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Abstract. Squaregraphs were originally defined as finite plane graphs in which all inner faces are quadri-

laterals (i.e., 4-cycles) and all inner vertices (i.e., the vertices not incident with the outer face) have degrees

larger than three. The planar dual of a finite squaregraph is determined by a triangle-free chord diagram of

the unit disk, which could alternatively be viewed as a triangle-free line arrangement in the hyperbolic plane.

This representation carries over to infinite plane graphs with finite vertex degrees in which the balls are finite

squaregraphs. Algebraically, finite squaregraphs are median graphs for which the duals are finite circular split

systems. Hence squaregraphs are at the crosspoint of two dualities, an algebraic and a geometric one, and

thus lend themselves to several combinatorial interpretations and structural characterizations. With these

and the 5-colorability theorem for circle graphs at hand, we prove that every squaregraph can be isometrically

embedded into the Cartesian product of five trees. This embedding result can also be extended to the infinite

case without reference to an embedding in the plane and without any cardinality restriction when formulated

for median graphs free of cubes and further finite obstructions. Further, we exhibit a class of squaregraphs

that can be embedded into the product of three trees and we characterize those squaregraphs that are embed-

dable into the product of just two trees. Finally, finite squaregraphs enjoy a number of algorithmic features

that do not extend to arbitrary median graphs. For instance, we show that median-generating sets of finite

squaregraphs can be computed in polynomial time, whereas, not unexpectedly, the corresponding problem for

median graphs turns out to be NP-hard.

1. Avant-propos

A finite squaregraph is a finite plane graph G = (V,E) (i.e., a finite graph drawn in the
plane with no edges crossing) in which all inner faces are quadrilaterals and in which all
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(a) (b) (c)

Figure 1. Three example of squaregraphs: (a) a squaregraph with three ar-
ticulation points (also known as cut vertices); (b) a 2-connected squaregraph;
(c) a polyomino.

inner vertices have four or more incident edges. Three examples are shown in Figure 1.
In most applications one is only interested in the squaregraphs that are 2-connected, and
2-connectivity is sometimes tacitly assumed in those contexts. The smallest 2-connected
squaregraph is then the 4-cycle or quadrilateral. The blocks of an arbitrary squaregraph G

are either 2-connected or bridges (i.e., copies of the two-vertex complete graph K2).
Squaregraphs were first introduced in 1973 by Soltan, Zambitskii, and Prisǎcaru [58] un-

der the name “graphs of class K”. In that paper several distance and structural features of
squaregraphs were investigated in order to solve the median problem in this class of graphs;
the authors showed that medians in squaregraphs can be computed using the majority rule,
just as in the case of trees. Some properties of squaregraphs established in [58] are also recy-
cled in the present paper (see Lemmas 1 and 3 below). The name “squaregraph” was coined
in [26, 28], where also related natural classes of plane graphs were studied. Squaregraphs
include and generalize the polyominoes [40] formed by surrounding a region in a square grid
by a simple cycle (Figure 1c). The local constraint on the degrees of inner vertices entails
that the squaregraphs constitute one of the basic classes of face-regular plane graphs with
combinatorial nonpositive curvature [22]. Squaregraphs have a plethora of metric and struc-
tural properties, some of which follow from the fact (see below) that they are median graphs
and thus partial cubes (i.e., isometric subgraphs of hypercubes). Median graphs and, more
generally, partial cubes represent two key classes of graphs in metric graph theory, which
occur in various areas and applications, and have been (re-)discovered many times and under
different guises [9, 23, 37].

From an algorithmic point of view, squaregraphs constitute an intermediate class of graphs
forming a generalization of trees and a special case of arbitrary cube-free median graphs; like
trees, squaregraphs admit linear or near-linear time solutions to a number of problems that
are not applicable to broader classes of graphs. For example, the papers [26, 28] present
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linear time algorithms for solving diameter, center, and median problems in squaregraphs,
which would not necessarily carry over to all cube-free median graphs. More recently, the
embedding result of [10] was used in [29] to design a self-stabilizing distributed algorithm
for the median problem on even squaregraphs (i.e., squaregraphs in which all inner vertices
have even degrees). The paper [27] presents a compact representation of some plane graphs
of combinatorial nonpositive curvature, containing squaregraphs as a subclass, allowing one
to answer distance and routing queries in a fast way.

Our paper is organized as follows. The next section features some aspects of the algebraic
duality for (not necessarily finite) median graphs. In particular, every median graph can be
recovered from the traces of the convex splits (i.e., pairs of complementary halfspaces) on any
median-generating subset via a kind of conditional “Hellyfication”. In Sections 3 and 4, we
will then see that there are canonical choices for median-generating sets in the case of a finite
squaregraph that express their cyclic structure (e.g. by taking the boundary of the outer
face). In particular, these properties allow one to find a minimum-size median-generating set
in polynomial time for finite squaregraphs, whereas the corresponding problem for median
graphs in general is NP-hard. In Section 5, squaregraphs are characterized among median
graphs by forbidden configurations. This offers an ultimate generalization of squaregraphs to
a particular class of infinite cube-free median graphs beyond plane graphs. Further, with these
preliminaries out of the way, Section 6 introduces a class of infinite squaregraphs and shows
that they can be described in an equivalent way that does not presuppose a plane embedding.
As highlighted in the same section, the cyclic feature of squaregraphs is also reflected by
geometric duality, whereby any squaregraph can be interpreted as the dual of a triangle-free
chord diagram in the plane. In the Klein model of the hyperbolic plane one can then extend
this relationship to infinite squaregraphs as well. Section 7 deals with isometric embedding
into Cartesian products of trees and shows that five trees suffice for all squaregraphs. We
also display the chord diagram and its dual associated with Ageev’s example showing that
there are finite squaregraphs that cannot be embedded into the Cartesian product of just
four trees. The proofs of all propositions and the three theorems are deferred to Sections
8–13. The final section gives a brief outlook to the metric properties of squaregraphs and
their geometric extensions to injective spaces, which will be studied in a follow-up paper.

2. From split systems to median graphs

A median graph [51] is a graph in which every three vertices a, b, c have a unique median, a
vertex m that belongs to some shortest path between each two of the three vertices a, b, and c
(Figure 2). A median algebra [13, 44], generalizing the median operation in median graphs,
consists of a set of elements and a ternary commutative median operation m(a, b, c) on that
set, such that m(x, x, y) = x and m(m(x,w, y), w, z) = m(x,w,m(y, w, z)) for all w, x, y, z.
The median hull of a subset of a median algebra is the smallest median subalgebra including
this subset. In particular, if the entire median algebra is the median hull of a subset S, then
S is said to be a median-generating set of the algebra. Later (in Propositions 5 and 6) we
shall investigate median-generating sets of squaregraphs.
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b

c

m(a, b, c)

Figure 2. The median of three vertices in a median graph.

As we now explain, median graphs may be characterized in terms of splits of their vertex
sets. A split σ = {A,B} on a set X is a partition of X into two nonempty subsets A
and B. A split system on X is any set of splits on X. Two splits σ1 = {A1, B1} and
σ2 = {A2, B2} are said to be incompatible if all four intersections A1 ∩A2, A1 ∩B2, B1 ∩A2,

and B1∩B2 are nonempty, and are called compatible otherwise. In order to keep the set X as
small as possible we may stipulate (whenever necessary) that S (or the corresponding copair
hypergraph) separates the points, i.e., for any two elements there exists at least one split
from S separating this pair. Split systems constitute a basic structure somewhat analogous
to hypergraphs. In fact, split systems can be turned into copair hypergraphs [51, 50], also
known as collections of halfspaces [23], which are hypergraphs in which the complement of
any hyperedge is also a hyperedge. In the context of geometric group theory, split systems
have been dubbed spaces with walls [42]. A split may be encoded as a map from X to {0, 1}
(where the roles of 0 and 1 may be interchanged), and split systems may also be encoded by
sets of these character maps. These are the “binary messages” considered by Isbell [44] in his
duality theory for median algebras. In the context of numerical taxonomy or phylogenetics
one would speak of binary data tables [14].

Every split system S on a set X has a natural extension to a “Helly” split system on a
larger set, via a construction performed in [16, 32]. Here “Helly” refers to the Helly property
of the associated copair hypergraph H: any pairwise intersecting family has a nonempty
intersection. The “Hellyfication” of a hypergraph H = (X, E) extends the ground set X
and the hyperedges by adjoining new elements that turn certain intersections of hyperedges
nonempty in order to gain the Helly property. Namely, for every maximal pairwise intersecting
set F of hyperedges with empty intersection, add a new element vF to X and each member
of F (Figure 3). In the thus extended hypergraph [H] with new ground set [X] any two
hyperedges intersect exactly when their traces onX intersect. Hence [H] is a Helly hypergraph
by construction, because every maximal set of pairwise intersecting hyperedges has an element
from [X] in common. In the case of a copair hypergraph associated with a split system on
X, the maximal sets are transversals of the system, i.e., they comprise exactly one part from
each split. When X is finite, the extended copair hypergraph defines a median graph, with
vertex set [X] and with an edge between any two vertices that are separated by exactly one
split of the hypergraph; the proof of this fact is straightforward from the main result of [51]
(for proofs, see also [50, 13]), which essentially involves the observation that a Helly copair
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A3
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v{B1,B2,A3}

(a) (b)

Figure 3. A split system {{A1, B1}, {A2, B2}, {A3, B3}} (left), and its Helly-
fication (right). The sets B1, B2, and A3 form a maximal pairwise intersecting
family in the left split system, so in its Hellyfication we add a new vertex
v{B1,B2,A3}. The median graph formed by the resulting Helly system is also
shown.

hypergraph determines its convex splits (the pairs of complementary halfspaces of a median
graph), and vice versa.

Every median graph yields a metric space via the shortest-path length metric. This metric
is determined by the unit-weighted convex splits: the distance between any two vertices is
the sum of the weights of the splits separating them. If the weights are arbitrarily positive,
then one obtains a median network, which is a discrete median metric space [4]. The notions
employed in the general metric context are then completely analogous to the usual graph-
theoretic notions: A subset A of a metric space (X, d) is convex if the (metric) interval
I(u, v) = {x ∈ X : d(u, x) + d(x, v) = d(u, v)} between any two points u and v of A lies
entirely in A. The convex hull of a subset B of X is the smallest convex set containing B. A
subset Y of X is gated if for every point x ∈ X there exists a (unique) point x′ ∈ Y (the gate
for x in Y ) such that x′ ∈ I(x, y) for all y ∈ Y (cf. [34]). A split σ = {A,B} on X is called a
gated split (resp., convex split) if the sets A and B are gated (resp., convex); the parts A and
B of a convex or gated split {A,B} are called halfspaces. In median graphs and networks,
all convex sets are gated [59]. Moreover, it is well known that in a median graph G = (X,E)
the splits σ(uv) = {W (u, v),W (v, u)} separating the edges uv ∈ E are convex and therefore
gated [9, 50, 59], where W (u, v) = {x ∈ X : d(u, x) < d(v, x)} and W (v, u) = X \W (u, v).
We denote by S(G) the resulting collection of convex splits of a median graph G and by H(G)
the corresponding copair hypergraph of halfspaces (halfspace hypergraph, for short).
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The preceding observations extend to the discrete infinite case. A helpful example in this
context is given by the split system on the grid Z2, which we would like to view as an example
of an infinite squaregraph. The system consists of the splits {Ak, Bk} and {A′k, B′k}, where
Ak = {(x1, x2) | x1 ≤ k} and A′k = {(x1, x2) | x2 ≤ k} (k ∈ Z). Now take the trace S = S(X)
of this system on any subset X of Z2 that meets all lines Ak+1 ∩ Bk and A′k+1 ∩ B′k and
all quadrants Ak ∩ A′k, Ak ∩ B′k, Bk ∩ A′k, and Bk ∩ B′k (k ∈ Z). We would like to recover
Z2 as the Hellyfication of S, however there is a complication: while certain maximal sets
of pairwise intersecting split parts correspond to the vertices of the grid, others would not,
such as the set {Ak ∩ X | k ∈ Z} ∪ {A′k ∩ X | k ∈ Z}. Thus, to generate Z2 from S, we
cannot create new vertices for every maximal pairwise-intersecting family (transversal of S),
but must keep some and discard others. The key feature discriminating between these two
types of transversal is “anchoring”, to be described next.

We say that a split system S or a hypergraph H on a not necessarily finite set X is discrete
if any two points of X are separated by only finitely many splits or hyperedges, respectively;
separation, of course, means that the two points are not included in the same split part or
hyperedge. A collection D of hyperedges in a hypergraph H = (X, E) is said to be anchored
if there exists a finite subset Z of X that has a nonempty intersection with every member
of D. In a discrete hypergraph, D is anchored exactly when every point x ∈ X belongs to
all but finitely many members of D: if this is the case, the finite set Z may be found by
choosing any x and one additional element from each set not containing x, while if Z exists
then for any x there are only finitely many hyperedges separating {x} ∪ Z by discreteness
and all other hyperedges must contain x. The Helly property for an infinite hypergraph is
usually understood to require that every finite pairwise intersecting family of hyperedges has
a nonempty intersection. The halfspace hypergraph of a median graph, however, satisfies a
slightly stronger Helly property as we will see next. We call a hypergraph ∗Helly if every
anchored family of hyperedges that intersect in pairs has a nonempty intersection.

Proposition 1. A discrete hypergraph H = (X, E) is ∗Helly if and only if for every
triplet u, v, w of points the intersection of the hyperedges containing at least two of u, v, w
is nonempty.

In the finite case this is a classical result on Helly hypergraphs [18]; see also [17, Corollary
to Theorem 10]. The convex sets of a median graph G satisfy the condition of the preceding
proposition because the median of the three points in question guarantees that the intersection
is not empty:

Corollary 1. The hypergraph C(G) of all convex sets in a median graph G = (V,E) has the
∗Helly property.

Note that the hypergraph C(G) is not discrete in general but the halfspace hypergraph
H = H(G) is. For any anchored and pairwise intersecting family D of convex sets consider
the family F of all halfspaces that include members of C(G). The median of three vertices
u, v, w belongs to every halfspace that contains at least two of them. Therefore, by Propo-
sition 1, we have ∅ 6=

⋂
F =

⋂
D, because every convex set is an intersection of halfspaces.
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Then the finite case of Corollary 1, formulated by Evans [39, Theorem 3.5] as the “Chinese
Reminder Theorem”, could also be viewed as a direct consequence of [18]. This result was
later rediscovered by [54] (cf. Theorem 2.11 of [41]).

Proposition 2. The following statements are equivalent for a discrete hypergraph H =
(X, E) :

(i) H is a maximal ∗Helly copair hypergraph;
(ii) H is a ∗Helly copair hypergraph separating the points;
(iii) H is the halfspace hypergraph of some median graph G with vertex set X.

The preceding proposition generalizes the Mulder and Schrijver theorem [51] from the finite
to the infinite case. Now, as in the finite case, we can expand a discrete copair hypergraph
to one that is ∗Helly.

Proposition 3. [52] Let H = (X, E) be a discrete copair hypergraph separating the points.
Every anchored pairwise intersecting subset D of E can be expanded to a maximal anchored
pairwise intersecting subset F of E; then F will contain one set from each complementary
pair of sets in H. For every maximal anchored pairwise intersecting subset F of E that has an
empty intersection, create a new element vF , and include vF as a member of each set in F .
Then the resulting expanded hypergraph [H] = ([X], [E ]) constitutes the halfspace hypergraph
of a median graph with vertex set [X] such that [X] is the median hull of X and the trace of
[E ] on X equals E.

We refer to the extension of a discrete copair hypergraph H to [H] as the ∗Hellyfication
of H. The maximal anchored pairwise intersecting collections were called almost principal
ultrafilters by Nica [52]. His Theorem 4.1 (together with some information from its proof)
is rephrased here as Proposition 3, with a short proof based on Proposition 2. In the finite
case, this result was well known; see [32].

3. From 2-compatible circular split systems to squaregraphs

A split system S is called 2-compatible [33] if it does not contain any three pairwise in-
compatible splits. A split system S on a cycle with vertex set X is said to be circular if
for each split σ = {A,B} of S, the parts A and B constitute complementary paths of this
cycle. Circular split systems arise as split systems with certain extremal properties [12, 33].
To give an example, Figure 4a displays a circle with seven points highlighted forming the
set X = {1, 2, 3, 4, 5, 6, 7}. The 18 chords indicate splits on X forming the system S. In this
example no triplet of splits would be pairwise incompatible. As a consequence, the median
graph with vertex set [X] is composed of 4-cycles and bridges (Figure 4c). Note that 18 is
the largest possible number of 2-compatible splits on a set with n = 7 elements [33].

Given a system S of splits on X, the incompatibility graph Inc(S) of S has the splits as
vertices and pairs of incompatible splits as edges. Inc(S) is triangle-free exactly when S is
2-compatible. In the case of a circular split system, the incompatibility graph can be regarded
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Figure 4. (a) 3-Colored system of 18 chords of a circle that separate points
1-7, where chords of the same color (either unbroken, or broken, or stippled)
do not intersect, and (b) the corresponding circle graph, where vertices corre-
spond to the chords that are encoded by the points on the smaller arcs they
each bound. (c) Squaregraph associated with the split system depicted in (a);
every edge is marked with the color of the split it crosses. (d) Trees supported
by each color class of splits/edges; the squaregraph canonically embeds into
the Cartesian product of these three trees.

as the intersection graph of chords of a circle, which is referred to as a circle graph [45]. The
incompatibility graph of the split system depicted in Figure 4a is shown in Figure 4b.

The boundary cycle of a finite 2-connected squaregraph plays a key role in a succinct me-
dian description of squaregraphs, which is expressed by the next propositions. An orientation
of a cycle X yields a ternary relation β on X where β(u, v, w) expresses that the directed
path from u to w passes through v. This relation is total, asymmetric, and transitive, which
can be formulated in terms of Huntington’s axioms [43]: for any four points u, v, w, x of X,

if u, v, w are distinct, then β(u, v, w) or β(w, v, u),
β(u, v, w) and β(w, v, u) is impossible,
β(u, v, w) implies β(v, w, u),
β(u, v, w) and β(u,w, x) imply β(u, v, x).
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A ternary relation β on an arbitrary set X satisfying these axioms is called a total cyclic
order. It follows from this definition that only triplets of distinct points can be in the re-
lation β and that the reverse (alias opposite) relation βop defined by βop(u, v, w) exactly
when β(w, v, u) is also a total cyclic order. We say that a nonempty proper subset A

of X is an arc if there are no four distinct points u, v ∈ A and x, y ∈ X \ A such that
β(u, x, v), β(x, v, y), β(v, y, u), and β(y, u, x) hold. If A is an arc, then so is X \ A as well.
In the finite case, total cyclic orders are just the orientations of cycles. A split {A,B} is
circular with respect to the total cyclic order if its parts are arcs. A split system on X is
said to be circular if all its members are circular with respect to some total cyclic order on
X. Thus, this definition extends the notion of circular split systems to the infinite case. To
give a preliminary definition, we say that a median algebra M is circular if the system of
convex splits restricted to some median-generating set X of M is circular. For example, the
Cartesian product of a finite path with a ray (one-way infinite path) has an infinite boundary
(from which one can retrieve the entire partial grid) that bears a total cyclic order. In a
finite 2-connected squaregraph every convex split has a circular trace on the oriented bound-
ary cycle. The cyclic order is uniquely determined up to reversal by the requirement that
the traces of the convex splits be circular; see the next proposition. In contrast, for a finite
tree T, total cyclic orderings exist in abundance for which the convex splits become circular
[57]. In fact, any planar representation of T in the plane together with an arrangement of
non-crossing (pseudo-)lines such that the lines cross the edges of T in a one-to-one manner
(referred to as a “Meacham egg”; see Fig. 3 of [11]) determines such a cyclic ordering, and
vice versa.

Proposition 4. Let G = (V,E) be a finite squaregraph with boundary vertex set C. Then
the convex splits of G restrict to circular splits on C. The corresponding cyclic order on C

is unique (up to reversal) if and only if either #V < 4 or G is 2-connected.

4. Small generating sets

In the next section we will define a class of infinite squaregraphs, including the integer grid
Z2, which may be completely devoid of a boundary (as Z2 is) or may at least be deficient in
boundary vertices. This deficiency will manifest itself in the property that the median hull of
the boundary is not the entire squaregraph. In contrast, the boundary of a finite squaregraph
generates the entire squaregraph as its median hull. In fact, an even smaller subset than the
boundary suffices.

Proposition 5. Every finite squaregraph G = (V,E) has at least min{4,#E} vertices of
degrees one or two. In a finite squaregraph, the vertices of degree at most three are exactly
the articulation points of degree two or three and the endpoints of maximal convex paths. Let
X be a subset of V that includes all vertices of degrees one and two in G and includes at least
one vertex of every maximal convex path P of G that does not pass through an articulation
point of G. Then every vertex of G is the median of three vertices from X.
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In general, a finite squaregraph may not be the median hull of its vertices of degrees one or
two: the domino K2�K1,2 constitutes the smallest pertinent example. Even when the median
hull of the vertices of degrees at most two is the entire squaregraph, not every vertex needs to
be the median of three vertices of degree at most two. Take, for instance, the vertex of degree
6 in the graph of Figure 1a, where a second step of iterating the median operation is necessary
to obtain this vertex. The next proposition fully characterizes the median-generating sets. A
convex path P is said to be an inner line of a finite squaregraph G if its two endpoints are
boundary vertices of degree 3 and all its inner vertices are inner vertices of degree 4 in G.

The endpoints of an inner line P cannot be articulation points of G, and P is necessarily a
maximal convex path.

Proposition 6. The inner lines of G are exactly the paths that lie entirely in 2-connected
blocks and equal the intersection of two halfspaces of G. A boundary vertex v of a finite
squaregraph G = (V,E) is either the median of three vertices of degree at most two or it
bounds an inner line. Consequently, a subset X of V median-generates G if and only if X
includes all vertices of degree at most two and meets every inner line, in which case every
vertex of G is the median of three vertices which are each medians of three vertices from X.

This result can be viewed as a tightening in case of squaregraphs of the characterization of
median closures in general median algebras and median graphs given in [5, 19, 59]: a vertex
v of a median graph G belongs to the median closure of a set X if and only if whenever v
belongs to the intersection of two halfspaces H1 and H2 of G this intersection also contains a
vertex of X. Therefore, a subset X is a median-generating set of G if and only if any pair of
halfspaces that intersect in G also intersect in X. Hence, if X median-generates G, then the
incompatibility graph Inc(S(G)) of convex splits of G is isomorphic to the incompatibility
graph Inc(S(G)|X) of their traces on X.

Proposition 6 allows us to design a simple polynomial algorithm for computing a minimum
median-generating set of a finite squaregraph G. Since every degree 4 inner vertex of G lies
on at most two inner lines, the minimum number of such vertices to be added to a median-
generating set can be determined by finding a maximum matching in the cross graph of inner
lines: each inner line of G corresponds to a node of the cross graph, and two nodes are linked
by an edge if the corresponding inner lines share one common vertex. If s is the total number
of inner lines and h is the size of a maximum matching in the cross graph, then s−h vertices
need to be added to the set of vertices of degree less than three in order to form a minimum-
size median-generating set. In contrast, the task of computing a median-generating set of
minimum size is NP-hard for arbitrary median graphs as the following theorem shows.

Theorem 1. The problem of deciding whether a given graph G has a median-generating set
X of size at most a given number g is NP-complete for finite median graphs not containing
any 5-cube but can be solved in polynomial time for finite squaregraphs.

There is a metric concept of generation (producing a kind of injective envelope) that makes
do only with the vertices of degree less than three. Given any subset X of vertices from a
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finite bipartite graph G with shortest-path metric d, we say that a map f from X to the
nonnegative integers N is a parity-integer metric form on X if

f(x) + f(y)− d(x, y) ≥ 0 and f(x) + f(y) + d(x, y) is even for all x, y ∈ X.

Such a map f is said to be minimal if any parity-integer metric form g on X that is pointwise
below f equals f . Every vertex u of the bipartite graph G is associated with the minimal
parity-integer metric form du on X defined by du(v) = d(u, v). G is called an absolute retract
of bipartite graphs if G can be retracted from every bipartite supergraph H in which G is
isometric [11].

Proposition 7. In any finite cube-free median graph G = (V,E) with shortest-path metric
d, every vertex is uniquely determined by its distances to the vertices of degrees one or two.
Specifically, (V, d) is isomorphic to the subspace of the L∞ space NX that consists of the
minimal parity-integer metric forms on the metric subspace (X, d|X) of (V, d) comprising the
vertices of degrees one or two in G. Thus, G is the smallest absolute retract of bipartite
graphs extending the metric subspace (X, d|X).

A coarser concept of generation is the convex closure yielding the convex hull of any
subset Y of the vertex set. Trivially, every finite squaregraph G is the convex hull of its
vertices with degrees one or two. But in contrast to the previous generation concepts one can
dispense with some of the vertices of degree two. The minimal number of vertices needed
to generate the entire squaregraph G as the convex hull has been termed the hull number
h(G). This evidently equals the minimum cardinality of a set of vertices that is incident
with every minimal halfspace of G [49]. The hull number of any median graph G equals
two exactly when G is the covering graph of a finite distributive lattice L [20]; in the case
of a squaregraph, L is embedded in a product of two chains. The minimal halfspaces of a
finite squaregraph G are of two types: any degree-one vertex is itself a minimal halfspace,
as is each (maximal) convex path on the boundary of G that has two degree-two endpoints
and that does not contain any degree-four vertex or articulation point of G. Note that the
intersection graph I(G) of the minimal halfspaces of G constitutes an induced subgraph of
the incompatibility graph Inc(S(G)) of convex splits. Two intersecting minimal halfspaces
can only share one common degree-two endpoint, and this shared vertex then corresponds
to the edge linking the two minimal halfspaces in the intersection graph. Hence I(G) is an
even or odd cycle exactly when G is 2-connected and all boundary vertices have degrees
two or three. In all other cases, this intersection graph is a disjoint union of paths. The
edges of this incompatibility graph correspond to vertices of degree two in G, whereas the
singleton components either comprise a single vertex of degree one in G or represent some
boundary path between two vertices of degree two. Therefore the hull number h(G) equals
the minimum number of edges and isolated vertices from I(G) that jointly cover all vertices
of this graph. Closely related to the hull number is another parameter for G. The largest
size k of an independent set in the intersection graph I(G) of all minimal halfspaces of G
is referred to as the star-contraction number s(G), because the contraction of all halfspaces
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not belonging to this maximum independent set produces a star with k leaves as a median
homomorphic image of G [49]. Summarizing this discussion, we obtain the following result:

Proposition 8. The hull number h(G) and star-contraction number s(G) of a finite square-
graph G can be read off from the connected components (a single cycle or several paths) of the
intersection graph I(G) of minimal halfspaces of G : in the case of a single cycle component,
h(G) equals half the size of the cycle rounded up to the next integer and s(G) equals half the
size of the cycle rounded down to the next integer, and otherwise, each path component of
I(G) contributes to both h(G) and s(G) half the number of path vertices rounded up to the
next integer. Consequently, h(G) = s(G) + 1 when I(G) is an odd cycle, and in all other
cases, h(G) = s(G). In particular, h(G) = s(G) if G is an even squaregraph.

The relationship between h(G) and s(G) provided by Proposition 8 cannot be generalized
to larger classes of median graphs: there exist cube-free median graphs for which h(G)−s(G)
can be arbitrarily large [7]. Note also that the equality h(G) = s(G) does not characterize
the even squaregraphs: to find squaregraphs G in which all inner vertices have odd degrees
while I(G) is an even cycle, just take a sneak preview to Figure 7 in the next section.

Concepts related to hull number and star-contraction number refer to the compatibility
graph of the convex splits of G. The clique number of the latter was denoted in [7] by t(G),
whereas the chromatic number was denoted by c(G). Then t(G) is the maximum number
of edges in any median-homomorphic tree image, whereas c(G) is the minimum number of
squares and single edges that together meet all halfspaces of G. In the simplex graph G of
a 5-cycle one has c(G) = t(G) + 1 = 3. Now, there are squaregraphs with an arbitrarily
large number of convex subgraphs isomorphic to this simplex graph such that each halfspace
meets at most one of those distinguished subgraphs (to find such graphs, see again Figure
7 in the next section). Therefore c(G) − t(G) can attain any nonnegative number for finite
squaregraphs G, although even squaregraphs G are again characterized by equality c(G) =
t(G). Passing from the compatibility graph to the incompatibility graph then changes the
picture considerably. The clique number of the incompatibility graph of the convex splits of
G is trivially 2 unless G is a tree (where it is 1), but the chromatic number will then determine
how many tree factors are needed for coordinatizing G. This is exactly the problem that we
will solve in Section 7.

5. Local characterization of squaregraphs

Finite squaregraphs can be characterized among finite median graphs in terms of forbidden
subgraphs (which can be assumed to be either induced or isometric or convex, respectively),
without reference to an embedding into the plane. The forbidden configurations are then
reflected by halfspace patterns as well. Given a discrete copair hypergraph H = (X, E), a
suspended cycle in H consists of k + 1 hyperedges A0, A1, . . . , Ak−1, Ak = A0 (k > 3) and
D such that (i) Ai and Aj intersect exactly when |j − i| = 1 and (ii) D is included in all
complementary hyperedges X \ Ai (i = 0, . . . , k − 1). A minimal set X realizing the k + 1
splits involving a suspended cycle has k + 1 elements. The median graph obtained from
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(a) (b) (c) (d)

...

Figure 5. Forbidden induced subgraphs of squaregraphs: (a) cube; (b)
K2�K1,3; (c)&(d) the first two suspended cogwheels.

the Hellyfication of the corresponding copair hypergraph is then a suspended cogwheel ; see
Figure 5. A suspended cogwheel is thus formed by a cogwheel [46] (alias bipartite wheel) plus
a pendant vertex adjacent to the center of the wheel. We dot not regard the cube minus a
vertex as a cogwheel here. In particular, a k-cogwheel then consists of a central vertex and a
cycle of length 2k > 6 such that every second vertex is adjacent to the center. A k-cogwheel
is said to be even or odd, respectively, depending on the parity of k.

Proposition 9. For a finite graph G = (V,E), the following statements are equivalent:
(i) G has a plane embedding as a squaregraph;
(ii) G is a median graph such that G does not contain any of the following graphs as

induced subgraphs as induced subgraphs (or isometric subgraphs, or convex subgraphs,
respectively): the cube, K2�K1,3, and suspended cogwheels;

(iii) G is the median graph associated with the Hellyfication of a copair hypergraph H on
some finite set X which has no triplet of properly intersecting hyperedges, no halfspace
that properly intersects three pairwise disjoint halfspaces, and no suspended cycle;

(iv) G is a cube-free median graph that is the median hull of some subset X of the vertex
set V such that the trace of the system of convex splits of G on X is circular.

This structural characterization of squaregraphs can be generalized to infinite median
graphs in a straightforward way. An infinite plane graph is called an infinite squaregraph if
every finite convex subgraph consitutes a finite squaregraph. In a finite squaregraph one has
a well-defined boundary cycle. In the infinite case, however, we have to resort to a substitute,
the “virtual boundary”, where rays come into play. Let G be an infinite graph such that the
convex hull of every finite set in G is a finite squaregraph. Then G is necessarily a cube-free
median graph, in which every edge uv gives rise to a zone Z(uv) just as in the case of a
finite squaregraph: Z(uv) is the ladder subgraph induced by the vertices incident with the
edges from the equivalence class Θ(uv) (see Section 9). Then P (u, v) = Z(uv) ∩ W (u, v)
and P (v, u) = Z(uv) ∩W (v, u) are convex paths, which are both either finite or one-way or
two-way infinite. Now, extend the vertex set V of G by adding virtual endpoints to all rays
that border a zone. The same endpoint is added to all zonal rays that are comparable with
respect to inclusion. The virtual boundary of G consists of all endpoints of border paths of
zones and virtual endpoints of zonal rays of G. We call a graph G circular if the traces of
convex splits of G on the virtual boundary of G form a circular split system (whenever a

13



ray is included in a halfspace H of G, then its endpoint is included in the trace of H on the
virtual boundary).

Proposition 10. For an infinite median graph G, the following statements are equivalent:

(i) the convex hull of every finite set in G is a finite squaregraph;
(ii) G is the directed union of convex subgraphs that are finite squaregraphs;
(iii) G is cube-free such that K2�K1,3 and the suspended cogwheel are not induced (or

isometric or convex) subgraphs of G;
(iv) G has no triplet of properly intersecting halfspaces, no halfspace that properly inter-

sects three pairwise disjoint halfspaces, and no cycle of properly intersecting halfspaces
included in another halfspace;

(v) G is cube-free and circular.

6. Infinite squaregraphs and geometric duality

There is yet another natural way of interpreting the representation of a squaregraph by a
diagram of chords within a unit disk of the Euclidean plane. Consider any finite arrangement
of (straight-line) chords of a unit circle such that no two chords intersect on the circle and
no three chords intersect pairwise. The resulting configuration is then called a triangle-free
chord diagram. For further background and references concerning arbitrary chord diagrams,
see [56]. Alternatively, one can view a chord diagram as a certain cyclic double permutation
of the numbers from 0 to n − 1: label 2n distinct points on the circle arbitrarily by using
each number exactly twice; a pair of points with the same label is then connected by a chord.
This labeling yields a triangle-free chord diagram exactly when no three numbers i, j, k are
traversed along the oriented circle in the order i, j, k, i, j, k. Every (finite) triangle-free chord
diagram yields a squaregraph by taking the planar dual of the map bounded by the chorded
circle; see Figure 6. Indeed, every region of the map not bounded by an arc of the circle has

Figure 6. A chord diagram and its planar dual, a squaregraph.
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Figure 7. The {4, 5} tesselation of the hyperbolic plane, reproduced from
Figure 10 of [36]. Image produced using a Java applet written by Don Hatch,
http://www.plunk.org/∼hatch/HyperbolicApplet/.

degree at least 4 in the dual graph because the chord diagram is triangle-free; moreover, all
faces of the planar dual are 4-cycles since every intersection point of the chords and the circle
belongs to either exactly two chords or one chord and the circle. Note that the interpretation
of a chorded circle in the preceding section simply refers to the boundary regions of the
planar map, where the chords then represent the splits for the boundary regions (which are
represented in Figure 5 by points on the circle). Therefore the planar dual simply reflects
the algebraic dual [44] of the 2-compatible circular split system.

For finding a suitable extension to the infinite case, it is helpful to view a chord diagram
as a set of lines in the Klein model of the hyperbolic plane. So, a finite squaregraph can
equivalently be described as the dual of a finite triangle-free hyperbolic line arrangement. This
suggests that the planar dual of an arbitrary locally finite triangle-free arrangement of straight
lines in the hyperbolic plane could be regarded as a (not necessarily finite) squaregraph. A
pertinent example of an infinite squaregrpah is the {4, 5} tesselation of the hyperbolic plane,
which yields a regular infinite squaregraph where every vertex has degree 5; see Figure 10
of [36] (reproduced here as Figure 7), shown in the Poincaré model of the hyperbolic plane.
The hyperbolic lines of the arrangement pass through opposite midpoints of the faces of each
edge of this tiling.

By “locally finite” we mean that any open disk in the hyperbolic plane intersects only a
finite number of lines of the arrangement. Since closed disks are compact, this definition is
equivalent to requiring that for every point v there exists some ε > 0 such that the ε-disk
centered at v meets only finitely many lines. Since the hyperbolic plane is covered by a
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countable (directed) union of disks, it follows that a locally finite arrangement comprises at
most countably many lines. The result that the dual of such an arrangement is a partial
cube would then follow directly from known results on locally finite pseudoline arrangements
[21, 37]. The lines of the arrangement correspond to the convex splits of the associated
squaregraph, just as in the finite case. Note that, by compactness of line segments, any two
points of the hyperbolic plane are separated by no more that a finite number of lines from the
locally finite arrangement. The arrangement is called triangle-free if no three lines intersect
pairwise. If A is a hyperbolic line arrangement, then the complement of the union of all lines
from A in the hyperbolic plane is partitioned into cells via the intersection of the equivalence
relations induced by the complementary open halfplanes obtained from A. The cell copair
hypergraph of A has the cells of A as its vertices and the sets of all cells included in open
halfplanes associated with the lines of A as its hyperedges. The dual graph of A has the cells
as its vertices with two cells being adjacent exactly when there exists no more than one line
from A separating them.

Theorem 2. For a connected graph G with finite vertex degrees, the following statements are
equivalent:

(i) G has a locally finite squaregraph embedding, that is, G can be drawn in the plane
with its vertices as points and its edges as disjoint rectifiable curves in such a way
that every bounded subset of the plane intersects finitely many vertices and edges of G,
every vertex either belongs to the boundary of an unbounded connected component of
the complement of the drawing or has at least four incident edges, and every bounded
connected component of the complement of the drawing is the region bounded by a
cycle of four edges of G;

(ii) for any vertex v in G and any integer r, the ball Br(v) induced by the vertices with
distance at most r from v is isomorphic to a finite squaregraph;

(iii) G can be covered by a countable chain of finite subgraphs G0 ⊂ G1 ⊂ · · · each of
which is isomorphic to a squaregraph;

(iv) G is a median graph that is isomorphic to a connected component of the dual graph
of some triangle-free arrangement A in the hyperbolic plane such that any cell repre-
sented by a vertex of G is bordered by finitely many lines of A. If, in addition, A is
locally finite, then G is the dual graph of A.

We regard Theorem 2 as the natural extension of the concept of squaregraph to the infinite
case, as a number of intuitive concepts carry over from the finite to the infinite. This does
not preclude that some countable median graphs beyond infinite squaregraphs can also be
represented in the hyperbolic plane as dual graphs of line arrangements. For instance, it is
not difficult to see that every countable tree is the dual of a locally finite and triangle-free
line arrangement in the hyperbolic plane.

From Theorem 2 we conclude that any finite squaregraph is the dual of a finite triangle-
free arrangement of lines in the hyperbolic plane. However, the arrangements whose dual
graphs host infinite locally finite squaregraphs as connected components are not necessarily
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locally finite, the simplest example illustrating this “anomaly” being the square grid Z2.

Figure 8 presents two such non locally finite arrangements for Z2. The dual graph of the first
arrangement has five different connected components, one of which is the square grid and
the other four are infinite paths. The dual graph of the second arrangement has the sixth
connected component composed of a single cell.

(a) (b)

Figure 8. Two different arrangement representations of the square grid.

(a) (b)

Figure 9. Two infinite planar graphs, with quadrilateral faces and no inner
vertex of degree less than four, that should not be considered to be infinite
squaregraphs.

The example in Figure 9a should not be considered a squaregraph, although it meets many
of the defining criteria: it is a plane median graph with finite vertex degrees, every open con-
nected component of its complement is either unbounded or a quadrilateral, and every vertex
either lies on the boundary or has degree at least four. However, it fails the local finiteness
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requirement of Theorem 2(i), the finite induced subgraphs Br(v) are not squaregraphs for
any r ≥ 2, and the family of curves it is dual to do not form a line arrangement (they consist
of two crossing lines and a collection of concentric closed curves surrounding the crossing
point). The example in Figure 9b again superficially resembles a squaregraph, and is the
dual of a triangle-free line arrangement, but the line arrangement is not locally finite and the
graph is not connected.

It is tempting to attempt to generalize the description of squaregraphs as duals of hyper-
bolic line arrangements, and consider instead pseudoline arrangements. However, the dual
of any triangle-free pseudoline arrangement is isomorphic to the dual of a hyperbolic line
arrangement having the same ends of lines in the same cyclic order. Therefore, pseudolines
give no added generality.

7. Embedding into products of trees

One of the important issues in metric graph theory, and more generally, in metric geometry,
is a succinct representation of graphs (or metric spaces), which can be of use in the design
of efficient algorithms for solving various metric problems on the input graph or space. For
instance, one may search for an exact or approximate isometric embedding of graphs or spaces
into low-dimensional Euclidean or l1-spaces or into the Cartesian product of a small number
of trees; labelings of the vertices of the graph by the coordinates of such an embedding can
be used to form data structures for efficient navigation in these graphs [27]. However, as is
shown in [15], for every k ≥ 3 the problem of recognizing the graphs that are isometrically
embeddable into the Cartesian product of k trees is NP-complete, even when restricted to
cube-free median graphs. In fact, a median graph G is isometrically embeddable into the
Cartesian product of k trees if and only if the incompatibility graph of convex splits is k-
colorable [15]. Moreover, every connected graph is the incompatibility graph of some median
graph. In the case of cube-free median graphs, the corresponding incompatibility graph is
triangle-free, but this property alone is not enough to ensure a low chromatic number [53]. On
the other hand, it is shown in [35] how to embed a partial cube optimally into the Cartesian
product of the least number of paths. In a companion paper [10], it will be proven that
the graphs isometrically embeddable into the Cartesian product of two trees are exactly the
cube-free median graphs not containing induced odd cogwheels. In particular, this shows
that the squaregraphs in which all inner vertices have even degree (even squaregraphs) can
be embedded into the Cartesian product of two trees. For other classes of plane graphs one
has similar results, for example, “benzenoid systems” (i.e., plane graphs with all inner faces
of length six and all inner vertices of degree three) can be isometrically embedded into the
Cartesian product of three trees [24]. This result directly led to a linear time algorithm for
computing the so-called Wiener number of benzenoids [30].

We will employ the facts that finite squaregraphs G are plane median graphs such that
the convex splits of G induce a 2-compatible circular split system on the boundary cycle of
G. This establishes a bijection between the embeddings of G into the product of k trees
and the colorings of the underlying triangle-free circle graph of those circular splits with k
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Figure 10. Ageev’s 5-chromatic graph of 220 chords (drawn hyperbolically).

colors. Since it is known that triangle-free circle graphs are 5-colorable but not necessarily
4-colorable [1, 45], we obtain the main result of this paper:

Theorem 3. Every finite squaregraph G can be isometrically embedded into the Cartesian
product of at most five trees. There exist 2-connected squaregraphs with maximum degree 5
that cannot be embedded into the Cartesian product of just four trees. A squaregraph not con-
taining any induced (or isometric) 2×2 grid (i.e., K1,2�K1,2) can be isometrically embedded
into the Cartesian product of at most three trees. G can be isometrically embedded into the
Cartesian product of at most two trees exactly when G is even, that is, every inner vertex has
even degree.

The preceding result result immediately extends to the infinite case, in particular to infinite
squaregraphs:

Theorem 4. Every median graph G not containing any induced (or isometric) cube,
K2�K1,3, or suspended cogwheel can be isometrically embedded into the Cartesian product
of at most five trees. If, in addition, the 2 × 2 grid is a forbidden induced (or isometric)
subgraph, then an isometric embedding into the Cartesian product of at most three trees is
guaranteed. Finally, G can be isometrically embedded into the Cartesian product of at most
two trees exactly when G does not contain an induced odd cogwheel.
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Figure 11. Squaregraph dual to Ageev’s graph. For the algorithms used to
construct this drawing, see [38].

The 2-connected squaregraphs not containing 2 × 2 grids are negatively curved. For a 2-
connected plane graph G the notion of curvature is gleaned from the Gauss-Bonnet formula
for piecewise Euclidean 2-complexes. Specifically, the curvature at a vertex x with degree
deg(x) in G equals

1− deg(x)/2 +
∑
F

1/|F |, if x is an inner vertex of G,

and

1/2− deg(x)/2 +
∑
F

1/|F |, if x is on the boundary cycle of G,

where the sums extend over all faces F incident with x.

Note that Ishida’s “combinatorial” curvature, often employed for polyhedral graphs, is a
dual notion. The key issue of graph curvature is whether the curvature of all vertices is
always of the same type (either negative, or nonpositive, or zero, or nonnegative, or positive,
respectively). The curvature of every finite 2-connected squaregraph is nonpositive, and this
also extends to the infinite case under the assumption of finite vertex degrees. Specifically,
the curvature of a vertex v on the boundary cycle C equals 1/4 − deg(v)/4 + 1/|C|, which
attains 0 only for the 4-cycle, and of an inner vertex u equals 1 − deg(u)/4, which attains
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0 exactly when deg(u) = 4. Therefore a 2-connected squaregraph G has negative curvature
exactly when it is not the 4-cycle and has no 4-cogwheel (that is, the 2× 2 grid).

8. Proofs for Section 2

Proof of Proposition 1: If H is ∗Helly, then the collection of the hyperedges from H
containing at least two of the points u, v, w is anchored and pairwise intersecting, whence its
intersection is nonempty. Conversely, assume that the triplet condition is satisfied. Let F be
any anchored and pairwise intersecting collection of hyperedges. For any u ∈ X, the collection
of hyperedges from F containing u misses only finitely many hyperedges from F . Since the
finite set F ′ of these hyperedges satisfies the triplet condition (as does any subfamily of F),
the intersection of F ′ is nonempty by the second part of the proof of [17, Theorem 10 of Ch.
1], which uses induction on #F ′. Choose any v from

⋂
F ′. Then, by the same argument, the

finite set F ′′ of hyperedges from F separating u and v intersects in at least one point w. By
the choice of u, v, w every hyperedge of F contains at least two of u, v, w, and therefore

⋂
F

is nonempty.

Proof of Proposition 2: (i)⇒(ii): If H did not separate two distinct points x and y, then
we could add the complementary pair {x}, V \{x} to E without violating the ∗Helly property.

(ii)⇒(iii): As in the finite case [13] define the segment

u ◦ v = v ◦ u = ∩{E ∈ E | u, v ∈ E}

for each pair u, v of points. Then u ◦ v ∩ v ◦ w ∩ w ◦ u 6= ∅ by Proposition 1. If there
were two different points, x and y, in this intersection, then we could find some F ∈ E
separating x and y. Necessarily, F would include two of u, v, w and hence a segment containing
both x and y, a contradiction. Therefore the intersection is a singleton. In particular,
u ◦ u = {u}. Monotonicity, that is, w ∈ u ◦ v ⇒ u ◦ w ⊆ u ◦ v, is trivial by definition
of the segments. We conclude that the segments meet Sholander’s conditions for a median
algebra; see [13, Theorem 2.1]. If some segment contained an infinite chain u1, u2, . . . such
that u ◦ v ⊇ u1 ◦ v ⊇ u2 ◦ v ⊇ . . . , then infinitely many members of E would separate u and v,
contradicting the assumption that H is discrete. Hence the median algebra is itself discrete
and constitutes a median graph G on V where the intervals coincide with the corresponding
segments. It remains to show that H comprises all halfspaces of G. By definition of the
segments, every member of E is a halfspace of G. Conversely, for each halfspace F of G there
exists an edge uv of G such that F is the unique halfspace separating u and v, which must
belong to H because H separates the points.

(iii)⇒(i): By Corollary 1, H has the ∗Helly property. To show that H is maximal, suppose
by way of contradiction that we could extend H to a larger ∗Helly copair hypergraph by
adjoining two complementary sets A and B where A is not convex in G. Because A is non-
convex, there exist u, v in A such that a shortest path from u to v passes through some
neighbor x of u belonging to B. Let Du and Dv be the sets of halfspaces containing the edge
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ux and the interval I(v, x), respectively. Then the collection D := Du ∪ Dv ∪ {A} intersects
in pairs and is anchored. However,⋂

D =
⋂
Du ∩

⋂
Dv ∩A = {u, x} ∩ I(v, x) ∩A = ∅,

contradicting the ∗Helly property.

Proof of Proposition 3: For D as described in the proposition, one can find a finite set Z
intersecting every member ofD. Pick any z ∈ Z. For each pair A,B ∈ H\D of complementary
sets, choose the one that intersects each member of the pairwise intersecting system D∪{Z}
and – in case that both A and B meet this criterion – that additionally contains z. The
resulting set family F is clearly anchored, and as we now show it is pairwise intersecting.
For, the added sets by construction have nonempty intersections with each member of D.
And, if two sets A′ and A′′ from F \ D were disjoint, then one of the sets, say A′, would not
contain z. But we can only include such a set A′ in F when its complementary set X \ A′
is disjoint from some member of D, and if this were the case then A′′ ⊂ X \ A′ would also
be disjoint from that member, contradicting the fact that each member of F intersects each
member of D. This contradiction shows that F is pairwise intersecting, and it is clearly
maximal with this property as it includes one member from each complementary pair in H.
This proves the first assertion.

Note that the augmentation of H to [H] does not fill empty pairwise intersections, which
entails that compatibility of the corresponding splits is preserved. By definition, [H] is a
copair hypergraph on the extended set V = [X] such that every member of [E ] restricts to a
member of E on X. Then the trace on X of any anchored pairwise intersecting subset of [E ]
is an anchored pairwise intersecting subset of E , which has a nonempty intersection in [X]
by construction. If vF and w = vF ′ are new vertices associated with two maximal anchored
pairwise intersecting collections F and F ′, then there are finite sets Z and Z ′ met by all
members of F and F ′, respectively. Hence the members of [E] that separate vF from w all
intersect the finite set Z ∪ Z ′ and hence must be finite in number because H is discrete. If
instead w is a pre-existing vertex, then by a similar argument (letting {w} play the role of Z ′)
there are again only finitely many members of [E] that separate vF from w. Therefore [H] is
a discrete ∗Helly copair hypergraph, which obviously separates the points. By Proposition 2,
[H] is the halfspace hypergraph of a median graph G on V. Since every new vertex v ∈ V \X
is the unique vertex v = vF of [H] that fills some empty intersection of a maximal anchored
pairwise intersecting collection F ⊆ E , no trace of [E ] on any proper subset W of V with
X ⊆ W could yield a ∗Helly copair hypergraph. Hence the smallest median subgraph of G
with vertex set extending X must be all of G.

9. Proofs for Section 3

We start by showing that squaregraphs are median graphs. This follows from a more
general bijection between median graphs and 1-skeletons of cubical complexes with global
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nonnegative curvature [9, 25, 54]. Here we will give a self-contained proof of this property,
which will make use of an elementary counting argument.

Lemma 1. [58] Every finite 2-connected squaregraph G contains at least four vertices of
degree 2. Consequently, a finite squaregraph G which is not a tree has at least four vertices
of degree at most 2. The plane subgraph G′ of a finite squaregraph G which is induced by all
vertices of G lying either on some simple cycle C ′ or inside the plane region bounded by C ′ is
a 2-connected squaregraph. Consequently, any articulation point is on the boundary and any
4-cycle of a squaregraph G is an inner face.

Proof. Let f denote the number of inner faces of G, m the number of edges, n the number of
vertices, b the number of vertices incident with the outer face, and n2 the number of vertices
of degree 2. Then f −m + n = 1 and 4f + b = 2m hold according to Euler’s formula and
the hypothesis that all faces are quadrangles. Eliminating f yields 4n − 2m − b = 4. The
information on the vertex degrees is turned into the inequality 2m ≥ 4(n−b)+3(b−n2)+2n2 =
4n− b− n2, whence n2 ≥ 4n− b− 2m = 4, as required.

If G is neither 2-connected nor a tree, then it contains a 2-connected block B, which has
four vertices of degree 2 in B. If any such vertex u is an articulation point of G, then select
an end block B′ of G that has u as its gate in B. Necessarily, B′ has at least one vertex u′ of
degree 1 or 2 that is not an articulation point. In this way, we obtain four distinct vertices
of degrees at most two in G.

As for the third assertion of the lemma, the plane graph G′ which is enclosed by the
chosen cycle C ′ in the plane is included in some 2-connected block B of G and has C ′ as
its boundary. Every inner vertex of G′ is also an inner vertex of G and hence has degree
at least four, and every inner face of G′ is an inner face of G and thus a 4-cycle, whence
G′ is a squaregraph. By virtue of the first assertion of the lemma, C ′ contains a degree-two
vertex u of G′ along with its two neighbors t and w. If the fourth vertex x of the inner
face F to which t, u, and w belong lies on C ′, then C ′ is the modulo 2 sum of F and at
most two simple cycles. Since any articulation point of G′ would be an inner vertex of G′,
a straightforward inductive argument shows that G′ must be 2-connected. Finally, to prove
the fourth assertion, if the given squaregraph G contains some 4-cycle C ′ that is not an inner
face of G, then the squaregraph G′ enclosed by C ′ in the plane will have fewer than four
vertices of degree two, contradicting the first assertion. �

Lemma 2. Every finite squaregraph G is a cube-free and K2�K1,3-free median graph.

Proof. To establish that G is median, suppose by way of contradiction that G contains a
triplet x, y, z such that I(x, y)∩I(y, x)∩I(x, z) = ∅. We can suppose without loss of generality
that each pair of intervals intersect only at their common bounding vertex, for otherwise, if
say I(x, y) ∩ I(x, z) 6= {x}, we could replace x by a vertex from this intersection while still
retaining a contradiction. This implies that x, y, and z belong to a common 2-connected
component of G, whence we may assume that G is already 2-connected. Now pick three
shortest paths J(x, y), J(y, z), and J(z, x), such that the subgraph G′ defined by the cycle
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C ′ = J(x, y) ∪ J(y, z) ∪ J(z, x) contains a minimum number of inner faces. Since G′ is a
squaregraph by the second assertion of Lemma 1, the boundary cycle C ′ of G′ contains at
least four vertices of degree 2 (in G′), by the first assertion of the same lemma. Let u be
such a vertex different from x, y, z, say u ∈ J(x, y). Denote by u′ the vertex opposite to u in
the unique inner face of G′ containing u. Then replacing in J(x, y) the vertex u by u′ results
in a new shortest path J ′(x, y) between x and y, and the cycle J ′(x, y) ∪ J(y, z) ∪ J(z, x)
defines a squaregraph G′′ having fewer inner faces than G′. This contradiction establishes
that I(x, y) ∩ I(y, x) ∩ I(x, z) 6= ∅ for all x, y, z ∈ V. Now, if G is not median, then it must
contain an induced K2,3 [50]. However, any plane embedding of K2,3,K2�K1,3, or the cube
has a 4-cycle that is not an inner face, so from Lemma 1 we infer that G is K2�K1,3-free and
cube-free. �

The Djoković relation Θ [31] on a bipartite graph G = (V,E) is defined on the edges of G
by

uvΘxy ⇔ either x ∈W (u, v) and y ∈W (v, u), or y ∈W (u, v) and x ∈W (v, u)

for uv, xy ∈ E. The relation Θ is always symmetric and idempotent; it is transitive if and only
if the splits σ(uv) are convex for all uv ∈ E, which is equivalent to isometric embeddability
of G into some hypercube [31]. That is, G is a partial cube if and only if Θ is an equivalence
relation. On a median graph the Djoković relation Θ coincides with the transitive closure Ψ∗

of the relation Ψ defined by

uvΨxy ⇔ either uv = xy or uv and xy are opposite edges of some 4-cycle,

according to Lemma 1 of [6]. For squaregraphs, “4-cycle” can be replaced by “inner face” in
the latter definition. For an edge uv of a squaregraph G, we denote by Θ(uv) the equivalence
class of Θ containing uv. By Z(uv) we denote the subgraph induced by the union of Θ(uv)
with all inner faces of G sharing common edges with Θ(uv) and call Z(uv) the zone of Θ(uv).
Set P (u, v) = Z(uv) ∩W (u, v) and P (v, u) = Z(uv) ∩W (v, u). Since G is median, P (u, v)
and P (v, u) are convex and therefore gated sets [50]. The convex sets P (u, v) and P (v, u)
are isomorphic via the matching induced by the edges from the cutset Θ(uv), and the zone
Z(uv) is isomorphic to K2�P (u, v) [50]. Therefore from Lemma 2 we immediately obtain
the following observation.

Lemma 3. [58] For every edge uv of a finite squaregraph G, the zone Z(uv) is a ladder
comprising the edges from the cutset Θ(uv) and the convex paths P (u, v) and P (v, u).

Proof of Proposition 4: From Lemma 3, we know that the convex splits of G restrict to
circular splits on C when G is 2-connected. To establish this implication for all squaregraphs,
we proceed by induction on the number of 2-connected components of G. Suppose that G
is obtained as an amalgamation of two squaregraphs G′ and G′′ along a common boundary
vertex x. By induction assumption, the graphs G′ and G′′ admit circular representations C ′

and C ′′. Let x′ and x′′ be the copies of x in C ′ and C ′′, respectively. Let y′ be a neighbor
of x′ in C ′. To obtain a circular representation C of G, we identify the two copies of x in C ′
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and C ′′, take the circular representation C ′ and place the remaining vertices of C ′′ next to
x′ but before y′ following the circular order of C ′′. To see that the traces of convex splits of
G on C indeed form a circular split system notice that any convex split σ(uv) of G can be
derived from the convex splits of G′ and G′′ in the following way. Suppose without loss of
generality that uv belongs to G′ and denote by W ′(u, v) and W ′(v, u) the halfspaces defined
by the edge uv in G′. If x ∈W ′(v, u), then W (u, v) = W ′(u, v) and W (v, u) = W ′(v, u) ∪ V ′′
where V ′′ denotes the vertex set of G′′. If x ∈ W ′(u, v), then W (u, v) = W ′(u, v) ∪ V ′′ and
W (v, u) = W ′(v, u). From the construction of C we infer that the traces of W (u, v) and
W (v, u) on C define indeed a circular split, establishing the claim in the proposition.

In the argument above, reversing C ′ before amalgamating it with C ′′, or choosing the neigh-
bor y′ of x′ differently, produces another cyclic order except in the cases enumerated in the
proposition. It remains to prove uniqueness of the cyclic order for 2-connected squaregraphs.

In a finite 2-connected squaregraph G, the outer face C is a simple cycle of length 2k ≥ 4.
Every pair of consecutive boundary vertices are connected by an edge separated by some split.
Thus, each of the k convex splits of G separates some two pairs of boundary vertices that
are not distinguished by any others of the splits. Suppose that C∗ is a cycle (not necessarily
a subgraph of G) having the same vertices as C but different from C such that the split
system of C also yields circular splits on C∗. Now, if this system harbored two different splits
separating the same edge of C∗, then by the pigeon hole principle at least one edge uv of C∗

would not get separated by a convex split of G, contradicting separation of distinct points
in G. Hence every edge of C∗ is cut by exactly one split. Take an edge ab of C∗ that is not
an edge of C, and let {A,B} be the unique split of the system separating a and b. Since
{A,B} is also a circular split of C∗, it separates a second edge, a′b′, of C∗. We may assume
that a, a′ ∈ A and b, b′ ∈ B. If a and b were not adjacent in G, then we would have at least
two convex splits separating a and b, in conflict with the uniqueness property just shown.
Therefore ab and, for the same reason, a′b′ are edges of G. It follows that C∗ is a subgraph
of G.

Since ab is a chord of C, it is a cut edge of G (by virtue of Lemma 1) and thus G is a (gated)
amalgam [9] of 2-connected squaregraphs G1 and G2 along {a, b}. Then a′b′ is an edge of G1,
say. The convex split {A,B} of G separating a and b (as well as a′ and b′) separates exactly
one edge uv on C that is on the outer face of G2 where u ∈ A and v ∈ B. Let xy be the edge
(not necessarily distinct from ab) opposite to uv on the 4-cycle of G2 containing uv. Then
the convex split of G separating uv from xy also separates uv from G1. Since u is between a
and a′ and v is between b and b′ on C∗, this convex split cannot restrict to a circular split on
C∗, a contradiction. This establishes Proposition 4.

The second part of the preceding proof can be shortcut by observing that the subgraph
H induced by the boundary cycle C in the squaregraph G is outerplanar. It is well known
that a 2-connected outerplanar graph has a unique Hamiltonian cycle; see e.g. Lemmas 5
and 6 of [48]. Then C and C∗, both constituting Hamiltonian cycles of H by the first part
of the proof, must coincide, contrary to the assumption. Note that, conversely, it follows (by
induction) from the second part of the above proof that every bipartite, 2-connected, finite
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outerplanar graph can occur as the subgraph H induced by the boundary of a 2-connected
finite squaregraph. Obviously, the subgraph H does not in general determine the squaregraph
uniquely.

10. Proofs for Section 4

In finite cubefree median graphs – and squaregraphs, in particular – there is an ample
supply of vertices of degrees at most two:

Lemma 4. Let G be a finite cube-free median graph, v be any vertex of G, and w be any
vertex that is maximally distant from v. Then w has at most two incident edges. If G is a
squaregraph, then w and its neighbors all lie on the exterior face of G.

Proof. Suppose to the contrary that there are three incident edges aw, bw, and cw. Then, as
a and b are at distance two apart and both are closer to v than is w, the median x = m(a, b, v)
is adjacent to both a and b and distinct from w. A symmetric argument applies to the two
other medians y = m(a, c, v) and z = m(b, c, v). However, no two of these medians can equal
each other, for if two of them were equal they would be adjacent to all three of a, b, and c,
contradicting the fact that this triplet has w as its unique median. Similarly, as x, y, and z are
at distance two from each other, their median m(x, y, z) must be adjacent to all three. But
then these eight vertices w, a, b, c, x, y, z, and m(x, y, z) would induce a cube, contradicting
the assumption that the graph is cube-free. This contradiction shows that w can have at
most two incident edges. In a squaregraph inner vertices must have higher degree, so w must
be exterior. �

Proof of Proposition 5: We begin with the first assertion of the proposition, that every
finite squaregraph G has at least min{4,#E} vertices of degree one or two. If G is a path,
it has #E + 1 vertices, all of which have degree one or two. If G is a tree with exactly three
vertices of degree one, then it has #E vertices of degrees one or two. For trees with more
than three vertices of degree one, the claim is trivially satisfied from the bound 4. And if
it is not a tree, it has a nontrivial block B, which by Lemma 1 has at least four degree-two
vertices. Each of these vertices v is either of degree two in G as a whole, or is an articulation
point connecting B to other blocks of G. In the latter case, select a neighbor w of v outside B
and take a maximal interval I(v, z) containing w. By Lemma 4, the vertex z, which belongs
to some block Bv different from B, has degree at most two. Thus, each of the degree-two
vertices of B is associated with a distinct vertex with degree one or two in G, so in this case
there are at least four vertices in G with degree one or two.

The next assertion of the proposition is that the vertices of degree at most three in a
finite squaregraph G are the articulation points of degree two or three and the endpoints of
maximal convex paths. Suppose by way of contradiction that some maximal convex path P

in G has an endpoint v of degree at least 4. Let v′ be the neighbor of v in P. Since deg(v) ≥ 4,
v′ and one of the neighbors w of v do not belong to a common inner face of G. Adjoining w
to the path P we will obtain a locally convex path (i.e., a path for which each 2-subpath is
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convex), which is necessarily convex [8], yielding a contradiction with the maximality of P.
Therefore all endpoints of maximal convex paths have degrees at most 3 and hence lie on the
boundary C. Conversely, a vertex u of degree 2 belongs to C and has two neighbors v and
w on C. If u is not an articulation point, then u, v, and w lie on a 4-cycle, whence u is an
endpoint of any maximal convex path P extending the edge uv. Now, let u be a vertex of
degree 3, necessarily belonging to C. If all three edges uv, uw, ux emanating from u are on
the boundary C, then at most one 4-cycle can contain two of the these edges, whence u is an
articulation point. Else ux, say, belongs to two inner faces, one containing uv and the other
uw; then any maximal convex path extending ux must end at u. This completes the proof
of the second assertion of the proposition.

To conclude the proof, we must show that, given any vertex v in G, it is possible to find
three vertices of X having v as their median. If v has degree one or two, it must be a member
of X, and is the median of itself repeated three times, so we need only consider vertices v
with degree three or more.

First assume that v is a vertex of degree at least three on the boundary of G. Then one
can extend a convex path along the boundary of G in both directions from v (continuing
through articulation points if necessary) to a path eventually reaching end vertices p and q of
degree one or two, by virtue of Lemma 4. If v is an articulation point, then one can traverse
a convex path along the boundary in a third direction until another vertex r of degree one or
two is reached, so that v is the median of p, q, and r. Hence we may assume that v belongs
to some 2-connected block B and is not an articulation point of G. Let u and w be the two
neighbors of v on the boundary of B, where, say, u is in I(v, p) and w in I(v, q). Consider the
halfspaces H1 and H2 containing v but not u or w, respectively. If H1∩H2 is not included in
B (because it harbors some articulation point of G), then choose a vertex r from (H1∩H2)\B
at maximal distance to v. Then r has degree at most two (by virtue of Lemma 4) such that
v is the median of p, q, and r. Consequently, H1 ∩H2 is a convex subset of B. If H1 ∩H2 is a
path, which is necessarily a maximal convex path with v as one end vertex, then it meets X
in some vertex x by the hypothesis, whence v is the median of p, q, and x. Therefore we may
finally assume that H1 ∩H2 is contained in B but is not a path. Pick a vertex t in H1 ∩H2

that has neighbors in both V \ H1 and V \ H2 such that the distance of t to v is as large
as possible. Then every vertex in I(v, t) is adjacent to its gates in V \H1 and V \H2. Now
choose a vertex r from H1 ∩H2 such that I(v, r) includes I(v, t) where the distance to v is as
large as possible. Then r has degree at most two within H1 ∩H2 by Lemma 4 and can have
at most one neighbor in B outside H1 ∩H2. If r is adjacent to its gate in V \H1, say, then
I(v, r) is a path, whence the degree of r in B (as well as in G) is two. Else, r has the same
degree two in G as in H1 ∩H2. Hence v is the median of p, q, and r in this case.

Finally, suppose that v is an inner vertex of G and every maximal convex path through
v contains a vertex of X only on one side of v. Let p be a vertex of X that belongs to one
maximal convex path P through v. There are two inner faces of G that contain v and are
bounded by an edge of path I(v, p); let vy and vy′ be the two edges of G that contain v and
belong to these two faces, but do not belong to the path. Let path Q be a maximal convex
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Figure 12. Figure for the proof of Proposition 5. The two convex paths
P ′ and Q′, portions of maximal convex paths P and Q containing points p
and q in X, partition the squaregraph into two parts, one of which (shaded)
contains neither p nor q. Letting r be any vertex of degree one or two within
the shaded part forms a triplet (p, q, r) of points in X whose median is v.

extension of yvy′, and let q be a vertex of X belonging to Q, as shown in Figure 12. P and
Q intersect only at v. Partition each of P and Q into two paths at v, and let P ′ and Q′ be
the subpaths that do not contain p and q respectively. Let B be the block of G containing
v. Then P ′ and Q′ must end at degree-three boundary vertices of B; for, these paths cannot
contain any vertex of X by assumption, and if instead one of these paths passed through an
articulation point of G, one could (as in the proof of the first assertion of this proposition) find
an associated vertex of degree one or two in another block of G such that the continuation of
the path from the articulation point to the associated vertex remains convex, contradicting
the assumption that v does not lie on any convex path between two vertices of X. Therefore,
the union of the two paths P ′ and Q′ forms a path that partitions the squaregraph G into
two subgraphs that are themselves squaregraphs; let G′ be the one of these two subgraphs
that does not contain p nor q. By the first assertion of the proposition, G′ has at least four
vertices of degree one or two. Three of these vertices may be v and the endpoints of P ′ and
Q′, which do not belong to X, but the fourth vertex, r, must have degree one or two in
G as well and therefore must belong to X. As we now argue, the median of p, q, and r is
v. First, note that the concatenation of two convex paths is always a shortest path because
their common endpoint serves as the mutual gate for the two convex paths. Thus, v lies on
a shortest path from p to q. Consider the gates of the vertex r in P and Q. If these gates
belongs to the subpaths P ′ and Q′, respectively, then necessarily v belongs to the intervals
I(r, p) and I(r, q), and we are done. Otherwise, if the gate of r in P belongs to P \ P ′, then
the shortest path from r to the gate has to pass through Q′ because P ∪Q is a separator of
G. But then v would have to be the gate, giving a contradiction.
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Proof of Proposition 6: The first assertion of the proposition follows in one direction from
the definition of inner lines. As for the converse, if the intersection of two halfspaces is a path
lying entirely in some 2-connected block, then this intersection equals the intersection of the
zones corresponding to the respective splits and thus constitutes an inner line.

The vertices of degrees one and two in G must belong to every median-generating subset X
of G. If such a set X was disjoint from the intersection of two distinct halfspaces H1 and H2 of
G that constitutes a maximal convex path P of some block, then V \P = (V \H1)∪ (V \H2)
is closed under taking medians, whence X cannot median-generate G.

Conversely, assume that X meets the criterion. Let v be a boundary vertex of degree at
least three in G. Then as in the proof of Proposition 5, v can be obtained as the median of
three vertices from X. Thus, the boundary of B is obtained in one step of median generation
from the vertices of degrees at most two. By Proposition 5, every vertex of B is the median
of three vertices from the boundary of B. We conclude that two steps of median generation
starting from X suffice to retrieve the entire squaregraph G.

Proof of Theorem 1: The problem belongs to NP, since we may test any potential g-element
set X by generating medians of triplets of elements from X and from the previously-generated
elements until finding a subset of G closed under median operations; X is median-generating
if this subset consists of all vertices in G. To prove NP-hardness, we describe a polynomial
time many-one reduction from a known NP-complete problem, edge clique cover on graphs
with polynomially many cliques. To be more specific, in the problem we reduce from, we
are given a connected undirected graph F with n vertices which is guaranteed not to have
any complete subgraphs on five or more vertices, and a number k, and we must determine
whether F contains a set of k cliques (simplices or complete subgraphs) that together cover
all of its edges. Rosgen and Stewart [55] provide a reduction showing that this special case
of the clique cover problem is NP-complete.

There is a canonical construction of median graphs generated from arbitrary graphs [15]:
namely, for a graph F the simplex graph κ(F ) has the simplices of F as its vertices and
pairs of (comparable) simplices differing by the presence or absence of exactly one vertex
as its edges. Given the input graph F with n vertices and m edges, and given the number
k, we form a graph F ′ by adding to F a new degree-one vertex adjacent to each vertex of
F , let G = κ(F ′), and let g = n + k. This is a polynomial time transformation: due to the
requirement that F have no K5 subgraph, the number of vertices in κ(F ′) is O(n4). We claim
that G has a g-element median-generating set X if and only if F can be covered by k cliques.

In one direction, from a clique cover of F , we form a median-generating set X by including
one element for each of the cliques in the cover, and one element for each of the n edges added
to F to form F ′. Then any edge e of F can be generated as the median of three simplices:
the simplex that covers e and the two edges connecting the endpoints of e to the adjacent
degree-one vertices of F ′. Any triangle of F can be generated as the median of its three
edges, and similarly any larger simplex can be built up as medians of smaller subsimplices.
The empty simplex can be generated as the median of three disjoint edges connecting to

29



degree-one vertices of F ′. And any single-vertex simplex can be generated as the median of
two edges that contain it and the empty simplex. Thus, X is a median-generating set of the
required size.

In the other direction, suppose X is a median-generating set of size at most n + k. No
edge of G can be generated as the median of zero- and one-element simplices, so each edge
of F must be a subset of one of the simplices in X. But the only simplices in F ′ that contain
one of the edges incident to the newly-added degree-one vertices are those edges themselves,
so each of these n edges must form one of the elements of X. The remaining k elements of
X must cover the remaining edges of F , so they form a clique cover of the required size.

This polynomial-time many-one transformation completes the desired NP-completeness
proof.

Proof of Proposition 7: First observe that for any minimal parity-integer metric form f on
an absolute retract G of bipartite graphs there exists some vertex u of G with f = du. Indeed,
one can extend G to a bipartite graph H by adjoining a new vertex z and connecting z to each
vertex v of G by a new path of length f(v). Since the image u of z under a retraction from H

to G satisfies du(v) = dG(u, v) ≤ dH(z, v) = f(v) for all vertices v of G, the equality du = f

holds by minimality of f . In particular, this holds for every finite cube-free median graph
G because these graphs are known to be absolute retracts of bipartite graphs (Corollary 4.5
of [11]).

Finite cube-free median graphs have an ample supply of vertices of degree less than three:
expand any isometric path between two distinct vertices u and v to a maximal isometric path
from x via u and v to y. Then by Lemma 4 either endpoint can have at most two neighbors in
the interval I(x, y) and no neighbors beyond because of maximality. Therefore the particular
parity-integer metric forms du and dv differ on the set X of vertices with degrees one or
two, namely du(x) < dv(x) and du(y) > dv(y), whence ||du − dv||∞ ≥ d(u, v). The reverse
inequality follows from the fact that ||dt − dw||∞ ≥ 1 for every edge tw of G. Thus, the
squaregraph G is isomorphic to the absolute retract of bipartite graphs generated by the
metric space (X, d|X) embedded in (NX , || · ||∞).

11. Proofs for Section 5

To characterize squaregraphs without reference to the plane embedding, we use the fol-
lowing notation. The rim R(u) at a vertex u consists of the neighborhood N(u) of u and all
vertices other than u adjacent to at least two vertices of N(u). The closed rim R[u] is the
rim R(u) together with its hub u. A median graph is cube-free, that is, it does not have an
induced (or isometric) 3-cube Q3 exactly when it does not include a 3-cogwheel, that is, each
R[u] is a median subgraph. The vertices of a squaregraph are then classified into inner and
boundary vertices: a vertex u is an inner vertex exactly when R[u] is a cogwheel. The vertex
u is on the boundary if and only if either R[u] is a bipartite fan, alias cogfan (that is, the rim
R(u) induces a path) or u is an articulation point of R[u] (in which case the squaregraph is
not 2-connected).
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Lemma 5. The following statements are equivalent for a finite median graph G :

(i) G has a plane embedding as a 2-connected squaregraph;
(ii) all closed rims in G are cogfans or cogwheels;
(iii) G is 2-connected and cube-free such that K2�K1,3 is not an induced (or isometric)

subgraph.

Proof. From the remark preceding this result we conclude that (i)⇒(ii). If the closed rims of
G are cogfans or cogwheels, then G cannot contain articulation points, thus G is 2-connected.
Moreover, the cube Q3 and K2�K1,3 are forbidden as well, showing that (ii)⇒(iii). To estab-
lish that (iii)⇒(i), proceed by induction. Select a convex split σ(uv) = {W (u, v),W (v, u)} of
G such thatW (u, v) is minimal by inclusion among all such halfspaces. We assert thatW (u, v)
coincides with P (u, v) = Z(uv)∩W (u, v), i.e., every vertex of W (u, v) contains a neighbor in
W (v, u). Suppose by way of contradiction that there is a vertex x ∈W (u, v) \P (u, v). Since
W (u, v) is convex, we can select x to be adjacent to a vertex y ∈ P (u, v). Consider the convex
split σ(xy). If W (x, y) ⊂ W (u, v), we obtain a contradiction with the minimality choice of
W (u, v). Thus the splits σ(uv) and σ(xy) are incompatible. This means that W (x, y) shares
a vertex with W (v, u). Then necessarily there is a vertex z ∈ W (x, y) ∩ P (u, v). Since y is
adjacent to x and belongs to P (u, v), we deduce that y ∈ I(x, z). Since y ∈ W (y, x), we ob-
tain a contradiction with the convexity of W (x, y). Hence indeed W (u, v) = P (u, v). Since G
is Q3- and K2�K1,3-free, necessarily P (u, v) constitutes a convex path. Its neighbors outside
form an isomorphic path such that each edge of the latter lies on the boundary of the graph
G \ P (u, v) which can be realized as a squaregraph by virtue of the induction hypothesis.
Then G is a squaregraph as well. �

Lemma 6. The following statements are equivalent for an infinite median graph G :

(i) G is 2-connected and cube-free as well as K2�K1,3-free;
(ii) G is the directed union of convex subgraphs that are 2-connected finite squaregraphs;
(iii) all closed rims in G are cogfans or cogwheels.

Proof. The implication (iii)⇒(i) is obvious and the implication (ii)⇒(i) follows from Lemma
5. To show that (i)⇒(ii), we start with any inner face of G as the first 2-connected convex
subgraph H1. Let H1 ⊂ H2 ⊂ · · · ⊂ Hi be a chain of i convex 2-connected finite squaregraphs
of G and let v be a vertex of G outside Hi which is adjacent to a vertex u of Hi. Since G
is 2-connected, the vertex v can be connected by a path P to some vertex w 6= u of Hi not
passing via u. The subgraph induced by Hi ∪ P is 2-connected, therefore the subgraph Hi+1

induced by its convex hull is also 2-connected. On the other hand, since Hi ∪ P is finite and
the graph G is median, this convex hull is also finite. From Lemma 5 we infer that Hi+1

is a 2-connected finite squaregraph. This establishes that G is the directed union of convex
subgraphs that are 2-connected finite squaregraphs. It remains to show that (i)⇒(iii). Since
G is 2-connected, any rim R(u) is a connected subgraph. If R(u) is not a cycle or a path,
then some vertex x ∈ R(u) has at least three neighbors y1, y2, y3 in R(u). If x is adjacent to
u, then the subgraph induced by u, x, y1, y2, y3 is a forbidden K2�K1,3. On the other hand,
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if x is not adjacent to u, then y1, y2, and y3 are adjacent to u and we obtain a forbidden
K2,3. �

Lemma 7. For a finite cube-free median graph G the following statements are equivalent:

(i) G is circular, viz. the traces of the convex splits of G on the boundary C form a
circular split system;

(ii) G does not contain K2�K1,3 as an induced (or isometric) subgraph and does not
contain an induced (or isometric) suspended cogwheel;

(iii) G can be obtained by successive amalgamation of 2-connected squaregraphs along
boundary vertices.

Proof. First observe that in a cube-free median graph any subgraph isomorphic to the 4-
cycle, or the domino K2�K1,2, or K2�K1,3 is necessarily locally convex and hence convex.
Consequently, if the latter graph is forbidden as an induced subgraph, then every induced
cogwheel is (locally) convex and further every induced suspended cogwheel is convex. Now
suppose that G is circular but had a convex subgraph H isomorphic to K2�K1,3 or a sus-
pended cogwheel. Then the boundary C of G contains a subset X that is bijectively mapped
by the gate map from G to H to the set Y of vertices of degree at most two in H. The total
cyclic order restricted to X would then enforce a total cyclic order on Y so that the traces
on Y of the halfspaces of H are arcs, which however is impossible. Therefore (i)⇒(ii) holds.

Conversely, if a cube-free median graph G does not contain the forbidden configurations,
then from Lemma 5 we infer that every 2-connected component of G is a 2-connected square-
graph. Since G does not contain isometric suspended cogwheels, the 2-connected components
of G can only intersect in their boundaries, thus (ii)⇒(iii).

From Lemma 3, we know that (iii)⇒(i) holds for 2-connected squaregraphs. To establish
this implication for all squaregraphs, we proceed by induction on the number of 2-connected
components of G. Suppose that G is obtained as an amalgamation of two squaregraphs G′

and G′′ along a common boundary vertex x. By induction assumption, the graphs G′ and G′′

admit circular representations C ′ and C ′′. Let x′ and x′′ be the copies of x in C ′ and C ′′,
respectively. Let y′ be a neighbor of x′ in C ′. To obtain a circular representation C of G, we
identify the two copies of x in C ′ and C ′′, take the circular representation C ′ and place the
remaining vertices of C ′′ next to x′ but before y′ following the circular order of C ′′. To see
that the traces of convex splits of G on C indeed form a circular split system notice that any
convex split σ(uv) of G can be derived from the convex splits of G′ and G′′ in the following
way. Suppose without loss of generality that uv belongs to G′ and denote by W ′(u, v) and
W ′(v, u) the halfspaces defined by the edge uv in G′. If x ∈W ′(v, u), then W (u, v) = W ′(u, v)
and W (v, u) = W ′(v, u) ∪ V (G′′). If x ∈ W ′(u, v), then W (u, v) = W ′(u, v) ∪ V (G′′) and
W (v, u) = W ′(v, u). From the construction of C we infer that the traces of W (u, v) and
W (v, u) on C define indeed a circular split, establishing that (iii)⇒(i). �

Lemma 8. If G is an infinite 2-connected cube-free median graph with no induced subgraph
K2�K1,3 and no induced suspended cogwheel, then the traces of convex splits of G on the
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virtual boundary of G (comprising the endpoints of all finite zonal paths and zonal rays of G)
form a circular split system.

Proof. By Lemma 6, G is the directed union of convex 2-connected finite squaregraphs H1 ⊂
H2 ⊂ · · · , where H1 is an inner face of G. Replace each edge of G by a pair of opposite arcs
and assign each arc to exactly one incident face of G in such a way that the arcs assigned
to the face H1 define a counterclockwise traversal of H1. Then the inner faces of each Hi are
also traversed in the counterclockwise order while the outer face Ci of Hi is traversed in the
clockwise order.

Let P1, P2, and P3 be three maximal convex paths of G. To define a ternary relation
between the endpoints of these paths, we consider the first squaregraph Hi which is crossed
by each of the paths P1, P2, and P3 and which contains all eventual pairwise intersections of
these paths. Let Pk ∩ Ci = {u′k, u′′k} (k = 1, 2, 3). Then we define the ternary relation on
the vertices u′1, u

′′
1, u
′
2, u
′′
2, u
′′
3, u
′′
3 as induced by the clockwise orientation of the cycle Ci. For

any j > i, the six intersections of the paths Pk (k = 1, 2, 3) with Cj induce the same ternary
relation because the intersection pattern of the paths P1, P2, and P3 is the same in Hi and
Hj and because Ci and Cj have the same orientation. Let β denote the resulting ternary
relation on the set C of endpoints and virtual endpoints of maximal convex paths of G. Then
β satisfies the Huntington’s axioms because these axioms are defined on four points and β is
a total cyclic order on each Ci. Thus β is a total cyclic order on C. �

Note that, in particular, any tree has a circular split system. In this case it suffices to take
the set X of endpoints. The characteristic property of the circular split systems derived from
a squaregraph is that the underlying circle is uniquely determined (for an illustration, see
Figure 6). The canonical set X of circular cube-free median graph determining the convex
splits would consist of all endpoints (if any) and all boundaries of squaregraph blocks minus
articulation points. The general duality between median algebras and binary data tables
(Isbell’s binary messages) could then be formulated in terms of canonical boundary subsets
X in the case of circular cube-free median graph.

Proof of Proposition 9: The implication (i)⇒(ii) follows from Lemma 2. The converse
implication (ii)⇒(i) is a consequence of Lemmas 5 and 7. The equivalence (ii)⇔(iii) is obvious.
Finally, the equivalence between the conditions (ii) and (iv) follows from Lemma 7 and the
fact mentioned in Section 4 that the incompatibility graph Inc(S(G)) of convex splits of a
squaregraph G is isomorphic to the incompatibility graph Inc(S(G)|X) of traces of convex
splits on any median-generating subset X of C.

Proof of Proposition 10: To every finite set W in a median graph G add some shortest
path for each pair of vertices from W. Then the extension X of W is finite and hence its
convex hull is a finite median algebra, which is a median subgraph of G because X induces a
subgraph of G. Then the implications (i)⇒(ii)⇒(iii)⇒(i) and (iv)⇒(iii) are obvious. Assume
that (iv) is violated, then select a finite subset U that testifies to a forbidden intersection
pattern of the halfspaces. Moreover, for each halfspace, add to U a pair of adjacent vertices
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separated by that halfspace. Then expand this extended set W further to a finite set X
inducing a connected subgraph of G. The convex hull F of X is then a finite median graph
where all involved halfspaces of G leave their distinct traces with the same kind of forbidden
intersection pattern, that is, (iii) is violated. Moreover, suppose there was a total cyclic
order on which the system of convex splits of G becomes circular. Then a finite subset C
of this cyclic order would faithfully represent the intersection pattern of the halfspaces of
F. However, three pairwise disjoint halfspaces would leave a trace of three pairwise disjoint
cycle segments, which cannot be met simultaneously by a single cycle segment. Moreover, a
cyclic intersection pattern of halfspaces yields a cyclic intersection pattern of cycle segments
which cover the entire cycle, so that there is no space for a proper segment to cover all those
segments. Therefore (v) must be violated. This shows that (v) implies (iv). Finally, to show
that (ii) implies (v), it suffices to note that for the directed union the finite total cyclic orders
consistently go along with it, so that we can represent the system of convex splits on the
directed union of the corresponding cyclic orders.

12. Proofs for Section 6

In order to prove Theorem 2 we first consider the balls in finite squaregraphs.

Lemma 9. Let G be a finite squaregraph, v be any vertex of G, and r be any nonnegative
integer. The ball Br(v) induced by the vertices that are at distance at most r from v in G is
a squaregraph.

Proof. If G = Br(v), the result is clearly true. Otherwise, fix an embedding of G as a
squaregraph and let w be a vertex ofG that is maximally distant from v; Br(v) ⊂ G\{w} ⊂ G.
By Lemma 4, each inner vertex of G \ {w} is also an inner vertex of G with the same set of
neighbors, and each inner face of G\{w} is also an inner face of G, so G\{w} is a squaregraph
and the result follows by induction on the number of vertices in G. �

Lemma 10. Let G be a finite squaregraph, and let v be any vertex of G. For each positive
integer i let Si(v) be the set of vertices of G that are at distance i from v. Then one can find
a planar supergraph H ⊃ G, and a planar embedding of H consistent with the embedding of
G, such that in H each set Si(v) is connected into a cycle, and such that these cycles are
embedded concentrically surrounding v.

Proof. We will use induction on the number of vertices of G. Let w be any vertex maximally
distant from v, and let G′ = G \ {w}. As above, G′ is a squaregraph, so by the induction
hypothesis it has a plane-embedded supergraph H ′ ⊃ G′ with the properties described in the
lemma. As we now show, we may add w back to G′, forming G, and simultaneously modify
H ′ to form the desired supergraph H. There are three cases:

(1) If w is the only vertex of G at distance d(v, w) from v, then the outer face of H ′

consists of the cycle connecting all vertices at distance d(v, w)− 1, and must include
all neighbors of w. We can extend H ′ to H by connecting w to its neighbors by
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Figure 13. Illustration of Lemma 10: for any finite squaregraph G the ver-
tices may be connected into concentric cycles according to their distances from
an arbitrarily chosen starting vertex, and the cycles embedded in the plane
consistently with G.

edges that are drawn outside this cycle and then adding a self-loop attached at w
that surrounds the rest of the graph including the new edges.

(2) If there are other vertices of G at the same distance as w from v, and w has a single
neighbor x in G, then x belongs to the second-from-outermost cycle of H ′, and there
is a unique face f of the embedding of H ′ that includes both x and an edge of the
outer cycle into which w can be added consistently with the embedding of G. In this
case, we may form H by splitting the outer edge of f , placing w at the split point,
and adding back the edge connecting w to x within f .

(3) In the remaining case, there are other vertices of G at the same distance as w from
v, and w has two neighbors x and y in G that belong to the second-from-outermost
cycle. Let z be the median of x, y, and v; z belongs to the third-from-outermost
cycle, and by Lemma 1 the four vertices x, y, z, and w form a face of G. In the
embedding of G (and of G′) x and y appear consecutively among the neighbors of
z, and therefore they also appear consecutively on their cycle. There exists a unique
face f of the embedding of H ′ that contains edge xy and an edge of the outer cycle; as
in the previous case we may form the desired embedding of H by splitting the outer
cycle edge, adding w at the split point, and routing the edges wx and wy through f .

�
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Figure 13 illustrates Lemma 10. Note that the lemma cannot be generalized to all planar
graphs: the planar graph K2,4, with v chosen as one of its degree-two vertices, cannot be
augmented to have concentric cycles like those of the lemma.

Lemma 11. For a line arrangement A in the hyperbolic plane, the following assertions are
equivalent:

(i) A is locally finite;
(ii) A is countable and the cell copair hypergraph of A is discrete;
(iii) A is countable and the dual graph of A is connected.

Proof. (i) ⇒ (ii): The hyperbolic plane is a countable union of balls Bn(v) around any point
v where n runs through the positive integers. Since each Bn(v) meets only finitely many
lines of A, there are no more than countably many lines in A altogether. The line segment
between any two points u and v from different cells is included in some ball and hence meets
only finitely many lines from A. Therefore the cell copair hypergraph of A is discrete.

(ii) ⇒ (iii): The line segment S between any two points u and v from different cells is
separated by finitely many lines from the arrangement. Since A is countable, we may assume
that u and v are chosen so that every point on the line segment S meets at most one line from
A. Then removing from S these individual crossing points with the lines from A results in
a finite sequence of (half-)open segments that each extend to cells such that two consecutive
cells are separated by exactly one line from A. Therefore the dual graph is connected.

(iii) ⇒ (i): If R is a bounded region of the hyperbolic plane, surround R by a polygon
P ; the assumption that A is countable guarantees that P can be chosen so that it does not
pass through any crossing point of A. Each edge of P is crossed only by the lines of A that
separate the two endpoints of the edge and that must be crossed by any path between those
endpoints; therefore, the number of lines crossed by the edge is equal to the length of the
shortest path in the graph between the vertices dual to the endpoints’ cells, and is finite. Any
line of A that intersects R crosses one of the finitely many edges of P, so the total number
of lines of A intersecting R is finite. �

The assumption of countability in (ii) and (iii) is necessary, as the set of all hyperbolic
lines has an empty cell copair hypergraph and empty dual graph.

Lemma 12. For a locally finite line arrangement A in the hyperbolic plane, the following
statements are equivalent:

(i) A is triangle-free;
(ii) the cell copair hypergraph of A is ∗Helly;
(iii) the dual graph of A is median.

Proof. (i) ⇒ (ii): We will apply Proposition 1 to the cell copair hypergraph of A, which is
discrete by the preceding lemma. Let u, v, w be any three points of the hyperbolic plane
belonging to different cells of A. Consider the collection D of open halfplanes that are
bounded by lines from A and contain at least two of u, v, w. Then D partitions into D2 and
D3 of those halfplanes that contain exactly two of u, v, w and all three of them, respectively.
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The intersection of D3 contains u, v, w and is convex. Since the cell copair hypergraph is
discrete, D2 is a finite collection intersecting in pairs and hence in triplets by virtue of (i).
Then the finite collection D2∪{∩D3} of convex sets triplewise intersects and hence, by Helly’s
theorem, has a nonempty intersection (which includes a cell of A). This proves that the cell
copair hypergraph is ∗Helly.

(ii) ⇒ (iii): Since the cell copair hypergraph separates the points (cells) by definition and
is ∗Helly, it is the halfspace hypergraph of a median graph on the same vertex (cell) set.
Necessarily, this median graph must be the dual graph of the arrangement because its edges
are characterized in terms of separation by a unique line.

(iii) ⇒ (i): From the preceding lemma we know that the dual graph G of A is connected
such that any two distinct cells Y and Z are separated by no more than finitely many lines
from A. These lines and no others cross the line segment between any two points y from Y

and z from Z, where we may assume that y and z are chosen so that no point of the segment
between y and z belongs to more than one line of A. As in the part (ii) ⇒ (iii) of the proof
of Lemma 11, we can then extend the open subsegments between consecutive crossing lines
to cells of A, which thus constitute the inner vertices of a shortest path between the vertices
Y and Z in the dual graph of A. This, in particular, shows that every shortest path between
cells traverses a line from A at most once. Now suppose, by way of contradiction, that A was
not triangle-free, that is, there were three pairwise intersecting open halfplanes bounded by
lines from A. Select a cell each within each of their pairwise intersections. By what has just
been shown, the median cell of the three selected cells belongs to all three open halfplanes,
which is impossible. �

Proof of Theorem 2: (i) ⇒ (iii): We are given a locally finite squaregraph embedding G,
and must show that there exists a countable chain of finite squaregraphs covering G. For each
positive integer i, let Ci be a circle centered at the origin with radius i. Form the arrangement
of curves consisting of Ci together with all edges of the drawing of G that start and end within
Ci, and let Ri be the bounded region complementary to the single unbounded face of this
arrangement. Define Gi to be the subgraph of G induced by the vertices within Ri. Then the
induced drawing of Gi has as its inner faces the inner faces of G that are entirely contained
within Ri, together with one unbounded face, so its inner faces are all quadrilaterals, and
any vertex that is entirely surrounded by inner faces has degree four or more. Thus, Gi is a
finite squaregraph, and the sequence of squaregraphs formed for increasing values of i form
a chain that covers G.

(iii) ⇒ (ii): We are given a countable chain of finite squaregraphs covering G, and must
show that each fixed-radius induced subgraph Br(v) is also a squaregraph. If the chain
covers G, some squaregraph Gi in the chain covers all of the (finitely many) vertices and
edges in Br(v). Applying Lemma 9 to Gi and its subgraph Br(v) shows that Br(v) is also a
squaregraph.

(ii) ⇒ (i): We are given a graph G in which each fixed-radius induced subgraph Br(v)
is a finite squaregraph, and must show that G has a locally finite squaregraph embedding.
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We assume that G is infinite, for otherwise the result follows trivially. Fix some particular
vertex v of G. We form an infinite tree, the nodes of which represent equivalence classes
of embeddings of Bi(v) for some i, together with a cyclic augmentation H i

v as described
by Lemma 10; two augmented embeddings are considered to be equivalent if they have the
same value of i and the nodes in each of their cycles appear in the same cyclic order. We
connect these nodes into a tree by making the parent of a node H i

v be the node H i−1
v formed

by deleting the outer cycle from H i
v. Each node of this tree has finite degree (since there

are finitely many ways in which one might choose a cyclic permutation of the finitely many
vertices in the next layer of G) but the tree has infinitely many nodes, so by König’s infinity
lemma there exists an infinite path in the tree, giving us a choice of cyclic ordering of all the
layers of G that is consistent with a planar embedding of G. To transform this combinatorial
embedding into an actual embedding of G, place the vertices that are at distance i from v

onto a circle of radius i centered at the origin, with the edges between vertices at distance
i− 1 and distance i placed within an annulus between two such circles. Each of these annuli
contains finitely many vertices and edges, so the whole embedding formed in this way is
locally finite as required.

(i) & (ii) ⇒ (iv): We are given a locally finite squaregraph embedding of G and must
show that G is a connected component of the dual graph of a triangle-free hyperbolic line
arrangement. It is convenient to use the Klein model of the hyperbolic plane, in which the
plane is modeled by a Euclidean unit disk and a hyperbolic line is modeled by a line segment
connecting two points on the Euclidean unit circle. We will use the embedding of G to choose
a cyclic order for which the splits of G form a circular split system, and form a line for each
split such that the lines have distinct endpoints and induce the same split system on the
unit circle. By Lemma 3 and property (ii), the splits of G correspond to zones in the form
of (possibly infinite) ladders. By choosing arbitrarily an orientation for each zone we may
distinguish its two ends, corresponding to the two endpoints of the Klein model line segment
we will construct to represent a hyperbolic line. The given embedding of G determines a
cyclic ordering on the ends of the zones, which may be computed as follows: given three ends
of zones a, b, and c, choose a vertex v of G and a radius r sufficiently large that the ball
Br(v) includes any of the quadrilaterals where two of the zones cross each other; then each
end of each zone corresponds to a boundary edge of Br(v), and the cyclic ordering of the
edges around the boundary of Br(v) determines the cyclic ordering of the ends of zones. It is
straightforward to verify by induction on r that this ordering remains unchanged for larger
radii. From the cyclic ordering, we define an arrangement A as follows: order the zones of
G arbitrarily (e.g., by the closest distance of an edge of the zone from some fixed vertex v),
and choose endpoints on the unit circle of the Klein model for each zone in this order. For
the first zone, choose two diametrally opposite endpoints, and then subsequently place each
zone’s endpoints consistently with the cyclic order, midway between the endpoints of its two
neighbors in the cyclic order. The result is a hyperbolic line arrangement A with one line
per zone in which the cyclic order of the infinite ends of the hyperbolic lines is the same as
the cyclic order of ends of zones. Thus, both the splits of G and the halfspaces of A form
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isomorphic copies of a circular split system S. This implies that two lines of A intersect if
and only if they represent two crossing zones of G. Moreover, if we pick any line l of A and
consider the lines of A intersecting l, then they intersect l in the same order as the zone
represented by l is crossed by the zones represented by these lines.

We observe next that A is triangle-free. For, if A contained a triangle, the corresponding
three zones of G would have to cross pairwise. But then the cycle formed by connecting the
paths on the outsides of the ladders formed by the three zones would surround a subgraph
of G that is (by local finiteness and Lemma 1) a finite squaregraph, but that has only three
degree-two boundary vertices (the three corners where the zones cross), violating Lemma 1.

For any vertex v of G, the ladder structure of zones and their convexity imply that two
zones incident to v cross in G if and only if they share a common inner face of G incident
to v. Therefore, if we traverse synchronously in counterclockwise order the neighbors w of v
and the lines of A defined by the zones Z(v, w) (by passing from one line to the next one
at their intersection point), we will traverse a convex region Rv of the unit disk which is
the intersection of the halfspaces to the left of the traversed lines (which correspond to the
halfspaces of G containing v; in fact, the intersection of these halfspaces of G is exactly v).
We assert that Rv is a face of the arrangement A. Suppose by way of contradiction that Rv

is crossed by a line l of A. Since A is triangle-free, either Rv has two supporting lines l′, l′′ of
A located on both sides of l or all supporting lines of Rv are located on one side of l except
the line m′ crossed by l. In the first case we conclude that the zones of l′ and l′′ belong to
different halfspaces of G defined by the zone of l. This is possible only if this zone is incident
to v, i.e., if l is a supporting line of Rv. In the second case, let m′′ be the supporting line
of Rv intersecting m′. Then the zone represented by m′′ will separate the zone represented
by l from all zones incident to v except the zone represented by m′. But then the ends of all
those zones will define a cyclic order different from the cyclic order of the ends of the lines
representing these zones (i.e., l and the supporting lines of Rv). Hence for each vertex v of G,
the region Rv is indeed a face of A bordered by finitely many lines of A, namely, the lines of
A representing the zones of G incident to v. The line l representing the zone Z(v, w) borders
also the face Rw. Since two vertices u and v are adjacent in G if and only if there exists a
unique zone such that u and v belong to different halfspaces defined by this zone, from the
definition of the regions Ru and Rv we conclude that they are separated by a single line of A
if and only if u and v are adjacent. This shows that G is a connected component of the dual
graph of A. If the arrangement A is locally finite, then Lemma 11 implies that the dual graph
of A is connected and therefore it coincides with G. Finally, notice that G is a median graph,
as the median of any three vertices a, b, and c may be found within the finite squaregraph
Br(a) (where r = max{d(a, b), d(a, c)}) and we have already seen that finite squaregraphs are
median graphs.

(iv) ⇒ (i): We are given a median graph G with finite vertex degrees which is a connected
component of the dual graph of a triangle-free hyperbolic line arrangement A satisfying the
condition (iv) and we assert that G has a locally finite squaregraph embedding. Each vertex
v of G is represented in A by a convex cell Rv which is bordered by finitely many lines of A.
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We place a dual vertex v within each such cell Rv, choosing a point on each segment of the
arrangement where the dual edge is to cross, and connecting each vertex by line segments to
the chosen point on each adjacent segment. Thus, each edge is represented by a curve formed
by two line segments. Each face of the dual contains part of some line of the arrangement, and
each arrangement line is crossed by a sequence of dual edges that separate each of the crossings
on the line from each other, and that separate the crossings from infinity. Therefore, either
a face contains an infinite ray from one or more of the lines, and is unbounded, or contains
a single crossing of two lines and the four dual edges surrounding that crossing, and is a
quadrilateral. This concludes the proof of Theorem 2.

We observe that the argument that (iv) ⇒ (i) generalizes in a straightforward way to
weak pseudoline arrangements (for a definition of such an arrangement for finitely many
pseudolines, see [37, Section 11.4]; the definition extends in an obvious way to locally finite
arrangements). Therefore, pseudoline arrangements carry no added generality over hyperbolic
line arrangements in defining infinite squaregraphs.

13. Proofs for Section 7

The first lemma of this section, which characterizes the absence of 2×2 grids in an arbitrary
median graph, covers the case n = 4 of Theorems 1 and 2 of [46].

Lemma 13. For a median graph G = (V,E), the following conditions are equivalent:

(i) G contains a convex 2× 2 grid K1,2�K1,2;
(ii) the incompatibility graph Inc(S(G)) includes an induced 4-cycle;
(iii) the 2× 2 grid is a median homomorphic image of G;
(iv) G includes a median subalgebra H isomorphic to the 2×2 grid that cannot be expanded

to a median subalgebra isomorphic to K1,2�C4.

Proof. We will verify the implications (i)⇒(ii)⇒(iii)⇒(iv)⇒(i).
(i)⇒(ii): If G contains a convex 2× 2 grid, then the four convex splits of G separating this

convex grid evidently form an induced 4-cycle in Inc(S(G)).
(ii)⇒(iii): Assume that there is some induced 4-cycle in Inc(S(G)). Then opposite vertices

in this cycle constitute a compatible pair of splits. Either compatible pair of splits gives rise
to a median homomorphism ϕi (i = 1, 2) onto the 2-path K1,2. These maps factor through
a median homomorphism ϕ into the Cartesian product of these two 2-paths. If ϕ was not
surjective, then necessarily not all four incompatibilities between the four splits could be
maintained.

(iii)⇒(iv): Next assume that some median homomorphism ϕ maps G onto the 2× 2 grid.
Let {A1, B1} and {A2, B2} be the pre-images under ϕ of one compatible pair of convex splits
from the grid, and let {A′1, B′1} and {A′2, B′2} be the pre-images of the other pair, where we
may assume that A1 ∩ A2 and A′1 ∩ A′2 are empty. Those four convex splits of G partition
G into nine convex sets; see Figure 14. Assume that the distance between A1 ∩ A′1 and
A2 ∩ A′2 does not exceed the distance q between A1 ∩ A′2 and A2 ∩ A′1. Let u11 and u22 be
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Figure 14. To the proof of Lemma 13.

mutual gates for the disjoint convex sets A1 ∩ A′1 and A2 ∩ A′2 [34]. Then take the gate u21

of u11 in A2 and the gate u12 of u22 in A1. Then both u12 and u21 belong to I(u11, u22).
Hence the distance between u12 of u21 must equal q, and therefore u11, u12, u22, and u21

form a metric rectangle with perimeter 2q. Consider the “median set” M of vertices of G
with minimum distance sum to the four corners of this rectangle. Then each of the eight
halfspaces of G under consideration includes exactly two corner points, whence the nonempty
intersection B1 ∩ B2 ∩ B′1 ∩ B′2 contains some vertex w from M [3]. Let v1, v2, v′1, and v′2
be the gates of w in A1, A2, A

′
1, and A′2, respectively. A straightforward calculation shows

that the distance sum from w to the four corner points is bounded from below by 2q. Since
every corner has distance sum 2q to the other corner points, equality holds. Then the nine
constructed vertices give rise to nine overlapping metric rectangles and hence form a median
subalgebra H isomorphic to the 2×2 grid. If H expanded to a median subalgebra isomorphic
to K1,2�C4, then compatibility of either {A1, B1} and {A2, B2} or {A′1, B′1} and {A′2, B′2}
would be violated.

(iv)⇒(i): Assume that G includes some median subalgebra H isomorphic to the 2×2 grid,
with vertices denoted as in Figure 14, say. Then select neighbors x1, x2, x

′
1, and x′2 of w on

shortest paths from the central vertex w to v1, v2, v′1, and v′2, respectively. The median y11 of
x1, x

′
1, and u11 is adjacent to x1 and x′1, thus producing a 4-cycle. In a clockwise fashion the

other three squares are obtained, altogether yielding a median subgraph isomorphic to the
2× 2 grid. �

In the case of cube-free median graph G “convex” can be substituted by “induced” in
condition (i) of the preceding lemma, because induced 2 × 2 grids are necessarily convex in
G. For a similar reason, a median subalgebra H of G isomorphic to the 2× 2 grid cannot be
expanded to one that is isomorphic to K1,2�C4.
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Lemma 14. For a finite squaregraph G, the following conditions are equivalent:

(i) G can be embedded into the Cartesian product of two trees;
(ii) Inc(S(G)) is bipartite;
(iii) G does not contain an induced (or isometric, or convex) odd cogwheel;
(iv) every inner vertex of G has even degree.

Proof. Conditions (i) and (ii) are equivalent according to [15]. Further, (iii) and (iv) are
also equivalent. If G includes some odd k-cogwheel, then Inc(S(G)) contains an induced odd
k-cycle, thus proving (ii)⇒(iii). To prove the converse we may assume that G is 2-connected.
If G has some inner vertex w of odd degree k, then Inc(S(R[w])) is an odd k-cycle. Suppose
by way of contradiction that all inner vertices of G have even degrees but Inc(S(G)) contains
an induced odd cycle C. Consider a chord diagram representation of the squaregraph G

(within the unit disk) provided by Theorem 2. The chords representing two incompatible
splits (i.e., adjacent vertices) from C intersect in a single point and each such chord has two
such intersection points. The segments having these points as endpoints together define a
closed nonintersecting polygonal line L(C). Suppose that among all odd cycles of Inc(S(G)),
the closed polygonal line L(C) of the selected cycle C has the smallest perimeter. Since G
does not contain odd wheels, the region of the plane bounded by L(C) contains two adjacent
inner vertices u, v of G. The chord representing the zone Z(uv) crosses the chords representing
two zones that participate in the cycle C. As a result, that chord (separating uv) together
with C gives rise to two cycles C1 and C2 of Inc(S(G)) for which both L(C1) and L(C2) have
smaller perimeter than L(C). Since one of these cycles is odd, we obtain a contradiction with
the choice of the cycle C. �

Proof of Theorem 3: We have mentioned in Section 4 that the incompatibility graph
Inc(S(G)) of convex splits of a squaregraph G is triangle-free and it is isomorphic to the
incompatibility graph Inc(S(G)|X) of traces of convex splits on any median-generating subset
X of C. By Theorem 2, Inc(S(G)|X) is isomorphic to the intersection graph of chords in the
circle representation of S(G)|X . By a result of [47], a triangle-free circle graph is 5-colorable,
thus the graph Inc(S(G)) is 5-colorable as well. Therefore, by a result of [15], the squaregraph
G is isometrically embeddable into the Cartesian product of 5 trees. If a squaregraph G does
not contain induced 2× 2 grids, then by Lemma 13 the graph Inc(S(G)) (and therefore the
underlying circle graph) is C4-free. By a result of [2], Inc(S(G)) is 3-colorable, whence G is
embeddable into the product of 3 trees. Lemma 14 covers the case where G can be embedded
into the product of 2 trees.

To complete the proof, assume that G0 is a 2-connected squaregraph with r vertices of
degree > 5 such that G0 cannot be embedded into the Cartesian product of four trees.
We will construct a sequence G0, . . . , Gr of squaregraphs preserving 2-connectivity and this
embedding property such that each Gi is a median homomorphic image of Gi+1 (i = 0, . . . , r−
1) and has at most r − i vertices of degree > 5. Having constructed Gi, assume that u is
a vertex of degree h > 5. If u is an inner vertex, then we can select a convex 2-path Pu
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in the closed rim R[u] such that the degrees of u in the two components of R(u) \ Pu are
< h− 3. If u is on the boundary, one can select a neighbor v of u such that Pu = uv has the
analogous property for cogfan R[u]. In either case, extend Pu to a minimal convex path P

that separates Gi. Then Gi is the amalgam of smaller squaregraphs G′i and G′′i along P. In
either constituent the degree of u is < h− 1. Now, expand Gi along P by introducing a new
zone. In the expansion Gi+1 the degrees of vertices do not grow when passing from Gi to
Gi+1. In the case of u, the degree is < h. Thus, after at most r expansion steps, no vertices
of degrees > 5 are left.

Proof of Theorem 4: Let G be a median graph not containing any induced cube, K2�K1,3,

or suspended cogwheel. To prove that G is isometrically embeddable into the Cartesian
product of at most five trees it suffices to show that the incompatibility graph Inc(S(G)) of
convex splits of G is 5-colorable. According to a result of De Bruijn and Erdös (see Theorem
1 of the book by Jensen and Toft [45]) an infinite graph is k-colorable if and only if all its
finite subgraphs are k-colorable. Consider any finite subgraph H of Inc(S(G)). For each pair
σ1 = {A1, B1} and σ2 = {A2, B2} of incompatible splits of H pick a vertex in each of the
four nonempty intersections A1 ∩A2, A1 ∩B2, B1 ∩A2, and B1 ∩B2. Denote by G′ the finite
median graph induced by the convex hull of the selected vertices. Since G′ is a subgraph
of G, it does not contain any induced cube, K2�K1,3, or suspended cogwheel. According
to Lemma 7, G′ is a finite squaregraph. Theorem 3 implies that Inc(S(G′)) is 5-colorable.
Since H is an induced subgraph of Inc(S(G′)), we deduce that H is 5-colorable as well. The
corresponding assertions for 3- or 2-colorabilty follow similarly from Theorem 3 together with
Lemmas 13 and 14. This establishes Theorem 4.

14. Épilogue

Two-connected squaregraphs constitute an interesting class of planar graphs with a rich
structural theory. In particular, the coordinatization with no more than five trees makes a
number of algorithmic problems particularly tractable for them. Another equally attractive
feature is that any finite 2-connected squaregraph G is fully determined by the metric on
its boundary cycle C, from which it is obtained as the minimal extension of C to an ab-
solute retract of bipartite graphs, which effectively constitutes a coordinatization by paths
with respect to the supremum norm. Now, it is natural to ask how the injective hull of
a 2-connected squaregraph G with boundary cycle C looks like and how it is determined.
Necessarily, it includes the vertex set of G and must turn every 4-cycle into a solid square,
that is, it encompasses the geometric realization of G [15]. It is then not difficult to see that
this geometric realization is in fact injective and thus constitutes the injective hull (alias tight
span) T (C, d) of the boundary cycle C with respect to the distances in G. This also follows
directly from Theorem 1 of [32]. Within this injective hull, the (at most five) tree factors
extend to solid trees (i.e., dendrons) and the discrete boundary cycle extends to the solid
boundary circle. The median hull of the boundary circle yields the whole space T (C, d). In
this way, 2-connected squaregraphs arise as the 1-skeletons of particular Manhattan orbifolds
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[36]. The passage from C to G and to the square complex T (C, d) can be investigated in a
more general framework, and this will be the topic of subsequent papers.
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58. P. Soltan, D. Zambitskii, and C. Prisǎcaru, Extremal Problems on Graphs and Algorithms of their
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