|
Mathematics Subject Classification 2000
16Sxx Rings and algebras arising under various constructions ( 0 Dok. )
- 16S10 Rings determined by universal properties (free algebras, coproducts, adjunction of inverses, etc.) ( 0 Dok. )
- 16S15 Finite generation, finite presentability, normal forms (diamond lemma, term-rewriting) ( 0 Dok. )
- 16S20 Centralizing and normalizing extensions ( 0 Dok. )
- 16S30 Universal enveloping algebras of Lie algebras ( 0 Dok. )
- 16S32 Rings of differential operators ( 0 Dok. )
- 16S34 Group rings , Laurent polynomial rings ( 0 Dok. )
- 16S35 Twisted and skew group rings, crossed products ( 0 Dok. )
- 16S36 Ordinary and skew polynomial rings and semigroup rings ( 0 Dok. )
- 16S37 Quadratic and Koszul algebras ( 0 Dok. )
- 16S38 Rings arising from non-commutative algebraic geometry ( 0 Dok. )
- 16S40 Smash products of general Hopf actions ( 0 Dok. )
- 16S50 Endomorphism rings; matrix rings ( 0 Dok. )
- 16S60 Rings of functions, subdirect products, sheaves of rings ( 0 Dok. )
- 16S70 Extensions of rings by ideals ( 0 Dok. )
- 16S80 Deformations of rings ( 0 Dok. )
- 16S90 Maximal ring of quotients, torsion theories, radicals on module categories ( 0 Dok. )
- 16S99 None of the above, but in this section ( 0 Dok. )
Home |
Suchen |
Browsen |
Admin
Fragen und Anregungen an
pflicht@sub.uni-hamburg.de
epub2 - Letzte Änderung:
01.02.2022 |