epub @ SUB HH
Mathematics Subject Classification 2000
11Rxx Algebraic number theory: global fields ( 0 Dok. )
11R04
Algebraic numbers; rings of algebraic integers
( 0 Dok. )
11R06
PV-numbers and generalizations; other special algebraic numbers
( 0 Dok. )
11R09
Polynomials (irreducibility, etc.)
( 0 Dok. )
11R11
Quadratic extensions
( 0 Dok. )
11R16
Cubic and quartic extensions
( 0 Dok. )
11R18
Cyclotomic extensions
( 0 Dok. )
11R20
Other abelian and metabelian extensions
( 0 Dok. )
11R21
Other number fields
( 0 Dok. )
11R23
Iwasawa theory
( 0 Dok. )
11R27
Units and factorization
( 0 Dok. )
11R29
Class numbers, class groups, discriminants
( 0 Dok. )
11R32
Galois theory
( 0 Dok. )
11R33
Integral representations related to algebraic numbers; Galois module structure of rings of integers
( 0 Dok. )
11R34
Galois cohomology
( 0 Dok. )
11R37
Class field theory
( 0 Dok. )
11R39
Langlands-Weil conjectures, nonabelian class field theory
( 0 Dok. )
11R42
Zeta functions and L-functions of number fields
( 0 Dok. )
11R44
Distribution of prime ideals
( 0 Dok. )
11R45
Density theorems
( 0 Dok. )
11R47
Other analytic theory
( 0 Dok. )
11R52
Quaternion and other division algebras: arithmetic, zeta functions
( 0 Dok. )
11R54
Other algebras and orders, and their zeta and L-functions
( 0 Dok. )
11R56
Adele rings and groups
( 0 Dok. )
11R58
Arithmetic theory of algebraic function fields
( 0 Dok. )
11R60
Cyclotomic function fields (class groups, Bernoulli objects, etc.)
( 0 Dok. )
11R65
Class groups and Picard groups of orders
( 0 Dok. )
11R70
K-theory of global fields
( 0 Dok. )
11R80
Totally real and totally positive fields
( 0 Dok. )
11R99
None of the above, but in this section
( 0 Dok. )
Home
|
Suchen
|
Browsen
|
Admin
Fragen und Anregungen an
pflicht@sub.uni-hamburg.de
epub2 - Letzte Änderung: 01.02.2022