line plots of quantiles (median, 20th and 80th 
percentiles and range).  OMs are defined in Table 1, AMs (indicated 
at top of page) are defined in Table 2 and PIs in Table 8. 
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Fig. 18  Performance indicators resulting from the application of a range of 
AMs to 10 simulated data realizations from the difficult OM 
scenario D_H45 (shift in longline fishery selectivity 5 years before 
the end of the time series).  Each PI is a ratio of  (AM 
estimated)/(OM actual).  Boxplots describe the distribution of 
individual PIs; time series are represented by line plots of quantiles 
(median, 20th and 80th percentiles and range).  OMs are defined in 
Table 1, AMs in Table 2 and PIs in Table 8.   
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5.7.2 LENGTH-BASED FISHERY SELECTIVITY  

 
We tested one possible implementation of purely size-based selectivity in VSM 
operating model specification E_HL and found that performance of all models was 
only slightly different from E_base (Fig. 19; only results from SC_base are shown). 
One could probably contrive size selectivity scenarios that would be troublesome for 
the models (e.g. by inflating the variance on the length-at-age, implementing a 
different form of growth, and/or exaggerating the selectivity effect with knife-edged 
functions), but we do not see this avenue of exploration as a high priority for SBT, 
given the other assessment issues that clearly do cause problems.  
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Fig. 19.  MPD performance indicators resulting from the application of a 
range of assessment models to 10 simulated data realizations from 
operating model E_HL, which has purely length-based fishery 
selectivity.  Each PI is a ratio of  (AM estimated)/(OM actual).  
Boxplots describe the distribution of individual PIs; time series are 
represented by line plots of quantiles (median, 20th and 80th 
percentiles and range).  OMs are defined in Table 1, AMs in Table 2 
and PIs in Table 8. 
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5.8 OBJECTIVE VI - ASSESSMENT IMPLICATIONS OF CATCHABILITY 

TEMPORAL VARIABILITY IN RELATIVE ABUNDANCE INDICES  
 
Most dynamic stock assessment models use some form of relative abundance index 
(usually derived from CPUE for oceanic pelagic fisheries) as one of the primary data  
inputs.  This section is intended to illustrate how assessments can be badly misleading 
if the abundance index is mistakenly assumed to be directly proportional to 
abundance, and explores how effectively integrative models can estimate temporal 
variability in catchability, given the other sources of data that are available for SBT 
(i.e. total catch, catch-at-length, catch-at-age, tag releases and recoveries).  The 
operating models that we examine in relation to this section include the ideal case, 
E_base (catchability constant), E_qInc (catchability increasing over time at 1% per 
year), E_qI (catchability increases and decreases over time in relation to effort, in a 
manner that is qualitatively consistent with co-operation among fishers), and E_qC 
(catchability increases and decreases over time in relation to effort, in a manner that is 
qualitatively consistent with interference among fishers; the catchability pattern is 
opposite to E_qI).  The D_x scenarios are analogous to the E_x scenarios, but the 
catchability problems are overlaid on all the other data issues that make D_x difficult 
(including an auto-correlated pattern to the effort deviations). 
 
Assessment model performance was clearly dependent on the reliability of CPUE as a 
relative abundance index, but the estimation errors were not always consistent with 
what we would have anticipated.  Fig. 20 provides an overview of the performance of 
several representative models, which illustrate the following: 
 

• The difficult OM scenarios (D_x) were generally more problematic than the 
easy scenarios (E_x), with a couple of conspicuous exceptions.   

 
• Within the E_x and D_x scenarios, the production models generally had the 

worst performance for scenarios E_qC  and D_qC respectively (based on the 
aggregate performance index).  E_qC and E_qI  had biomass estimation 
biases in opposite directions as might have been expected (because the 
temporal patterns in catchability are opposite in the two scenarios).  We 
expected that the production model estimates would result an increasing 
biomass error trend over time for the E_qInc  and D_qInc scenarios, but this 
was not obvious.  aspm_d2g did demonstrate an increasing biomass error 
trend for E_qInc, but there were many differences in the estimation 
characteristics between E_base and E_qInc, such that it was not even obvious 
that overall performance was worse for E_qInc than E_base.   

 
• Among the E_x scenarios, all the SCALIA models (with the exception of 

SC_noTag) demonstrated the worst performance against scenario E_qInc.  All 
SCALIA models had similar problems with E_qC as did the production 
models, but these were not as serious as with E_qInc.  It was not obvious 
which scenario was the most problematic in the D_x series for the SCALIA 
models (except D_qC seemed somewhat worse for SC_noTag).  All the 
SCALIA models produced an increasing trend in the biomass estimation error 
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for E_qInc as would be expected for an increasing catchability trend.  
However in all cases (except SC_noTag) the trend in biomass error greatly 
exceeded the catchability trend in the operating model. 
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Fig. 20.   Overview of the performance of assessment models when challenged 
by operating models with a range of assumptions about the effort – 
fishing mortality relationship.  Each AM was applied to 10 
simulated data realizations from each OM.  Each PI is a ratio of  
(AM estimated)/(OM actual).  Boxplots describe the distribution of 
individual PIs; time series are represented by line plots of quantiles 
(median, 20th and 80th percentiles and range).  OMs are defined in 
Table 1, AMs in Table 2 and PIs in Table 8. 
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Fig. 20(cont.) 
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Results from a broad range of assessment models are presented for the problematic 
E_qInc scenario in Fig. 21.  From these plots we note: 
 

• The aggregate performance indicator suggests that the SCALIA model 
SC_noTag seemed to have the best overall performance, followed by the 
production models.  The remainder of the SC_x, MF_x and BIH_2 models 
were substantially worse. 

 
• Aside from the production models and SC_x, all assessment models 

demonstrated serious estimation errors that are consistent with an 
unrecognized trend in catchability, but the magnitude of the bias seems to be 
greater than the catchability trend.  Absolute and relative biomass estimates 
had an increasing over-estimation bias over time, while exploitation rates had 
a corresponding increasing under-estimation bias over time.  Recruitment 
estimation errors showed highly variable patterns depending on the model.   

 
• AMs that attempted to estimate temporal variability in catchability were not 

very successful.  On the basis of the aggregate PI, it might be argued that 
SC_qTS1 and MF_qTS were slightly better than the comparable models that 
did not estimate catchability variability; but they were clearly worse than 
SC_noTag and the production models.  SC_qTS1 and MF_qTS do have 
qualitatively different errors than the other SC_x and MF_x models, as evident 
in the stronger biomass error trends toward the end of the time series (such 
that it is not at all clear that these models perform better).   

 
It is curious that the production models and SC_noTag generally did not seem to be as 
badly affected by the catchability trend as the other complicated integrative models.  
It suggests that there is some unexpected interaction with the tagging data causing this 
behaviour.  The magnitude of the problem and consistency across different 
assessment models could also indicate a bug (or specification error) in the operating 
model.  But we would have expected that a serious inconsistency in the tag dynamics 
would have been evident in many other OM scenarios as well.  This does suggest a 
potential problem for the integrated models.   
 
This type of result does provide justification for examining different sources of data 
independently to identify conflicting trends.  We note that Schnute and Hilborn 
(1993) describe an approach for admitting that each data source has a certain 
possibility of being incorrect in the context of a particular model.  This might be an 
effective method for admitting more uncertainty within a single model framework, but 
the polymodal likelihood surfaces that result might preclude analyses of the type 
undertaken here, in which the MPD estimates are the main focus.    
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Fig. 21.   Comparison of assessment model performance for the OM scenario 
with an increasing trend in longline fishery catchability (E_qInc).  
All AMs were applied to 10 simulated data realizations.  Each PI is a 
ratio of  (AM estimated)/(OM actual).  Boxplots describe the 
distribution of individual PIs; time series are represented by line 
plots of quantiles (median, 20th and 80th percentiles and range).  
OMs are defined in Table 1, AMs in Table 2 and PIs in Table 8. 
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Fig. 21 (cont.) 
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The SCALIA models that attempted to estimate temporal variability in catchability 
(SC_qTS5, SC_qTS1 and SC_2ideal) were not very successful (Fig. 22): 
 

• SC_qTS1 was so constrained (random walk CV = 0.01) that it was 
essentially the same as SC_base.   

 
• SC_qTS5 (random walk CV = 0.05) showed slightly different behavior, but it 

actually seemed to be worse than SC_qTS1 and SC_base in terms of the 
relative biomass estimates. 

 
• SC_2ideal differed from the other models in several ways, and appeared to 

perform slightly better than the others on the basis of the aggregate PI, but 
there were large estimation errors evident in the individual PIs.   

 
Catchability trend estimation was not very successful in the other scenarios either (not 
shown).  If this is true in general, it indicates that these stock assessment models are 
highly dependent on the quality of the relative abundance index, and the auxiliary data 
has limited capacity to improve the estimated abundance trends.  It also follows that 
using the assessment model likelihood to choose among different effort 
standardization methods is probably not very useful for discriminating which effort 
series is the best.   
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Fig. 22.   Comparison of AMs that attempt to estimate temporal variability in 
longline catchability with the baseline SCALIA model SC_base, 
when challenged by simulated data from an OM with a catchability 
trend.  AMs were applied to 10 simulated data realizations.  Each PI 
is a ratio of  (AM estimated)/(OM actual), except for stock-
recruitment related quantities that illustrate actual values.  Boxplots 
describe the distribution of individual PIs; time series are 
represented by line plots of quantiles (median, 20th and 80th 
percentiles and range).  OMs are defined in Table 1, AMs in Table 2 
and PIs in Table 8. 
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Fig. 22. (cont.) 
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5.9 OBJECTIVE VII - THE SCTB METHODS WORKING GROUP AND 

ASSUMPTIONS ABOUT FISHERY SPATIAL STRUCTURE IN ASSESSMENT 

MODELS 
 
The application of assessment models to the simulated YFT data has raised some 
interesting questions about the quality of inferences from different assessment models 
and how to evaluate them with simulation methods.  At the time of writing this report, 
we can only make preliminary comments about model performance at a global 
population level.  Hopefully the SCTB-MWG analysis will eventually provide more 
insight about the performance of MULTIFAN-CL at the level of the spatial sub-
structure.  
 
The 2002 MWG project resulted in the application of several assessment models from 
independent participants from several countries.  Different models were applied with 
different levels of thoroughness, and the results were not all summarized in a form 
that was directly comparable with the operating model.  Available results are 
summarized in MWG (2002).  The most detailed results are available for 
MULTIFAN-CL (Labelle 2002; the YFT simulator is also described in this 
document).  As part of the SESAME project, we applied SCALIA (Kolody 2002) and 
production models (Ricard and Kolody 2002).  One clear result from this study was a 
recognition of the futility of attempting to estimate a catchability trend for a 
production model that uses only annual catch and CPUE as a relative abundance 
index.  Results from A-SCALA (e.g. Maunder and Watters 2003), ADAPT (Bigelow 
2002) and an independent application of MULTIFAN-CL were also presented.  
Discussions from the 2002 meeting were instrumental in defining the more 
comprehensive 2003 study, and are not discussed further here.   
 
The 2003 YFT simulation study results were examined in the most detail for 
MULTIFAN-CL (Labelle 2003; updated YFT simulator description also provided 
therein).  The study left the impression that MULTIFAN-CL generally made 
reasonable global inferences.  The simulated data for the most complicated scenarios 
(7 fisheries X 7 regions and 16 F X 7 R) were not distributed in time for most other 
models to be applied.  A-SCALA was applied to the first three scenarios (1 F X 1 R, 2 
F X 1 R, 2 F X 2 R).  As part of SESAME, we applied production models and 
SCALIA to all data sets (Kolody and Ricard 2003), but not all were completed in time 
for submission to the MWG in July 2003.  There was limited comparison of 
assessment models at the 2003 meeting, and this was recognized as an objective for 
the MWG 2003-4 workplan. 
 
Subsequent to the MWG 2003 meeting, we obtained a limited description of the YFT 
simulator biomass dynamics and prepared a number of preliminary summary graphics 
for the age-aggregated production model and SCALIA applications (plus a repetition 
of some of the MULTIFAN-CL (mfcl) results from Labelle 2003 for comparison).  
These are included in Fig. 23 - Fig 27.  A number of points are suggested from this 
preliminary synthesis (note AM model definitions in Table 3): 
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• The performance of each assessment model differed considerably depending 
on the OM scenario.  It is not clear which factors are responsible for the 
performance differences.  From the summary details that we have seen, it 
seems as though variability among scenarios due to fishery selectivity/spatial 
patterns and spatial data aggregation units is probably greater than the 
variability due to biology and total global exploitation patterns.    

 
• Absolute biomass estimates were often very poor, while relative estimates 

(depletion) were generally much better. 
 

• MSY-related estimates were often poor for SCALIA models and generally 
very sensitive to the model specification.  The AAPMs were generally better 
than SCALIA.  We do not have the MULTIFAN-CL estimates for 
comparison, but they appear to be reasonable in Labelle (2003).  

 
• ASPM results (including those submitted to the MWG) were found to be 

flawed for the majority of the MWG scenarios (detailed in the ASPM 
implementation section) and were withdrawn from further consideration.   

 
• From scenario 1 (1F X 1R) we would probably conclude that the Fox model 

had the best performance (Fig. 23).  The Schaefer model had high biomass 
estimate variance for both absolute and relative time series (perhaps unduly 
influenced by a few outliers).  The SCALIA model SM_1921 had an absolute 
biomass bias, but relative estimates were good.  MULTIFAN-CL had a 
substantial bias in both relative and absolute biomass over most of the final 
20% of the time series.   

 
• From scenario 2 (2F X 1R) we would probably again conclude that the Fox 

model was the best (Fig. 24).  The Schaefer model again had high biomass and 
depletion variance, possibly due to outliers.  SM_2930 had excellent biomass 
estimates (comparable with Fox); SM_2918 had a large fairly consistent bias 
in absolute biomass, and SM_2914 had bad temporal trends in bias in both the 
absolute and relative biomass estimates.  The MULTIFAN-CL biomass 
estimates seemed to be more biased than the production models and SM_2930, 
but not as bad as SM_2914. 

  
• Most of the assessment models seemed to have similar problems estimating 

relative biomass in Scenario 3 (4F X 2R), with an under-estimation bias 
towards the end of the time series (Fig. 25).  MULTIFAN-CL biomass 
estimates were probably slightly better than the other models.  The SCALIA 
and ASPM MSY estimates were all reasonable, but the F_MSY estimates 
were not as good. 

 
• Fox_agg seemed to have the best biomass estimation performance in Scenario 

4 (7F X 7R) (Fig. 26).  The SCALIA models had very large biases in absolute 
biomass, and considerable biases in relative biomass.  MULTIFAN-CL also 
had biases in relative biomass, though not as large, and with a different 
temporal pattern than the SCALIA models.  The production models had much 
better MSY estimates than the SCALIA models, while they all had problems 
with F_MSY.  
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• All AMs had substantial absolute biomass estimation problems in Scenario 5 

(16F X 7R) (Fig. 27).  Fox_agg and Schaefer_agg probably had the best 
relative biomass estimation performance; SM_5950 and MULTIFAN-CL 
were reasonable and SM_5915 was particularly bad.  The production model 
MSY estimates were better than the SCALIA estimates; it is not clear which 
F_MSY estimates were better. 
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Fig. 23a.   Comparison of assessment model estimates with SPC-OFP YFT 
simulator values.  Assessment results are a boxplot describing the 
distribution based on 40 simulated data realizations.  Asterisk 
indicates that the results were not available for this model (mfcl).  
The simulator value is the median from the 40 realizations.    
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Fig. 23b. 
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Fig. 23c. 
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Fig. 24a.   Comparison of assessment model estimates with SPC-OFP YFT 
simulator values.  Assessment results are a boxplot describing the 
distribution based on 40 simulated data realizations.  Asterisk 
indicates that the results were not available for this model (mfcl).  
The simulator value is the median from the 40 realizations.    
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Fig. 24b. 
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Fig. 24c. 
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Fig. 25a.   Comparison of assessment model estimates with SPC-OFP YFT 
simulator values.  Assessment results are a boxplot describing the 
distribution based on 40 simulated data realizations.  Asterisk 
indicates that the results were not available for this model (mfcl).  
The simulator value is the median from the 40 realizations.    
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Fig. 25b. 
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Fig. 26a.   Comparison of assessment model estimates with SPC-OFP YFT 
simulator values.  Assessment results are a boxplot describing the 
distribution based on 40 simulated data realizations.  Asterisk 
indicates that the results were not available for this model (mfcl).  
The simulator value is the median from the 40 realizations.    
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Fig. 26b. 
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Fig. 26c. 



 187

F
ox

F
ox

_a
gg

S
ch

ae
fe

r

S
ch

ae
fe

r_
A

gg

S
M

_5
91

5

S
M

_5
95

0

m
fc

l

si
m

ul
at

or

0.0

0.2

0.4

0.6

0.8

1.0

MSY (10^6 MT)

*

F
ox

F
ox

_a
gg

S
ch

ae
fe

r

S
ch

ae
fe

r_
A

gg

S
M

_5
91

5

S
M

_5
95

0

m
fc

l

si
m

ul
at

or

0.00

0.05

0.10

0.15

0.20

0.25

F_MSY

*

Scenario 5 (16Fx7R)

 

Fig. 27a.   Comparison of assessment model estimates with SPC-OFP YFT 
simulator values.  Assessment results are a boxplot describing the 
distribution based on 40 simulated data realizations.  Asterisk 
indicates that the results were not available for this model (mfcl).  
The simulator value is the median from the 40 realizations.    
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Fig. 27b. 
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Fig. 27c. 
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These AM applications explored a number of different approaches for dealing with 
the spatial dynamics in the YFT scenarios.   
 
MULTIFAN-CL used the most complicated approach of dis-aggregating into regional 
units and explicitly modelling fish migration.  From the limited results that we have 
available at this time, it is not clear that the MULTIFAN-CL global inferences are 
better than the spatially aggregated models.  It would be interesting to know how well 
MULTIFAN-CL regional estimates of stock dynamics performed.   
 
The SCALIA models use a global population, but dis-aggregated fishery fleets, and 
explored the spatial problem in 3 different ways. 1) the relationship between global 
abundance and regional CPUE was very relaxed (either via large CV on effort 
deviations and/or temporal variability in catchability), under the assumption that the 
proportion of global abundance in a particular region is likely to change as the fishery 
develops, 2) since each fishery in the SCALIA model is potentially fishing the global 
population, temporal variability in selectivity was allowed to admit the fact that 
temporal changes in the proportion of global abundance in a region will probably also 
differ by age over time.  3) Given the recognition that the relative abundance index 
tends to be the most important factor in an assessment, the longline effort data was 
given high weight and the potential spatial implications were ignored.  The first 
approach received the most attention based on the analyst’s prior expectation of the 
behavior of the YFT operating model.  This produced rather disappointing results.  
The second approach resulted in even greater failure.  Selectivity temporal variability 
resulted in excellent correspondence between predictions and data, but the biomass 
dynamics generally suggested rapid and sustained stock collapse in all cases tested 
(none of these trials were pursued across all realizations and are not presented here).  
The third approach (SC_4950 and SC_5950) resulted in the best performance, and 
was only implemented after the known values of the operating model were revealed, 
and it became apparent that the age-aggregated production models seemed to perform 
better than the SCALIA models.   
 
The AAPMs used the simplest approach for the spatial problem, in that a single 
spatially- (and age-) aggregated population was defined and all fisheries were 
aggregated into one.   For the most complicated OM scenarios (7F X 7R and 16F X 
7R, two different approaches were compared for generating a relative abundance 
index: 1) Fox and Schaefer simply used CPUE from (one of) the largest longline 
fisheries (in terms of catch in numbers); and 2) Fox_agg and Schaefer_agg used the 
global nominal CPUE (total catch / total hooks).  The two approaches were similar, 
but the global nominal CPUE performed somewhat better. 
 
On the basis of this preliminary comparison of performance, it would be difficult to 
dismiss the production models (in particular Fox_agg) without further consideration.  
We note from Fig. 28 that the Fox biomass trajectories are rather smooth and 
"unrealistic”-looking because they cannot represent stochastic recruitment and 
transient age structure effects.  However, despite missing certain short-term details, on 
average, the Fox model seemed to estimate relative exploitable biomass at least as 
well as the age-structured models in most of the YFT simulations.   
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Fig. 28.   Comparison of the relative biomass estimates from 5 different 
assessment models with the actual YFT Operating Model values for 
the most complicated scenario (realization 1 from 16F X 7R).  

 
We are left with a number of questions regarding the MWG project: 
 

1. Is there something particular about the YFT operating model scenarios that 
makes the Fox model (and to a lesser extent the Schaefer model) appear to be 
deceptively successful?  If global CPUE and a Fox production model actually 
produce the best assessment inferences what have we gained from all the 
other complications?  The age-aggregated production models were not 
generally superior to the SCALIA models in the SESAME SBT scenarios, 
and this demonstrates the importance of simulation testing under a wide range 
of plausible scenarios.  It also suggests that we might want to give more 
consideration to the evaluation criteria.  In this summary, we have tended to 
emphasize relative biomass estimates as the most important criteria (partly 
because it is all we had available at the time), but the criteria should probably 
be related to the type of advice required for effective management, and could 
well include recruitment, and spatial (or fishery) related objectives that 
production models cannot provide. 

 
2. Were the spatial dynamics in the operating model parameterized in such a 

way that we actually gained useful insight about the spatial abilities of 
MULTIFAN-CL?  Perhaps migration rates were so high (or fishery removals 
so uniform) that spatial dis-aggregation added nothing to global inferences.  
Alternatively, perhaps the YFT spatial dynamics were sufficiently different 
from the MULTIFAN-CL assumptions, or so difficult to estimate, that no net 
improvement was evident in the MULTIFAN-CL analyses over the spatially-
aggregated models.  
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3. Did the simulations provide a sufficient challenge to test the implications of 
transient age-structure effects in the YFT population?  It is curious that the 
age-aggregated production models seemed to perform as well as the 
complicated age-structured models in the majority of scenarios, despite the 
apparent diversity in the exploitation histories.  Perhaps the exploitation rates 
were not sufficient to actually introduce much variation in the population age 
structure or the age-structure of the relatively short-lived YFT is simply not as 
much of an issue as with SBT.  Alternatively, perhaps the age-structured 
models could not estimate the age-structure (mortality) reliably enough to 
represent an improvement in the understanding of global dynamics over that 
observed in the age-aggregated models (e.g. an updated example of Ludwig 
and Walters 1985).    

 
4. Is the estimation of natural morality in MULTIFAN-CL and SCALIA the 

main limiting factor for model inferences (given a highly informative relative 
abundance index)?  Qualitative inspection (not shown) indicated that both 
(but particularly SCALIA) had large biases in the estimates of mortality-at-
age in the YFT scenarios.  Similarly, in the SESAME SBT trials, the models 
with known M performed much better than those that attempted to estimate 
M.  This probably also indicates that simulations should cover a range of 
plausible M assumptions to avoid the self-fulfilling prophecy (i.e. if an 
assessment model tends to estimate mortality-at-age with particular bias 
characteristics, it might not make sense to use the estimates of M from the 
assessment to feed into the operating model that is in turn used to test the 
assessment model).  

 
5. If WCPO assessments are going to provide advice related to MSY and 

recruitment over-fishing, MULTIFAN-CL should also be evaluated against a 
range of stock recruitment scenarios.  Our SBT simulations suggested that 
MULTIFAN-CL might have a bias that tends to over-estimate recruitment 
compensation.  The YFT simulations indicated that SCALIA steepness 
estimates were highly sensitive to assessment model assumptions (although it 
is not clear that this remains true when CPUE is given a high weighting).  

 
6. Advice to managers for the WCPO might require explicit consideration of 

spatial issues.  In which case, there might be no alternative but to go down the 
route of a MULTIFAN-CL-type assessment.  However, if CPUE truly is the 
main driving data for all models, perhaps there is merit in sacrificing age-
structure complexity for improved spatial structure (or at least prioritizing 
catch rate analysis and interpretation as a major focus for assessment 
resources). 
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5.10  OBJECTIVE VIII - STOCK ASSESSMENT MODEL UNCERTAINTY 

QUANTIFICATION  
 
This section of the report attempts to address the different facets of uncertainty 
quantification as we defined them in the introduction, and discusses how this should 
be considered in the context of stock assessment and the provision of advice to 
managers.   
 
5.10.1.A Estimator Performance 
 
It is clear from the results of the preceding sections, that there are likely to be 
substantial biases in many of the stock assessment model MPD estimates.  Some of 
the stock assessment models had real problems estimating natural mortality, absolute 
biomass, stock recruitment curve steepness, and MSY, even when the data were 
unrealistically good.  Models generally performed more reasonably with a higher 
degree of prior knowledge (e.g. knowing natural mortality, the absolute biomass 
estimates were generally good).  Not surprisingly, the quality of the inferences 
degraded as the quality of the data decreased.  Some key system features could not be 
reliably estimated under any of the simulation conditions (e.g. temporal variability in 
catchability for the main (CPUE) relative abundance index).  Some quantities were 
estimated more reliably, including the relative biomass (the ratio of biomass at two 
points in time, e.g. B(t = 2005) / B(t = 1980) ).  In most cases, we would not place 
much faith in the best point estimates from any given assessment model.  We would 
recommend that management advice should be focused on quantities that can be 
estimated relatively reliably (e.g. relative biomass, trends in historical recruitment), 
rather than quantities that may be easier to work with, but are more difficult to 
estimate (e.g. absolute biomass and absolute exploitation rates). 
 
We would consider the relative abundance indices to be the most informative piece of 
data in most assessments.  If the exploitation and data history resemble SBT, then the 
other data seem to have limited capacity to recognize problems in the relative 
abundance index, and are probably not going to be sufficient to produce reliable 
estimates of trends in catchability for the main CPUE series.  This strongly suggests 
that quantifying the uncertainty in effort standardization and catch rate interpretation 
should be a primary focus for most pelagic fisheries assessments; and encourages 
further development of fishery independent abundance indices.   
 
The implications of the limitations of estimator performance are described in further 
detail in the following sections on uncertainty estimation and model uncertainty. 
 
5.10.1.B Statistical Uncertainty Estimation 
 
A limited attempt to examine the reliability of statistical uncertainty estimation using 
the method commonly applied in SCALIA (and MULTIFAN-CL) analyses confirmed 
that it was not very reliable under the test conditions.  We calculated the proportion of 
times that a known quantity from the operating model fell within the estimated 50% 
confidence intervals generated by SCALIA.  The confidence intervals were calculated 
by AD Model Builder using the multi-variate normal approximation from the Inverse 



 194

Hessian matrix at the mode of the objective function (combined with the delta method 
if the quantity of interest is derived from the estimated parameters).  Three example 
assessment models, SC_base, SC_noHTS and SC_1ideal were applied to 40 
realizations of the most well-behaved operating model (E_base).  Fig. 29 illustrates 
how the actual values in the operating models compare with the estimated 50% 
confidence intervals for 5 performance indicators (stock recruitment curve steepness, 
B(T), B(T)/B(1), C(T)/B(T), and Rec(T-9:T)/Rec(1:10)).  Clearly the confidence 
intervals were too narrow in general.  Exploitation rate estimates were the only 
estimates for which >10% of actual values ever fell within the 50% confidence 
intervals.    
 
These confidence intervals were calculated conditional of the assessment model being 
“correct”.  Of course, none of these models are perfectly correct in the sense that the 
dynamic equations of the operating model and assessment model are not identical.  
However, the three assessment models were specified with very good assumptions 
about the underlying dynamics, and are thus likely to be over-optimistic in terms of 
the reliability of the confidence intervals relative to a real assessment.  These results 
are consistent with our observations of the MPD biases evident in the majority of the 
SESAME results, and our actual applications to SBT stock assessment, in which 
alternative plausible models often result in non-overlapping 95% confidence intervals 
(Kolody and Polacheck 2001).    
 
There may be some confusion about the relative importance of bias and variance in 
the interpretation of these uncertainty estimates.  Due to complicated non-linear 
interactions in these models, we are not surprised that there appear to be biases in 
many of the MPD estimators.  One might argue that bias corrections could be applied 
to remove the worst effects.  If there is a consistent 20% over-estimation bias in MSY, 
then it might be appropriate to apply a 20% adjustment to MSY estimates after fitting 
the model.  After the relevant biases are removed, then variance estimators (e.g. from 
the inverse Hessian matrix) might provide a much more reasonable estimate of the 
confidence intervals.  However, bias correction is not usually applied to these models, 
so our illustration of confidence intervals is representative of most applications.  
There may be merit in applying bias corrections, but the efficacy of these techniques 
would presumably be conditional on the assumptions under which they were 
developed.  Given the nature of the MPD results observed throughout SESAME, we 
would expect that the magnitude of estimation biases would usually be sensitive to the 
simulation conditions and assessment model specification.  If this is the case, it is not 
obvious that reliable bias correction methods could be developed.    
 
Likelihood profiles and Bayesian posteriors (from a full Bayesian integration) might 
provide a better representation of the statistical uncertainty.  e.g. Lewy and Nielsen 
(2003) used simulations to illustrate a Bayesian approach that does not seem to suffer 
from overly narrow confidence intervals.  Seemingly all of their operating model 
parameters were within the estimated 95% intervals from the marginal posterior 
distributions.  It is not clear that this apparent over-estimation of statistical uncertainty 
should be considered better performance, but it is worth further investigation.  We 
also note that their simulation testing involved identical structure of operating model 
and assessment model, presumably eliminating model uncertainty as an issue.   
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All of the uncertainty estimation methods mentioned above (inverse Hessian, 
Bayesian posteriors and likelihood profiles) assume that the objective function in 
these models can be interpreted as a true likelihood.  But there is a fundamental 
question of the appropriateness of applying likelihood theory to problems where the 
number of parameters increases in direct proportion to the amount of data.  There is 
also an ambiguity between the definition of parameters and states (e.g. should an 
individual recruitment event be estimated as an individual parameter, or instead 
integrated out as an alternative state in a random effects model).  Boot-strapping 
provides an alternative approach for estimating uncertainty that should be more robust 
to the objective function assumptions than the others.  However, boot-strapping is also 
computationally intensive, and methods for dealing with time series data are not well 
developed.   
 
While we have some optimism that alternative methods of uncertainty estimation 
might prove to be more effective than the Inverse Hessian approximation, we expect 
that more substantial improvements can be made in relation to model formulation.  At 
one level, there is probably scope for improving the individual terms in the likelihood 
to more realistically represent the processes that govern the stochasticity in the system 
dynamics and observation/sampling methodologies (e.g. Stefansson 2003).  However, 
we also expect that fisheries models will always contain arbitrary assumptions and 
that key assessment inferences will often be sensitive to these assumptions.  This is 
discussed further under Model Uncertainty below. 
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Fig. 29   Top left: frequency distribution of the proportion of times (out of 
40) in which operating model state values (stock recruitment curve 
steepness, B(T), B(T)/B(1), C(T)/B(T), and Rec(T-9:T)/Rec(1:10)) fell 
within the estimated 50% confidence intervals for the SCALIA 
assessment models SC_base, SC_noHTS and SC_1ideal.  Top Right: 
The corresponding theoretical distribution that would be expected if 
the analysis was repeated .  Bottom 5 panels indicate the 50% 
confidence limits (lines) from SC_base and actual values from the 
operating model (E_base).  
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5.10.1.C Model Uncertainty 
 
The SESAME SBT results strongly support the assertion that model uncertainty is a 
substantial issue in stock assessment.  As indicated in most of the results addressing 
Objectives I - VII, assessment models had substantial bias and variance for many of 
the MPD estimates, and the nature of the biases differed among the different model 
specifications.  The problem was evident to some degree when the simulated fishery 
dynamics and data were close to ideal, but became substantially worse as larger and 
more plausible process and observation errors were introduced.  These results are 
generally consistent with our observations of model sensitivity in real assessment 
applications.   
 
A shortfall in our considerations of model uncertainty is the absence of any analysis 
of diagnostics for examining the quality of fit between data and model predictions.  
Diagnostics are routinely used in actual assessments and can identify models that have 
obvious inconsistencies with the data.  Implementing an automated expert system for 
analyzing diagnostics was beyond the scope of the SESAME project, and hence we 
might be somewhat over-emphasizing the importance of model uncertainty if the 
results include models that simply do not fit the data.  However, we note that among 
the complicated models, the specifications that performed the worst were often the 
ones with the weakest constraining assumptions.  Provided that the function 
minimization routine is working correctly, the models with the weaker constraints 
should actually fit the data better (presumably they perform more poorly because they 
are over-fitting to noise), in which case the diagnostics might not be very informative.  
There are successful examples of the use of the Aikake Information Criterion (AIC) 
and Bayesian Information Criterion (BIC) for model selection and the identification 
of optimal model complexity (e.g. Helu et al. 2000), these illustrations tend to look at 
a small subset of plausible models under simple simulation conditions.  We also note 
that model diagnostics are often helpful for identifying conflicting trends in the data, 
but this does not necessarily help in selecting the best model or weighting the 
credibility of different models (unless there are objective reasons for believing one 
source of data over another). 
 
We attempt to contrast some of the more consistent advantages and disadvantages of 
the different assessment models that we have examined as part of SESAME in the 
subsequent section on Relative Performance of Assessment Models.  We are left with 
the impression that, in many cases, there is no easy way to reliably distinguish which 
model is the best for assessing a particular population.  Using alternative 
specifications of the complicated integrative models to explore model uncertainty 
probably provides a reasonable means for illustrating the plausible states of nature 
that are consistent with the data.  There is reduced scope for attempting this with the 
simpler models.  We expect that the model uncertainty will generally be greater than 
the statistical uncertainty estimated assuming a particular model formulation is 
correct, and this is especially true when there are conflicts in the data.  In some cases, 
models might be reformulated so that alternative structural assumptions can be 
encompassed as special cases of a more generalized model, and hence some model 
uncertainty might be subsumed into statistical uncertainty.  However, in general, we 
think that ad hoc exploration of model uncertainty through sensitivity analyses (and 
informal comparison with independently implemented models if available) should be 
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an important part of stock assessment.  It seems inevitable that any synthesis of 
uncertainty quantification is going to have a large component of subjectivity, and it 
would be naive to interpret the probabilistic summary statements from most fisheries 
assessment endeavors too literally.  An ad hoc admission of this uncertainty is 
probably more useful than a tidy mathematical synthesis that misses many plausible 
alternative interpretations of the data.  
 
5.10.1.D Assessment Uncertainty and Fisheries Mangement 
 
Our results are generally consistent with other recent literature that emphasizes the 
importance of admitting that there are substantial and seemingly unavoidable 
limitations to the quality of fisheries assessment model inferences (e.g. Patterson et al. 
(2001), Schnute and Richards (2001)).  There is optimism that substantial 
improvements can still be made to assessment models by increasing the statistical 
rigor employed (e.g. Stefansson 2003, Maunder 2003).  And there is a fear that 
increasing expectations (e.g. ecosystem management objectives) might require 
modellers to move in directions that are far less tractable, such that the successes that 
have been realized in the single species context to date might be undermined in the 
future (Quinn 2003).  We tend to agree with the view that the greatest potential for 
improvements in assessment outcomes will probably be made at the interface of 
science and management.  We should strive to express the plausible range of 
uncertainty about fisheries systems, and try to come up with management strategies 
that are robust to these uncertainties to the extent possible (e.g. Schnute and Richards 
(2001), Schnute 2003, Prager and Williams (2003)).  The complicated statistical 
models provide an important tool to help achieve this, and operating models will 
probably play a larger role in the future, as will increased dialogue among scientists, 
managers and fishers. 
 
The work that we have undertaken through SESAME is important for understanding 
the limitations of assessment models, however, it does not necessarily provide a good 
representation of the types of errors that are likely to occur in fisheries management.  
We attempted to evaluate the quality of several different model estimators that are 
routinely calculated and presented as advice for managers to consider.  However, 
many of these quantities might be largely irrelevant for management decisions.  And 
even when we conclude that a given estimator is poor when calculated under 
particular conditions, there is no guarantee that the estimator will remain poor as 
additional data becomes available.  Different assessment model specifications might 
yield substantially different assessment estimates in any given year, but long term 
management performance based on the different models might be rather similar (e.g. 
Kolody and Patterson 1999), at least provided that the management decision rules are 
sensible and flexible enough to respond to apparent changes in stock status in a timely 
fashion. 
 
These types of observations support the development of formal Management 
Procedures (MPs) as one possible means of achieving management objectives in the 
face of uncertainty (e.g. Butterworth and Bergh 1993, Punt 1996, CCSBT 2002).  
MPs have a distinct advantage in that they quantify the risk of the combined 
assessment and management, within a feedback control system (classical assessments 
generally assume constant catch or effort in future projections).  MPs are also 
evaluated using performance measures that should be readily defined from 
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management, and thus should avoid the need to simultaneously examine many values.  
In an MP context, complicated assessment models probably should play an important 
role in conditioning the operating model that is used to simulate the future fishery 
dynamics.  But simple models, or even data-based decision rules are often as good or 
better than complicated models for making management decisions once they are 
“tuned” to be robust to the major uncertainties identified in the operating models. 
 
MPs represent a promising method for dealing with assessment uncertainty, and 
reduce the need for applying complicated assessment models at frequent intervals, 
however, they will not resolve all of the issues currently facing stock assessment.  The 
effectiveness of MPs will ultimately be affected to some extent by how well the 
underlying operating model represents reality, and this in turn is related to how well 
assessment models can be used to condition the operating models.  We note at the 
time of writing, that the CCSBT has not been able to agree on the final conditioning 
of an operating model within 18 months of first proposing a structure.  It remains to 
be seen whether an MP can be agreed by CCSBT commissioners, as the MP process 
in itself cannot resolve the difficult decisions required when management objectives 
conflict.   
 
The successful development of an MP will be dependent on effective communication 
between scientists, managers and industry.  Scientists need to gain an appreciation of 
the relative importance of conflicting management objectives.  Fisheries managers 
need to understand the concepts of uncertainty and risk.  At least in the initial phases 
of MP development, this is likely to require greater interactions among the 
participants than has traditionally occurred in Australia’s pelagic fisheries in the past.  
MP development typically also requires an increased workload for scientific and 
technical staff than traditional assessments.  However, to some extent this should be 
offset in subsequent years, as the burden of stock assessment is reduced to the 
implementation of a decision rule.  Scientific staff will still be required to regularly 
evaluate whether the system remains within the realm that the MP was designed for, 
however, full model-based assessments with a comprehensive expressions of 
uncertainty should only need to be carried out at periodic intervals to check on MP 
performance, or redevelop MPs to address changing management objectives. 
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5.11  GENERAL COMMENTS ON THE RELATIVE PERFORMANCE OF 

ASSESSMENT MODELS 
 
The lack of specific criteria for the overall evaluation of assessment models makes it 
difficult to provide definitive statements about model performance.  However, we do 
attempt a simple synthesis here.  We note the general impression that most of the 
assessment models performed better for the YFT simulations than the SBT 
simulations (although for the SCALIA models this is only true for the assessment 
models that assumed CPUE was highly informative).  This probably represents a 
combination of factors, including:   
 

• Although the SBT simulations generally experienced greater overall depletion 
(with potentially more informative contrast) than the YFT simulations, the 
highest exploitation rates and greatest depletion occurred before the relatively 
informative (in terms of CPUE) longline feeding grounds fishery was active. 

 
• The long-lived nature of SBT, and absence of juvenile catch in the early part 

of the time series, limits the degree to which ages can be inferred from length 
frequency data.  

 
• The SBT scenarios covered a greater range of simulation conditions, including 

many scenarios with dynamics and data characteristics that are more difficult 
than we generally assume when formulating stock assessment models for real 
applications.  The major exception to this is the complicated spatial dynamics 
in the YFT simulations, but we question whether this was actually designed to 
represent an appropriate challenge for the assessment models. 

 
The remainder of this section focuses only on the SBT scenarios, although we hope 
that more results will be forthcoming in relation to the YFT simulations from SCTB-
17.   
 
We focus on the aggregate performance indicator in attempting to make broad 
generalizations from the SBT simulations.  We calculated the aggregate PI over 
several SBT operating model scenarios that we considered to be the most important 
(each scenario is implicitly given an equal weighting in the index), and for which a 
sufficient number of assessment models were run. In each case, this included the 
baseline specifications, plus other plausible models that were sufficiently different 
from the baseline.  On the basis of the implementation problems described previously, 
the stochastic ASPM models were not included.  Fig. 30 compares assessment models 
applied to the baseline operating models (E_base, D_base) and the particularly 
problematic operating models with trends in catchability (E_qInc, D_qInc).  The 
largest range of assessment models were applied to these 4 scenarios.  A number of 
points are suggested from these comparisons: 
 

• On the basis of the aggregate performance indicator, one would probably 
conclude that SC_noTag had the best overall performance, followed by 
SC_2Ideal and aspm_d2g.  Curiously, SC_BIH could arguably be considered 



 201

the most robust model in that the range in performance seems to be the 
narrowest.   

 
• The worst models would probably be the SCALIA models that estimated 

natural mortality (SC_Mest, SC_EL) and  BIH_2; followed by s_calc and 
aspm_d6g.  

 
These observations are not really in line with our general impressions throughout the 
study, as these aggregate indices are highly influenced by the troublesome E_qInc 
scenario.  In Fig. 31, we calculate the aggregate PI based on a broader range of the 
operating models tested (E_base, D_base, E_h3, D_h3, E_h9, D_h9, E_h45, E_qC, 
E_qI, E_DDLinf), but exclude the E_qInc and D_qInc scenarios.  The mf_x and 
BIH_2 assessment models were not included because they were not applied to most of 
these operating models.  In this case, our impressions are somewhat different:  
 

• Several of the SCALIA models (SC_base, SC_noHTS, SC_qTS1, SC_noTag, 
SC_1ideal, SC_2ideal and SC_CA60) and aspm_d2g had rather similar 
aggregate performance, and somewhat better than the remaining models.  
SC_2Ideal was possibly the most robust of all, in that the range was the 
narrowest.   

 
• f_calc, s_calc, aspm_d2g, SC_Mest, SC_EL and SC_BIH, had substantially 

worse performance than the rest.  The SCALIA models that attempted to 
estimate natural mortality were probably no better than the Fox model.  

 
Not surprisingly, this summary does suggest that the model performance is influenced 
by the quality of prior information used in the model formulation. e.g. Perfect 
knowledge of natural mortality (and selectivity for the ASPMs) will usually result in 
improved performance over similar models that attempt to estimate these attributes.  
SC_2ideal seemed to have somewhat better performance over a range of operating 
model scenarios, which does suggest that a more relaxed model specification (e.g. 
larger variances, more structural flexibility) might give more robust results in general, 
but it was rarely (if ever) identified as the best performer for any specific operating 
model application.  To some extent, we consider that this might be a deceptive result 
of the aggregate performance indicator.  But there is probably merit in developing 
models that are robust to the most plausible assumption violations that we are likely to 
encounter.   
 
From this study, we are not convinced that the estimation performance provided by 
complicated models is clearly better than the simple models, but we would argue that 
the complicated models provide a much more useful tool for exploring the range of 
dynamics supported by the data.  It is likely that a complicated model will provide 
better estimates than a simple model if it is specified appropriately, but it also seems 
to be the case that complicated models might be less robust to certain types of 
assumption violations.  This is obvious in some cases, e.g. all other things being 
equal, if tag dynamics assumptions are poor, a model without tags should perform 
better.  It is interesting that the model specification that does yield the best estimates 
is often not the model that would be expected on the basis of prior knowledge of the 
individual components of the underlying dynamics.  This could be related to subtle 
inconsistencies and un-anticipated interactions among the model components (e.g. in 
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the SBT simulations it is not obvious how to specify catch-at-length effective sample 
sizes, given that there is a time-step mismatch, and an interaction between selectivity 
process errors and catch-at-length observation errors).  The real advantage of the 
complicated models is probably realized from the expression of uncertainty through 
the exploration of alternative model structures.  We consider this to be true even in the 
absence of a formal theoretical framework for integrating results.  The simple models 
lack the structural richness to easily explore the implications of different model 
assumptions.   
 
The following sections summarize our general impression of the different models. 
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Fig. 30. Comparison of assessment models on the basis of the aggregate 
performance indicator (see Table 8) calculated across results from 
the simulated SBT operating model scenarios E_base, D_base, 
E_qInc and D_qInc.  OMs are defined in Table 1, AMs inTable 2.  
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Fig. 31. Comparison of assessment models on the basis of the aggregate 
performance indicator (see Table 8) calculated across results from 
the simulated SBT operating model scenarios E_base, D_base, E_h3, 
D_h3, E_h9, D_h9, E_h45, E_qC, E_qI, and E_DDLinf.  OMs are 
defined in Table 1, AMs inTable 2. 
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5.11.1 Age-Aggregated Production Models 

 
AAPMs have a number of attractive features, and in both the SBT and YFT 
simulation results, we found it interesting that the Fox models often provided 
assessment results that seemed to be similar to, or better than, the complicated 
integrative models.  The Fox model did not perform as well as the sophisticated 
models when the assumptions of the sophisticated models were in good agreement 
with the SBT simulators.  However, the Fox model often seemed to be more robust 
when certain assumption violations were present (e.g. trends in catchability, 
unrecognized changes in length-at-age) and seemed to out-perform SCALIA when 
natural mortality was estimated.  Many of these generalizations are true to a lesser 
extent for the Schaefer model, but the Fox model was virtually always the better of 
the two.  We would expect the Fox model to be better than the Schaefer model 
because the underlying production dynamics more closely approximate the SBT and 
YFT simulated populations (e.g. B_MSY/B(unfished) < 0.5).  However, in light of the 
general results that we have observed here, and the more general recognition of the 
limitations of assessment models in recent years, we do not find these models very 
attractive as the primary basis for providing stock assessment advice. 
 
These models are often considered attractive because they have minimal data 
requirements, are quick and easy to implement and simple to interpret.  However, 
these features are also limitations.  If additional data are available, it makes sense to 
use them in some manner, but the scope is limited with a classical AAPM.  We have 
also encountered some curious implementation problems.  In the SBT and YFT 
simulations the automated fitting sometimes demonstrated a sensitivity to initial 
conditions, and in some cases we could not get reliable function minimization even 
with interactive fitting.  This seemed to be more relevant for the YFT simulations, 
perhaps in part due to the problem of fitting a long time series with deterministic 
dynamics.  We also observed that problematic likelihood surfaces can cause poor 
inferences in real applications (Ricard et al. 2002).  It is usually presumed to be 
important to be able to examine the potential effects of changing fishery selectivity 
(particularly large changes related to different gear types) on the population dynamics, 
and the subsequent age-structured dynamics, but this is beyond the means of the 
AAPMs.  The relatively fast dynamics of YFT relative to SBT might have contributed 
to the relative success of the AAPMs in the YFT context, and this might suggest that 
age structure is not always as important as we traditionally assume. 
 
In light of the results presented here, we think that the quantification of uncertainty 
and development of robust management plans should be the main goals of stock 
assessment, but find that the AAPMs provide limited scope with which this can be 
achieved.  There have been attempts to examine sensitivity in AAPMs (e.g. 
Butterworth and Plaganyi 2001), however, we felt that in the case of SBT, the ad hoc 
attempts to approximate more complicated structure actually made the models more 
difficult to interpret than age-structured models.  Maunder (2002) suggests that it 
generally makes more sense to use a generalized form of AAPM such as the Pella-
Tomlinson model.  Although the shape parameter cannot usually be reliably 
estimated, it can be constrained in a manner that is consistent with auxillary 
information about the population biology.  Some degree of uncertainty regarding 
productivity can be sensibly explored in this way.  However, many sources of 



 206

commonly available data and important structural features will still be left outside of 
the AAPM model framework.   
 
But we do note that in the context of Management Procedures, we would consider 
these models to have considerable potential as the basis of a decision rule, particularly 
over short-medium time horizons.   
 

5.11.2 Age-Structured Production Models 

 
Overall, our experience with ASPMs was not very encouraging.  The ASPM variants 
with deterministic recruitment, aspm_d2g, performed reasonably well in most of the 
SBT simulations (and often better than the more sophisticated models).  However, this 
is not too surprising given that the fixed input natural mortality, selectivity and the 
functional form of the stock recruitment relationship were known perfectly (for the 
majority of OM scenarios).  A simple attempt to analytically estimate selectivity from 
the catch-at-length data (aspm_d6g) was not satisfactory.  Numerical problems in our 
implementation caused numerous failures in the automated applications, such that all 
ASPM results were withdrawn from the YFT studies.  The ASPM variants with 
stochastic recruitment did not converge reliably.  We did not really attempt to 
improve the implementation, because we see these models as actually a rather 
complicated transitional step to the fully integrated models.  We could have attempted 
to improve the implementation of the ASPMs, but did not think the time was justified.  
If desired, any of the fully integrated models could be parameterized to work as a 
form of ASPM, by simply removing any superfluous data from the objective function 
and using fixed input for selectivity and mortality. 

5.11.3 SCALIA 

 
We were generally pleased with the SCALIA implementation and minimization 
reliability.  But we were disappointed by the model sensitivity to assumptions, and the 
limited ability to reliably estimate some key stock characteristics even given 
unrealistically good data.  Both the YFT and SBT simulations indicated that temporal 
variability in catchability is a real problem that probably cannot be resolved within the 
context of an assessment model (at least not without additional data).  We would not 
be surprised if real applications resulted in rather poor estimates for absolute biomass, 
the stock recruitment curve or MSY.  SCALIA failed to estimate natural mortality 
very well in the majority of cases.  We recognize that a different approach for using 
tagging data should improve mortality estimation to some degree (i.e. even though tag 
recoveries are predicted by time and age, fitting to tag recoveries from individual 
release events is more informative than fitting to tag recoveries aggregated across 
release events as is currently done in SCALIA).  Relative to MULTIFAN-CL, 
SCALIA did not seem to be as computationally efficient, but we could not conclude 
that the quality of inferences was different under the test conditions.  In both cases, 
inference quality seemed to be driven primarily by user specifications. 
 
From this study we are left with the seemingly inescapable conclusion that any 
serious application of SCALIA (or any similar model) for stock assessment, should 
involve a substantial exploration of model uncertainty (sensitivity to assumptions).  
This is also consistent with our observations from real SBT applications.  The 
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exploration of model structural uncertainty should be given a greater emphasis than 
the estimation of statistical uncertainty conditional on the model being correct.  
 
These simulations have proved informative in identifying the limitations of SCALIA, 
and we expect that similar simulations will prove useful for guiding new 
developments to ensure that they actually represent improvements in the advice that 
we can provide to managers, as opposed to new complications that ultimately only 
impede our ability to effectively run and interpret the models.  To avoid duplication of 
assessment model development effort, we expect that most new SCALIA innovations 
will be implemented in a manner that differs from the approach adopted in 
MULTIFAN-CL. 
 

5.11.4 BIH_2 

 
A major criticism of Butterworth et al. (2003) and Polacheck and Preece (2001) has 
been the use of cohort-slicing to estimate the catch-at-age composition.  Under ideal 
assessment conditions, this did not seem to be a serious problem.  BIH_2 recruitment 
estimates demonstrated high variance (estimation error as opposed to recruitment 
deviation CV) and auto-correlation, which are the expected problems for cohort-
slicing, but the biomass-related and management-related estimates were not obviously 
worse than the equivalent models using catch-at-length data.  There did seem to be 
some particular biomass bias trends that might have been related to the estimation of 
the initial age composition.  BIH_2 performance seemed to be worse than many of the 
SCALIA models in the harder OM scenarios, but we did not explore why this was the 
case.  It might have predominantly reflected “chance”, in that there were many 
SCALIA models and only one BIH_2.  When the other plausible errors were present 
in the D_x scenarios, the recruitment estimation errors did not seem to be markedly 
worse than the SCALIA models.  However, given modern computing power and the 
apparent success of catch-at-length methods, it is not clear why one would prefer 
cohort-slicing for age-estimation at this time. 

5.11.5 MULTIFAN-CL 

 
Our application of MULTIFAN-CL to the simulated SBT data demonstrated some 
similarities with the SCALIA applications, but overall the inferential performance 
seemed to not be as good.  Notably, stock recruitment steepness estimates were 
usually biased high.  This occurred despite a (very weak) prior with a mode slightly 
below the actual steepness value (in contrast, SCALIA had a uniform prior on 
steepness in all cases).  We suggest that the MULTIFAN-CL problems in the SBT 
scenarios might have been related to the following: 

 
• Some MULTIFAN-CL features are rumoured to exist but are not well 

documented at present, so we did not attempt to use them.  In particular, the 
highly informative (but limited duration) catch-at-age data from the spawning 
ground fishery was not used in the objective function (catch-at-length from 
this fishery was used).   

 
• The annual data aggregation and continuous fishing of the SBT simulator 

results in large variability in the length-at-age distribution for young ages due 
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to within year growth.  It is likely that MULTIFAN-CL would have handled 
this better by using a finer time-step (whereas SCALIA has an option to 
approximate some of the growth effects directly into the length-at-age 
distribution). 

 
• Our lack of familiarity with the software 

 
In contrast, MULTIFAN-CL seemed to perform reasonably well, and better than 
SCALIA in the YFT simulations.  In part, it seems this might be largely related to 
assumptions about the relationship between effort and fishing mortality.  But it is 
currently unclear whether the YFT simulations were actually appropriate to test the 
spatial dynamics capabilities of MULTIFAN-CL, given the apparent success of the 
production models using global nominal CPUE as a relative abundance index.    
 
We recognize that MUTIFAN-CL is probably the most flexible assessment model of 
its type that is publicly available.  However, there are some features thought to be 
important for SBT assessment that are not currently available (or perhaps not 
documented) that we would like to see before application to SBT: 
 

• Catch-at-age data in the objective function 
 
• the ability to incorporate variability in length-at-age over time (e.g. Polacheck 

et al. 2003a documents substantial changes in SBT length-at-age over time). 
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5.12 METHODOLOGICAL LIMITATIONS 
 
The basic premise of the simulation-estimation methodology as outlined in the 
Methods (Fig. 1. Outline of simulation-estimation methodology for stock 
assessment model evaluation.) is very straightforward.  However, as shown in Fig. 32, 
there are actually a large number of potential problems that can cause misleading 
results, or at least lead to inferences that potentially do not generalize as well as one 
would hope.  In some cases, a serious flaw in one stage could invalidate all the results.   
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Fig. 32.   Illustration of SESAME Simulation-Estimation methodology 
highlighting problematic issues.  

 
The following list describes a number of potential problems that we encountered, our 
attempts to deal with them, and alternative solutions that might have been more 
appropriate. 
 

1. Coding and specification errors – there is always the potential for an error in 
either the operating model simulator or assessment model that will cause 
misleading results.  We attempted to minimize this potential by examining 
detailed graphical output and comparing dynamics between independently 
coded models under similar conditions.  However, model structural 
incompatibilities and continuing evolution of the software limit the extent to 
which these latter comparisons can be done, and we will never be certain that 
all these errors are removed.   
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2. Operating Model specification – there is often a circularity in the 

parameterization of operating models.  The SBT dynamics and biological 
characteristics were loosely based on assessments, as were many components 
of the YFT simulation (Labelle 2003).  Within the SESAME participants, 
there were fairly divergent views about how to specify variances of the 
different SBT process and observation errors (e.g. recruitment variability, 
effort and fishing mortality relationship, tag dynamics, catch sample sizes, 
etc).  Presumably, if we specify operating models that conform unrealistically 
well to the assumptions of the assessment models, we will get an overly 
optimistic impression of our analytical abilities.  Conversely, if the operating 
model is impossibly difficult, all of the assessment models will fail badly and 
we will not gain any insight into the relative merit of different assessment 
approaches.  In the SESAME simulations, we attempted to bracket the true 
SBT situation for many of the gross features of the system.  The optimistic 
E_x scenarios probably approach the upper limits in terms of assessment data 
quality that we could hope for SBT.  The difficult D_x scenarios define a 
lower plausible bound such that we can probably have some confidence that 
our inferences are reasonable if they succeed in this case (although even in this 
case, the potential perversity of other major structural considerations were 
never considered in combination).  The diversity of scenarios allows us some 
insight into the relative performance of the different models under specific 
conditions, but our ability to make bold statements about absolute 
performance to be expected in the real world is rather limited.     

 
3. Alternative exploitation histories.  The SESAME SBT simulations were all 

limited to a rather narrow range of historical exploitation patterns that we 
believe resembles the main features of the real SBT situation; a “one way trip” 
usually with some recovery near the end of the time series.  This time series 
might be less informative than many other fisheries, because the largest 
catches were taken on the spawning grounds in the first few years of the 
fishery, such that there are no observations of juveniles and no reliable relative 
abundance index from this critical time.  In contrast, the SPC-OFP YFT 
simulations focused on situations with lower overall stock depletion and 
informative CPUE indices that extend throughout the time series.  The YFT 
simulations had a range of fleet exploitation patterns among the 5 scenarios, 
(including a mixture of fisheries targeting adults and juveniles in different 
combinations) but the overall population dynamics were not highly variable 
among scenarios. We would be interested to know if the results observed here 
are actually highly dependent on these patterns.  It is possible that the apparent 
success of the Fox model in the YFT simulations could be largely a chance 
occurrence driven by the particular exploitation dynamics of these scenarios 
(and the fact that global nominal CPUE seems to be a good index of the 
population).  Given any range of assessment models, there will always be 
performance differences, and it is possible that the model that is best in a 
particular situation might appear to be so for reasons that might not be 
understood or repeatable in other situations.  It is important that the model be 
tested under a range of simulated conditions to reach conclusions about how 
robust it is.   
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4. Assessment model specification – a balance in the independence between the 
operating model developer and the assessment analyst is required.  We never 
did resolve the issue of prior knowledge satisfactorily.  If one model is 
estimating M, and the other uses fixed input, how should the fixed input be 
specified?  The performance of the assessment could be largely driven by the 
quality of this guess.  This same principle applies to most aspects of model 
specification, but is probably particularly important for a few key issues (e.g. 
M, stock recruitment relationships, relationship between effort and fishing 
mortality).  Our approach in the SBT simulations was to eliminate the 
guesswork and simply use the correct value of M when it was fixed input, and 
recognize that it is not fair to directly compare the performance of two models 
with different prior knowledge.  This makes it rather difficult to meaningfully 
comment on the estimation of M – it seems to be generally poor, but is it 
worse than our ability to guess?  The other approach that we might suggest for 
dealing with this issue would be for the operating model developer to provide 
exact priors on key parameters, and randomly draw the values from the priors 
for each simulated realization.  But this does not really solve the problem, it 
just transfers it to the choice of priors. 

 
5. Assessment automation – repeatedly fitting assessment models to different 

data sets requires a large degree of automation, and does not simulate what 
happens in a real stock assessment.  Non-linear function minimization is 
somewhat of an art, and multiple minima are a distinct possibility.  Curiously, 
we experienced greater problems with the production models (perhaps because 
they are constrained by less data, and/or minimization failures were more 
likely to be identified).  We cannot be sure that the SCALIA models were 
consistently identifying the global minimum (a few convergence failures were 
obvious). Thus we would have to conclude that the assessment model 
evaluation is not really simply estimating the statistical properties of the 
model, but rather the combined statistical and implementation properties, 
including the quality of starting point guesses of the analyst.    In the SESAME 
SBT study we fit several different models and were able to make inferences 
about the relative performance of each.  If however, we were presenting 
results in the context of an assessment, we would also want to provide some 
commentary on the relative credibility of the different models.  This would 
include discussion of the quality of agreement between model predictions and 
observations, and probably the qualitative agreement with our pre-conceived 
notions of the fishery, including the perspective of auxiliary data that were not 
integrated in the model.  We are not currently in a position to provide this 
quality of fit evaluation in an automated way.  Different criteria are routinely 
employed (e.g. Polacheck et al. 1999, Harley and Maunder 2003), and perhaps 
development of an effective expert system would be feasible, but we would 
always want interactive evaluation in a real assessment.  In the context of 
simulations, attempting to estimate more parameters inevitably means a better 
fit to the data, and there is usually no auxiliary experience to draw upon.  We 
are also skeptical of interpreting the objective function of these models too 
literally as a likelihood, so this has implications for the statistical significance 
attached to the addition of more parameters.  
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6. Performance Criteria – We defined several performance criteria that we have 
found to be of interest at one time or another in stock assessment, however, it 
really is not clear what their relative importance should be.  We had hoped that 
different models would clearly be better or worse than others on the basis of 
all or a clear majority of indicators, however, we often found that this was not 
the case.  In some situations, one model would be clearly superior in terms of 
one indicator, but clearly inferior in terms of another.  It also is not clear how 
to trade-off good precision with moderate bias, against moderate precision 
with low bias, or average performance against robustness to outliers.  It would 
be relatively straightforward to make performance judgments based on a 
single performance indicator that would be relevant to managers (e.g. how 
well can we estimate current fishing rates relative to over-fishing).  However, 
if a model has done a poor job of estimating several stock attributes, it would 
not make sense to give the model high praise because it estimated a single 
quantity well under a relatively small set of test conditions.  This also explains 
our reluctance to rely on the aggregate Performance Indicators too heavily, as 
the specific model failures are not evident (e.g. a consistent bias in biomass 
and exploitation rate estimates is probably less serious than excellent 
estimation characteristics except for a large bias in the last 5 years).  The lack 
of agreement on specific evaluation objectives means that we were limited to 
making rather broad qualitative statements, and conclusive statements are 
generally restricted to large and obvious model failures.  One of the possible 
solutions for these problems would be to evaluate model performance relative 
to specific management objectives (i.e. Management Procedures or 
Management Strategy Evaluation).  While this is appealing in the context of 
simulations, it does not remove the fact that MP performance will ultimately 
depend on how well the operating model represents reality.   
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5.13 CONCLUSIONS AND RECOMMENDATIONS 
 
The following points attempt to summarize our main inferences in relation to the 
project objectives as defined in the Introduction.  
 
1) Evaluate the performance of Statistical Catch-at-Age/Length Integrated 
Analysis  (SCALIA) models in relation to the advice and stock status parameters 
needed for the formulation of management policies, with particular emphasis on 
the SBT fishery. 
 

• The SESAME simulations indicate that the complicated integrative stock 
assessment models can provide reasonable inferences about stock dynamics 
under the right conditions, but there can also be large inferential errors even 
when the data are unrealistically good, and assessment model assumptions 
correspond closely to the true underlying dynamics of the system.  The 
assessment model with the specification that we might expect to be the best on 
the basis of the individual model components does not necessarily yield the 
best average performance, presumably due to subtle inconsistencies that 
inevitably arise in model abstraction, complicated interactions among model 
terms and limitations to the information content of the available data.  Model 
performance degrades considerably as data quality decreases, and when 
operating model dynamics deviate from assessment model assumptions in 
plausible ways.  These simulations are qualitatively consistent with our 
observations in real assessment applications, in which inferences tend to be 
sensitive to arbitrary model assumptions.   

 
• The inevitable model sensitivity leads us to support the view that the provision 

of stock assessment advice should be focused on illustrating the major 
uncertainties in the system and developing robust management strategies for 
coping with this uncertainty.  It is unlikely that any single stock assessment 
model specification can meet the demands of this objective.  However, 
integrative modelling frameworks that have the structural flexibility to admit 
the potentially important characteristics of the fishery provide the best tool 
with which this can be attempted.  Formal Management Procedure 
development represents a promising method with which robust fisheries 
management might be achieved, and we expect that this approach will 
continue to become more popular in the future. 

 
2) Evaluate performance of assessment models with respect to:  
 

I. Stock and recruitment relationship estimation  
 
• The SBT simulations suggested that the stock recruitment relationship is 

difficult to estimate, even with seemingly good data, substantial contrast in 
SSB and the known functional form of the relationship.  The majority of 
SCALIA models were generally able to distinguish high productivity from low 
on average, but there was generally an under-estimation bias.  The precision 
was not encouraging, especially when substantial recruitment auto-correlation 
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was present; such that we would not be surprised if the point estimates were 
very bad in any individual application.  Our applications of MULTIFAN-CL 
to the SBT scenarios suggested a strong over-estimation of productivity.  The 
quality of the MPD steepness estimates deteriorated as the data quality 
decreased and plausible assumption violations were introduced.   

 
• The SBT simulations suggested that SCALIA models quantified the 

recruitment variability reasonably well (empirical CV slightly low, and auto-
correlation slightly high) even if the input variance was poorly specified.  
However, substantial auto-correlation in the operating model resulted in a 
substantial under-estimation of the recruitment variability. 

 
• The assumption of a (somewhat) incorrect stock recruitment relationship did 

not make much difference to the limited number of assessment model 
inferences that we were able to evaluate.  However, this was a very limited 
test, and we would not expect this to be true in general. 

 
II. Catch under-reporting biases 
 
• The SBT simulation trials indicated that a consistent 20% catch under-

reporting bias in any single fishery (juvenile, longline feeding or longline 
spawning) might not have a large effect on the assessment results (relative to 
some of the other factors explored).  We expect that a temporal trend in the 
magnitude of the reporting bias would have been more realistic and 
problematic (particularly if CPUE from the affected fishery is used as a 
relative abundance index), but this was not examined.  

 
     III. Age estimation from cohort-slicing vs: Catch-at-Length  
 

• The SBT simulations suggested that, when data are very good, age estimation 
from cohort-slicing results in some unsurprising errors in recruitment 
estimation (high variance in the estimates of individual recruitment events, 
and inflated auto-correlation in the recruitment deviations, relative to catch-at-
length models).  But we could not conclude that the biomass and management-
related estimates were any worse than similar catch-at-length models.  
Performance differences between catch-at-length models and cohort-sliced 
catch-at-age models were less evident under the more difficult assessment 
conditions.  However, given current computing power and modelling methods, 
it is not clear why one would prefer to use cohort-slicing. 

 
• In the SBT applications, MULTIFAN-CL did not seem to perform as well as 

the similarly parameterized SCALIA models, and we suspect that part of this 
might be due to the fact that MULTIFAN-CL was not using the direct-ageing 
data that was available.  For long-lived species, we expect that direct age 
estimation data will always be much more informative than size data. 

 
• It was not obvious that large, truly random, catch-at-length samples (1000) 

were more informative than small samples (50), perhaps in part due to subtle 
differences between the operating model dynamics and assessment model 
assumptions.  We note that this is not a justification for reducing catch-at-
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length sampling programs, because it is very difficult to obtain unbiased 
fishery length samples without an extensive program.  However, this result 
might suggest that catch-at-length representation in the assessment models can 
be improved.   

 
     IV. Unrecognized changes in SBT length-at-age  
 

• Assessment models that relied on catch-at-length data suffered from serious 
estimation biases when the length-at-age distribution of the simulated SBT 
stocks changed in the early part of the time series (but was assumed constant 
in the assessment model).  The effect was negligible for the models that did 
not use the catch-at-length data.  The potential implications should be explored 
explicitly in the next assessment at the CCSBT-SAG.        

 
     V. Fishery selectivity assumptions 
 

• We found that the assessment performance was surprisingly unaffected by the 
SBT operating model scenarios with systematic temporal variability in 
selectivity.  A sudden sustained shift in longline selectivity does cause 
predictable estimation errors for assessment models that assume that it is 
constant, but estimating selectivity variability can account for the change 
reasonably well.  However, we did not test if this remains true when multiple 
fisheries change their selectivity simultaneously.  Conversely, in the MWG 
YFT simulations, we made a limited attempt to estimate selectivity temporal 
variability to compensate for the absence of spatial structure in the assessment 
model, and this was not very successful.  

 
• We simulated a form of size selective fishing mortality in the SBT fishery, and 

found that the implications were negligible for the assessment models that 
used age-based selectivity.  More troublesome size selective mortality 
scenarios could undoubtedly be defined, but we consider this to be a low 
priority for SBT. 

 
     VI. Fishery catchability (reliability of CPUE as a relative abundance index)  

 
• Most of the complicated assessment model specifications had serious 

problems in the SBT simulations when the main longline fishery had an 
increasing catchability trend (including different variations of SCALIA and 
MULTIFAN-CL).  The problem was more serious than expected given the 
magnitude of the trend, and suggests some curious model interaction; possibly 
with the tagging data.  The production models and SCALIA model without 
tagging data were the least affected.  Other forms of temporal variability in 
catchability posed less problem for the assessments.   

 
• The simulations suggest that the relative abundance index is probably the most 

important data in all of the scenarios examined.  There is probably limited 
capacity for reliably estimating trends in catchability for the main relative 
abundance index within these models (at least with the data history available 
for SBT).  This strongly suggests that quantification of uncertainty in the 
relative abundance indices should be a major focus in any stock assessment. 
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     VII. Spatial structure of the fish population and fishing fleet  

 
• We relied on the spatially dis-aggregated SPC-OFP YFT simulations to make 

inferences about likely spatial effects in pelagic fisheries assessment.  The 
results from this study are still under investigation under the direction of the 
SCTB MWG.  Our preliminary results suggest that the Fox model seemed to 
provide performance as good as, or better than, the complicated models 
(MULTIFAN-CL and SCALIA) in most cases.  The SCALIA models 
performed the worst when it was assumed that the relationship between effort 
and fishing mortality was not very reliable, but simply giving higher weight to 
the effort data seemed to bring SCALIA performance into line with the other 
models.  These results support our assertion that the relative abundance index 
is the driving factor in these models, and that catchability trends are difficult to 
estimate.  Given the apparent success of the Fox model using global nominal 
CPUE as a relative abundance index, we question whether the YFT simulator 
was appropriately parameterized to test interesting spatial issues.   

 
VIII. Uncertainty Quantification 

 
a. Estimator Performance  

 
• This is addressed under Objective 1, and I – VII above. 

 
b. Statistical Uncertainty Estimation (conditional on a model) 

 
• The confidence intervals estimated by the SCALIA model (calculated from the 

inverse Hessian multi-variate normal approximation) did not encompass the 
true quantities from the operating model with the expected frequency (i.e. 
confidence intervals were much too narrow), even for the most well-behaved 
operating model.  We expect that this effect will be even greater for real stock 
assessment applications, because assessment model assumptions will generally 
not be as good as these test conditions.  Other methods of uncertainty 
estimation might be more successful, but we expect that the performance of 
approaches that are dependent on the interpretation of the objective function as 
a true likelihood will usually be limited by substantial biases in the estimators.   

 
c. Model Uncertainty 

 
• This study suggests that assessment model inferences are often likely to be 

sensitive to inevitable and arbitrary model assumptions, and this is consistent 
with experience in many real stock assessment situations.  We consider that 
the representation of model uncertainty is more important than the expression 
of statistical uncertainty conditional on the model being correct.  Formal 
methods for approaching this issue need further development, but we would 
prefer to see an ad hoc representation of model uncertainty than an elegant 
expression of statistical uncertainty that fails to admit a broad range of 
alternative interpretations that are consistent with the data.  

 
d. Assessment Uncertainty and Fisheries Management 
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• This is addressed under Objective 6 below. 

 
3) Compare the performance of SCALIA models with simpler age-aggregated 
and age-structured production models, and MULTIFAN-CL. 
 

• The age-aggregated production models (particularly Fox) yielded results that 
were better than expected in most cases.  In the SBT simulations, the Fox 
model was usually better than at least some of the more complicated models 
(e.g. SCALIA models that attempted to estimate natural mortality), and 
seemed to be robust to some assumption violations (e.g. unrecognized changes 
in the length-at-age distributions over time).  From the preliminary results that 
we have available from the YFT study, it appears that the Fox model was 
comparable to, or better than, both SCALIA and MULTIFAN-CL in terms of 
relative biomass trend estimation in most operating model scenarios.  Despite 
these apparent successes, we do recognize serious limitations in the usefulness 
of these models, particularly for quantifying uncertainty. 

 
• We were not left with very good impressions of the Age-Structured 

Production Models that we explored.  They were prone to an implementation 
error in most of the YFT applications.  The stochastic recruitment version did 
not converge reliably in automated applications.  The deterministic 
recruitment version performed well in many of the SBT simulations, but only 
when provided with excellent prior knowledge of both natural mortality and 
fishery selectivity.  Implementing stochastic recruitment and additional 
external analyses to estimate selectivity detracts from the simplicity that was 
part of the underlying appeal of these simple models. 

 
• The SCALIA models probably performed the best of all the assessment 

models for the SBT simulations when the data were very good and 
assumptions adequately satisfied.  However, the SCALIA models were more 
sensitive to some assumption violations than the production models (temporal 
variability in length-at-age, catchability trend), and did not perform well when 
natural mortality was estimated.  The SCALIA models were generally not as 
successful as the age-aggregated models and MULTIFAN-CL for the YFT 
simulations.  A large part of this performance discrepancy appears to be 
related to the analyst assumptions about the relationship between effort and 
fishing mortality rather than fundamental problems in the general 
methodology. 

 
• We recognize that MULTIFAN-CL is at the forefront of single species 

assessment model development in most respects, but would not yet want to see 
it universally adopted, if it meant the cessation of development of alternatives.  
Our limited exploration with the simulated SBT data suggested there are 
currently some features that are not well suited for SBT applications (e.g. 
inability to use catch-at-age data, although this is reportedly being addressed; 
inability to input time-dependent length-at-age relationships).  We were not 
able to conclude from the SCTB MWG study whether migration dynamics can 
be reliably estimated, or what the data requirements would be for this to be 
possible (this may be addressed further at SCTB 17).   
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4) Participate in the Standing Committee on Tuna and Billfish Methods Working 
Group project designed to evaluate assessment models using a Western and 
Central Pacific Ocean yellowfin tuna fishery simulator developed by the 
Secretariat of the Pacific Community Oceanic Fisheries Programme. 
 

• As part of SESAME, we applied various age-aggregated and age-structured 
production models and different SCALIA specifications to the simulated SPC-
OFP YFT data in 2002 and 2003.  We provide some preliminary results from 
these simulations (including conclusions above), but a more comprehensive 
synthesis is proposed for SCTB 17 in 2004.  

 
 
5) Provide advice on the appropriateness and implications of these models for the 
provision of stock status advice in an RFMO context on SBT specifically, and 
tuna in general. 
 

• It is probably inevitable that technically complicated models will be used to 
underpin scientific advice for most major pelagic RFMOs soon and for the 
foreseeable future.  This implies that sufficient numbers of technically 
competent scientific staff will be required to run and interpret these models.  
However, mere adoption of these models is not likely to result in substantially 
improved advice to managers.  Sophisticated models cannot make up for poor 
quality data, lack of informative contrast in the fishery history, or the need for 
arbitrary assessment model assumptions.  However, we do think that these 
models provide a powerful tool for expressing uncertainty about the plausible 
states of the fishery that are consistent with the data.   

 
• Management Procedures (MPs or Management Strategy Evaluation) might 

represent one of the best methods for defining and achieving management 
objectives that are robust to the major uncertainties about the status and future 
production potential of the fishery.  This may include the use of complicated 
integrative assessment models in the role of operating models for simulating 
fishery dynamics.  This has been the approach adopted by the CCSBT, and it 
seems to be moving in a positive direction.  The results of the SESAME study 
are supportive of the directions taken in the development of the operating 
model for SBT Management Procedures.  We observe that the CCSBT MP 
operating model was the result of explicit exploration of many sources of 
uncertainty, MP behavior was tested for robustness to the key uncertainties, 
and the final population representation encompassed the variability in the key 
structural uncertainties of several model specifications, to the extent possible 
given pragmatic time constraints.  However, we do note with some dismay, 
that as of June 2004, the CCSBT had not yet reached final agreement on a set 
of operating models for testing candidate MPs, despite having an initial model 
implementation completed in Sep 2002.  This approach is potentially a 
powerful tool for effective management, but cannot be expected to resolve 
disagreements about management objectives. 

 
• For the CCSBT-SAG 2004, we recommend that models in the form of the MP 

operating model, or SCALIA, should form the main focus of model-based 
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assessments, and we encourage the exploration of structural extensions, as 
time allows.  The results here suggest (and support previous 
recommendations) that additional attention should be given to the 
interpretation of CPUE as a stationary relative abundance index, consideration 
of the effects of historical changes to the SBT length-at-age distribution on the 
spawning grounds, and the exploration of alternative functional forms of the 
stock recruitment relationship.  We note that the latter effect did not seem to 
be very important in the SESAME SBT simulations, but it seems to be an 
important issue and we are not confident that it was tested under suitably 
representative conditions.  We expect that a changed emphasis in some of our 
modelling assumptions, and the addition of 3 additional years of data might 
lead to a substantially changed view of uncertainty as currently expressed in 
the SBT operating model. 

 
• It is possible that the expectations placed upon complicated integrative models 

might continue to increase as sustainable fisheries legislation proliferates.  We 
do not currently understand how well we can represent spatial dynamics in 
assessment models, or the data requirements for successful parameter 
estimation.  This may become increasingly important in the design of spatial 
management strategies.  Advice on multi-species trophic interactions may be 
expected soon, and there may be attempts to estimate these effects within 
these models.  We would caution that considerably more testing would be 
required before we would have much confidence in the results.  However, we 
also note that some forms of robust management might be achievable even in 
the absence of reliable stock assessment methods. 

 
 
6) Provide a non-technical description of the key scientific issues and critical 
assumptions in SCALIA assessments that managers will have to deal with in 
negotiations and formulation of policy in the CCSBT and other tuna RFMOs. 
 

• We have attempted to write the main text of this report with a minimum of 
equations and technical language, such that it should be reasonably accessible 
to most people with a background in fisheries, and a non-technical summary is 
appended to the main report. 

 
 
Recommendations for future Research 
 

• We have found these simulation studies revealing about the limitations that we 
might reasonably expect in our assessment modelling endeavors, and would 
like to see additional studies of this type with a broader range of participants, 
assessment models and operating models.  It would be worth attempting to 
further improve our understanding of the relative importance of different 
population features (e.g. spatial structure vs: age structure) in different 
systems.  Similarly, it would be worth trying to improve our understanding of 
the relative importance of different types of data. e.g. if the relative abundance 
index is truly the dis-proportionately important data under-pinning these 
assessments, it should also be the main focus for analytical effort and 
uncertainty quantification.  Some sort of accessible repository for simulated 



 220

data sets would provide a useful means with which assessment modellers 
could benchmark their model performance.  

 
• We would like to see more work done to evaluate assessment model 

diagnostics as they might be applied in a real stock assessment (i.e. 
examination of the quality of agreement between predictions and 
observations).  Throughout SESAME, we were applying assessment models in 
an automated fashion, such that the results could not be interpreted with the 
benefit of common sense, experience and auxiliary information that would 
normally be expected in real stock assessment applications.  We largely 
ignored this issue by framing the objectives in terms of the evaluation of 
particular models, as opposed to an evaluation of an actual assessment.  An 
assessment generally involves the application of several models, usually with 
some attempt to choose among them, or integrate across them (based on fit to 
the objective function or otherwise).  There are many possible approaches for 
examining the quality of fit between model predictions and observations, and 
the degree of statistical rigor varies.  Given our general skepticism about the 
literal interpretation of the objective function as a true likelihood, it is not clear 
how useful these diagnostics are.  But a formal expert system probably could 
be devised that would help to avoid some of the most serious assessment 
modelling errors.   

 
• This study suggests that we can usually expect model uncertainty to exceed 

statistical uncertainty estimated conditional on the model being correct.  
However, there is a perception, particularly among statisticians, that major 
methodological improvements can still be made in assessment modelling.  We 
think it is worth exploring the most promising avenues, including, 1) making 
likelihood functions more statistically “correct”, 2) formally incorporating 
more of the model uncertainty within an integrated framework, 3) making the 
objective functions more robust to common assumption violations, and 4) 
developing an approach for dealing with conflicting inferences among 
different components of the data.  We would also like to see a more 
comprehensive comparison of different methods for estimating statistical 
uncertainty.  New developments would be particularly welcomed if they 
demonstrated performance improvements when evaluated against operating 
models that are suitably challenging to illustrate many of the difficult features 
that seem to afflict most real-life stock assessment situations. 

 
• There should be more effort spent developing and evaluating robust 

management procedures.  This will presumably involve improving methods 
for translating assessment uncertainty into operating models, developing 
creative solutions for controlling the distribution of fishing effort, balancing 
conflicting management objectives and expressing risks that cannot be reliably 
quantified.  Ultimately, we expect that many of the problems of assessment 
modelling might plague MP development, but changing the emphasis from 
parameter estimation to management outcomes might focus modelling effort 
in more productive directions. 
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8 APPENDICES 
 
Note that some of the following appendices stand alone as self-contained documents, 
including their own references.  Others cross-reference the main text of the SESAME 
report.  
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APPENDIX 1 VSM TECHNICAL DESCRIPTION 
VSM (which is an abbreviation of virtual stock model) is a stand-alone Windows based command line 
application which simulates multi-species fisheries.  It is a user specified operating model whose 
characteristics are user defined through a number of text input files.  The VSM feature set is 
sufficiently rich to provide a wide range of possible model scenarios and behaviours.  The central aim 
behind the development of VSM is the development of a flexible operating model well suited to 
critically evaluating the performance of stock assessment models.  This aim is reflected in the model 
structure and feature set.  

A1.1 MODEL OVERVIEW 
VSM is a multi-area multi-species operating model.  The model is split into two distinct components : 
the system dynamics model and the observation model.  The system dynamics model produces data that 
reflects the true state of the fisheries model at any given point in time, or in other words the complete 
time history of the system behaviour. These data sets are referred to as the state realisation.  The 
observation model acts as the observer, extracting the appropriate state realisation data and adding 
observation error consistent with the observation model specification. The observation model will 
typically report catch, effort and tagging statistics only2.  These data sets are collectively referred to as 
a data realisation.  The true state of the population is known within the state realisation but not within 
the data realisation.  Assessment models applied to the data realisation attempt to determine the true 
population state and history.   

A1.1.1 System Dynamics Model 
The system dynamics model is designed to simulate the behaviour of a virtual or simulated (as opposed 
to real) fishery.  The system dynamics model can take on a vast range of differing behaviours to reflect 
the range of real fisheries to which assessment models are currently being applied.  VSM has been 
designed with flexibility in mind and is capable of supporting: 
 

• Multiple areas 
• Multiple species 
• Multiple populations 
• Area and sex specific biology 
• Predation 
• Fishing 
• Tagging programs 
• Migration 

 
VSM allows tagging, fishing, migration and the like to be a function of time, fish age and fish length. 
Time variability may be specified as periodic which allows seasonal effects to be easily incorporated.   
 
An area in VSM can be thought of as an arbitrary grouping (perhaps directly related to a geographical 
region) that contains populations of fish and can include fishing fleets and tagging programs.  Although 
an area can be thought of as a physical space with a given size and position, within the model itself, it 
is simply a container without physical dimension.  VSM is a bulk transfer model in which migration is 
controlled only by transfer coefficients (probabilities of moving from A to B).  Any actual notion of 
relative size between differing areas is implied by the model specification and is not explicit.  A clearer 
way to view areas is as independent boxes possibly connected via migratory flows as is illustrated in 
Figure A1.1, rather than a grid which implies a notion of physical dimension and place.   
 
The number of areas defined within the system dynamics model is user specified.  You may define as 
many areas as required, only limited by the amount of physical memory required to run the model.  
This in turn will depend upon the number of species, populations, fishing fleets and so forth defined 
within each area.  Be aware that the more complex the model specification the longer it will take to run.   
 

                                                 
2 Surveys were proposed as a feature of the model but never implemented. However, fishing gear 
surveys can be supported by defining a special type of fishery. 
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Figure A1.1: Graphical depiction of areas within VSM. 

 
A species in VSM represents a specific kind of fish within the model.  A population in VSM is a 
grouping of fish of the same species and populations generally exist within the areas of the model.  The 
only case in which a population exists apart from an area is when it represents catch and mortality.  
Each population of fish is given a unique name (the population name) that identifies it.  Individuals 
from a given population always remain within that population.  In this way it is possible to represent 
multiple populations of the same species that are traceable (you can track the movement of a particular 
population).  One useful application of this is to track the re-distribution of fish after migration.  In the 
initial model state the populations in each area can be given unique names.  Then when running the 
model the redistribution of fish from Area 1 to the other areas is traceable. A simple illustration of this 
type of process is shown in Figure A1.2 which shows how the fish from an impulse tagging operation 
redistribute themselves over time. 
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Figure A1.2: Population trajectory for a tagging event in a 3 area model (juvenile - green, 
spawning ground - blue, feeding ground - cyan) where tags released in the juvenile 
area only.  The tagged fish then migrate out into the spawning ground and feeding 
ground areas. Note that the oscillation in migration after year 7 occurs because 
the tagged fish are reaching maturity and begin an annual migration between the 
feeding ground and spawning ground fisheries.  No fishing mortality is present in 
this example. Being a naive migration model the transition to migratory behaviour 
is rather abrupt. 

 
The act of fishing within the model is performed by fishing fleets.  Fishing fleets exist within a given 
area and have a fleet name and a fishery name identifying the fleet and the fishery respectively.  A fleet 
can target multiple species and may also have by-catch associated with targeted catch.  Figure A1.3 
shows the flows and  relationships between populations and fleets within a given area.  This basic 
relationship is common to all areas defined within a given system dynamics model.  
 
Under the act of fishing it is worth noting that all identifiers are recorded in the state realisation (that is 
which area, which species, which population, which fleet and which fishery the catch came from) 
allowing a vast range of different information to be extracted using different filtering criteria.  This 
theme is used extensively throughout VSM to provide flexibility in data extraction.   
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Figure A1.3: Population and fishing within a given area. 

Tagging programs may also exist inside areas.  Tagging programs are similar to fishing fleets in as 
much as they reside inside a given area and catch a target species, except in this case the catch is tagged 
and released back into the area.  Once released the tagged population is then free to migrate to other 
areas.   
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SBT Population
Tagged

SBT Population
Untagged

Tagging program

 

Figure A1.4: Tagging within a given area. 

Tagged fish populations are created by extracting fish from an un-tagged population and placing them 
into a tagged population.  The flows involved in this process are illustrated in Figure A1.4.  Any 
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number of tagging operations are allowed within a given area and each is identified by a unique 
tagging operation name.  The un-tagged population name combined with the tagging operation name is 
used to synthesise a unique population name for the tagged fish.  A tagging operation can only target a 
single species but given that multiple tagging operations are permissible this restriction imposes no 
problematic limitations.   
 
Each population of a given species in a given area can have a unique biology.  Furthermore, provided a 
population of the same name exists in other areas, any fish migrating to those areas will inherit the 
biology of those populations.  Only when a given population does not exist in the migration destination 
does the migrating population keep its existing biology.  For this reason if area specific biology is a 
requirement it is important that all population classes (species and population combination) are 
incorporated in every area, even if the initial population size is null.  This action will ensure that the 
biology will change as expected under migration.   
 
Area specific biology can be useful for implementing productivity effects and the like. For example, in 
the case of SBT, spawners on the spawning ground spend a brief but intense time breeding with 
minimal feeding, whereas on the feeding ground spend their time feeding. Therefore it is reasonable to 
expect growth to be significantly stronger on the feeding ground compared with the spawning ground. 
This effect can be modelled using area specific biology.   
 
VSM is an aggregate population model rather than an individual based model.  Aggregation can either 
be age structured (populations of a given species are grouped by age class) or age and length 
structured (populations are grouped by age and length class).  In the age and length structured case the 
length classes are held in bins of fixed width and the length bins are user defined.  Furthermore, it is a 
requirement in the age and length structured case that the length bins are identical for each compatible 
population class.  More shall be said on this subject in the Model Specification section.   

A1.1.2 Observation Model 
The observation model is responsible for re-sampling relevant portions of the state realisation to 
produce a data realisation.  In the re-sampling process, errors are introduced to simulate the sampling 
error found in real data sets.  The observation model includes a number of mechanisms to introduce 
sampling error, some of which overlap.  These mechanisms include: 
 

• total catch numbers deviations 
• effort deviations 
• age and length distribution errors 
• Age estimation via cohort slicing 
• tag reporting rate errors 

 
The outputs from the observation process can be directed to comma separated text files or SCALIA / 
Multifan CL compatible text files.  Furthermore, summary statistics can be reported to text files or 
uploaded to an ODBC compliant database.  All sampling errors are performed on a given species on a 
fleet by fleet basis.  Thus individual fleets can have individual error regimes when targeting specific 
species.   
 
Total catch numbers deviations are implemented through a log normal deviate. The CV of the log 
normal deviate can be an arbitrary function of time.  Effort deviations are applied to each individual 
effort record recorded in the state realisation. The CV of the effort deviations can also be an arbitrary 
function of time.   
 
Age and length sampling are simulated using a multinomial selection process.  At any given time step 
the true age and length distribution is measured.  This distribution combined with a user specified 
sample size is then used to synthesise a new distribution using the following process.  The age and 
length distributions (in absolute catch numbers) are converted into probability coefficients.  Using 
multinomial selection with these coefficients an artificial population distribution (in absolute numbers) 
is created through sampling the user defined sample size.  The length distribution sample is then 
reported as-is, whereas the age distribution is re-scaled to sum to the total catch.  This discrepancy in 
behaviour for age data is a consequence of the file format used to report the catch at age data (total 
catch is reported through a catch at age matrix that reports the catch age distribution).   



 234

 
Tag reporting rate errors are introduced through a binomial selection process.  As with the total catch 
numbers and the effort deviations, the reporting rate errors can be a function of time.   
 

A1.2 SYSTEM DYNAMICS MODEL IMPLEMENTATION DETAILS 
A major aim in designing VSM was to produce an operating model with sufficient flexibility to allow 
for a diverse range of possible models with varying degrees of complexity. To considerably simplify 
the process of coding this model we chose to split the model into a series of independent processes 
(recruitment, natural mortality, tagging, fishing, predation, migration and aging/growth) that could be 
executed serially.  
 
The model uses a finite difference approximation for these continuous processes and may be 
substantially biased3. In particular, the processes of fishing mortality, natural mortality and migration, 
which are executed serially, present a potential source of bias. However, if the model time step is 
sufficiently small then these biases are insignificant from an assessment point of view. For annually 
reported data it was found that a monthly model time step was sufficient to avoid the order bias 
problem.  
 
The processing order within the model is illustrated in Figure A1.5 below.  
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Figure A1.5: An illustration of the processing order within VSM 

 

                                                 
3 The bias manifests itself as the first to run removal process taking a disproportionately large portion 
of the population compared with the processes to follow. This occurs because the first removal process 
depletes the population, reducing the number returned in subsequent binomial selection. If the impact 
on the total population is small enough such that the relative population size does not change 
significantly in a given time step then the bias is negligible.  
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During a given model iteration (one model time step) historical data from each of the processes is 
collated in memory. When the duration of time that the historical data has been accumulated equals the 
statistics time step, the collated statistics are then written to file. Generally speaking, the model time 
step should be less than the statistics time step. In the models developed for SBT assessment model 
testing the model time step was chosen to be monthly and the statistics time step yearly.  

A1.2.1 Recruitment 
VSM supports a number of different recruitment relationships. The recruitment relationship 
predominantly used in the documented scenarios is the Beverton-Holt stock recruitment relationship, 
and is defined as, 
 

SSBb

SSBd
R

+
=  (A1.1) 

 
where d and b are the Beverton-Holt parameters, R is the number of recruits and SSB is the spawning 
stock biomass. Within the model specification the parameters d and b are re-parameterised in terms of 
the virgin recruitment R0 and the steepness h. During the start-up phase, the model performs a stable 
stock projection using the virgin recruitment and the natural mortality specification to provide an 
estimate for the virgin spawning stock biomass SSB0. The Beverton-Holt parameters are then found 
using, 
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In the projection the spawning stock biomass is calculated from the growth equation and length-weight 
relationship combined with an age based maturity vector. That is, 
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where la is the length at age a, Na is the numbers of fish at age a, w(l) is the mass-length relationship 
and Qa is the maturity at age a. A power mass-length relationship is used and is defined by, 
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where v is the allometric growth parameter and q is a scaling factor. The length at age relationship used 
in VSM is the VB log-k growth equation (Laslett, G.M., Eveson, J.P., and Polacheck, T.  2002), which 
is defined as, 
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where σ∞ is the standard deviation of the asymptotic average length, L∞ is the asymptotic average 
length, k1 and k2 are growth rate coefficients, α and β are transitional parameters and t0 is the 
hypothetical age at which mean length is zero. Note that if k1 = k2 then the V-B log k equation 
degenerates into the Von-Bertalanffy growth equation. The length at age is assumed to be normally 
distributed. Within the model we often deal with the age on a discrete basis, in which case we define, 
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where tm is the model time step and a is the age index. Within the model run itself, the mean 
recruitment of equation A1.1 is perturbed by an optional normal or log-normal deviate. This deviate 
also has the possibility of including correlation effects through a first order difference equation as 
detailed below.  

A1.2.2 Generalized Correlated Deviate 
Within VSM, normal and log-normal deviates, either correlated or uncorrelated, are used in a number 
of places to add process noise to the operating model. Here we define the exact nature of these deviates.  
 
Let ρ be the parameter governing degree of auto-correlation, let nk be a gaussian white sequence with 
zero mean and standard deviation σ , let β be the bias of the deviate (i.e. non-zero mean), let µ be the 
mean of the deviate and let mk be an intermediate correlated gaussian sequence defined by, 
 

kkk nmm 2
1 1 ρρ −+= −  (A1.8) 

 
Then we can define the normal deviate case ∆k as, 
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and the log normal deviate case as, 
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Furthermore, if the log normal deviate is bias compensated then the log normal deviate case becomes, 
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Due to the scaling applied to nk in mk, the standard deviation of mk is σ .  

A1.2.3 Natural Mortality 
The processes of natural mortality, predatory mortality, fishing mortality, and migration are all 
modelled using binomial selection (binomial random variates) driven by the probability of selection. 
The nature of that selection probability is tied to the particular process: in natural mortality it is the 
probability of death, whereas in fishing it is the probability of capture.  
 
In the model, natural mortality is specified through a mortality vector, which is the equivalent 
probability of death in the time period of one year for a particular age, length and sex category at a 
particular point in time (the mortality vector can change with time). Internally VSM will re-scale the 
user specified probabilities to correspond to the internal model time step by using the transforming 
function, 
 

( ) ( ) yt
mt

ym
PPtt −−=Ω 11,  (A1.12) 

 
where P is the probability based on a time period of one year, tm is the model time step and ty is the 
time period corresponding to one year. Note that in the case of user specified catch probabilities the re-
scaling process is delayed until after the baseline probability is scaled by effort and perturbed by effort 
deviations. Note that ty is an independent parameter because the time unit specification is user defined, 
and by doing so flexibility is added to the process of defining the model. For example, the model could 
be parameterised using months as the fundamental unit of time rather than years. In our case the models 
developed using VSM were all parameterised using years as the unit of time running under a monthly 
model time step, giving, 
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If 
m

tslaP ,,,  is the probability of death of fish age a, length l, time t and sex s, and tslaN ,,,  is the number 

of fish of age a, length l and sex s in the population, then the expected number of fish deaths at time t 
and of sex s is given by,  
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For the binomial variate that implements this mortality process the number of independent trials is 

tslaN ,,, . In the fishing process the number of independent trials can be reduced by an effective sample 

size to add noise to the process (see below).  

A1.2.4 Fishing Mortality 
For fishing mortality the process is similar to natural mortality except in this case the probability of 
capture is scaled through the exertion of fishing effort4. Process noise is also included in the form of 
minimum effective sample sizes and catchability deviates. Also note that fishing mortality in the model 
is implemented as a predation process, so the analysis described here for fishing mortality applies 
equally to predator-prey derived mortality. The main difference between predation and fishing 
mortality is that the deaths due to predation are not reported / available to assessment models. Although 
predation is supported it is largely untested as this feature was not used within this project.  
 
In the model, fishing mortality is specified through an effort series Et, a fishing catchability series qt, 
fishing catchability deviate standard deviation σt, bias βt and auto-correlation parameter ρ, and a 
baseline catch probability vector Sa,l,s,t which is a function of age a, length l, sex s and time t. The 
baseline catch probability is notionally the probability of catch for a fishing period of 1 year with unity 
fishing effort and efficiency. The baseline catch probability vector can be altered by an internal 
selectivity altering function ζa,t such that, 
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The transformed value of S is used to determine the unscaled probability of catch through, 
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where ∆ is the generalised correlated deviate (defined above) with a mean of Etqt, a standard deviation 
of σt, a bias of βt and an auto-correlation parameter of ρ, and η is a non-linearity parameter. This un-
scaled probability is based upon a fishing period of one year. In the implementation of fishing mortality 
the probability of capture is re-scaled according to equation A1.12 to yield the probability of capture 
for a single model time step. In other words, 
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where tm is the model time step, ty is the time period corresponding to one year and 
fP′ is the scaled 

probability of capture. The fishing mortality is applied using binomial selection. The catch (in 
numbers) at time t and of sex s has an expected value given by, 
 

                                                 
4 Note that under very high fishing mortality this discrete time approximation will show significant 
departure from the continuous time process it is modeling. Under normal circumstances, provided the 
model time step is sufficiently small, this problem should not eventuate. 
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The binomial selection process for fishing selects from the full population Na,l,s,t. If an effective 
sampling size is specified then the effect is simulated using the following process. Let us assume that 
the model specifies an effective sample size of ψ and a minimum effective sample size of ψmin. Then if 
Φ(p,N) is a binomial random deviate with probability p and number of independent trials N, a new 
probability of capture is calculated using, 
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where N is the total fish in the population and ψ ′ is the scaled effective sample size. By using this 
approach the effective sample size nominally scales according to the population structure. The total fish 
actually caught by this stochastic binomial process at time t of sex s is therefore, 
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Note that effective sample size is used in part to represent the variability in selectivity due to stochastic 
processes (eg. spatial effects at a resolution finer than the spatial structure).   

A1.2.4.1 Selectivity Changes 
As mentioned before, a mechanism is in place to incorporate selectivity changes into the fishing 
through a special function ζa,t, which transforms the baseline catch probability into a new one that 
incorporates a selectivity change based on age structure. Two change mechanisms are supported: a 
constant catch proportion mechanism and a cohort targeting mechanism.  
 
The constant catch proportion mechanism operates around the notion that a particular catch age 
distribution is desirable and the fleet can modify the age selectivity in order to obtain it (eg. The 
Australian tuna farming industry claims preferential targeting of 3 year olds). Rather than directly 
specify a target catch distribution VSM obtains the distribution through the baseline catch probability 
by nominating a fixed period (say two years for example) of unregulated fishing to establish a catch 
profile statistic. Once established, this baseline distribution is then used to regulate the catch profile.  
 
In the constant catch proportion case the selectivity transform ζa,t is defined as, 
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where λ is a scaling factor, taH ,  is the compensating selectivity at age a and time t, taH ,  is its mean, 

p is the catch probability being transformed, and α is a controlling parameter that dictates the degree of 
constant catch proportion control. With α set to 1, selectivity is fully controlled and with α set to 0 
selectivity is uncontrolled (i.e. constant). To define how Ha,t is actually arrived at let us define the total 

catch at age a over a period of one year starting at sample time t as 
y

taC , . Then the reference catch, 

which is used to arrive at a new selectivity, is defined as, 
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where τ is the set of years with non-zero catch used in compiling the reference catch, 
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where tm divides exactly into ty (ie. r is an integer) and, 
 

( ) ran mod=ξ  (A1.24) 

 
where the mod operator returns the whole part of the division of two numbers. The added complexity 
of Equation A1.22 comes about because two successive age indices, say a and a+1, represent a 

physical age difference of tm whereas 
yref

taC , represents the catch for one whole year aggregated on 

yearly age intervals, hence the outer summation. Following on, the compensating selectivity is then 
defined as, 
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where 
yest

taC ,  is the estimated total catch at age based on the average baseline catch probability (that is 

with α = 0 in equation A1.21) over a year, the average natural mortality over a year and the initial 
population structure at time t, or in other words, 
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Nn,t is the number of fish of age n at time t, 
 

( )
( )

( )

∑ ∑
⎭⎬
⎫

⎩⎨
⎧∈

−+

=
−+=

Female
Males

ra

an

m
antsln

tot
ta n

PM
,

1

,,,,
2

1 ξ

ξ
ξ  (A1.28) 

 
and, 
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where r is the number of model time steps in a year, Pm is the un-scaled natural mortality probability, S 
is the un-scaled baseline catch probability and la is the mean length at age as defined by equation A1.7.  
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Figure A1.6: Selectivity contours arising from a typical model run with an α values of 0.0, 0.3, 
0.6 and 1.0 using the constant catch proportion case. 

 
Figures A1.6 and A1.7 show illustrative examples of this mechanism at work. Figure A1.6 shows the 
changing selectivity used to maintain a constant catch proportion for a range of values of α . 
Figure A1.7 shows the correspond catch proportions (standardised catch distribution) actually caught 
using the selectivity of Figure A1.6. From Figure A1.7 it can seen that for small α the catch proportion 
varies significantly whereas for α approaching 1 the catch proportion is well regulated. Note that the 
regulation is not perfect. The imperfection stems from the fact that the estimated required selectivity for 
next years catch does not predict the stochasticity in recruitment, fishing and natural mortality.  As such 
the estimated catch of Equation A1.26 is imperfect and results in an imperfectly regulated catch 
distribution. If the model is run without stochasticity the regulation is precise.  
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Figure A1.7: Normalised catch proportion by age arising from a typical model run with an α 
values of 0.0, 0.3, 0.6 and 1.0 using the constant catch proportion case. 

 
In contrast to constant catch proportion, the cohort targeting mechanism works by weighting the 
baseline selectivity with a weighting function derived from the population biomass distribution in the 
fishery. This idea is intended to represent the fact that desirability of age/size classes change in relation 
to the age structure and more fish can likely be caught with less effort if abundant ages/sizes are 
disproportionately targeted. To give added flexibility the weighting function is also shaped by a user 
specified double sigmoid (see equation A1.34), giving the model the ability to restrict targeting changes 
to certain age groups.  
 
In the cohort targeting case the selectivity transform ζa,t is defined as, 
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where λ is a scaling factor, taH ,  is the targeting selectivity at age a and time t, taH ,  is its mean and α 

is a controlling parameter that dictates the degree of cohort targeting. With α set to 1, selectivity is 
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entirely determined by the cohort targeting mechanism and with α set to 0 selectivity is entirely 
determined by the baseline catch probability vector. Ha,t is defined as, 
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where l(a) is the mean fish length at age described by equation A1.6, A is the maximum age in years 

within the targeting selectivity vector taH , ,  
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is the total population biomass for stock of ( )aξ  years old, w(l) is the length-mass relationship of 

equation A1.5,  
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is the average length of all lengths in an age cohort and, 
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is a double sigmoid shaping function where 1φ  and 2φ  are the low and high cutoff age parameters 

respectively and 1η  and 2η  are the low and high transition parameters respectively.  

 
Figure A1.8 shows illustrative examples of this mechanism at work. This figure shows the selectivity 
as a function of age and time for a range of α values. With α set to 0, the selectivity shows no variation 
in time except for an explicit baseline selectivity change between year 43 and year 44 (for contrast). 
With increasing values of α the selectivity shows progressively more selectivity variation, with high 
selectivity coinciding with strong cohorts. This effect is strongest for α equal to 1, where the selectivity 
is entirely driven by the population structure. For α values in between the effect is a combination of 
both the baseline selectivity and cohort targeting.  Even with α equal to 0.6 the baseline selectivity 
change is clearly noticeable.  
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Figure A1.8: Selectivity contours arising from a typical model run with an α values of 0.0, 0.3, 
0.6 and 1.0 using the cohort targeting case. 

 

A1.2.5 Tagging 
Tagging operations in VSM are implemented deterministically for the sake of implementation 
simplicity (it is easier to implement the code that will tag the exact population size requested if 
implemented as a deterministic process). For this reason the raw tagging data in VSM gives perfect 
knowledge of the stock structure of the tagged ages/sizes irrespective of the observational error 
specification in the observational model. Note that tagged fish are actually removed from the main 
population allowing very large tagging programs (or small populations) to be modelled. The tagged 
fish are then managed in their own population identifying them as being tagged.  
 
Tagging releases are specified by naming the total number of fish in a particular tagging category that 
should be tagged (user specified).  A tagging category can include age, length, sex and time as 
classifying variables and a given tagging operation is bound to a given region. Region specific tagging 
requires a tagging specification for each tagging region. At a minimum, a tagging operation will 
usually classify by age and time. Tagging is then implemented by collating the population that fits into 
the category and using this population data to create a tagged population structure with the same 
distribution. Mathematically then, 
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where T is the number of tags at age a, length l, sex s and time t, 
0

tT  is the total number of tags 

requested in the tagging operation at time t, tslaN ,,,  is the number of fish in the population of age a, 

length l, sex s at time t, and 
T
tN  is the total number of fish in the population that fit into the tagging 

operation category. That is, 
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where AT, LT and ST are the sets of all ages, lengths and sexes that simultaneously satisfying the tagging 
operation at time t.  
 
Once fish are tagged they are tracked internally as being tagged by assigning these fish to a distinct 
population which is subject to the same fishing pressures as the parent population. In this way the tags 
can and will be recovered through the act of fishing. Furthermore, tag shedding may also be specified, 
in which case a certain proportion of the tagged population will lose their tags over time and be 

returned to the parent population. In other words, if 
shedP′ is the re-scaled probability of tag shedding 

(re-scaled from the baseline probability according to equation A1.12) and Ta,l,s,t is the number of tagged 
fish of age a, length l and sex s at time t, then the number of tags shed of sex s at time t is given by, 
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Tagged populations can migrate to other areas and will remained within their tagged populations in 
each destination area. Should the biology be area specific and you wish to have this area specific 
biology reflected in the tagging data then it is necessary to define empty tagged populations with 
appropriate biology within each destination area. Only then will the tagged population biology change 
accordingly with area.  

A1.2.6 Aging 
To describe the process of aging and growth we first need to define how VSM maintains age and length 
structure internally. For any given age a, the model maintains a fixed size vector containing the 
numbers of fish in a particular length bin. The position and size of the length bins are pre-determined in 
the model specification files and are the same for each age class within the model.  
 
More formally, let us assume that the length bin boundaries are specified by the vector D containing m 
elements in numerically ascending order, the nth element of which we represent as dn. Then the length 
boundary vector (transposed) is defined as, 
 

[ ]1210 ,...,,, −= m
T ddddD  (A1.38) 

 
Now let Na,s,t be the vector that contains the total number of fish within each bin of a given cohort or 
age a, sex s at time t, where the range of each bin lies between two successive lengths. That is, 
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where tslaN ,,, is the number of fish whose length lies in the range [dl,dl+1) and the last element 

tsmaN ,,, , is the number of fish whose length lies in the range [dm,∞). For the deterministic case, growth 

within the model is represented by, 
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where G is a square growth transition matrix of dimension m+1. From equation A1.40 the numbers at 
length n is the inner product, 
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where gn,l is the growth transition matrix coefficient at row n and column l.  
 
The model can also operate in a stochastic mode whereby the growth is still represented by the 
transition matrix G but that the new length distribution is determined using multinomial selection 
instead of vector multiplication. The establishment of growth then reduces to determining suitable 
entries for the growth transition matrix, G.  
 
The specification of G is handled in one of two ways : (1) strict adherence to the length distribution at 
any given age, as specified by the growth equation of equation A1.6 or (2) an incremental approach 
whereby we attempt to approximate the change in length and variance between two successive ages, as 
determined through the growth equation. For method 1 the model has no memory of length selective 
depletion since after each aging cycle the length distribution returns to the distribution specified in the 
growth equation. Method 2, on the other hand, has some memory of selective depletion, as growth is 
handled incrementally using the previous length distribution as a starting point. Method 2 is useful for 
exploring size selective mortality effects.  

A1.2.6.1 Method 1: The absolute growth method 
In the absolute growth method prior history of the population is ignored. This is achieved through 
having the column vectors of G being identical and only determined by the length distribution 
prescribed by the growth equation. In other words, 
 

nilnln ggg == +,,  for all i (A1.42) 

 
where, 
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and Φ(l) is the probability density function that describes the length distribution of the cohort. In the 
model this distribution is defined by the growth equation (equation A1.6) or by a user defined length 
distribution variance specified as a function of age. This is the most common method of representing 
growth-at-age structure within an assessment model.  

A1.2.6.2 Method 2 : The differential growth method 
In the differential growth method, a heuristic approach is taken to implement an algorithm that includes 
prior growth history. It is only an approximation of what would happen in an individual-based 
representation, and the approximation can be poor if length bins are coarse relative to the expected 
growth in one time step. The approach revolves around the notion that a change in distribution mean 
and variance can be simulated through geometrically transforming the parent distribution (assuming 
that the length at age is normally distributed). For example, an increase in mean and variance can be 
simulated by simultaneously translating and stretching the current distribution and then re-assigning the 
bin totals, as illustrated in Figure A1.9.  
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Figure A1.9: A graphical illustration of the differential growth method used in VSM 

More rigorously, let 
l
aδ  and 

σδ a  be the change in mean length and variance experience by a fish aging 

from a to a+1. That is,  
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and 
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where la and σa are defined in equation A1.7. Then the translated and stretched length bin boundaries 
are described by, 
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Equation A1.47 is a variance compensation term added to reduce the effect of the variance expansion 
that occurs when using this approach. The term ν is a scaling factor used to fine tune the variance 
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compensation. In the simulated SBT case a ν value of 0.1 was found (experimentally) to give good 
performance (low variance creep).  
 
Given transformed length bin boundaries we can determine the growth transition matrix coefficients by 
overlaying the transformed bin onto the length bin boundaries in D and proportioning each bin total 
into the bins underneath (assuming a uniform distribution within each bin). That is, 
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A1.2.7 Migration 
Up to this point all the analysis has dealt with fish populating a single region. In models supporting 
migration an added dimension is needed to represent the region and on that basis we add an extra 

subscript to our definitions. That is tslaiN ,,,,  is the number of fish of age a, length l, sex s at time t in 

region i. For the deterministic case let us define 
−

tslaiN ,,,,  as the population state immediately prior to 

migration and 
+

tslaiN ,,,,  as the population state immediately after migration, and define the population 

(transposed) vectors pre and post migration as, 
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where Z is the number of regions in the model. Then the deterministic migration process is defined by, 
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where Ma,l,s,t is a square migration transition matrix of dimension Z. From equation A1.52 the numbers 
migrating to region j is the inner product, 
 

∑
−

=

−+ =
1

0
,,,,,,,,,,,,,

Z

i
tslaitslaijtslaj NmN  (A1.53) 

 
where mj,i,a,l,s,t is the migration transition matrix coefficient at row j and column i that describes the 
proportion of fish that will migrate from region i to region j of age a, length l, sex s at time t.  
 

Migration can also be implemented as a stochastic process. To illustrate, let us define ZΦ  as the Z 

dimensional multinomial deviate which gives output deviates u0 through uZ-1 corresponding to 
probabilities P0 through PZ-1 when selecting from a sample size of U. Using a vector notation for 
brevity we have, 
 

( )UZ ,PU Φ=  (A1.54) 

 
where, 
 

[ ]12,10 ,...,, −= ZuuuuTU  (A1.55) 

 
and, 
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[ ]12,10 ,...,, −= ZPPPPTP  (A1.56) 

 
Then the stochastic migration process can be represented by, 
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where, 
 

[ ]ννννν
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P  (A1.58) 

 

and 
ν

tslaijP ,,,,,  is the probability of fish age a, length l, sex s at time t migrating from region i to region 

j. The probability coefficient 
ν

tslaijP ,,,,,  is equivalent to the migration transition matrix coefficient 

mj,i,a,l,s,t. Note that, unlike the fishing and natural mortality probability vectors, the migration 
probabilities specified in the model definition files are not re-scaled according to equation A1.12.  
Furthermore, since the migration probabilities can be a function of time it is possible to develop models 
in VSM that include seasonal migration patterns.  

A1.2.8 Summary Statistics 
Some form of metrics are required for the purposes of cross checking assessment model results against 
the operating model data. These metrics are provided by VSM in the form of both summary time-series 
and single point management indicators. These indicators include: 
 

Summary time-series Indicators 
Indicator Name Description 
R5 Recruitment 
COB6 (1+ y.o. Catch biomass)/(1+ y.o. Population biomass prior to catch 

removal) 
B5,6 1+ y.o. Population biomass 
SSB5 Spawning stock biomass 

 
Single Point Management Indicators 
Indicator Name Description 
MSY Maximum sustainable yield 
BMSY

6 1+ y.o. Population biomass at maximum sustainable yield 
SSBMSY Spawning stock biomass at maximum sustainable yield 
COBMSY

6 (1+ y.o. Catch biomass)/(1+ y.o. Population biomass prior to catch 
removal) at maximum sustainable yield 

COB0.1
6 (1+ y.o. Catch biomass)/(1+ y.o. Population biomass prior to catch 

removal) at the COB value corresponding to a slope of 0.1 of the 
origin on the Yield versus COB curve. 

 
Exploitation ratios (catch over biomass) are used as indicators of fishing mortality since they provide a 
unified measure of fishing mortality not sensitive to population structure or fishing selectivity. Since 
we have a number of competing fisheries targeting different age groups it is difficult to use 
instantaneous fishing mortality as an indicator because the population age structure changes with 
fishing pressure. This is further complicated by the requirement of constant catch ratios between 
fisheries when performing the MSY projection. Catch over biomass gives a simple indicator of fishing 
pressure that is independent of the age structure.  
 

                                                 
5 Summary time-series for this indicator include both the fished and unfished cases. The process noise 
(recruitment deviations) are identical in both cases.  
6 Biomass estimates used in performance indicators have a low age cut-off that is user selectable. By 
default it ignores the biomass of fish less than 1 year old.  
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In some cases (eg. with non-stationary recruitment) it can be interesting to compare the state of the 
population that would have been observed with and without fishing. To synthesize with and without 
fishing histories VSM employs multiple random number generators, ensuring that the recruitment 
deviations and other stochastic processes are identical between fished and unfished cases. Each class of 
stochastic process has its own random number generator and each random number generator is seeded 
from a random number sourced from the master random number generator, which in turn, is seeded by 
the user specified seed. This ensures that each random number generator will be, for all practical 
purposes, statistically independent.  
 
The MSY and COB0.1 indicators require a more involved process. To accurately estimate these 
indicators VSM builds a exploitation-yield plot which it then searches for MSY and COB0.1 using a 
bisection method. In the first stage of the projection VSM increments the overall effort (in a power 
series) until the steady state catch biomass decreases. This effort and an effort of zero then form the 
range of effort used to build the exploitation-yield plot. VSM nominally chooses 10 different levels of 
effort to build the exploitation-yield plot and does so in such a manner as to obtain points 
approximately uniformly distributed along the exploitation axis. These points are then fitted with a 
cubic spline and a golden section search performed to find the point of zero slope (MSY) and a 
bisection search used to find the point of 10% of the slope at the origin (COB0.1). The slope is 
estimated using a first order difference approximation to the derivative with a ∆ of COBMSY / 106. That 
is, the single derivative of a function f(x) with respect to x is approximated by, 
 

( ) ( ) ( )
∆

∆−−∆+≈
2

xdfxdf

dx

xdf
 (A1.59) 

 
A cubic spline is also fitted to the points of exploitation versus effort which is used to map the 
exploitation at MSY and COB0.1 to corresponding efforts. These efforts are then used in steady state 
projections to determine accurate values of BMSY, SSBMSY, B0.1, SSB0.1 etc.  
 
It is worth noting that in performing steady state projections the catch ratios between fisheries is 
regulated to remain constant via an internal adaptive feedback mechanism. The catch ratios are 
determined by the historical catch in the final year. This behaviour is currently hard coded into VSM. 
Furthermore, during all projections the stochastic processes are switched off, being replaced by their 
deterministic equivalents. Not doing so would make it difficult to both, determine when steady state is 
reached, and the true mean values of the various state variables (ie. Catch biomass, Biomass, 
Recruitment etc). Note that this differs from the usual assumptions of constant effort (fishing mortality) 
ratios among fleets. The simulation was intended to explore fishery systems like SBT, in which TACs 
are likely to be regulated with constant allocation proportions. Figure A1.10 shows a typical steady 
state projection in progress. Note that the catch ratio is well regulated by constant adjustment of the 
relative effort between fisheries. Figure A1.11 illustrates a typical exploitation-yield plot.  
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Figure A1.10: An example of a VSM steady state projection in progress. Note how the fishing 
effort is constantly adjusted to ensure constant catch ratios. 
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Figure A1.11: An example of a VSM Exploitation versus Yield plot with COB0.1 shown 
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A1.3 OBSERVATION MODEL IMPLEMENTATION DETAILS 
VSM treats the process of reporting catch and effort data separately from the operating model. The 
observation model reports the actual catch and effort data with various observational errors imposed on 
that data. By separating the operating model and the observation model it then is possible to create 
multiple observations of the one true data set that have statistically independent error deviations while 
not having to re-run the operating model. Furthermore, by separating the two processes software 
maintenance issues are improved by virtue of the fact that if there is a logical error in the observational 
model code it can be fixed without the need to re-run the operating model to create a given state 
realisation.  
 
VSM has the ability to introduce the following sources of error into observation data: 
 

• Effort reporting errors 

• Total catch errors (by number) 

• Age and length distribution errors (by number and excluding tags) 

• Tag reporting rate errors 

• Age estimation by cohort slicing 

 
All these error mechanisms operate on a fishery basis, meaning that individual fisheries have their own 
error regimes when targeting specific species. Furthermore the recorded data is aggregated over a 
statistical time period which, in the models used in this study, corresponds to one year.  

A1.3.1 Effort errors 
Effort deviations are applied to each individual effort record in a given state realization using the 
generalized correlated deviate with the deviate CV optionally being a function of time. In the 
observation models used to date, effort has been reported without error. But note that effective effort 
process deviations are highly confounded with effort reporting errors.  

A1.3.2 Total catch errors 
Similarly, total catch deviations are also applied using the generalized correlated deviate with the 
deviate CV optionally being a function of time. The deviate is applied to the total catch at age with the 
numbers at length re-scaled accordingly (to preserve the length at age distribution). In the observation 
models used to date, total catch has been reported with a log normal deviate applied whose variance is 
not a function of time.  

A1.3.3 Age and length distribution errors 
Age and length distribution errors are synthesised using a multinomial selection process combined with 
catch at age and catch at length effective sample size specifications.  The true length distribution is 
combined with an effective sample size to synthesise a new distribution using a multinomial sampling 
process.  The age / length distributions (in absolute catch numbers) are converted into probability 
coefficients.  A sample population distribution is created through multinomial selection driven by these 
probability coefficients and the effective sample size.  For the length distribution data the sample 
population distribution is reported as is and for the age distribution data the sample distribution is 
scaled up to equal total catch in numbers.  The need to scale up the age data arises from the output file 
format of the catch at age data as it has no entry for total catch but assumes the sum of all entries in the 
catch at age matrix is the total catch. This file format was used for historical reasons. Future revisions 
of VSM may alter the reporting of age based data to be consistent with the length based data through a 
modification of the file format.  
 
More rigorously, if there are A ages classes and L length classes at time t, the effective sample size 
applied to the age distribution is Aess and Ca,l,s,t is the total catch in numbers of age a, length l, sex s at 
time t, then the modified catch-age distribution that includes age distribution errors is given by, 
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where, 
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and AΦ  is a multinomial deviate as defined by Equation A1.54. As mentioned earlier, the reported 

catch-age distribution is scaled to correspond to the total catch, hence the second level of multinomial 
selection in Equation A1.60.  In the case of the reported catch-length distribution the total numbers in 
the distribution sums to the length effective sample size Less and the modified catch-length distribution 
is given by, 
 

( )esstsLts L,,, RC ′Φ=′′  (A1.65) 

 
where, 
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A1.3.4 Tag reporting rate errors 
Tag reporting rate errors are introduced through a binomial selection process.  As with the total catch 
numbers and the effort deviations the reporting rate errors can be a function of time.  In other words, if 

tag
tslaC ,,,  is the true number of tagged fish age a, length l, sex s at time t and 

rep
tP  is the probability of 

reporting the catch as tagged then the reported tagged catch is given by, 
 

( )tag
tsla

rep
t

rep
tsla CPC ,,,,,, ,Φ=  (A1.69) 

 
where Φ(p,N) is a binomial random deviate with probability p and number of independent trials N. The 
true number of tagged fish is known and results from the fishing mortality process within VSM. 
Remember that as tagged fish are managed internally in a separate sub population, VSM automatically 
keeps track of recaptures using the same predation process that generates non-tagged catch.  
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A1.3.5 Age errors through cohort slicing 
Age estimation through the process of cohort slicing can also be simulated. VSM supports cohort 
slicing over an arbitrary number of cut-points through a fixed age step between cut-points. In other 
words, if δa is the age step between cut-points and l(a) is the length at age as specified by 
Equation A1.6 then the cut-point age and cut-point length are defined by,  
 

a
cutpoint
n na δ⎟

⎠
⎞

⎜
⎝
⎛ +=

2

1
 (A1.70) 
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Catch is then assigned an age by finding the smallest cut-point length that is greater than the catch 
length and assigning the corresponding cut-point age. To obtain realistic cohort slicing the age step, δa, 
should be the same as the model time step, tm.  

A1.4 LIST OF SYMBOLS 
R Recruitment 
R0 Virgin reruitment 
SSB Spawning stock biomass 
d,b Beverton-Holt recruitment parameters 
h Steepness (Beverton-Holt recruitment relationship) 
B Biomass 
C Catch in numbers 
T Tag releases in numbers 
N Population size in numbers 
M Natural mortality in numbers 
P Probability 
Ω Probability scaling function 
s Fish sex 
a Fish age 
l Fish length 
t Time 
g Growth transition index 
l(a) Growth equation 
w(a) Mass-length relationship 
q,ν Mass-length relationship parameters 
α,β,k1,k2 vb log k growth equation parameters 
σ Distribution standard deviation 
µ Distribution mean 
ρ Lag 1 auto-correlation of an AR1 process 
∆k Random deviate sequence 
β Random deviate sequence bias 
S Baseline catch probability / selectivity 
ς Selectivity altering function 
λ scaling factor for selectivity change mechanism 
α controlling parameter for selectivity change mechanism 
E Effort 
q Catchability 
Φ(p,N) Binomial random deviate with probability p in N trials 

A1.5 REFERENCES 
1. Laslett, G.M., Eveson, J.P., and Polacheck, T.  2002. A flexible maximum likelihood 

approach for fitting growth curves to tag-recapture data. Can. J. Fish. Aquat. Sci. 59: 976-

986. 



 254

APPENDIX 2 VSM PARAMETERIZATION FOR A FISHERY 
RESEMBLING SBT  

This appendix describes the different VSM specifications used to simulate alternative representations 
of the Southern Bluefin Tuna population for the SESAME project.  Biological parameters were mostly 
adopted from input to actual SBT assessments (see Preece et al. 2001 and references therein).  
Production dynamics and exploitation history were intended to approximate the general perceptions 
about the stock from assessment results (e.g. Butterworth et al. 2003, Polacheck et al. 2001).  However, 
there was no explicit conditioning of the operating models to the real SBT data.  A number of details 
were also simplified (e.g. reduced number of fisheries, consistency of data collection methods over 
time). 
 
The operating models are defined relative to one of two baseline scenarios. The stage 1 scenarios are 
designated E_x in the text of the SESAME report and tend to be easy in terms of the nature of the 
model process and the observation errors. The stage 2 scenarios are designated D_x and are difficult, 
with substantial process errors and small sample sizes. A number of intermediate scenarios are also 
defined, and a range of models with additional characteristics that are likely to be assumption violations 
for most of the assessment models. A summary of the models used in this study is provided in 
Table A2.1. Each model provides 50 years of simulated data generated through VSM models running 
on a monthly time step and aggregating and reporting statistics on an annual basis. Fishing, when 
active, occurs continuously throughout the year. There are four fisheries: juvenile, long-line spawning 
grounds and long-line feeding grounds (split into an early and late operating periods). The juvenile 
fishery predominantly targets 3-5 year old fish (Figure A2.4), the long-line feeding grounds fishery 
targets 5-15 year old fish (Figure A2.5) and the long-line spawning grounds 10+ year old fish 
(Figure A2.6). In all scenarios with the exception of E_HL and D_HL the baseline selectivity is age 
based. For E_HL & D_HL the baseline selectivity is length based with the selectivity vectors designed 
to give roughly the same catch-age distribution as the age based case when all else is the same. The 
spawning ground long-line fishery actually represents two distinct fisheries, the early Japanese fishery 
that primarily targeted SBT, and the recent Indonesian fishery that takes SBT mostly as by-catch.  In 
the operating models, they are the same, except for the data collection.  
 
Targeting in stage 2 scenarios (D_x) uses the same baseline selectivities as with the stage 1 (E_x) 
scenarios along with some population structure dependent selectivity changes. The long-line spawning 
ground fishery selectivity in stage 2 (Figure A2.20) is the same as that of stage 2. The long-line feeding 
ground fishery (Figure A2.21) has cohort targeting selectivity changes applied to the baseline case 
obtained from stage 1 scenarios. This is intended to simulate a tendency for fishers to 
disproportionately target relatively abundant age classes of variable size. Similarly, the juvenile fishery 
(Figure A2.22) has constant catch proportion selectivity changes applied to the baseline case. This is 
intended to simulate the apparent behaviour of the Australian domestic purse seine fishery, which 
seems to have some capacity to select schools of a certain age class best suited for aquaculture 
purposes, regardless of the overall age composition in the bight.  
 
Similar fishery effort series were used for all Stage 1 scenarios and were chosen to loosely mimic the 
recorded exploitation history of the SBT fishery since the 1950’s. Generally there is high exploitation 
in the early spawning grounds fishery and increasing exploitation in the juvenile and long-line feeding 
grounds fisheries over a period of around 35 years followed by a dramatic effort reduction about 10-15 
years before the end of the time series (due to management restrictions). All of the fisheries have 
informative effort time series for some Stage 1 scenarios (Figure A2.1). However, only the long-line 
feeding grounds fishery was intended to be interpreted as informative in an assessment. In Stage 2 
scenarios only the long-line feeding grounds fishery has an informative effort time series 
(Figure A2.17) and it is much less informative than stage 1. The effort series of the other fisheries is 
intentionally misleading in the majority of cases so that extra information cannot be extracted 
(intentionally or otherwise).  
 
Depletion levels for the stock range from between 15-50% of virgin biomass depending primarily upon 
the steepness in the Beverton-Holt recruitment relationship. For high steepness the level of depletion is 
somewhat lower than the low steepness cases owing to the insensitivity of recruitment to depletion. We 
desired substantial depletion in all cases, but did not attempt to ensure that they were all comparable. 
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Complete histories of the biomass and recruitment are maintained for every realisation, including the 
values that would have occurred without fishing (Figures A2.3 & A2.19).  
 
Catch age data is provided in all scenarios with the juvenile and long-line feeding grounds fisheries 
providing age estimates from cohort-slicing.  The early long-line spawning grounds fishery provides 
cohort-sliced age data, while the late spawning grounds fishery provides simulated direct ageing data.  
 
All scenarios use the same length-mass relationship (Figure A2.15) and age-maturity relationship 
(Figure A2.16) with 100% of SBT becoming mature at age 10, and spawning every year (fecundity is 
directly proportional to mass). Stage 1 scenarios use the age-mortality relationship of Figure A2.2 
whilst stage 2 scenarios use that of Figure A2.18.  
 
Most stage 1 scenarios release between 6000 and 12000 tags per annum attached to 1-3 year old fish 
between the 40th and the 44th years (Figure A2.1). The exception is E_CA60 in which 600 to 1200 
tags per annum are released. In all stage 2 scenarios, the release numbers drop to 300-600 tags for the 
same age range (Figure A2.17). Zero tag shedding and 100% reporting of recaptures is implemented 
across all fisheries.  
 
All scenarios use a Beverton-Holt recruitment relationship with a range of steepness and recruitment 
variability, with the exception of E_HSSR & D_HSSR which both use a double linear “hockey stick” 
function. The recruitment variability is provided by a log-normal deviate with or without lag-1 auto-
correlation (Figures A2.3 & A2.19). Figure A2.36 shows the recruitment time series for five different 
realisations of scenario E_h3. Similarly Figure A2.37 shows the recruitment time series for five 
different realisations of scenario E_h4_r8, which has a lag 1 year auto-correlation of 0.8. Scenario 
E_h3 and E_h4_r8 show similar trends although the trend in E_h4_r8 is smoother on account of the 
high recruitment auto-correlation.  Figure A2.33 shows the recruitment relationships used in stage 1 
scenarios whilst Figure A2.34 shows the same for stage 2.  
 
The same growth equation was used throughout except for E_DDLinf and D_DDLinf which included 
changes in the asymptotic length (of the growth equation) over time to simulate density dependent 
changes in growth rates. This change in asymptotic length is highlighted in Figure A2.40. In all other 
cases this resulted in identical length-at-age relationships, except for the scenarios that had purely 
length-based fishing mortality (E_HL, D_HL). The growth equation is the same for stage 1 and Stage 2 
scenarios although the stage 2 scenarios have a higher variance on the length-at-age distributions 
(compare Figures A2.14 & A2.30). In the length-based selectivity scenarios (E_HL, D_HL), the growth 
rates are the same as the other scenarios, but length-at-age potentially changes over time and among 
cohorts, depending on the size selective exploitation history that each cohort experiences. This is one 
possible implementation of size selective mortality, though it might be argued that maintaining a 
variety of growth curves within the population would be preferable.  
 
All scenarios include log normal deviations in catchability. Stage 1 scenarios have an annual CV of 
14% on the spawning ground fishery, 10% on the feeding ground fishery and 6% on the juvenile 
fishery, all with no auto-correlation. Stage 2 scenarios have an annual CV of 16% on the long-line 
spawning ground and juvenile fisheries with no auto-correlation whilst the long-line feeding ground 
fishery has an annual CV of 40% and a lag 1 auto-correlation of 0.5. Example time series highlighting 
the deviations in catchability are shown in Figures A2.11, A2.12, A2.13, A2.27, A2.28 & A2.29.  Note 
that for the purposes of assessment, only the longline feeding grounds fishery effort – fishing mortality 
relationship was to be considered informative as a relative abundance index (Figures A2.12, A2.28). 
 
Catchability trends for the informative long line fishery are included in scenarios E_qInc, E_qC, E_qI, 
D_qInc, D_qC and D_qI. In the case of E_qInc and D_qInc these models include the explicitly defined 
catchability trends of Figure A2.38. Cases E_qC, E_qI, D_qC and D_qI include implicit catchability 
trends that stem from the non-linear effort/fishing mortality relationship defined in those cases. These 
effort/fishing mortality relationships are shown in Figure A2.35 and give rise to the catchability trends 
shown in Figure A2.39. Note that the implied nature of this catchability relationship stems from the 
assumption, in the assessment models, that effort and fishing mortality are linearly related.  
 
Stochastic variation in fishery selectivity is intended to mimic noise from a range of processes (e.g. 
spatial heterogeneity in the fish population and fishing fleets), and is implemented with an “effective 
sample size” which introduces additional noise to the binomial selection process.  Note that this is a 
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process error and is completely distinct from the sample sizes in the catch observation process (and 
effective sample sizes that are commonly used to downweight catch data within assessment models).  
The typical effect of this approach is demonstrated in Figure A2.41, which shows the catch-length 
distribution for total catch in the final year of the model run with and without the effective sample size 
implemented. When implemented in the D_x scenarios, the process noise increased with lower effort 
(but was constant in the E_x scenarios).  
 
In the observation model, sample sizes are used to introduce distribution errors in the catch-at-age and 
catch-at-length observed data. For stage 1 scenarios an effective sample size of 1000 was typically used 
whereas for the stage 2 scenarios this was reduced to 50. In stage 1 the exception is model E_CA60 
which has an effective sample size of 60. The typical effect this has upon observed data is 
demonstrated in Figure A2.42, which shows the standardised reported catch-length distribution in the 
final year of the model run with sample sizes of 1000 and 60.  
 
Finally, a number of scenarios are included to test the effect of catch under-reporting on assessment 
model performance. Models E_C10ju, E_C10llf and E_C10lls have 10% under-reporting of catch in 
the juvenile, long-line feeding and long-line spawning ground fisheries respectively. Likewise, models 
E_C20ju, E_C20llf and E_C20lls have 20% under-reporting of catch in the juvenile, long-line feeding 
and long-line spawning ground fisheries respectively.  In all cases, the under-reporting was constant 
over time and had no effect on the age and length frequency sampling.  
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Table A2.1: Summary of Operating Model Definitions used in this study. Stage 1 scenarios, designated E_x, are considered relatively easy in terms of 
the nature of the model process and the observation errors. Stage 2 scenarios, designated D_x, are considered difficult and have 
substantial process errors and small sample sizes.  

Scenario Recruitment Selectivity Catchability Effort Fishing 
Mortality relationship 

Observation Error Growth Tagging 

E_h3 
1_1n 

Beverton-Holt,  
h = 0.3,  
ρ = 0.0, 
σ = 0.4 

Age based Catchability includes log 
normal deviations with 
no auto-correlation or 
bias. Annual CV 14% 
LL Spawning fishery, 
10% LL Feeding fishery 
and 6% Juvenile fishery.  

Linear Catch-at-age effective 
sample size 1000 
Catch-at-length effective 
sample size 1000 

VB log k growth 
equation,  
L∞=182, t0=0, 
k1=k2=0.18, α=2.9, 

β=30.0 
Length standard 
deviation 5 irrespective 
of age. Absolute growth 
method. 

Tagging in years 40 to 44 
inclusive mid year for 
one month. Tagging 1-3 
year olds in equal 
proportion. Total releases 
per year {12000,6000, 
12000,6000, 
12000} 

E_base 
1_2n 

Same as 1_1n but with,  
h = 0.6 

Age based Same as 1_1n Linear Same as 1_1n Same as 1_2n Same as 1_1n 

E_h9 
1_3n 

Same as 1_1n but with,  
h = 0.9 

Age based Same as 1_1n Linear Same as 1_1n Same as 1_2n Same as 1_1n 

E_h4_r8 
1_4n 

Same as 1_1n but with,  
h = 0.4,  
ρ = 0.8 

Age based Same as 1_1n Linear Same as 1_1n Same as 1_2n Same as 1_1n 

E_h8_r8 
1_5n 

Same as 1_1n but with,  
h = 0.8,  
ρ = 0.8 

Age based Same as 1_1n Linear Same as 1_1n Same as 1_2n Same as 1_1n 

E_qInc 
1_6n 

Same as 1_2n Age based Same as 1_1n plus 
LL Feeding increasing 
catchability trend 1% per 
year from 10th year 
onwards, LL spawning 
catchability increasing 
exponentially in fishing 
years, Juvenile 
catchability exponential 
decay with noise.  

Linear Same as 1_1n Same as 1_2n Same as 1_1n 

E_CA60 
1_9n 

Same as 1_2n Age based Same as 1_1n Linear Catch-at-age effective 
sample size 60 
Catch-at-length effective 
sample size 60 

Same as 1_2n Tagging in years 40 to 44 
inclusive mid year for 
one month. Tagging 1-3 
year olds in equal 
proportion. Total releases 
per year {1200,600, 
1200,600, 
1200} 
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Scenario Recruitment Selectivity Catchability Effort Fishing 
Mortality relationship 

Observation Error Growth Tagging 

E_HTS 
1_10n 

Same as 1_2n Age based with 
selectivity changes: 
const. catch proportion 
on Juvenile and cohort 
targeting on LL feeding.  

Same as 1_1n Linear Same as 1_1n Same as 1_2n Same as 1_1n 

E_HL 
1_11n 

Same as 1_2n Length based Same as 1_1n Linear Same as 1_1n Same as 1_2n except 
uses the differential 
growth method. 

Same as 1_1n 

E_H45 
1_12n 

Same as 1_2n Age based with explicit 
selectivity change to 
younger fish at the 45th 
year on LL Feeding 

Same as 1_1n Linear Same as 1_1n Same as 1_2n Same as 1_1n 

E_qC 
1_14n 

Same as 1_2n Age based Same as 1_1n Cobb-Douglas type 
model where effective 
effort accelerates with 
increasing effort, ie. co-
operation 
Effort = Hooks1.5 

Same as 1_1n Same as 1_2n Same as 1_1n 

E_qI 
1_15n 

Same as 1_2n Age based Same as 1_1n Cobb-Douglas type 
model where effective 
effort decelerates with 
increasing effort, ie. 
interference 
Effort = Hooks0.67 

Same as 1_1n Same as 1_2n Same as 1_1n 

E_DDLinf 
1_16n 

Same as 1_2n Age based Same as 1_1n Linear Same as 1_1n Same as 1_2n except L∞ 
changes from 182 to 
162cm from 10th to the 
20th year mimicking 
density dependence 
effects. 

Same as 1_1n 

E_DRq 
1_17n 

Same as 1_2n Age based Same as 1_1n except 
LL Feeding catchability 
has lag 1 year 
autocorrelation of 0.5 
and an annual CV of 
40% 

Linear Same as 1_1n Same as 1_2n Same as 1_1n 

E_HSSR 
1_19n 

Hockey stick,  
h = 0.6,  

ρ = 0.0, 
σ = 0.4 

Age based Same as 1_1n Linear Same as 1_1n Same as 1_2n Same as 1_1n 

E_H40 
1_20n 

Same as 1_2n Age based with explicit 
selectivity change to 
younger fish at the 40th 
year on LL Feeding 

Same as 1_1n Linear Same as 1_1n Same as 1_2n Same as 1_1n 
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Scenario Recruitment Selectivity Catchability Effort Fishing 
Mortality relationship 

Observation Error Growth Tagging 

E_stoH 
1_21n 

Same as 1_2n Age based with effective 
sample size, 
Ψ = 500 
Ψmin = 50 

Same as 1_1n Linear Same as 1_1n Same as 1_2n Same as 1_1n 

D_h3 
2_1n 

Beverton-Holt,  
h = 0.3,  
ρ = 0.0, 

σ = 0.6 
Spawning spread over 4 
months with weights: 
{0.1,0.4,0.4,0.1} 

Age based with effective 
sample size, 
Ψ = 500 

Ψmin = 50 
plus selectivity changes: 
const. catch proportion 
on Juvenile and cohort 
targeting on LL feeding. 

Catchability includes log 
normal deviations with 
no auto-correlation or 
bias. Annual CV 16% 
Spawning ground and 
Juvenile fisheries, 
LL Feeding catchability 
has lag 1 year 
autocorrelation of 0.5 
and an annual CV of 
40% 

Linear Catch-at-age effective 
sample size 50 
Catch-at-length effective 
sample size 50 

VB log k growth 
equation,  
L∞=182, t0=0, 

k1=k2=0.18, α=2.9, 
β=30.0 
Length standard 
deviation 8 irrespective 
of age. Absolute growth 
method. 

Tagging in years 40 to 44 
inclusive mid year for 
one month. Tagging 1-3 
year olds in equal 
proportion. Total releases 
per year {600,300, 
600,300, 
600} 

D_base 
2_2n 

Same as 2_1n but with,  
h = 0.6 

Same as 2_1n Same as 2_1n Linear Same as 2_1n Same as 2_1n Same as 2_1n 

D_h9 
2_3n 

Same as 2_1n but with,  
h = 0.9 

Same as 2_1n Same as 2_1n Linear Same as 2_1n Same as 2_1n Same as 2_1n 

D_h4_r8 
2_4n 

Same as 2_1n but with,  
h = 0.4,  
ρ = 0.8 

Same as 2_1n Same as 2_1n Linear Same as 2_1n Same as 2_1n Same as 2_1n 

D_h8_r8 
2_5n 

Same as 2_1n but with,  
h = 0.8,  

ρ = 0.8 

Same as 2_1n Same as 2_1n Linear Same as 2_1n Same as 2_1n Same as 2_1n 

D_qInc 
2_6n 

Same as 2_2n Same as 2_1n Same as 2_1n plus 
LL Feeding increasing 
catchability trend 1% per 
year from 10th year 
onwards, LL spawning 
catchability increasing 
exponentially in fishing 
years, Juvenile 
catchability exponential 
decay with noise. 

Linear Same as 2_1n Same as 2_1n Same as 2_1n 

D_HL 
2_11n 

Same as 2_2n Length based with 
effective sample size, 
Ψ = 500 
Ψmin = 50 
plus selectivity changes: 
const. catch proportion 
on Juvenile and cohort 
targeting on LL feeding. 

Same as 2_1n Linear Same as 2_1n Same as 2_1n except 
using differential growth 
method. 

Same as 2_1n 
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Scenario Recruitment Selectivity Catchability Effort Fishing 
Mortality relationship 

Observation Error Growth Tagging 

D_H45 
2_12n 

Same as 2_2n Same as 2_1n plus 
explicit selectivity 
change to younger fish at 
the 45th year on LL 
Feeding 

Same as 2_1n Linear Same as 2_1n Same as 2_1n Same as 2_1n 

D_qC 
2_14n 

Same as 2_2n Same as 2_1n Same as 2_1n Cobb-Douglas type 
model where effective 
effort accelerates with 
increasing effort, ie. co-
operation 
Effort = Hooks1.5 

Same as 2_1n Same as 2_1n Same as 2_1n 

D_qI 
2_15n 

Same as 2_2n Same as 2_1n Same as 2_1n Cobb-Douglas type 
model where effective 
effort decelerates with 
increasing effort, ie. 
interference 
Effort = Hooks0.67 

Same as 2_1n Same as 2_1n Same as 2_1n 

D_DDLinf 
2_16n 

Same as 2_2n Same as 2_1n Same as 2_1n Linear Same as 2_1n Same as 2_1n except L∞ 
changes from 182 to 
162cm from 10th to the 
20th year mimicking 
density dependence 
effects. Uses the 
differential growth 
method. 

Same as 2_1n 

D_HSSR 
2_19n 

Hockey stick,  
h = 0.6,  
ρ = 0.0, 

σ = 0.6 
Spawning spread over 4 
months with weights: 
{0.1,0.4,0.4,0.1} 

Same as 2_1n Same as 2_1n Linear Same as 2_1n Same as 2_1n Same as 2_1n 

D_H40 
2_20n 

Same as 2_2n Same as 2_1n plus 
explicit selectivity 
change to younger fish at 
the 40th year on LL 
Feeding 

Same as 2_1n Linear Same as 2_1n Same as 2_1n Same as 2_1n 

E_C10ju 
1_2nuj 

Same as 1_2n Same as 1_2n Same as 1_2n except 
with a nominal 10% 
under-reporting of catch 
in the juvenile fishery 

Linear Same as 1_2n Same as 1_2n Same as 1_2n 



 261 

Scenario Recruitment Selectivity Catchability Effort Fishing 
Mortality relationship 

Observation Error Growth Tagging 

E_C10llf 
1_2nullf 

Same as 1_2n Same as 1_2n Same as 1_2n except 
with a nominal 10% 
under-reporting of catch 
in the long-line feeding 
fishery 

Linear Same as 1_2n Same as 1_2n Same as 1_2n 

E_C10lls 
1_2nulls 

Same as 1_2n Same as 1_2n Same as 1_2n except 
with a nominal 10% 
under-reporting of catch 
in the long-line spawning 
ground fishery 

Linear Same as 1_2n Same as 1_2n Same as 1_2n 

E_C20ju 
1_2nuj2 

Same as 1_2n Same as 1_2n Same as 1_2n except 
with a nominal 20% 
under-reporting of catch 
in the juvenile fishery 

Linear Same as 1_2n Same as 1_2n Same as 1_2n 

E_C20llf 
1_2nullf2 

Same as 1_2n Same as 1_2n Same as 1_2n except 
with a nominal 20% 
under-reporting of catch 
in the long-line feeding 
fishery 

Linear Same as 1_2n Same as 1_2n Same as 1_2n 

E_C20lls 
1_2nulls2 

Same as 1_2n Same as 1_2n Same as 1_2n except 
with a nominal 20% 
under-reporting of catch 
in the long-line spawning 
ground fishery 

Linear Same as 1_2n Same as 1_2n Same as 1_2n 
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Figure A2.1: Model E_base fishery and tag dynamics from one stochastic state realisation: red - 
juvenile fishery, blue - long-line feeding ground fishery, green - long-line spawning 
ground fishery 
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Figure A2.2: Model E_base natural mortality-at-age relationship 
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Figure A2.3: Model E_base population dynamics under (a) unfished and (b) fished conditions 
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Figure A2.4: Model E_base selectivity: juvenile fishery, constant over time. 
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Figure A2.5: Model E_base selectivity: long-line feeding ground fishery, constant over time. 
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Figure A2.6: Model E_base selectivity: long-line spawning ground fishery, constant over time. 
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Figure A2.7: Model E_base aggregate (over all time) catch-at-length frequency distribution: 
juvenile fishery 
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Figure A2.8: Model E_base aggregate (over all time) catch-at-length frequency distribution: 
long-line feeding ground fishery 
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Figure A2.9: Model E_base aggregate (over all time) catch-at-length frequency distribution: 
long-line spawning ground fishery 
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Figure A2.10: Model E_base total exploitation rate time series 
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Figure A2.11: Model E_base catchability series (including effective effort deviations): juvenile 
fishery. The fishery operates from the first year onwards. 
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Figure A2.12: Model E_base catchability series (including effective effort deviations): long-line 
feeding ground fishery, The fishery operates from the ninth year onwards. 
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Figure A2.13: Model E_base catchability series (including effective effort deviations): long-line 
spawning ground fishery. The fishery is closed from the 23rd to the 36th year 
inclusive.  
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Figure A2.14: Model E_base instantaneous age-length relationship (error bars indicate 5% and 
95% distribution limits) 
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Figure A2.15: Model E_base length-mass relationship 
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Figure A2.16: Model E_base maturity 
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Figure A2.17: Model D_base fishery and tag dynamics from one stochastic state realisation: red - 
juvenile fishery, blue - long-line feeding ground fishery, green - long-line spawning 
ground fishery 
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Figure A2.18: Model D_base natural mortality-at-age relationship 
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Figure A2.19: Model D_base population dynamics under (a) unfished and (b) fished conditions 
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Figure A2.20: Model D_base selectivity: long-line spawning ground fishery 
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Figure A2.21: Model D_base selectivity: Long-line feeding ground fishery 
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Figure A2.22: Model D_base selectivity: juvenile fishery 
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Figure A2.23: Model D_base aggregate (over all time) catch-at-length frequency distribution: 
juvenile fishery 
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Figure A2.24: Model D_base aggregate (over all time) catch-at-length frequency distribution: 
long-line feeding ground fishery 
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Figure A2.25: Model D_base aggregate (over all time) catch-at-length frequency distribution: 
long-line spawning ground fishery 
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Figure A2.26: Model D_base total exploitation rate time series 
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Figure A2.27: Overlayed  catchability series (including effective effort deviations) for five 
different realisations of model D_base: juvenile fishery 
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Figure A2.28: Overlayed  catchability series (including effective effort deviations) for five 
different realisations of model D_base: long-line feeding ground fishery 
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Figure A2.29: Overlayed  catchability series (including effective effort deviations) for five 
different realisations of model D_base: long-line spawning ground fishery 
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Figure A2.30: Model D_base instantaneous age-length relationship (error bars indicate 5% and 
95% distribution limits) 
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Figure A2.31: Model D_base length-mass relationship 



 279

0.0

0.5

1.0

0.0 5.0 10.0 15.0 20.0 25.0 30.0

Age

M
at

u
ri

ty

 

Figure A2.32: Model D_base maturity 
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Figure A2.33: Recruitment relationships for models E_h3, E_base, E_h9, E_h4_r8, E_h8_r8 and 
E_HSSR 
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Figure A2.34: Recruitment relationships for models D_h3, D_base, D_h9, D_h4_r8, D_h8_r8 and 
D_HSSR 
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Figure A2.35: Effort-Fishing Mortality Relationship: Model E_h3 Effort = Hooks; Model E_qC 
Effort = Hooks1.5; Model E_qI Effort = Hooks0.67 
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Figure A2.36: Overlayed recruitment time series for five different realisations of E_h3. 
Recruitment in E_h3 has no auto-correlation. 
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Figure A2.37: Overlayed recruitment time series for five different realisations of E_h4_r8. 
Recruitment in E_h4_r8 has a lag one year auto-correlation of 0.8. 
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Figure A2.38: Standardised catchability trends used in models E_qInc and D_qInc: Long-line 
feeding ground fishery (LL Feeding) has increasing catchability trend 1% per year 
from the 10th year onwards; Long-line spawning ground fishery (LL Spawning) 
has catchability increasing exponentially in fishing years; Juvenile fishery has 
catchability exponentially decreasing with superimposed noise 
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Figure A2.39: Comparison of standardised catchability trends for the Long-line feeding ground 
fishery in models E_h3, E_qInc, E_qC and E_qI. Note that the catchability trends 
in E_qC and E_qI stem from the non-linear hooks-effort relationship used in these 
cases 



 283

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30

Age

L
en

g
th

E_h3

E_DDLinf

 

Figure A2.40: Growth equation changes in models E_DDLinf and D_DDLinf. L∞ changes from 
182 cm (E_h3 plot) to 162 cm (E_DDLinf plot) in 10 years from the 10th year 
onwards 
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Figure A2.41: Catch in final year for model D_h3 with and without the use of stochastic 
variation in the system dynamics model. LLS - Long-line spawning ground fishery; 
LLF - Long-line feeding ground fishery; J - Juvenile fishery; ESS - with an 
effective sample size specification Ψ = 500 and Ψmin = 50 
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Figure A2.42: Standardised reported catch distribution in the final year for model E_CA60 with 
the use of two different effective sample sizes in the observation model. LLS -
 Long-line spawning ground fishery; LLF - Long-line feeding ground fishery; J  -
 Juvenile fishery; ESS1 - with length based effective sample size specification 
Less = 1000; ESS2 - with length based effective sample size specification Less = 60 
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APPENDIX 3 AGE-AGGREGATED AND AGE-STRUCTURED 
PRODUCTION MODELS TECHNICAL 
DESCRIPTION 

 
This document describes the application of age-aggregated (Schaefer and Fox) and 
Age-Structured Production Models (ASPMs) to the simulated data generated by the 
VSM SBT and SPC-OFP YFT operating models.  The Schaefer, Fox and 
deterministic ASPM implementations are adapted from actual applications to SBT 
(Butterworth and Plaganyi 2001; Ricard et al. 2002). This document provides brief 
technical details including data processing requirements, and describes difficulties 
encountered in the automated application of these models to the simulated data.  All 
models were implemented using AD Model Builder software (Otter Research, 
Victoria, Canada).  
 

A 3.1 AGE-AGGREGATED PRODUCTION MODELS (AAPMS) 

 

Table A 3-1. AAPM Variations 

 
 
Model name 

“Free” 
Parameters 
estimated 
with 
function 
minimizer* 

 
 
Details 

 
Applied to simulated VSM SBT data 
 

f_calc Kr,  Fox model; uses longline feeding grounds CPUE as 
relative abundance index 

s_calc Kr,  Schaefer model; uses longline feeding grounds 
CPUE as relative abundance index 

 
Applied to simulated SPC-OFP YFT data 
 
Fox Kr,  Fox model; uses CPUE from the longline fishery 

with the largest catch as a relative abundance index 
Schaefer Kr,  Schaefer model; uses CPUE from the longline 

fishery with the largest catch as a relative 
abundance index 

Fox_Agg Kr,  Fox model; uses global nominal CPUE as a relative 
abundance index 

Schaefer_Agg Kr,  Schaefer model; uses global nominal CPUE as a 
relative abundance index 

* note that the actual parameters estimated may have undergone various 
transformations to improve stability during function minimization. 
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A 3.1.1 AAPM Biomass Dynamics 

 
The Fox and Schaefer model dynamics are identical except for the logs in the density 
dependent terms: 
 
Schaefer 
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where: 

t = time-step; annual for SBT and quarterly for YFT. 
Bt   = biomass at time t 
Ct  = total catch in mass at time t summed over all fisheries 
r = intrinsic population growth rate parameter 
K = carrying capacity parameter 

 

A 3.1.2 AAPM Objective Function 

The parameters from both AAPMs are estimated using the same objective function 
that assumes that the relationship between the population abundance and the CPUE is: 
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where: 

εt  are the observation errors, assumed to be normally distributed N(0,(σt)
2)), and 

σ is the estimated standard deviation of εt. 
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A 3.2 AGE-STRUCTURED PRODUCTION MODELS (ASPMS) 

 
Table A 3-2. ASPM variations 
 
Model 
name 

 
# parameters 
estimated 

“Free” 
Parameters 
estimated 
with 
function 
minimizer * 

 
Details 

 
Applied to simulated VSM SBT data 
 
aspm_d2g 2 spKh,  ASPM with deterministic 

recruitment; correct selectivity and 
mortality used as fixed input 

aspm_d6g 2 spKh,  ASPM with deterministic 
recruitment; known mortality used 
as fixed input; selectivity 
analytically calculated from length 
frequency approximation  

aspm_sto 
 
(results 
withdrawn) 

52 
(50 annual 
recruitment 
deviations) 

φ,, spKh  ASPM with stochastic recruitment  

 
Applied to simulated SPC-OFP YFT data 
 
aspm_det 
 
(results 
withdrawn) 

2 spKh,  ASPM with deterministic 
recruitment; known mortality used 
as fixed input; selectivity 
analytically calculated from length 
frequency approximation 

aspm_sto 
 
(results 
withdrawn) 

150 
(148 quarterly 
recruitment 
deviations) 

φ,, spKh  ASPM with stochastic recruitment 

* note that the actual parameters estimated may have undergone various 
transformations to improve stability during function minimization. 



 288

A 3.2.1 ASPM Population dynamics 

The dynamics of the fish population are described by three equations: 
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where, 
t = time-step; annual for SBT and quarterly for YFT. 

atN ,  is the number of tuna age a at the start of time-step t 

( )sp
tBR 1+  is the stock recruitment relationship assumed 

atC ,  is the total number of tuna age a taken by the fishery in year t 

aM  is the natural mortality rate for fish age a 

m  is the largest age considered (the “plus” group) 
 
The fishery is assumed to occur as a pulse catch in the middle of the year. The 

total number of tuna of age a caught each year ( atC , ) is given by: 
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where, 
f  is fishery/fleet concerned 

 

The mass of the fleet-specific annual catch ( f
tC ) is given by: 
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where, 
f

aS   is the fleet-specific selectivity for tuna of age a 
f

tF  is the fleet-specific fishing mortality for year t 

2

1+a
w is the weight at mid-time-step 

 
The fleet-specific exploitable biomass is calculated as: 
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The proportion of the resource harvested each year ( f
tF ) by fleet f is given by: 
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A 3.2.2 Stock recruitment relationship 

The spawning biomass in year y is: 

∑
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where, 
af   is the proportion of sexually mature tuna at age a 

 
In the simplest case, recruitment is calculated using a Beverton-Holt relationship: 
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To facilitate the biological interpretation of the stock-recruitment parameters we 
reparameterise the Beverton-Holt relationship in terms of the pre-exploitation 
equilibrium spawning biomass (Ksp) and the “steepness” (h) of the stock-recruitment 
relationship.  Steepness is defined as the fraction of the pristine recruitment (R0) that 
results when the spawning biomass drops to 20% of its pristine level: 
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from which it follows that: 
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The stochastic version of the ASPM requires the estimation of additional parameters. 
We estimate recruitment as deviations from the deterministic recruitment. 
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where, 
*
tR  is the estimated recruitment at time t 

tR  is the deterministic recruitment at time t 

τ  is a vector of recruitment deviations 
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rσ  is the standard deviation around recruitment deviations 

 
We note that the stochastic recruitment implementation generally required user 
interaction to obtain seemingly satisfactory convergence, and was not adequate for the 
automated SESAME simulation testing. 

 

A 3.2.3 Biomass trajectories 

Given a value for the pre-exploitation equilibrium spawning biomass Ksp and 
assuming that the initial age structure is at equilibrium, the initial recruitment 0R  can 

be estimated as: 
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An additional parameter (γ) can be estimated to allow the stock to be at a state other 
than the unfished equilibrium at the onset of fishing. Note that the population 
structure, as represented by the proportion of fish in each age class, will be similar to 
that of the unfished equilibrium. The extra parameter simply scales the initial 
population: 

γeRN 00,0 =  (Eq A 3-22) 

The notation N0,0 means the number of recruits at the onset of fishing. Initial 
abundance of older age classes are calculated as: 
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Once the numbers-at-age of the population at the onset of fishing have been 
calculated, the population dynamics can be obtained through equations 3 through 14. 

A 3.2.4 Objective function 

To estimate the stock recruitment parameters h and Ksp, the model is fitted to an index 
of abundance by maximizing an associated likelihood function. The likelihood is 
calculated assuming that the observed index of abundance is log-normally distributed 
about its expected value: 
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where, 
It

l  is the longline fleet abundance index for time t 
l
t

ll
t NqI =ˆ  is the corresponding model estimated value, where Nl

t is the model 

value for the longline exploitable resource abundance (Eq A 3-10) 
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εl

t  is assumed to be normally distributed N(0,(σl
t)

2)) 

The simplified log-likelihood function for the indices of abundance is given by: 
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Independent estimates of N(0,(σl
t)

2) are not available so they are assumed not to be 
dependent on year (σl

t is simplified to σl ). σl is estimated in the likelihood 
maximization process as: 
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where n is the number of data points in the abundance time series. The indices of 
abundance component of the log-likelihood can be further simplified to: 
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Under this assumption, the maximum likelihood estimate of ql
 is given by: 
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The deterministic version of the ASPM estimates parameters h and Ksp by maximizing 
loge(L1) (Eq A 3-25).  The stochastic version of the ASPM estimates parameters h, 
Ksp, and φ  by maximizing  

)(log)(log)(log 21 LLL eee +=  (Eq A 3-29) 

In either case, parameter γ is estimated if the stock is assumed to be at a state other 
than the unfished equilibrium at the onset of fishing.  Note that minimization on the 
negative log likelihood is in fact used in the software (i.e. minimise: -loge(L)). 
 

A 3.3 AAPM AND ASPM DATA PROCESSING AND BIOLOGICAL 

ASSUMPTIONS 

A 3.3.1 Computation of total catch biomass time-series 

The SBT and YFT simulations provided total catches in mass or numbers depending 
on the fleet.  Catch in numbers was converted to catch in mass by calculating the mass 
frequency distribution corresponding to the length frequency distribution using the 
mass-length relationship that was made available with the simulated data.  The total 
catch biomass is the sum of catch biomass from the long-line and purse seine 
fisheries.   

A 3.3.2 Computation of nominal LL CPUE 

For the SBT simulations, the nominal CPUE from the longline feeding grounds was 
used as the relative abundance index. 
  
For the YFT simulations, two different relative abundance indices were tested.  In the 
base case, we used the nominal longline CPUE from one of the regions with the 
highest average catch.  In the scenarios where there were more than one LL fishery 
(scenarios 3-5), we used the global nominal CPUE from all longline fisheries 
combined (total catch / total hooks). 
 

A 3.3.3 ASPM Biological parameters 

The amount of prior information available to the analysts varied in the two studies.  
Both the SBT and YFT simulations provided some information about length-at-age, 
maturity-at-age and length-mass relationships.  For at least one of the YFT scenarios, 
sexual dimorphism was present but there was no prior information that this was the 
case. 
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The SBT ASPM applications used perfect knowledge of natural mortality-at-age, 
while the prior knowledge provided with the YFT data only suggested that the 
maximum longevity of a fish is 28 quarters.  For the YFT, we assumed a constant 
natural mortality rate of 0.15 per quarterly timestep, such that the abundance of fish of 
age 28 quarters represents 1.7% of the abundance of fish aged 1 quarter.  Figure A 3-1 
shows the abundance-at-age with and without the fishing mortality.  
 

 

Figure A 3-1 YFT assumed equilibrium abundance-at-age with constant natural 
mortality = 0.15 and fishing mortality = 0 or 0.15 for all ages. 

A 3.3.4 Selectivity Calculation 

The ASPMs required fixed input for fleet-specific selectivity.  The true values were 
available for the SBT simulations and used in model aspm_d2g.  However, we also 
made a simple attempt to calculate selectivity based on the observed catch length 
frequency distributions and equilibrium age structure assumptions (aspm_d6g).  For 
the SBT simulations, selectivities were set constant at ages 13+ years.  This is a gross 
approximation at best, but we did not want to invoke any additional complicated 
analyses that would detract from the simplicity that formed the basis for testing 
ASPMs in the first place.  We used this approach for the YFT simulations because 
there was no selectivity information provided in this case.  
 
The equilibrium age-composition of the population assuming that F = M is shown in 
Figure A 3-1 with the corresponding length frequency distribution shown in Figure A 
3-2.  We assumed that the ratio of the catch length frequency distribution (total for 
each fleet over the whole time series) to the equilibrium population length frequency 
distributions provides some measure of the relative selectivity of the different 
fisheries (Figure A 3-3). This approximate selectivity-at-length was converted to 
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relative selectivity-at-age by taking the ratio from Figure A 3-3 that corresponds to 
the mean length-at-age for each age-class.  The small number of catch samples at 
larger sizes and the errors introduced by this “cohort-slicing” approach would be 
expected to yield particularly bad estimates for older age classes. For the YFT 
scenarios, we set the longline selectivity on age classes 12 quarters and older equal to 
the selectivity at age 12 quarters and the purse seine selectivity on age classes 15 
quarters and older equal to the selectivity at age 15 quarters.  The selectivity 
calculation was applied independently for each data realization, and a typical result is 
illustrated in Figure A 3-4. 
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Figure A 3-2 Equilibrium length frequency distribution of the fish population when 
M=F=0.15 for YFT. 
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Figure A 3-3 Equilibrium length frequency and longline catch length frequency for 
YFT. The ratio of these two distributions is used to estimate the selectivity of the 
longline fleet. 
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Figure A 3-4 Estimated YFT selectivity-at-age for the longline and purse seine fleets. 
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A 3.3.5 Comments on Parameter estimation 

Both the AAPMs and ASPMs were problematic in the automated fitting context 
required in the simulation testing.  Without good starting parameter estimates, these 
models frequently failed to converge to the global minimum, sometimes yielding 
bizarre results that were obviously identifiable as flawed if examined.  We were able 
to avoid the initial sensitivity problem for the deterministic ASPM by introducing an 
automated two dimensional grid search of starting values to get near the global 
minimum prior to running the function minimizer.  The plot in Figure A 3-5 shows an 
example likelihood surface. 
 
The ASPMs were subject to additional implementation problems.  The ASPM with 
stochastic recruitment failed to converge reliably in the majority of cases in both the 
SBT and YFT scenarios.  This is not too surprising given the limited data and large 
number of parameters that were being estimated.  We did not expend much effort 
trying to improve the automated stochastic ASPM convergence performance because 
these models failed to meet the original objective of representing a simple alternative 
to the fully integrated models.  The deterministic ASPMs were also prone to a 
numerical problem that affected the majority of the YFT simulations and a few of the 
SBT simulations.  The problem arises from Eq A 3-6, when the model attempts to 
extract more than the existing number of fish (i.e. C(a,t) > N(a,t)).  We used penalties 
to try to prevent the function minimizer from wandering into the parameter space 
where this occurs, however, in some cases the likelihood surface is minimized 
arbitrarily close to the point where C(a,t) approaches N(a,t) and hence is ultimately 
determined by the arbitrary nature of this penalty.  This is illustrated in Figure A 3-6, 
and we do not consider these results to be valid.  Because of these problems, we 
withdrew all of the ASPM results from the YFT study, and have flagged the problem 
in the SBT results.   
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Figure A 3-5 Negative Log-Likelihood surface obtained from grid search procedure 
on an E_Base realisation.  The purple facets of the surface plot indicate where the 
penalties were applied as C(a,t) approached N(a,t).  The flat areas on the surface plot 
correspond to penalties, and have been truncated for display purposes. 
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Figure A 3-6 Example ASPM negative Log-Likelihood surface illustrating a 
numerical failure.  The purple facets of the surface plot indicate where the penalties 
were applied (as C(a,t) approached N(a,t)).  The flat areas on the surface plot 
correspond to penalties, and have been truncated for display purposes. 
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APPENDIX 4 SCALIA TECHNICAL DESCRIPTION  
 
SCALIA (Statistical Catch-at-Age/Length Integrated Analysis) is a continuously 
evolving modelling framework initially implemented for the assessment of SBT 
(Kolody and Polacheck 2001), and adapted for application to the simulated YFT data 
generated by the Secretariat of the Pacific Community - Oceanic Fisheries 
Programme (Labelle 2002, 2003), under the co-ordination of the Standing Committee 
on Tuna and Billfish Methods Working Group.  The model is largely an 
amalgamation of features from other stock assessment models, notably Butterworth et 
al. (2003) and MULTIFAN-CL (e.g. Hampton and Fournier 2001).  Model parameters 
are estimated using a likelihood-based objective function, fitting to data that include 
some or all of: total catch by fishery (in numbers or mass), fishery catch-at-age 
distributions, fishery catch-at-length distributions, fishing effort, and tag 
releases/recoveries. 
 
The following document provides a description of the most commonly used model 
structural assumptions and equations, and general comments about application.  
Model notation is summarized in Table A4 - 1.  Subscripts and superscripts may be 
omitted in some of the following for clarity, but should be implicit from the context.   
 

A 4.1 POPULATION DYNAMICS  

  
Population dynamics are represented by the difference form of the standard (Baranov) 
catch equations, including the usual accumulator for the plus-group: 
 

tat RN ==0,   

1,11,1, −−−−= atatat NsN ;    for 0 < a < A,  

AtAtAtAtAt NsNsN ,1,11,11,1, −−−−−− += , 

)exp( ,, aatat MFs −−= , 

 
where Nt,a is the population size at time t (usually annual or quarterly units) of age-
class a (maximum age-class A), and new recruits, R, enter the population at age 0.  
Survival, s, of an age-class through time t is a function of age-specific natural 
mortality, M, and fishing mortality, F.  Natural mortality is user-defined input, or 
estimated for each age subject to constraints.  If Ma is estimated, variability among 
age-classes is assumed to be a random normal deviate, δ M

 ~ N(µ = 0,σ M), from the 
mean across all ages and/or a third difference curvature penalty is applied (objective 
function terms O8 and O9 in A 4.4).    
 
A Beverton-Holt Stock Recruitment (SR) relationship, and individual deviations 
around this relationship are estimated as part of the overall parameter estimation.  The 
SR curve is parameterized in terms of mean unfished recruitment R*, and steepness, h 
(the ratio of mean recruitment at SSB(unfished)/5 over R*).  Lognormally-distributed 
deviations from the SR are estimated, potentially including a lag(1) autoregressive 
process as in Butterworth et al. (2003):  
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The objective function term relating to the stock recruitment relationship is O5  in 
section A 4.4.  The initial population age structure is estimated, subject to constraint 
by the stock-recruitment relationship.  The recruitment deviation CV is user-defined, 
and can be specified to change over time.  We have often found it useful to reduce the 
CV on the early recruitment, particularly the initial age structure.  Spawning stock 
biomass is calculated: 

∑=
a

Fec
atatat mNMaturitySSB ,,  

where Maturitya is the vector of maturity-at-age, m is the mean mass of an individual 
of age a in year t, Fec is an exponent reflecting the fact that larger individuals are 
usually dis-proportionately more fecund than smaller individuals.   
 

A 4.2 FISHERY DYNAMICS    
 
Fishing mortality follows a separable assumption in that F is composed of a time-step 
component and age component for each fishery: 
 

atftfatf HGF ,,,,, = ,  

 
and total fishing mortality is given by 
 

∑=
f

atfattotal FF ,,,,  

where, for a single fishery, Gt is the time component of the fishing mortality term, Ht.a 
is the age-specific fishery selectivity term (if selectivity does not change over time 
then the t sub-script is redundant).  Gt is further partitioned into a number of 
components that have attractive mechanistic interpretations, but are in practice rather 
confounded in the estimation process: 
  

)exp( ,,,,, tftfseasonftftf EQqG γ=  

),0(~,
tE

ftf Normal σµγ = , 
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where, q is the fishery catchability (average scaling factor relating effort to fishing 
mortality), Q is a seasonal catchability effect (For a quarterly timestep, Q consists of 4 
parameters per fishery corresponding to the 4 quarters within a year; one of which is 
defined as unity to avoid confounding with q; Q is not used with an annual time-step), 
E is the observed effort in relative units, and γ is an effective effort deviation (an error 
term that describes a potentially large temporary deviation from the mean relationship 
between effort and fishing mortality, e.g. due to inter-annual variability in fish 
distributions), giving rise to objective function term O4  in section A 4.4.  It is optional 
to assume that effort deviations tend to be larger when effort is low (e.g. catch rates at 
a fine spatio-temporal scale are highly variable, but the CV is likely to be lower if 
aggregated over more effort units): 
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Thus the CV of the prior distribution for the effort deviation in a given time-step is 
inversely proportional to the ratio of the maximum observed effort over effort in the 
given quarter (all raised to the power of υ).  In practice, if effort is always large, or 
effort standardization is believed to be reliable, υ is set to 0, and the CV is constant 
over time for any given fishery.  Catchability can be given some freedom to change 
over time, via a random walk process: 
 

)exp( ,,,

q
tftfbtf

qq q δ=+ , 

),0(~ q
f

q
f Normal σµδ =  

 
where b indicates the number of time-steps in which q is assumed to remain constant 
between changes (b can be as small as 1, but in applications to SBT, we have found 
larger time blocks yield similar results with fewer estimated parameters).  This forms 
the basis for objective function term O7  in section A 4.4. In contrast to the effort 
deviations, this process is intended to describe gradual, systematic changes in the 
system which affect the relationship between effort and fishing mortality (e.g. due to 
cumulative improvements in fishing technology).  If there is a strongly auto-correlated 
pattern in the effort deviations, this is usually interpreted as evidence for a change in 
catchability.   
 
Fishery selectivity is represented as a purely age-based process.  There are two 
methods of constraining the shape of the selectivity-at-age vector.  We usually assume 
that the degree of similarity in fish vulnerability to fishing gear is influenced by the 
degree of similarity in size.  In this case, the vector H is actually derived from a 
length-based concept: 

**,
*

l
l

AL
laa PH Λ=∑ , 

where Λ is a length-based selectivity parameter, AL
laP *, is the proportion of age a fish in 

length-class l*, (in this case, l* is used to indicate that there are usually far fewer 
length-based parameters estimated than are used for the catch-at-length frequency 
distributions used elsewhere in the model; the actual number is user-defined, and we 
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have generally used 6-12).  Each age-based selectivity parameter is a weighted sum of 
the length-based selectivity parameters where the weighting is equal to the proportion 
of fish age a in length-class l*.  Thus consecutive ages must have similar selectivity, 
depending on the degree of length overlap.  We also apply a third-difference curvature 
penalty to smooth out H across adjacent age-classes (objective function term O9  in 
section A 4.4).  When we use the length-based selectivity parameterization in 
SCALIA, none of the curvature penalties seem to be required to produce a visually 
satisfactory curve, but we have not actually compared the performance implications of 
the different constraints.  Age-based selectivity vectors are always re-scaled to a mean 
of unity:   
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Selectivity can also be implemented with temporal variability, using a random walk 
process similar to catchability: 
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This gives rise to objective function term O6 in section A 4.4. 
 
Catch, C, is the proportion of total mortality attributed to fishing.  For a given age 
class and fishery: 
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and the predicted catch-at-age (CA) composition for each fishery is expressed by the 
proportions of catch (PCA) in each age-class: 
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For fisheries that only have length samples, the corresponding predicted catch-at-
length composition for each fishery (PCL) is calculated from the age composition 
weighted by the length-at-age distribution: 
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where PAL is the proportion of age a fish in length-class l.  It is assumed that CA and 
CL observations from the commercial catches are random samples, giving rise to the 
multinomial CA/CL likelihoods (objective function term O2 in section A 4.4).  To 
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partially compensate for potential sampling problems, SCALIA reduces the observed 
sample sizes in the catch-at-length likelihoods by a constant proportion (usually 0.1-1) 
and a maximum effective sample size is specified (usually 30-200).  Thus the 
effective sample size (η) potentially differs for each fishery at each time-step (but in 
practice is usually set to the maximum).   
 
PAL is derived in one of two ways.  Assuming that length distributions are normally 
distributed for each age-class, the mean and variance can be a user-defined input.  
This is the preferred approach for SBT, in which independent analyses indicate that 
there is variability in the length-at-age relationship over time.  Alternatively, the mean 
(instantaneous) length-at-age is assumed to be constant over time, defined by the 
following growth equation (Laslett et al. 2003): 
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This is a weighted mean of two von Bertalanffy curves, where the weighting is a 
logistic function.  This function is well suited for describing an overall growth curve 
in which younger ages and older ages seem to follow substantially different von 
Bertalanffy curves (this relationship produces a smooth transition between the two).  
The (instantaneous) distribution of length-at-age is assumed to be normally 
distributed, and the standard deviation is a linear function of the mean length-at-age: 
 

interceptslope aa += µσ . 

 
The instantaneous length-at-age distributions described by the above two equations 
might be a poor approximation to the observed catch length frequency distributions if 
spawning occurs in a very narrow time window, and time-steps are large relative to 
growth rates.  In this case, the length frequency distribution of a given age is 
effectively a sum of distributions with different means (a flat-topped platykurtic 
distribution).  SCALIA has an option to partially account for this effect by calculating 
each length-at-age distribution as the sum (of a user-defined number of) instantaneous 
length-at-age distributions evenly spaced within a time-step.  We have not tested 
whether this feature actually has a significant effect on assessment inferences, but we 
expect that it could be useful in some circumstances.  We also note that mortality 
within a time-step will cause a related error in the length-at-age distribution, but this 
has been ignored.  In principle all of the length-at-age parameters (Linf, k1, k2, a(0), 
slope, intercept,Φ,Θ) could be estimated, but in most applications to date, some or all 
have been taken as fixed input.  The method used to determine the length-at-age 
distribution also has potential implications for the analysis of tagging data (see A 4.3 
below).   
 
 
The total catch in numbers, by fishery, is estimated in the model: 
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or in mass as 
 

at
a

at
mass

tf mCC ,,, ∑= , 

 
And we assume that the total catch for each fishery (numbers or mass) is measured 
with log-normal errors: 
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giving rise to objective function term O1 (see A 4.4 below).  In most applications to 
date, we have assumed that total catch is essentially known perfectly for all fisheries 
(σC ~ 0.01), and have not tested the reliability of estimating total catch errors. 
 

A 4.3 TAG DYNAMICS    

 
Population dynamics of fully-mixed tagged fish are assumed to be identical to the 
general population.  Predicted recaptures, Tags(rec,pred), of age a at time t depend on 
the number of tagged fish that are fully mixed in the general population, Tags(mixed), 
in the same manner as the catch is related to the total population: 
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where r is the tag reporting rate (preferably a fixed input, but in principle can be 
admitted as an estimated parameter; independent for each fishery but assumed 
constant over time).  There is a user-defined mixing period in which tags are assumed 
to not be representative of the general population.  The dynamics of unmixed tags 
Tags(unmixed) from release group g are described by Pope’s approximation to the 
catch equation, and enter the fully-mixed tag population (mixed) after a period of 
mixTime time-steps (we have usually applied values of 0-4):  
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where each release group has a unique release time, tg, and must be tracked 
independently.  Thus, the number of fully mixed tags is dependent on the surviving 
fully mixed tags from the previous time step, plus the number of tags that have just 
achieved fully-mixed status (newlyMixed).  For the unmixed individuals, fishing 
mortality is applied as a pulse fishery in the middle of the timestep.  It is assumed that 
recapture probabilities are described by the Poisson distribution (giving rise to O3 
below).  As a simple means of admitting that over-dispersion is probable when using 
the Poisson likelihood for tag analyses, we have added an effective tag release co-
efficient (analogous to the effective sample size in the multinomial CL likelihood, the 
effective tag release co-efficient, η tags, downweights the tagging term).  The negative 
binomial distribution is gaining popularity for this purpose, but we have not compared 
the two approaches.  We note that the tag dynamics should be implemented with 
independent analysis of each release event, rather than predicting the aggregated tag 
recoveries in the equations above.  Using the dis-aggregated data in a Brownie-type 
model potentially improves the estimation of natural mortality for cohorts that are 
repeatedly tagged at successive ages. 
 
All of the tag dynamics work in an age-structured context, but in most applications, 
only the length of released tags is measured.  In the cases that we have worked with to 
date, young fish have predominantly been tagged, and this allows us to be reasonably 
confident of the age distribution.  For actual SBT assessments, tag release ages have 
been input from external analyses.  In the YFT and SBT simulations, two different 
options have been implemented for estimating ages of tagged fish from lengths.  
Cohort slicing is the simplest approach, but this is potentially problematic if the 
length-at-age distributions are being estimated.  Tag ages are assigned integer values, 
and can change in a discontinuous fashion as the growth curve changes, causing 
instability in the function minimization.  An alternative approach that we have used 
for ageing tags is to assign all ages a partial weighting in proportion to the likelihood 
of the fish having come from each length-at-age distribution.  If the probability of an 
age 2 fish being 60cm is 3 times as high as the probability of an age 3 fish being 60 
cm (and there is no probability of fish of any other age being 60cm), then the tag is 
assigned to age 2 with a weight of 0.75, and age 3 with a weight of 0.25.  SCALIA 
has an additional option to place the age assignment into a more Bayesian context, 
and admit that the prior probabilities of being age 2 or age 3 should actually be 
proportional to their abundance in the population at a given time, e.g.: 
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We have not observed much difference in results due to the different tag ageing 
methods, except that the minimization can fail with cohort slicing if the growth curve 
is estimated. 
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A 4.4 OBJECTIVE FUNCTION 

 
The objective function is likelihood-based and Bayesian in the sense that prior 
probabilities are assigned to some terms.  There are a number of somewhat arbitrary 
penalties usually applied to the model fitting as well.  We do not view these models as 
statistically rigorous, and are skeptical of interpreting the objective function as a true 
likelihood for the purposes of statistical uncertainty quantification or hypothesis 
testing. 
 
The objective function, Ototal consists of several components.  In the following list of 
objective function terms, O1-O4 directly quantify the degree of agreement between 
observations (obs) and model predictions (the superscript pred is used here for clarity, 
while it is implicit in most of the preceding text).  O5-O11 are not directly dependent 
on the data:  
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(catch composition, where X indicates age or length frequency bins as 
appropriate), 
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(effort deviations, analogous to residuals in the relationship between CPUE 
and abundance) 
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(recruitment deviations and the stock recruitment relationship) 
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(constraint on temporal variability in fishery selectivity) 
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(constraint on temporal variability in fishery catchability) 
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(constraint on mortality-at-age estimates) 
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(third difference curvature penalty with respect to age, where X indicates 
mortality or selectivity; summation over f not relevant for mortality) 
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(penalty to encourage monotonically increasing catchability over time) 
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(penalty to encourage selectivity monotonically increases with age). 

 
Not all terms are relevant for all applications; some terms (e.g. O10,O11) might be 
useful in intermediate phases of parameter estimation but removed in the final phase. 
 

A 4.5 PARAMETER ESTIMATION AND STATISTICAL UNCERTAINTY 

QUANTIFICATION 
 
SCALIA is implemented with AD Model Builder software (Otter Research, Victoria, 
Canada), which uses automatic differentiation and efficient function minimization 
routines to identify the maximum posterior density (MPD) of the parameter estimates.  
The reliability of the function minimization can be sensitive to initial parameter 
specifications, and the manner in which the parameters are constrained.  We use a 
phased approach to minimization, in which assumptions are strong and relatively few 
parameters of greatest influence are initially estimated (e.g. mean recruitment, mean 
fishery catchability).  In subsequent phases, the assumptions are relaxed and the 
parameters perceived to be of lesser global importance  are estimated (e.g. recruitment 
deviations, effort deviations).  In the final phase, all parameters are estimated 
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simultaneously.  In real applications to SBT, we have usually been content with the 
estimated confidence limits provided by the multi-variate normal approximation from 
the inverse Hessian matrix at the MPD.  AD Model Builder can also calculate 
likelihood profiles for parameters of interest, or approximate Bayesian Posteriors 
using an MCMC routine.  We have not routinely applied these methods of statistical 
uncertainty quantification, because we are usually more concerned with the greater 
uncertainty that generally arises from sensitivity to model structural assumptions.   
 

A 4.6 OUTPUT VISUALIZATION AND GOODNESS-OF-FIT DIAGNOSTICS 

 
Applications of SCALIA for real assessments involved fitting multiple model 
specifications, and examining the quality of fit for irregular behaviour, which could 
indicate minimization problems, mis-specification issues and model sensitivity.  
SCALIA outputs the MPD estimates of the entire stock dynamics history, including 
population numbers, fishing mortality, natural mortality, etc., in a format that can 
easily be visualized using an R software (e.g. http://www.r-project.org/) script.  The 
quality of fit between predictions and observations (catch-at-length, catch-at-age, tag 
recaptures, effort deviations, stock recruitment relationship) can also be visually 
examined in different ways.  Some of the typical graphical output that we usually 
examine is indicated in Fig. A4 - 1to Fig. A4 - 11.   
 
The value of all components of the objective function are recorded, as are a number of 
other goodness-of-fit summary statistics.  The empirical effective sample size is used 
to calculate the approximate catch-at-length sample size that would on average 
produce the indicated quality of fit between observations and model predictions 
(McAllister and Ianelli 1997):  

∑

∑

−

−
=

l
ltlt

l
ltlt

l

po

pp

ESS
2

,,

,,

)(

)1(

, 

 
where p and o are the predicted and observed proportions of catch in each length (or 
age) class frequency distribution in each timestep.  The Root Mean Square Error 
(RMSE), is used to compare the input variance specifications with the empirical 
output of the MPD estimates for recruitment deviations: 
  

21 ))/(ln( predobsRMSE n= . 

 
Auto-correlation (lag(1)) in time series of recruitment and effort deviations are also 
calculated for evidence of systematic lack of fit.   
 

A 4.7 PROJECTIONS AND REFERENCE POINT CALCULATIONS  

 
Separate executable code is invoked to produce SCALIA projections and reference 
point estimates.  To date, these calculations have been based only on the MPD 
parameter estimates and corresponding stock dynamics, so the model statistical 
uncertainty is not maintained from the original SCALIA analysis.  The projections are 
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deterministic, and invoked with the main intention of generating MSY-related 
estimates for model comparison.  MSY and related quantities are calculated in two 
different ways.  MSY_F is the traditional approach, in which the aggregate selectivity 
across all fisheries in the last (user-defined number of) timesteps is held constant, and 
the sustainable yield corresponding to a range of constant effort multipliers is 
calculated by projecting forward in time until the population equilibrates.  In contrast, 
MSY_C assumes that the catch ratio among fleets remains constant over time, in a 
manner consistent with the CCSBT management objectives of maintaining constant 
catch allocations among member nations.  In this case, the global selectivity changes, 
depending on the age structure and the total catch.  In both cases, we constrain the 
minimum value of surplus production (i.e. steepness ≥ 0.3 with a Beverton Holt 
curve), to avoid numerical problems.  MSY_C, MSY_F, B_MSY_C, B_MSY_F and 
SSB_MSY_C and SSB_MSY_F are output. 
 

A 4.8 SCALIA EVOLUTION 

 
SCALIA has gone through several phases of development in an unsystematic fashion 
and it is not clear what the future of the model will be.  Various SCALIA features 
have been explored but may not be fully implemented or documented.  These include: 
 

• An approximation to purely length-based selectivity has been tested.  The 
implementation allows for length-at-age distributions to change over time as 
influenced by size selective fishing mortality.  The growth curve remains 
constant over time, but the mean length-at-age is only relevant up to the 
youngest age selected by the fishery.  For subsequent ages, the growth rate is 
determined by the growth curve, but the length-at-age changes depending on 
the exploitation history.  This is only one of many possible implementations of 
size selective mortality, and is flawed in the sense that growth rate variability 
among individuals is poorly admitted.  There was not much evidence that it 
made much difference for SBT assessment, and was not pursued further. 

 
• A form of spatial structure was examined in which different fisheries were 

able to access only portions of the global population, and inter-annual 
variability in the fish spatial distribution was estimated.  In the SBT context, 
the net effect of these spatial dynamics could be considered an additional 
constraint on the effort deviations - such that a large positive deviation in one 
area should be balanced by a negative deviation in another area.  However, it 
was not clear that this added anything new to our interpretation of SBT 
dynamics, and also was not pursued further. 

 
In the SBT context, an operating model for the evaluation of candidate Management 
Procedures (MPs) was jointly developed by the participants of the CCSBT SC, 
including the external scientific advisory panel (e.g. Haist et al. 2002).  This operating 
model is conditioned to historical data and thus has an assessment model at its core.  
As the relevant features of this model are generally the same as SCALIA, we are not 
sure what role SCALIA should play in future SBT assessments.  Furthermore, 
MULTIFAN-CL has recently become publicly available, and in most respects 
SCALIA is a sub-set of this model.  MULTIFAN-CL is more versatile and has been 
widely applied to the assessment of a number of tuna populations.  It does lack some 
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of the features of interest for SBT (e.g. catch-at-age data, changes in length-at-age 
over time), but some of these are currently being added or documented.  This leaves 
SCALIA with an uncertain future, unless additional features of interest are required, 
and it can be argued that SCALIA is the best platform with which these extensions 
should be implemented. 
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Table A4 - 1.  SCALIA notation.  

 
Subscripts and Superscripts: 

a  = age (in time-step increments) 
A  = maximum age in the population (plus-group accumulator) 
b = number of time-steps H or q remains constant between changes 
f  = fishery 
g = identifier for tag release groups   
l  = length frequency distribution bins  
t  = time-step (usually annual or quarterly in practice)  
tt  = time (increments of b time-steps)  

 
mixed  = tagged fish assumed to be representative of general population 
obs  = observed (data) 
pred  = predicted (deterministic function of the model parameters) 
recaptured  = tagged fish caught in a fishery  
released  = newly released tagged fish  
unmixed  = tagged fish not fully mixed in the general population 
newlyMixed  = tagged fish making the transition from unmixed to mixed  

 
States, variables, parameters and weighting factors: 

C  = catch (numbers) 
N  = numbers 
F  = instantaneous fishing mortality (time-step units) 
M = instantaneous natural mortality (time-step units) 
Z  = F + M = total mortality 
G  = time component of fishing mortality  
H  = fishery selectivity 
Tags  = tagged fish  
R  = recruitment 
s = survival 
m = mass 
E = effort (hooks) 
η = weighting factor for likelihood components  
P  = Proportions of catch-at-age, catch-at-length or length-at-age 
q  = fishery catchability 
Q  = seasonal component of fishery catchability 
r  = tag recovery reporting rate 
SSB = spawning stock biomass 
SR = related to stock recruitment relationship  
µ = distribution mean 
σ  = distribution standard deviation  
ω, γ, ε  = random deviate from specified distribution 
τ = an auto-correlated deviate from the stock recruitment 

relationship 
ρ = lag(1) correlation co-efficient for SR deviations 
Linf,k,α,β  = parameters describing length-at-age frequency distributions  
Λ = a pseudo-length-based selectivity parameter 
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Fig. A4 - 1. Example comparison of predicted and observed Catch Length 
Frequency distributions for SCALIA model fit to simulated SBT 
fishery with good data characteristics.   
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Fig. A4 - 2. Example comparison of predicted (lines) and observed (circles) 
Catch Age Frequency distributions for SCALIA model fit to 
simulated SBT fishery with good data characteristics.   
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Fig. A4 - 3. Example comparison of mean predicted and observed Catch Length 
Frequency distributions for SCALIA model fit to simulated SBT 
fishery with good data characteristics (consecutive 0s indicate no 
catch).  
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Fig. A4 - 4. Example comparison of mean predicted (lines) and observed 
(circles) tag recoveries (aggregated over all ages) for SCALIA model 
fit to simulated SBT fishery with good data characteristics.   
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Fig. A4 - 5. Example comparison of total catch and effort by fishery for 
SCALIA model fit to simulated SBT fishery with good data 
characteristics.  Catch consists of predicted (lines) and observed 
(circles) which are almost the same in this case; effort is 
observations only.   
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Fig. A4 - 6. Example of output related to the effort-fishing mortality relationship 
for SCALIA model fit to simulated SBT fishery with good data 
characteristics.  Effort deviations are analogous to residuals around 
the CPUE-abundance relationship.  In this case there is no seasonal 
catchability effect estimated, and the variance on the (log) effort 
deviations is assumed constant regardless of the magnitude of the 
observed effort.  The fishery is only active starting in year 10.  
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Fig. A4 - 7. Example of SCALIA output from an application to a simulated SBT 
data set.  In this case, the effort series is only considered informative 
for fishery 2, and temporal variability in catchability is estimated in 
blocks of 10 timesteps.  For presentation, catchability is re-scaled to 
a mean of unity. 
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Fig. A4 - 8. Example of SCALIA selectivity estimates from an application to a 
simulated SBT data set.  In this case, selectivity is constant for 
blocks of 5 consecutive timesteps. 
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Fig. A4 - 9. Example of SCALIA stock and recruitment estimates from an 
application to simulated SBT data.  The smooth line in the top panel 
indicates the estimated mean stock recruitment relationship; the 
large circle indicates the mean unfished biomass and recruitment. 
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Fig. A4 - 10. Example of SCALIA Spawning stock biomass estimates from an 
application to simulated SBT data.  The line indicates the MPD 
estimates; circles indicate the SSB that is predicted would have 
occurred in the absence of fishing.   

 



 322

 

0 10 20 30 40 50

0
.0

0
0

.0
4

0
.0

8
0

.1
2

Time

ca
tc

h
 m

a
ss

 / 
to

ta
l v

u
ln

e
ra

b
le

 m
a

ss
 

Mass-Based Total Fishing Mortality

 
 

a
g

e
 (

tim
e

 u
n

its
)

0 10 20 30 40 50

0
5

1
5

2
5

(age-based) Total Fishing Mortality

 
 

Fig. A4 - 11. Example of SCALIA fishing mortality estimates from an application 
to simulated SBT data.  The top panel is the exploitation rate over 
time (catch mass over exploitable biomass); bottom panel is the 
instantaneous F by time and age.   
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APPENDIX 5 MULTIFAN-CL SPECIFICATIONS USED IN THE 
SBT SIMULATION TESTING 

 
The attached file MF_scan.script is the control file used for the MULTIFAN-CL (e.g. 
Hampton and Fournier 2001) analysis, applied to the simulated SBT data as part of 
the SESAME project.  The MF_scan specification was derived from the YFT example 
specification file from http://www.multifan-cl.org, and was modified to resemble the 
baseline SCALIA specification SC_base.  Differences between MF_scan and 
SC_base included: 
 

• the catch-at-length objective function component was multinomial for 
SC_base, and a robustified chi-square for MF_scan 

 
• MF_scan used catch-at-length for all fisheries; SC_base used catch-at-age for 

the late spawning ground fishery and catch-at-length for all others 
 

• SC_base estimated temporal variability in selectivity, while MF_scan assumed 
constant selectivity over time (but differing by fishery) 

 
• MF_scan had a weak prior on stock recruitment curve steepness with a mode 

near the actual operating model value; SC_base had no explicit prior 
constraint. 

 
• MF_scan had an effort deviation CV ~ 0.07; SC_base ~ 0.2 
 
 

In addition to MF_scan, two other MULTIFAN-CL models were tested.  MF_qTS 
differed from MF_scan in that temporal variability in the main longline fishery 
catchability was estimated (in 10 year blocks with a CV~0.1; effort deviation CV ~ 
0.2).  The third specification, MF_yft, was adapted from the MULTIFAN-CL 
example application to simulated yellowfin tuna fishery data.  Differences from 
MF_scan included: 
 

• MF_yft natural mortality is estimated 
 
• MF_yft length-at-age is estimated (with the correct SBT simulator values as 

starting points) 
 

• MF_yft tag recovery likelihood is negative binomial; (MF_scan is Poisson)  
 

 
# MF_scan.script 
#!/bin/sh 
#  ------------------------ 
#  PHASE 0 - create initial par file 
#  ------------------------ 
# 
if [ ! -f 00.par ]; then 
  mfcl base.frq base.ini 00.par -makepar 
fi 
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#  ------------------------ 
#  PHASE 1 - initial par 
#  ------------------------ 
# 
if [ ! -f 01.par ]; then 
  mfcl base.frq 00.par 01.par -file - <<PHASE1 
  2 113 1         # estimate initpop/totpop scaling parameter 
  1 32 2          # sets standard initial estimation scheme 
  ###1 111 4         # sets likelihood function for tags to negative 
binomial 
  1 111 2         ### sets likelihood function for tags to Poisson 
  1 141 3         # sets likelihood function for LF data to normal 
  2 57 1          # sets no. of recruitments per year to 1 
  2 69 1          # sets generic movement option (now default) 
  2 94 1 2 95 10  # initial age structure based on estimated M 
(assume virgin) 
  -999 41 1       # sets penalty weight for 2nd diff smoothing - 
selectivity 
  -9999 1 1       # sets no. mixing periods for all tag release 
groups to 1 
# sets non-decreasing selectivity for spaawning longline fisheries 
#  -3 16 1 -4 16 1 
# set penalty weight on effort devs (note could have used 0 for 1,3,4 
#                            and negative means sqrt(effort) invoked)  
  -1 13 1 
  -2 13 100 
  -3 13 1 
  -4 13 1 
# grouping of fisheries with common selectivity 
   -1 24 1 
   -2 24 2 
   -3 24 3 
   -4 24 4 
# grouping of fisheries with common tag-reporting rates 
    -1 34 1 
    -2 34 2 
    -3 34 3 
    -4 34 4 
# sets penalties on tag-reporting rate priors 
    -1 35 1 
    -2 35 1 
    -3 35 1 
    -4 35 1 
# sets prior means for tag-reporting rates 
    -1 36 100 
    -2 36 100 
    -3 36 100 
    -4 36 100 
#  -999 33 1       # estimate tag-reporting rates 
  1 33 100         # maximum tag reporting rate for all fisheries is 
1 
PHASE1 
fi 
#  --------- 
#   PHASE 2 
#  --------- 
if [ ! -f 02.par ]; then 
  mfcl base.frq 01.par 02.par -file - <<PHASE2 
  1 149 -1       # set penalty on recruitment devs to 200/10 
  -999 3 15      # all selectivities equal for age class 15 and older 
  -1 3 10  # set selectivity to 0 
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  -1 16 2  # for ages 10 in fishery 1 
  1 189 1         # write length.fit and weight.fit (obs. and pred. 
LF data) 
  1 190 1         # write plot.rep 
  1 1 100         # set max. number of function evaluations per phase 
to 100 
  1 50 0         # set convergence criterion to 1E+00 
PHASE2 
fi 
#  --------- 
#   PHASE 3 
#  --------- 
if [ ! -f 03.par ]; then 
  mfcl base.frq 02.par 03.par -file - <<PHASE3 
  2 70 1          # activate parameters and turn on 
  2 71 1          # estimation of temporal changes in recruitment 
distribution 
  2 110 5         # penalty weight for deviations 
PHASE3 
fi 
#  --------- 
#   PHASE 4 
#  --------- 
if [ ! -f 04.par ]; then 
  mfcl base.frq 03.par 04.par -file - <<PHASE4 
  2 68 1          # estimate movement coefficients 
PHASE4 
fi 
#  --------- 
#   PHASE 5 
#  --------- 
if [ ! -f 05.par ]; then 
  mfcl base.frq 04.par 05.par -file - <<PHASE5 
  1 16 1          # estimate length dependent SD 
PHASE5 
fi 
#  --------- 
#   PHASE 6 
#  --------- 
if [ ! -f 06.par ]; then 
  mfcl base.frq 05.par 06.par -file - <<PHASE6 
#  1 14 1          # estimate K 
PHASE6 
fi 
#  --------- 
#   PHASE 7 
#  --------- 
if [ ! -f 07.par ]; then 
  mfcl base.frq 06.par 07.par -file - <<PHASE7 
  ###1 173 8         # estimate independent mean lengths for 1st 8 
age classes 
  ###1 182 10        # penalty weight for deviations 
PHASE7 
fi 
#  --------- 
#   PHASE 8 
#  --------- 
#if [ ! -f 08.par ]; then 
#  mfcl base.frq 07.par 08.par -file - <<PHASE8 
#  -999 27 1       # estimate seasonal catchability for all fisheries 
#    1 14 0        # de-activate K for the time being 
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#PHASE8 
#fi 
#  --------- 
#   PHASE 9 
#  --------- 
if [ ! -f 09.par ]; then 
  mfcl base.frq 07.par 09.par -file - <<PHASE9 
  -1 10 1       # estimate catchability time series for fishery 1 
  -3 10 1       # estimate catchability time series for fishery 3 
  -4 10 1       # estimate catchability time series for fishery 4 
  -999 23 23      # and do a random-walk step every 23+1 months 
PHASE9 
fi 
#  --------- 
#   PHASE 10 
#  --------- 
if [ ! -f 10.par ]; then 
  mfcl base.frq 09.par 10.par -file - <<PHASE10 
  ###2 33 1          # estimate constant natural mortality rate 
PHASE10 
fi 
#  --------- 
#   PHASE 11 
#  --------- 
#if [ ! -f 11.par ]; then 
#  mfcl base.frq 10.par 11.par -file - <<PHASE11 
#  2 88 1          # activate parameters 
#  2 89 1          # and estimate age-dependent movement 
#PHASE11 
#fi 
#  --------- 
#   PHASE 12 
#  --------- 
if [ ! -f 12.par ]; then 
  mfcl base.frq 10.par 12.par -file - <<PHASE12 
  ###2 73 1          # estimate age-dependent M 
PHASE12 
fi 
#  --------- 
#   PHASE 13 
#  --------- 
if [ ! -f 13.par ]; then 
  mfcl base.frq 12.par 13.par -file - <<PHASE13 
  1 14 1          # estimate von Bertalanffy K 
PHASE13 
fi 
#  --------- 
#   PHASE 14 
#  --------- 
if [ ! -f 14.par ]; then 
  mfcl base.frq 13.par 14.par -file - <<PHASE14 
# estimation of negative binomial parameter a 
 -999 43 1        # estimate a for all fisheries 
PHASE14 
fi 
#  --------- 
#   PHASE 15 
#  --------- 
if [ ! -f 15.par ]; then 
  mfcl base.frq 14.par 15.par -file - <<PHASE15 
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  -100000 1 1     # estimate time-invariant distribution of 
recruitment 
PHASE15 
fi 
#  --------- 
#   PHASE 16 
#  --------- 
if [ ! -f 16.par ]; then 
  mfcl base.frq 15.par 16.par -file - <<PHASE16 
  1  12 1         # estimate age 1 length-at-age 
  -1 15 1         # q time series penalty weakest possible constraint 
  -3 15 1         # q time series penalty weakest possible constraint 
  -4 15 1         # q time series penalty weakest possible constraint   
  2 145 1         # estimate Beverton Holt SRR with small penalty 
  2 146 1         # SRR parameter active 
  2 147 1         # recruitment lag is 1 year 
  2 148 10        # base F is average over last 10 years 
  2 155 2         # base F average does not include last 2 year 
  2 153 1         # parameters of beta distribution defining prior 
for 
  2 154 1         # steepness - mode = 0.5, sd = "broad or 
unconstrained" 
  1 149 0         # reduce pens on devs from av. recr (to avoid 2 
penalties) 
  1 1 3000        # set no. function evaluations for final phase to 
3000 
  1 50 4          # set convergence criterion to 1E-04 
  -999 55 1       # compute biomass with catchability for all 
fisheries set to 0 
PHASE16 
fi 
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APPENDIX 6 GRAPHICAL SUMMARY OF SESAME 
SIMULATED SBT ASSESSMENT MODEL 
RESULTS 

 
The following graphical archive illustrates the estimation performance of a range of 
stock assessment models applied to simulated data from the SESAME VSM operating 
model.  The operating model was parameterized to represent various plausible 
parameterizations of a fishery system roughly resembling Southern Bluefin Tuna.  In 
the following figures, the assessment model is labeled at the top of each page 
(definitions in the body of the report, Table 2) and the performance indicator is 
labelled at the top of each panel (Table 8).  The operating model to which the 
assessment model was applied is indicated on the x-axis of the boxplots or the sub-
heading of the time series plots (definitions in Table 1).   
 
The boxplots and time series of quantiles represent the frequency distributions of the 
ratio (assessment model estimate)/(operating model known value) for each 
performance indicator.  The assessment model value corresponds to the estimate of 
the parameters at the Maximum Posterior Density (mode of the objective function).  
The frequency distributions result from applying the assessment model to 10 
stochastic realizations from each operating model. 
 
An asterisk (*) indicates a missing value, (e.g. because the Fox model does not 
estimate recruitment).  An arrow (^) on the boxplots indicates that all values are off 
the scale.  All time series plots are truncated at an upper value of 3.0.  The 
Log10(max. gradient) boxplots provide a rough indication of convergence problems 
in the function minimizer.  For the SCALIA and production models as implemented, 
we start to be concerned with values larger than –1.   The “Penalty activation count” 
indicates the number of times that the ASPM model converged to a minimum that we 
consider to be implausible due to a numerical limitation in the model.         
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Figure A 6.5-d 
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Figure A 6.5-e 
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Figure A 6.5-f 
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Figure A 6.7-b 
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Figure A 6.7-c 
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Figure A 6.7-d 
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Figure A 6.7-e 
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A 6.8 MF_YFT 
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Figure A 6.8-d 
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Figure A 6.8-f 
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A 6.9 MF_SCAN 
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Figure A 6.9-c 
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Figure A 6.9-d 
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Figure A 6.10-d 
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Figure A 6.10-f 
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APPENDIX 7 ACRONYMS USED IN THE SESAME REPORT 
 
A-SCALA Age-structured Statistical Catch-At-Length Analysis; a stock assessment 

model with many features of MULTIFAN-CL, independently implemented 
by the Inter-American Tropical Tuna Commission 

 
ADAPT the traditional stock assessment modelling approach used for the 

assessment of SBT 
 
AAPM Age-Aggregated Production Model; Fox or Schaefer in the SESAME study 
 
AM Assessment Model 
 
ASPM Age-Structured Production Model; an age-structured model that can be 

applied with minimal input data, but usually requires strong assumptions 
about natural mortality and selectivity that are derived from other analyses 

 
CA Catch-at-Age; pertaining to catch age frequency distributions 
 
CCSBT Commission for the Conservation of Southern Bluefin Tuna 
 
CL Catch-at-Length; pertaining to catch length frequency distributions 
 
CPUE Catch Per Unit Effort; catch rates generally assumed to have some 

relationship with fish abundance 
 
MCMC Markov Chain Monte Carlo – a stochastic method of approximating 

Bayesian posterior probability distributions 
 
MPD Maximum Posterior Density; pertaining to the parameter estimates at the 

mode of a likelihood-based objective function, which also includes 
additional constraints on the parameters that might be interpreted as 
Bayesian priors.  

 
MP Management Procedure; a procedure for making a management decision 

that is usually agreed before all the data on which it is dependent are 
available.  The MP usually consists of data and a decision rule. 

  
MSE Management Strategy Evaluation; MP 
 
MULTIFAN-CL stock assessment modelling software designed especially for large highly 

migratory pelagic species and forming the basis for most WCPO tuna 
assessments in recent years 

 
OM Operating Model 
 
PI Performance Indicator; criteria used to compare assessment model 

estimates with actual values from the operating models 
 
RFMO Regional Fisheries Management Organization 
 
SAG Stock Assessment Group 
 
SBT Southen Bluefin Tuna 
 
SC Scientific Committee 
 
SCALIA Statistical Catch-at-Age/Length Integrated Analysis  
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SCTB-MWG Standing Committee on Tuna and Billfish – Methods Working Group 
 
SESAME Simulation-Estimation Stock Assessment Model Evaluation 
 
SPC-OFP Secretariat of the Pacific Community – Oceanic Fisheries Programme 
 
VPA Virtual Population Analysis; a general term for population dynamics models 
 
VSM Virtual Stock Model; SESAME software developed to simulate fish and 

fishery dynamics, including data collection processes    
 
WCPO Western and Central Pacific Ocean 
 
YFT Yellowfin Tuna  
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APPENDIX 8 NON-TECHNICAL DESCRIPTION OF 
ASSESSMENT ISSUES FOR MANAGERS AND 
POLICY MAKERS  

 
The proliferation of complicated stock assessment models (e.g. MULTIFAN-CL) has 
important implications for the manner in which stock assessment advice is provided to 
managers, and potentially changes the practical logistics of traditional stock 
assessment.  The following non-technical summary provides an overview of major 
issues of concern with respect to the adoption of these models: 
 
Integrated Assessment Models 
 
Most modern stock assessment models attempt to describe the historical dynamics of 
the fish population, quantify the effects of fishing, and forecast the implications of 
future management actions.  For the most part there have been few fundamental 
revolutions in the nature of stock assessment models or fisheries data over the past 20 
years.  But the proliferation of cheap computing power has led to continual 
incremental increases in model complication.  The level of detail with which 
populations can be described has increased steadily, resulting in a more realistic 
representation of the fishery, potentially including: 
 

• population age-structure 
• spatial-structure and migration dynamics 
• relationship between spawning stock size and recruitment 
• temporal variability in fishery selectivity 
• temporal variability in fishery catchability 
• multi-species dynamics (predator-prey interactions) 
• environmental effects on growth, mortality or migration 
 

Statistical assessment models used for the pelagic fisheries (e.g. MULTIFAN-CL) 
now typically incorporate all the data related to: 
 

• total catch 
• catch length frequency samples 
• catch age frequency samples 
• standardized effort (or CPUE) as a relative abundance index  
• tag releases and recaptures 

 
These data can be dis-aggregated by fishing fleet and region if it is believed that this 
will provide a more appropriate analysis.  Statistical sophistication is at the point that 
analyses attempt to: 
 

• integrate all data into one framework rather than invoking several 
independent analyses, or excessively pre-processing the data (e.g. estimating 
lengths from ages)   

• explicitly account for observation errors (e.g. fishery data sampling 
limitations)  

• explicitly account for process errors (e.g. random variability in recruitment)  
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• estimate parameters based on the likelihood of observing the data given the 
model predictions 

• estimate hundreds or even thousands of parameters simultaneously 
• quantify the joint uncertainty in all parameter estimates (including reference 

points or other values derived from the parameters) 
• quantitatively include auxiliary information (e.g. prior information based on 

experience in other systems)  
 
However, worldwide there have been many important fishery assessment and 
management failures.  This has focused attention on the limitations of mathematical 
models and the methods of communication of advice between scientists and 
managers.  General issues of concern with the complicated models include: 
 

• over-parameterization – there are limits to the type and number of parameters 
that can be reliably estimated for any given system.  Too much freedom and 
the models might be fitting to noise.  It is not trivial to identify what can be 
reliably estimated in many cases. 

 
• model sensitivity – complicated assessment models inevitably include a 

number of arbitrary assumptions (e.g. related to the quality of the catch 
sampling, the relationship between effort and fishing mortality, etc.).  The 
more complicated the model is, the greater the number of assumptions 
required.  It is common for seemingly minor changes in model specifications 
to cause large changes in the estimated stock characteristics.  With a large 
number of model components, it is difficult to identify which features should 
be examined in detail, particularly given that features interact in ways that 
are sometimes difficult to anticipate.  

 
• uncertainty quantification – despite the statistical theory underpinning these 

models, there is often retrospective evidence that indicates we are less certain 
about the state of the stock than the uncertainty estimation suggests (e.g. our 
current assessment of the status of the stock 5 years ago is outside of the 95% 
confidence limits estimated using the same methodology 5 years earlier, and 
this happens much more than 5% of the time).  It is less clear how well 
uncertainty quantification is likely to work when results are integrated over a 
range of plausible structural models, in part because methods for doing this 
are currently rather ad hoc.  While desirable, this treatment of “model 
uncertainty” potentially opens the door for over-stating uncertainty. 

  
• computational time – more complicated models take more time to develop 

and apply.  This potentially limits the methods available with which to 
estimate parameter uncertainty conditional on the model being sufficiently 
“correct”, and more importantly, limits the extent to which model 
specification uncertainty can be explored.  The more complicated a model is, 
the more difficult it becomes to apply model fitting diagnostics, and 
understand the cause of problematic behaviour.  

 
• technical expertise – assessment modellers need to be sufficiently 

experienced to recognize potential problems in model application.  This is 
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particularly a concern when employing complicated software developed by a 
third party.  

 
Policy Implications for CCSBT and other RFMOs 
 

1) For economically important fisheries with a rich data history, we expect that 
sophisticated integrative assessment models will play an important and 
increasing role in the provision of advice to managers in the major 
international pelagic fisheries worldwide (and other fora).  However, as 
indicated below, these models do not represent a panacea for obtaining 
accurate stock status estimates, and will not eliminate the need for difficult 
management decisions. 

 
2) Considerable uncertainty is inevitable in current methods of stock assessment.  

It is important that managers and assessment scientists decrease their focus on 
“best” point estimates, and embrace the stock assessment uncertainty.  We 
recommend that model structural uncertainty should be explored with primary 
importance, while statistical uncertainty conditional on the model being 
correct should be secondary (unless the inferences are robust to the major 
plausible structural uncertainties).  If management decisions are going to be 
based on the “best” point estimates of a stock assessment, it seems that 
relatively simple models often do provide inferences that are of comparable 
quality to the estimates provided by a single plausible specification of a 
complicated integrative model (unless perhaps if the data are exceptionally 
informative).  However, with increasing recognition of the performance 
limitations and sensitivities of assessment models, and a shift in emphasis 
toward uncertainty quantification, it seems that the simple assessment models 
do not have sufficient structural flexibility for exploring model uncertainty.   

 
3) Assessment scientists and managers should work together to identify methods 

for managing the fishery that are robust to the major foreseeable uncertainties.  
At the simplest level, this might involve decreasing the emphasis on advice 
pertaining to quantities that cannot be estimated reliably (e.g. MSY), to 
quantities that are generally better estimated (e.g. biomass relative to some 
historical point in time).  At a more sophisticated level, formal Management 
Procedure (MP) development (or Management Strategy Evaluation) is 
growing in popularity and seems to represent a promising method for 
achieving this objective.  MPs have a distinct advantage in that they quantify 
the risk of the combined assessment and management within a feedback 
control system (classical assessments generally assume constant catch or effort 
in future projections).  MPs are also evaluated using performance measures 
that should be readily defined from management objectives (whereas 
assessment model evaluation might include many estimators that are 
irrelevant, depending on the type of management decisions that are ultimately 
made).  In an MP context, the complicated assessment models play an 
important role in conditioning the operating model used to simulate the 
uncertainty in future fishery dynamics, and should play a role in monitoring 
the performance of the MP at periodic intervals.  In this manner, there should 
be no need for a comprehensive application of the complicated integrative 
models every time that a management decision is made.  Simple models, or 



 434

even data-based stock status indicators often seem to provide an excellent 
basis for making short-medium term decisions once they are “tuned” to be 
robust to the major uncertainties identified in the operating models. 

 
4) As the emphasis on stock assessment shifts from the traditional provision of 

advice, toward the development of management strategies that are robust to 
uncertainty, there needs to be an increase in the amount of interaction between 
scientists, managers and industry.  Without effective communication of 
industry priorities and management objectives, scientists are likely to impose 
their own value judgements into the process and potentially constrain the 
range of options under consideration inappropriately. 

 
5) Managers need to become conversant with the concepts of uncertainty 

quantification and risk to participate in the exploration of alternative 
management decisions (e.g. it will be important to be able to trade-off 
objectives of optimizing expected performance as opposed to providing a 
reasonable degree of robustness to unlikely events).   

 
6) The quest to achieve creative solutions that optimize management objectives 

and are robust to the major uncertainties about stock dynamics (using MP 
development or other sophisticated modelling methods) will usually require an 
increase in technically competent staff and resources for fisheries assessment.  
However, in the case of MPs, despite an initial increase in resources, an MP 
should be relatively easy to implement in subsequent years.  Intensive reviews 
of operating models should only be required at periodic intervals, as 
management objectives change, unanticipated events occur, or substantially 
new data becomes available with which to evaluate the MP performance.  

 
7) While there is an increasing recognition that more effort needs to be spent on 

quantifying fisheries model uncertainty, the methods for doing this are 
currently rather ad hoc, and would benefit from many avenues of research. 
Simulation-estimation studies evaluate the performance limits and data 
requirements of models in a known setting.  Retrospective analyses evaluate 
the consistency of a given assessment model model as data accumulates over 
time.  Meta-analyses combine experience across fisheries systems.  Goodness-
of-fit diagnostics help decide when a model structure is incompatible with the 
data.  While we are optimistic of the benefits of the shift toward uncertainty 
quantification, we recognize that there is a risk of going too far and over-
stating uncertainty.  This could lead to over-pre-cautionary management and 
loss of reasonable economic opportunity.  Identifying the appropriate balance 
in uncertainty quantification will be a major challenge.  

 
8) There is likely to be continued pressure for scientists to provide increasingly 

complicated advice to managers in the future (e.g. with respect to ecosystem 
management and multiple stakeholder objectives, etc.).  We expect that 
operating models will play an even more important role in the future as these 
models provide a means of evaluating assessment models and MPs.  It is 
important to regularly conduct simulation testing tailored to the specific 
situations of interest, to maintain an understanding of our quantitative 
limitations as models and management objectives develop in new directions.   
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9) The quality of assessment model performance and uncertainty quantification 

increases as data improves.  No amount of statistical wizardry or 
computational power can overcome the fundamental limitations of poor data.  
Data collection programs should strive for continual improvement (e.g. for the 
SBT fishery, direct ageing information should be collected and efforts should 
continue to find reliable fishery-independent abundance indices).  However, 
not all data are equally informative, and given finite resources, there should be 
prioritization of data collection programs.  Simulation studies are an important 
tool for providing guidance to this prioritization.  In the quest for better data, it 
is often not recognized that a measure of the actual error associated with the 
data is also desirable (e.g. statistical models usually require assumptions about 
the relative reliability of catch length sampling, but formal analyses could 
probably underpin many of these assumptions).  If advice is expected with 
regard to fundamentally new objectives (e.g. ecosystem management), then 
there will probably be requirements for fundamentally new data (e.g. through 
fishery-independent observational studies). 

 
10) We recommend that peer review should play an important part in stock 

assessment and management.  This scrutiny provides an external view that can 
help to prevent a consistent group of stock assessment participants from 
becoming focused on a subset of issues at the expense of ignoring others.  
Similar review of fisheries managers should be employed to ensure that they 
are using the most effective methods for soliciting and acting on scientific 
advice. 

 
11) As assessment models become more complicated, there will be an increasing 

tendency to rely on pre-existing software to decrease development time.  This 
is advantageous in that the combined efforts of several developers can make 
software more widely applicable, and more robust to coding errors.  However, 
we caution that this might occur at the expense of stifling development of 
specific features deemed to be of importance for any particular system by 
novice users.  MULTIFAN-CL is currently poised to dominate pelagic 
fisheries stock assessment, and its rich flexible structure represents a good 
starting point.  However, we would like to ensure access to the source code 
before embracing it for a major project.  
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